2
|
1 |
/*
|
|
2 |
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Sun designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Sun in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
22 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
23 |
* have any questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
package java.util;
|
|
27 |
import java.io.Serializable;
|
|
28 |
import java.io.ObjectOutputStream;
|
|
29 |
import java.io.IOException;
|
|
30 |
import java.lang.reflect.Array;
|
|
31 |
|
|
32 |
/**
|
|
33 |
* This class consists exclusively of static methods that operate on or return
|
|
34 |
* collections. It contains polymorphic algorithms that operate on
|
|
35 |
* collections, "wrappers", which return a new collection backed by a
|
|
36 |
* specified collection, and a few other odds and ends.
|
|
37 |
*
|
|
38 |
* <p>The methods of this class all throw a <tt>NullPointerException</tt>
|
|
39 |
* if the collections or class objects provided to them are null.
|
|
40 |
*
|
|
41 |
* <p>The documentation for the polymorphic algorithms contained in this class
|
|
42 |
* generally includes a brief description of the <i>implementation</i>. Such
|
|
43 |
* descriptions should be regarded as <i>implementation notes</i>, rather than
|
|
44 |
* parts of the <i>specification</i>. Implementors should feel free to
|
|
45 |
* substitute other algorithms, so long as the specification itself is adhered
|
|
46 |
* to. (For example, the algorithm used by <tt>sort</tt> does not have to be
|
|
47 |
* a mergesort, but it does have to be <i>stable</i>.)
|
|
48 |
*
|
|
49 |
* <p>The "destructive" algorithms contained in this class, that is, the
|
|
50 |
* algorithms that modify the collection on which they operate, are specified
|
|
51 |
* to throw <tt>UnsupportedOperationException</tt> if the collection does not
|
|
52 |
* support the appropriate mutation primitive(s), such as the <tt>set</tt>
|
|
53 |
* method. These algorithms may, but are not required to, throw this
|
|
54 |
* exception if an invocation would have no effect on the collection. For
|
|
55 |
* example, invoking the <tt>sort</tt> method on an unmodifiable list that is
|
|
56 |
* already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
|
|
57 |
*
|
|
58 |
* <p>This class is a member of the
|
|
59 |
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
|
|
60 |
* Java Collections Framework</a>.
|
|
61 |
*
|
|
62 |
* @author Josh Bloch
|
|
63 |
* @author Neal Gafter
|
|
64 |
* @see Collection
|
|
65 |
* @see Set
|
|
66 |
* @see List
|
|
67 |
* @see Map
|
|
68 |
* @since 1.2
|
|
69 |
*/
|
|
70 |
|
|
71 |
public class Collections {
|
|
72 |
// Suppresses default constructor, ensuring non-instantiability.
|
|
73 |
private Collections() {
|
|
74 |
}
|
|
75 |
|
|
76 |
// Algorithms
|
|
77 |
|
|
78 |
/*
|
|
79 |
* Tuning parameters for algorithms - Many of the List algorithms have
|
|
80 |
* two implementations, one of which is appropriate for RandomAccess
|
|
81 |
* lists, the other for "sequential." Often, the random access variant
|
|
82 |
* yields better performance on small sequential access lists. The
|
|
83 |
* tuning parameters below determine the cutoff point for what constitutes
|
|
84 |
* a "small" sequential access list for each algorithm. The values below
|
|
85 |
* were empirically determined to work well for LinkedList. Hopefully
|
|
86 |
* they should be reasonable for other sequential access List
|
|
87 |
* implementations. Those doing performance work on this code would
|
|
88 |
* do well to validate the values of these parameters from time to time.
|
|
89 |
* (The first word of each tuning parameter name is the algorithm to which
|
|
90 |
* it applies.)
|
|
91 |
*/
|
|
92 |
private static final int BINARYSEARCH_THRESHOLD = 5000;
|
|
93 |
private static final int REVERSE_THRESHOLD = 18;
|
|
94 |
private static final int SHUFFLE_THRESHOLD = 5;
|
|
95 |
private static final int FILL_THRESHOLD = 25;
|
|
96 |
private static final int ROTATE_THRESHOLD = 100;
|
|
97 |
private static final int COPY_THRESHOLD = 10;
|
|
98 |
private static final int REPLACEALL_THRESHOLD = 11;
|
|
99 |
private static final int INDEXOFSUBLIST_THRESHOLD = 35;
|
|
100 |
|
|
101 |
/**
|
|
102 |
* Sorts the specified list into ascending order, according to the
|
|
103 |
* <i>natural ordering</i> of its elements. All elements in the list must
|
|
104 |
* implement the <tt>Comparable</tt> interface. Furthermore, all elements
|
|
105 |
* in the list must be <i>mutually comparable</i> (that is,
|
|
106 |
* <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt>
|
|
107 |
* for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
|
|
108 |
*
|
|
109 |
* This sort is guaranteed to be <i>stable</i>: equal elements will
|
|
110 |
* not be reordered as a result of the sort.<p>
|
|
111 |
*
|
|
112 |
* The specified list must be modifiable, but need not be resizable.<p>
|
|
113 |
*
|
|
114 |
* The sorting algorithm is a modified mergesort (in which the merge is
|
|
115 |
* omitted if the highest element in the low sublist is less than the
|
|
116 |
* lowest element in the high sublist). This algorithm offers guaranteed
|
|
117 |
* n log(n) performance.
|
|
118 |
*
|
|
119 |
* This implementation dumps the specified list into an array, sorts
|
|
120 |
* the array, and iterates over the list resetting each element
|
|
121 |
* from the corresponding position in the array. This avoids the
|
|
122 |
* n<sup>2</sup> log(n) performance that would result from attempting
|
|
123 |
* to sort a linked list in place.
|
|
124 |
*
|
|
125 |
* @param list the list to be sorted.
|
|
126 |
* @throws ClassCastException if the list contains elements that are not
|
|
127 |
* <i>mutually comparable</i> (for example, strings and integers).
|
|
128 |
* @throws UnsupportedOperationException if the specified list's
|
|
129 |
* list-iterator does not support the <tt>set</tt> operation.
|
|
130 |
* @see Comparable
|
|
131 |
*/
|
|
132 |
public static <T extends Comparable<? super T>> void sort(List<T> list) {
|
|
133 |
Object[] a = list.toArray();
|
|
134 |
Arrays.sort(a);
|
|
135 |
ListIterator<T> i = list.listIterator();
|
|
136 |
for (int j=0; j<a.length; j++) {
|
|
137 |
i.next();
|
|
138 |
i.set((T)a[j]);
|
|
139 |
}
|
|
140 |
}
|
|
141 |
|
|
142 |
/**
|
|
143 |
* Sorts the specified list according to the order induced by the
|
|
144 |
* specified comparator. All elements in the list must be <i>mutually
|
|
145 |
* comparable</i> using the specified comparator (that is,
|
|
146 |
* <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
|
|
147 |
* for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
|
|
148 |
*
|
|
149 |
* This sort is guaranteed to be <i>stable</i>: equal elements will
|
|
150 |
* not be reordered as a result of the sort.<p>
|
|
151 |
*
|
|
152 |
* The sorting algorithm is a modified mergesort (in which the merge is
|
|
153 |
* omitted if the highest element in the low sublist is less than the
|
|
154 |
* lowest element in the high sublist). This algorithm offers guaranteed
|
|
155 |
* n log(n) performance.
|
|
156 |
*
|
|
157 |
* The specified list must be modifiable, but need not be resizable.
|
|
158 |
* This implementation dumps the specified list into an array, sorts
|
|
159 |
* the array, and iterates over the list resetting each element
|
|
160 |
* from the corresponding position in the array. This avoids the
|
|
161 |
* n<sup>2</sup> log(n) performance that would result from attempting
|
|
162 |
* to sort a linked list in place.
|
|
163 |
*
|
|
164 |
* @param list the list to be sorted.
|
|
165 |
* @param c the comparator to determine the order of the list. A
|
|
166 |
* <tt>null</tt> value indicates that the elements' <i>natural
|
|
167 |
* ordering</i> should be used.
|
|
168 |
* @throws ClassCastException if the list contains elements that are not
|
|
169 |
* <i>mutually comparable</i> using the specified comparator.
|
|
170 |
* @throws UnsupportedOperationException if the specified list's
|
|
171 |
* list-iterator does not support the <tt>set</tt> operation.
|
|
172 |
* @see Comparator
|
|
173 |
*/
|
|
174 |
public static <T> void sort(List<T> list, Comparator<? super T> c) {
|
|
175 |
Object[] a = list.toArray();
|
|
176 |
Arrays.sort(a, (Comparator)c);
|
|
177 |
ListIterator i = list.listIterator();
|
|
178 |
for (int j=0; j<a.length; j++) {
|
|
179 |
i.next();
|
|
180 |
i.set(a[j]);
|
|
181 |
}
|
|
182 |
}
|
|
183 |
|
|
184 |
|
|
185 |
/**
|
|
186 |
* Searches the specified list for the specified object using the binary
|
|
187 |
* search algorithm. The list must be sorted into ascending order
|
|
188 |
* according to the {@linkplain Comparable natural ordering} of its
|
|
189 |
* elements (as by the {@link #sort(List)} method) prior to making this
|
|
190 |
* call. If it is not sorted, the results are undefined. If the list
|
|
191 |
* contains multiple elements equal to the specified object, there is no
|
|
192 |
* guarantee which one will be found.
|
|
193 |
*
|
|
194 |
* <p>This method runs in log(n) time for a "random access" list (which
|
|
195 |
* provides near-constant-time positional access). If the specified list
|
|
196 |
* does not implement the {@link RandomAccess} interface and is large,
|
|
197 |
* this method will do an iterator-based binary search that performs
|
|
198 |
* O(n) link traversals and O(log n) element comparisons.
|
|
199 |
*
|
|
200 |
* @param list the list to be searched.
|
|
201 |
* @param key the key to be searched for.
|
|
202 |
* @return the index of the search key, if it is contained in the list;
|
|
203 |
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
|
|
204 |
* <i>insertion point</i> is defined as the point at which the
|
|
205 |
* key would be inserted into the list: the index of the first
|
|
206 |
* element greater than the key, or <tt>list.size()</tt> if all
|
|
207 |
* elements in the list are less than the specified key. Note
|
|
208 |
* that this guarantees that the return value will be >= 0 if
|
|
209 |
* and only if the key is found.
|
|
210 |
* @throws ClassCastException if the list contains elements that are not
|
|
211 |
* <i>mutually comparable</i> (for example, strings and
|
|
212 |
* integers), or the search key is not mutually comparable
|
|
213 |
* with the elements of the list.
|
|
214 |
*/
|
|
215 |
public static <T>
|
|
216 |
int binarySearch(List<? extends Comparable<? super T>> list, T key) {
|
|
217 |
if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
|
|
218 |
return Collections.indexedBinarySearch(list, key);
|
|
219 |
else
|
|
220 |
return Collections.iteratorBinarySearch(list, key);
|
|
221 |
}
|
|
222 |
|
|
223 |
private static <T>
|
|
224 |
int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
|
|
225 |
{
|
|
226 |
int low = 0;
|
|
227 |
int high = list.size()-1;
|
|
228 |
|
|
229 |
while (low <= high) {
|
|
230 |
int mid = (low + high) >>> 1;
|
|
231 |
Comparable<? super T> midVal = list.get(mid);
|
|
232 |
int cmp = midVal.compareTo(key);
|
|
233 |
|
|
234 |
if (cmp < 0)
|
|
235 |
low = mid + 1;
|
|
236 |
else if (cmp > 0)
|
|
237 |
high = mid - 1;
|
|
238 |
else
|
|
239 |
return mid; // key found
|
|
240 |
}
|
|
241 |
return -(low + 1); // key not found
|
|
242 |
}
|
|
243 |
|
|
244 |
private static <T>
|
|
245 |
int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
|
|
246 |
{
|
|
247 |
int low = 0;
|
|
248 |
int high = list.size()-1;
|
|
249 |
ListIterator<? extends Comparable<? super T>> i = list.listIterator();
|
|
250 |
|
|
251 |
while (low <= high) {
|
|
252 |
int mid = (low + high) >>> 1;
|
|
253 |
Comparable<? super T> midVal = get(i, mid);
|
|
254 |
int cmp = midVal.compareTo(key);
|
|
255 |
|
|
256 |
if (cmp < 0)
|
|
257 |
low = mid + 1;
|
|
258 |
else if (cmp > 0)
|
|
259 |
high = mid - 1;
|
|
260 |
else
|
|
261 |
return mid; // key found
|
|
262 |
}
|
|
263 |
return -(low + 1); // key not found
|
|
264 |
}
|
|
265 |
|
|
266 |
/**
|
|
267 |
* Gets the ith element from the given list by repositioning the specified
|
|
268 |
* list listIterator.
|
|
269 |
*/
|
|
270 |
private static <T> T get(ListIterator<? extends T> i, int index) {
|
|
271 |
T obj = null;
|
|
272 |
int pos = i.nextIndex();
|
|
273 |
if (pos <= index) {
|
|
274 |
do {
|
|
275 |
obj = i.next();
|
|
276 |
} while (pos++ < index);
|
|
277 |
} else {
|
|
278 |
do {
|
|
279 |
obj = i.previous();
|
|
280 |
} while (--pos > index);
|
|
281 |
}
|
|
282 |
return obj;
|
|
283 |
}
|
|
284 |
|
|
285 |
/**
|
|
286 |
* Searches the specified list for the specified object using the binary
|
|
287 |
* search algorithm. The list must be sorted into ascending order
|
|
288 |
* according to the specified comparator (as by the
|
|
289 |
* {@link #sort(List, Comparator) sort(List, Comparator)}
|
|
290 |
* method), prior to making this call. If it is
|
|
291 |
* not sorted, the results are undefined. If the list contains multiple
|
|
292 |
* elements equal to the specified object, there is no guarantee which one
|
|
293 |
* will be found.
|
|
294 |
*
|
|
295 |
* <p>This method runs in log(n) time for a "random access" list (which
|
|
296 |
* provides near-constant-time positional access). If the specified list
|
|
297 |
* does not implement the {@link RandomAccess} interface and is large,
|
|
298 |
* this method will do an iterator-based binary search that performs
|
|
299 |
* O(n) link traversals and O(log n) element comparisons.
|
|
300 |
*
|
|
301 |
* @param list the list to be searched.
|
|
302 |
* @param key the key to be searched for.
|
|
303 |
* @param c the comparator by which the list is ordered.
|
|
304 |
* A <tt>null</tt> value indicates that the elements'
|
|
305 |
* {@linkplain Comparable natural ordering} should be used.
|
|
306 |
* @return the index of the search key, if it is contained in the list;
|
|
307 |
* otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
|
|
308 |
* <i>insertion point</i> is defined as the point at which the
|
|
309 |
* key would be inserted into the list: the index of the first
|
|
310 |
* element greater than the key, or <tt>list.size()</tt> if all
|
|
311 |
* elements in the list are less than the specified key. Note
|
|
312 |
* that this guarantees that the return value will be >= 0 if
|
|
313 |
* and only if the key is found.
|
|
314 |
* @throws ClassCastException if the list contains elements that are not
|
|
315 |
* <i>mutually comparable</i> using the specified comparator,
|
|
316 |
* or the search key is not mutually comparable with the
|
|
317 |
* elements of the list using this comparator.
|
|
318 |
*/
|
|
319 |
public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
|
|
320 |
if (c==null)
|
|
321 |
return binarySearch((List) list, key);
|
|
322 |
|
|
323 |
if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
|
|
324 |
return Collections.indexedBinarySearch(list, key, c);
|
|
325 |
else
|
|
326 |
return Collections.iteratorBinarySearch(list, key, c);
|
|
327 |
}
|
|
328 |
|
|
329 |
private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
|
|
330 |
int low = 0;
|
|
331 |
int high = l.size()-1;
|
|
332 |
|
|
333 |
while (low <= high) {
|
|
334 |
int mid = (low + high) >>> 1;
|
|
335 |
T midVal = l.get(mid);
|
|
336 |
int cmp = c.compare(midVal, key);
|
|
337 |
|
|
338 |
if (cmp < 0)
|
|
339 |
low = mid + 1;
|
|
340 |
else if (cmp > 0)
|
|
341 |
high = mid - 1;
|
|
342 |
else
|
|
343 |
return mid; // key found
|
|
344 |
}
|
|
345 |
return -(low + 1); // key not found
|
|
346 |
}
|
|
347 |
|
|
348 |
private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
|
|
349 |
int low = 0;
|
|
350 |
int high = l.size()-1;
|
|
351 |
ListIterator<? extends T> i = l.listIterator();
|
|
352 |
|
|
353 |
while (low <= high) {
|
|
354 |
int mid = (low + high) >>> 1;
|
|
355 |
T midVal = get(i, mid);
|
|
356 |
int cmp = c.compare(midVal, key);
|
|
357 |
|
|
358 |
if (cmp < 0)
|
|
359 |
low = mid + 1;
|
|
360 |
else if (cmp > 0)
|
|
361 |
high = mid - 1;
|
|
362 |
else
|
|
363 |
return mid; // key found
|
|
364 |
}
|
|
365 |
return -(low + 1); // key not found
|
|
366 |
}
|
|
367 |
|
|
368 |
private interface SelfComparable extends Comparable<SelfComparable> {}
|
|
369 |
|
|
370 |
|
|
371 |
/**
|
|
372 |
* Reverses the order of the elements in the specified list.<p>
|
|
373 |
*
|
|
374 |
* This method runs in linear time.
|
|
375 |
*
|
|
376 |
* @param list the list whose elements are to be reversed.
|
|
377 |
* @throws UnsupportedOperationException if the specified list or
|
|
378 |
* its list-iterator does not support the <tt>set</tt> operation.
|
|
379 |
*/
|
|
380 |
public static void reverse(List<?> list) {
|
|
381 |
int size = list.size();
|
|
382 |
if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
|
|
383 |
for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
|
|
384 |
swap(list, i, j);
|
|
385 |
} else {
|
|
386 |
ListIterator fwd = list.listIterator();
|
|
387 |
ListIterator rev = list.listIterator(size);
|
|
388 |
for (int i=0, mid=list.size()>>1; i<mid; i++) {
|
|
389 |
Object tmp = fwd.next();
|
|
390 |
fwd.set(rev.previous());
|
|
391 |
rev.set(tmp);
|
|
392 |
}
|
|
393 |
}
|
|
394 |
}
|
|
395 |
|
|
396 |
/**
|
|
397 |
* Randomly permutes the specified list using a default source of
|
|
398 |
* randomness. All permutations occur with approximately equal
|
|
399 |
* likelihood.<p>
|
|
400 |
*
|
|
401 |
* The hedge "approximately" is used in the foregoing description because
|
|
402 |
* default source of randomness is only approximately an unbiased source
|
|
403 |
* of independently chosen bits. If it were a perfect source of randomly
|
|
404 |
* chosen bits, then the algorithm would choose permutations with perfect
|
|
405 |
* uniformity.<p>
|
|
406 |
*
|
|
407 |
* This implementation traverses the list backwards, from the last element
|
|
408 |
* up to the second, repeatedly swapping a randomly selected element into
|
|
409 |
* the "current position". Elements are randomly selected from the
|
|
410 |
* portion of the list that runs from the first element to the current
|
|
411 |
* position, inclusive.<p>
|
|
412 |
*
|
|
413 |
* This method runs in linear time. If the specified list does not
|
|
414 |
* implement the {@link RandomAccess} interface and is large, this
|
|
415 |
* implementation dumps the specified list into an array before shuffling
|
|
416 |
* it, and dumps the shuffled array back into the list. This avoids the
|
|
417 |
* quadratic behavior that would result from shuffling a "sequential
|
|
418 |
* access" list in place.
|
|
419 |
*
|
|
420 |
* @param list the list to be shuffled.
|
|
421 |
* @throws UnsupportedOperationException if the specified list or
|
|
422 |
* its list-iterator does not support the <tt>set</tt> operation.
|
|
423 |
*/
|
|
424 |
public static void shuffle(List<?> list) {
|
|
425 |
if (r == null) {
|
|
426 |
r = new Random();
|
|
427 |
}
|
|
428 |
shuffle(list, r);
|
|
429 |
}
|
|
430 |
private static Random r;
|
|
431 |
|
|
432 |
/**
|
|
433 |
* Randomly permute the specified list using the specified source of
|
|
434 |
* randomness. All permutations occur with equal likelihood
|
|
435 |
* assuming that the source of randomness is fair.<p>
|
|
436 |
*
|
|
437 |
* This implementation traverses the list backwards, from the last element
|
|
438 |
* up to the second, repeatedly swapping a randomly selected element into
|
|
439 |
* the "current position". Elements are randomly selected from the
|
|
440 |
* portion of the list that runs from the first element to the current
|
|
441 |
* position, inclusive.<p>
|
|
442 |
*
|
|
443 |
* This method runs in linear time. If the specified list does not
|
|
444 |
* implement the {@link RandomAccess} interface and is large, this
|
|
445 |
* implementation dumps the specified list into an array before shuffling
|
|
446 |
* it, and dumps the shuffled array back into the list. This avoids the
|
|
447 |
* quadratic behavior that would result from shuffling a "sequential
|
|
448 |
* access" list in place.
|
|
449 |
*
|
|
450 |
* @param list the list to be shuffled.
|
|
451 |
* @param rnd the source of randomness to use to shuffle the list.
|
|
452 |
* @throws UnsupportedOperationException if the specified list or its
|
|
453 |
* list-iterator does not support the <tt>set</tt> operation.
|
|
454 |
*/
|
|
455 |
public static void shuffle(List<?> list, Random rnd) {
|
|
456 |
int size = list.size();
|
|
457 |
if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
|
|
458 |
for (int i=size; i>1; i--)
|
|
459 |
swap(list, i-1, rnd.nextInt(i));
|
|
460 |
} else {
|
|
461 |
Object arr[] = list.toArray();
|
|
462 |
|
|
463 |
// Shuffle array
|
|
464 |
for (int i=size; i>1; i--)
|
|
465 |
swap(arr, i-1, rnd.nextInt(i));
|
|
466 |
|
|
467 |
// Dump array back into list
|
|
468 |
ListIterator it = list.listIterator();
|
|
469 |
for (int i=0; i<arr.length; i++) {
|
|
470 |
it.next();
|
|
471 |
it.set(arr[i]);
|
|
472 |
}
|
|
473 |
}
|
|
474 |
}
|
|
475 |
|
|
476 |
/**
|
|
477 |
* Swaps the elements at the specified positions in the specified list.
|
|
478 |
* (If the specified positions are equal, invoking this method leaves
|
|
479 |
* the list unchanged.)
|
|
480 |
*
|
|
481 |
* @param list The list in which to swap elements.
|
|
482 |
* @param i the index of one element to be swapped.
|
|
483 |
* @param j the index of the other element to be swapped.
|
|
484 |
* @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
|
|
485 |
* is out of range (i < 0 || i >= list.size()
|
|
486 |
* || j < 0 || j >= list.size()).
|
|
487 |
* @since 1.4
|
|
488 |
*/
|
|
489 |
public static void swap(List<?> list, int i, int j) {
|
|
490 |
final List l = list;
|
|
491 |
l.set(i, l.set(j, l.get(i)));
|
|
492 |
}
|
|
493 |
|
|
494 |
/**
|
|
495 |
* Swaps the two specified elements in the specified array.
|
|
496 |
*/
|
|
497 |
private static void swap(Object[] arr, int i, int j) {
|
|
498 |
Object tmp = arr[i];
|
|
499 |
arr[i] = arr[j];
|
|
500 |
arr[j] = tmp;
|
|
501 |
}
|
|
502 |
|
|
503 |
/**
|
|
504 |
* Replaces all of the elements of the specified list with the specified
|
|
505 |
* element. <p>
|
|
506 |
*
|
|
507 |
* This method runs in linear time.
|
|
508 |
*
|
|
509 |
* @param list the list to be filled with the specified element.
|
|
510 |
* @param obj The element with which to fill the specified list.
|
|
511 |
* @throws UnsupportedOperationException if the specified list or its
|
|
512 |
* list-iterator does not support the <tt>set</tt> operation.
|
|
513 |
*/
|
|
514 |
public static <T> void fill(List<? super T> list, T obj) {
|
|
515 |
int size = list.size();
|
|
516 |
|
|
517 |
if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
|
|
518 |
for (int i=0; i<size; i++)
|
|
519 |
list.set(i, obj);
|
|
520 |
} else {
|
|
521 |
ListIterator<? super T> itr = list.listIterator();
|
|
522 |
for (int i=0; i<size; i++) {
|
|
523 |
itr.next();
|
|
524 |
itr.set(obj);
|
|
525 |
}
|
|
526 |
}
|
|
527 |
}
|
|
528 |
|
|
529 |
/**
|
|
530 |
* Copies all of the elements from one list into another. After the
|
|
531 |
* operation, the index of each copied element in the destination list
|
|
532 |
* will be identical to its index in the source list. The destination
|
|
533 |
* list must be at least as long as the source list. If it is longer, the
|
|
534 |
* remaining elements in the destination list are unaffected. <p>
|
|
535 |
*
|
|
536 |
* This method runs in linear time.
|
|
537 |
*
|
|
538 |
* @param dest The destination list.
|
|
539 |
* @param src The source list.
|
|
540 |
* @throws IndexOutOfBoundsException if the destination list is too small
|
|
541 |
* to contain the entire source List.
|
|
542 |
* @throws UnsupportedOperationException if the destination list's
|
|
543 |
* list-iterator does not support the <tt>set</tt> operation.
|
|
544 |
*/
|
|
545 |
public static <T> void copy(List<? super T> dest, List<? extends T> src) {
|
|
546 |
int srcSize = src.size();
|
|
547 |
if (srcSize > dest.size())
|
|
548 |
throw new IndexOutOfBoundsException("Source does not fit in dest");
|
|
549 |
|
|
550 |
if (srcSize < COPY_THRESHOLD ||
|
|
551 |
(src instanceof RandomAccess && dest instanceof RandomAccess)) {
|
|
552 |
for (int i=0; i<srcSize; i++)
|
|
553 |
dest.set(i, src.get(i));
|
|
554 |
} else {
|
|
555 |
ListIterator<? super T> di=dest.listIterator();
|
|
556 |
ListIterator<? extends T> si=src.listIterator();
|
|
557 |
for (int i=0; i<srcSize; i++) {
|
|
558 |
di.next();
|
|
559 |
di.set(si.next());
|
|
560 |
}
|
|
561 |
}
|
|
562 |
}
|
|
563 |
|
|
564 |
/**
|
|
565 |
* Returns the minimum element of the given collection, according to the
|
|
566 |
* <i>natural ordering</i> of its elements. All elements in the
|
|
567 |
* collection must implement the <tt>Comparable</tt> interface.
|
|
568 |
* Furthermore, all elements in the collection must be <i>mutually
|
|
569 |
* comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
|
|
570 |
* <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
|
|
571 |
* <tt>e2</tt> in the collection).<p>
|
|
572 |
*
|
|
573 |
* This method iterates over the entire collection, hence it requires
|
|
574 |
* time proportional to the size of the collection.
|
|
575 |
*
|
|
576 |
* @param coll the collection whose minimum element is to be determined.
|
|
577 |
* @return the minimum element of the given collection, according
|
|
578 |
* to the <i>natural ordering</i> of its elements.
|
|
579 |
* @throws ClassCastException if the collection contains elements that are
|
|
580 |
* not <i>mutually comparable</i> (for example, strings and
|
|
581 |
* integers).
|
|
582 |
* @throws NoSuchElementException if the collection is empty.
|
|
583 |
* @see Comparable
|
|
584 |
*/
|
|
585 |
public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
|
|
586 |
Iterator<? extends T> i = coll.iterator();
|
|
587 |
T candidate = i.next();
|
|
588 |
|
|
589 |
while (i.hasNext()) {
|
|
590 |
T next = i.next();
|
|
591 |
if (next.compareTo(candidate) < 0)
|
|
592 |
candidate = next;
|
|
593 |
}
|
|
594 |
return candidate;
|
|
595 |
}
|
|
596 |
|
|
597 |
/**
|
|
598 |
* Returns the minimum element of the given collection, according to the
|
|
599 |
* order induced by the specified comparator. All elements in the
|
|
600 |
* collection must be <i>mutually comparable</i> by the specified
|
|
601 |
* comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
|
|
602 |
* <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
|
|
603 |
* <tt>e2</tt> in the collection).<p>
|
|
604 |
*
|
|
605 |
* This method iterates over the entire collection, hence it requires
|
|
606 |
* time proportional to the size of the collection.
|
|
607 |
*
|
|
608 |
* @param coll the collection whose minimum element is to be determined.
|
|
609 |
* @param comp the comparator with which to determine the minimum element.
|
|
610 |
* A <tt>null</tt> value indicates that the elements' <i>natural
|
|
611 |
* ordering</i> should be used.
|
|
612 |
* @return the minimum element of the given collection, according
|
|
613 |
* to the specified comparator.
|
|
614 |
* @throws ClassCastException if the collection contains elements that are
|
|
615 |
* not <i>mutually comparable</i> using the specified comparator.
|
|
616 |
* @throws NoSuchElementException if the collection is empty.
|
|
617 |
* @see Comparable
|
|
618 |
*/
|
|
619 |
public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
|
|
620 |
if (comp==null)
|
|
621 |
return (T)min((Collection<SelfComparable>) (Collection) coll);
|
|
622 |
|
|
623 |
Iterator<? extends T> i = coll.iterator();
|
|
624 |
T candidate = i.next();
|
|
625 |
|
|
626 |
while (i.hasNext()) {
|
|
627 |
T next = i.next();
|
|
628 |
if (comp.compare(next, candidate) < 0)
|
|
629 |
candidate = next;
|
|
630 |
}
|
|
631 |
return candidate;
|
|
632 |
}
|
|
633 |
|
|
634 |
/**
|
|
635 |
* Returns the maximum element of the given collection, according to the
|
|
636 |
* <i>natural ordering</i> of its elements. All elements in the
|
|
637 |
* collection must implement the <tt>Comparable</tt> interface.
|
|
638 |
* Furthermore, all elements in the collection must be <i>mutually
|
|
639 |
* comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
|
|
640 |
* <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
|
|
641 |
* <tt>e2</tt> in the collection).<p>
|
|
642 |
*
|
|
643 |
* This method iterates over the entire collection, hence it requires
|
|
644 |
* time proportional to the size of the collection.
|
|
645 |
*
|
|
646 |
* @param coll the collection whose maximum element is to be determined.
|
|
647 |
* @return the maximum element of the given collection, according
|
|
648 |
* to the <i>natural ordering</i> of its elements.
|
|
649 |
* @throws ClassCastException if the collection contains elements that are
|
|
650 |
* not <i>mutually comparable</i> (for example, strings and
|
|
651 |
* integers).
|
|
652 |
* @throws NoSuchElementException if the collection is empty.
|
|
653 |
* @see Comparable
|
|
654 |
*/
|
|
655 |
public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
|
|
656 |
Iterator<? extends T> i = coll.iterator();
|
|
657 |
T candidate = i.next();
|
|
658 |
|
|
659 |
while (i.hasNext()) {
|
|
660 |
T next = i.next();
|
|
661 |
if (next.compareTo(candidate) > 0)
|
|
662 |
candidate = next;
|
|
663 |
}
|
|
664 |
return candidate;
|
|
665 |
}
|
|
666 |
|
|
667 |
/**
|
|
668 |
* Returns the maximum element of the given collection, according to the
|
|
669 |
* order induced by the specified comparator. All elements in the
|
|
670 |
* collection must be <i>mutually comparable</i> by the specified
|
|
671 |
* comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
|
|
672 |
* <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
|
|
673 |
* <tt>e2</tt> in the collection).<p>
|
|
674 |
*
|
|
675 |
* This method iterates over the entire collection, hence it requires
|
|
676 |
* time proportional to the size of the collection.
|
|
677 |
*
|
|
678 |
* @param coll the collection whose maximum element is to be determined.
|
|
679 |
* @param comp the comparator with which to determine the maximum element.
|
|
680 |
* A <tt>null</tt> value indicates that the elements' <i>natural
|
|
681 |
* ordering</i> should be used.
|
|
682 |
* @return the maximum element of the given collection, according
|
|
683 |
* to the specified comparator.
|
|
684 |
* @throws ClassCastException if the collection contains elements that are
|
|
685 |
* not <i>mutually comparable</i> using the specified comparator.
|
|
686 |
* @throws NoSuchElementException if the collection is empty.
|
|
687 |
* @see Comparable
|
|
688 |
*/
|
|
689 |
public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
|
|
690 |
if (comp==null)
|
|
691 |
return (T)max((Collection<SelfComparable>) (Collection) coll);
|
|
692 |
|
|
693 |
Iterator<? extends T> i = coll.iterator();
|
|
694 |
T candidate = i.next();
|
|
695 |
|
|
696 |
while (i.hasNext()) {
|
|
697 |
T next = i.next();
|
|
698 |
if (comp.compare(next, candidate) > 0)
|
|
699 |
candidate = next;
|
|
700 |
}
|
|
701 |
return candidate;
|
|
702 |
}
|
|
703 |
|
|
704 |
/**
|
|
705 |
* Rotates the elements in the specified list by the specified distance.
|
|
706 |
* After calling this method, the element at index <tt>i</tt> will be
|
|
707 |
* the element previously at index <tt>(i - distance)</tt> mod
|
|
708 |
* <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
|
|
709 |
* and <tt>list.size()-1</tt>, inclusive. (This method has no effect on
|
|
710 |
* the size of the list.)
|
|
711 |
*
|
|
712 |
* <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
|
|
713 |
* After invoking <tt>Collections.rotate(list, 1)</tt> (or
|
|
714 |
* <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
|
|
715 |
* <tt>[s, t, a, n, k]</tt>.
|
|
716 |
*
|
|
717 |
* <p>Note that this method can usefully be applied to sublists to
|
|
718 |
* move one or more elements within a list while preserving the
|
|
719 |
* order of the remaining elements. For example, the following idiom
|
|
720 |
* moves the element at index <tt>j</tt> forward to position
|
|
721 |
* <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
|
|
722 |
* <pre>
|
|
723 |
* Collections.rotate(list.subList(j, k+1), -1);
|
|
724 |
* </pre>
|
|
725 |
* To make this concrete, suppose <tt>list</tt> comprises
|
|
726 |
* <tt>[a, b, c, d, e]</tt>. To move the element at index <tt>1</tt>
|
|
727 |
* (<tt>b</tt>) forward two positions, perform the following invocation:
|
|
728 |
* <pre>
|
|
729 |
* Collections.rotate(l.subList(1, 4), -1);
|
|
730 |
* </pre>
|
|
731 |
* The resulting list is <tt>[a, c, d, b, e]</tt>.
|
|
732 |
*
|
|
733 |
* <p>To move more than one element forward, increase the absolute value
|
|
734 |
* of the rotation distance. To move elements backward, use a positive
|
|
735 |
* shift distance.
|
|
736 |
*
|
|
737 |
* <p>If the specified list is small or implements the {@link
|
|
738 |
* RandomAccess} interface, this implementation exchanges the first
|
|
739 |
* element into the location it should go, and then repeatedly exchanges
|
|
740 |
* the displaced element into the location it should go until a displaced
|
|
741 |
* element is swapped into the first element. If necessary, the process
|
|
742 |
* is repeated on the second and successive elements, until the rotation
|
|
743 |
* is complete. If the specified list is large and doesn't implement the
|
|
744 |
* <tt>RandomAccess</tt> interface, this implementation breaks the
|
|
745 |
* list into two sublist views around index <tt>-distance mod size</tt>.
|
|
746 |
* Then the {@link #reverse(List)} method is invoked on each sublist view,
|
|
747 |
* and finally it is invoked on the entire list. For a more complete
|
|
748 |
* description of both algorithms, see Section 2.3 of Jon Bentley's
|
|
749 |
* <i>Programming Pearls</i> (Addison-Wesley, 1986).
|
|
750 |
*
|
|
751 |
* @param list the list to be rotated.
|
|
752 |
* @param distance the distance to rotate the list. There are no
|
|
753 |
* constraints on this value; it may be zero, negative, or
|
|
754 |
* greater than <tt>list.size()</tt>.
|
|
755 |
* @throws UnsupportedOperationException if the specified list or
|
|
756 |
* its list-iterator does not support the <tt>set</tt> operation.
|
|
757 |
* @since 1.4
|
|
758 |
*/
|
|
759 |
public static void rotate(List<?> list, int distance) {
|
|
760 |
if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
|
|
761 |
rotate1(list, distance);
|
|
762 |
else
|
|
763 |
rotate2(list, distance);
|
|
764 |
}
|
|
765 |
|
|
766 |
private static <T> void rotate1(List<T> list, int distance) {
|
|
767 |
int size = list.size();
|
|
768 |
if (size == 0)
|
|
769 |
return;
|
|
770 |
distance = distance % size;
|
|
771 |
if (distance < 0)
|
|
772 |
distance += size;
|
|
773 |
if (distance == 0)
|
|
774 |
return;
|
|
775 |
|
|
776 |
for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
|
|
777 |
T displaced = list.get(cycleStart);
|
|
778 |
int i = cycleStart;
|
|
779 |
do {
|
|
780 |
i += distance;
|
|
781 |
if (i >= size)
|
|
782 |
i -= size;
|
|
783 |
displaced = list.set(i, displaced);
|
|
784 |
nMoved ++;
|
|
785 |
} while(i != cycleStart);
|
|
786 |
}
|
|
787 |
}
|
|
788 |
|
|
789 |
private static void rotate2(List<?> list, int distance) {
|
|
790 |
int size = list.size();
|
|
791 |
if (size == 0)
|
|
792 |
return;
|
|
793 |
int mid = -distance % size;
|
|
794 |
if (mid < 0)
|
|
795 |
mid += size;
|
|
796 |
if (mid == 0)
|
|
797 |
return;
|
|
798 |
|
|
799 |
reverse(list.subList(0, mid));
|
|
800 |
reverse(list.subList(mid, size));
|
|
801 |
reverse(list);
|
|
802 |
}
|
|
803 |
|
|
804 |
/**
|
|
805 |
* Replaces all occurrences of one specified value in a list with another.
|
|
806 |
* More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
|
|
807 |
* in <tt>list</tt> such that
|
|
808 |
* <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
|
|
809 |
* (This method has no effect on the size of the list.)
|
|
810 |
*
|
|
811 |
* @param list the list in which replacement is to occur.
|
|
812 |
* @param oldVal the old value to be replaced.
|
|
813 |
* @param newVal the new value with which <tt>oldVal</tt> is to be
|
|
814 |
* replaced.
|
|
815 |
* @return <tt>true</tt> if <tt>list</tt> contained one or more elements
|
|
816 |
* <tt>e</tt> such that
|
|
817 |
* <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
|
|
818 |
* @throws UnsupportedOperationException if the specified list or
|
|
819 |
* its list-iterator does not support the <tt>set</tt> operation.
|
|
820 |
* @since 1.4
|
|
821 |
*/
|
|
822 |
public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
|
|
823 |
boolean result = false;
|
|
824 |
int size = list.size();
|
|
825 |
if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
|
|
826 |
if (oldVal==null) {
|
|
827 |
for (int i=0; i<size; i++) {
|
|
828 |
if (list.get(i)==null) {
|
|
829 |
list.set(i, newVal);
|
|
830 |
result = true;
|
|
831 |
}
|
|
832 |
}
|
|
833 |
} else {
|
|
834 |
for (int i=0; i<size; i++) {
|
|
835 |
if (oldVal.equals(list.get(i))) {
|
|
836 |
list.set(i, newVal);
|
|
837 |
result = true;
|
|
838 |
}
|
|
839 |
}
|
|
840 |
}
|
|
841 |
} else {
|
|
842 |
ListIterator<T> itr=list.listIterator();
|
|
843 |
if (oldVal==null) {
|
|
844 |
for (int i=0; i<size; i++) {
|
|
845 |
if (itr.next()==null) {
|
|
846 |
itr.set(newVal);
|
|
847 |
result = true;
|
|
848 |
}
|
|
849 |
}
|
|
850 |
} else {
|
|
851 |
for (int i=0; i<size; i++) {
|
|
852 |
if (oldVal.equals(itr.next())) {
|
|
853 |
itr.set(newVal);
|
|
854 |
result = true;
|
|
855 |
}
|
|
856 |
}
|
|
857 |
}
|
|
858 |
}
|
|
859 |
return result;
|
|
860 |
}
|
|
861 |
|
|
862 |
/**
|
|
863 |
* Returns the starting position of the first occurrence of the specified
|
|
864 |
* target list within the specified source list, or -1 if there is no
|
|
865 |
* such occurrence. More formally, returns the lowest index <tt>i</tt>
|
|
866 |
* such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
|
|
867 |
* or -1 if there is no such index. (Returns -1 if
|
|
868 |
* <tt>target.size() > source.size()</tt>.)
|
|
869 |
*
|
|
870 |
* <p>This implementation uses the "brute force" technique of scanning
|
|
871 |
* over the source list, looking for a match with the target at each
|
|
872 |
* location in turn.
|
|
873 |
*
|
|
874 |
* @param source the list in which to search for the first occurrence
|
|
875 |
* of <tt>target</tt>.
|
|
876 |
* @param target the list to search for as a subList of <tt>source</tt>.
|
|
877 |
* @return the starting position of the first occurrence of the specified
|
|
878 |
* target list within the specified source list, or -1 if there
|
|
879 |
* is no such occurrence.
|
|
880 |
* @since 1.4
|
|
881 |
*/
|
|
882 |
public static int indexOfSubList(List<?> source, List<?> target) {
|
|
883 |
int sourceSize = source.size();
|
|
884 |
int targetSize = target.size();
|
|
885 |
int maxCandidate = sourceSize - targetSize;
|
|
886 |
|
|
887 |
if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
|
|
888 |
(source instanceof RandomAccess&&target instanceof RandomAccess)) {
|
|
889 |
nextCand:
|
|
890 |
for (int candidate = 0; candidate <= maxCandidate; candidate++) {
|
|
891 |
for (int i=0, j=candidate; i<targetSize; i++, j++)
|
|
892 |
if (!eq(target.get(i), source.get(j)))
|
|
893 |
continue nextCand; // Element mismatch, try next cand
|
|
894 |
return candidate; // All elements of candidate matched target
|
|
895 |
}
|
|
896 |
} else { // Iterator version of above algorithm
|
|
897 |
ListIterator<?> si = source.listIterator();
|
|
898 |
nextCand:
|
|
899 |
for (int candidate = 0; candidate <= maxCandidate; candidate++) {
|
|
900 |
ListIterator<?> ti = target.listIterator();
|
|
901 |
for (int i=0; i<targetSize; i++) {
|
|
902 |
if (!eq(ti.next(), si.next())) {
|
|
903 |
// Back up source iterator to next candidate
|
|
904 |
for (int j=0; j<i; j++)
|
|
905 |
si.previous();
|
|
906 |
continue nextCand;
|
|
907 |
}
|
|
908 |
}
|
|
909 |
return candidate;
|
|
910 |
}
|
|
911 |
}
|
|
912 |
return -1; // No candidate matched the target
|
|
913 |
}
|
|
914 |
|
|
915 |
/**
|
|
916 |
* Returns the starting position of the last occurrence of the specified
|
|
917 |
* target list within the specified source list, or -1 if there is no such
|
|
918 |
* occurrence. More formally, returns the highest index <tt>i</tt>
|
|
919 |
* such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
|
|
920 |
* or -1 if there is no such index. (Returns -1 if
|
|
921 |
* <tt>target.size() > source.size()</tt>.)
|
|
922 |
*
|
|
923 |
* <p>This implementation uses the "brute force" technique of iterating
|
|
924 |
* over the source list, looking for a match with the target at each
|
|
925 |
* location in turn.
|
|
926 |
*
|
|
927 |
* @param source the list in which to search for the last occurrence
|
|
928 |
* of <tt>target</tt>.
|
|
929 |
* @param target the list to search for as a subList of <tt>source</tt>.
|
|
930 |
* @return the starting position of the last occurrence of the specified
|
|
931 |
* target list within the specified source list, or -1 if there
|
|
932 |
* is no such occurrence.
|
|
933 |
* @since 1.4
|
|
934 |
*/
|
|
935 |
public static int lastIndexOfSubList(List<?> source, List<?> target) {
|
|
936 |
int sourceSize = source.size();
|
|
937 |
int targetSize = target.size();
|
|
938 |
int maxCandidate = sourceSize - targetSize;
|
|
939 |
|
|
940 |
if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
|
|
941 |
source instanceof RandomAccess) { // Index access version
|
|
942 |
nextCand:
|
|
943 |
for (int candidate = maxCandidate; candidate >= 0; candidate--) {
|
|
944 |
for (int i=0, j=candidate; i<targetSize; i++, j++)
|
|
945 |
if (!eq(target.get(i), source.get(j)))
|
|
946 |
continue nextCand; // Element mismatch, try next cand
|
|
947 |
return candidate; // All elements of candidate matched target
|
|
948 |
}
|
|
949 |
} else { // Iterator version of above algorithm
|
|
950 |
if (maxCandidate < 0)
|
|
951 |
return -1;
|
|
952 |
ListIterator<?> si = source.listIterator(maxCandidate);
|
|
953 |
nextCand:
|
|
954 |
for (int candidate = maxCandidate; candidate >= 0; candidate--) {
|
|
955 |
ListIterator<?> ti = target.listIterator();
|
|
956 |
for (int i=0; i<targetSize; i++) {
|
|
957 |
if (!eq(ti.next(), si.next())) {
|
|
958 |
if (candidate != 0) {
|
|
959 |
// Back up source iterator to next candidate
|
|
960 |
for (int j=0; j<=i+1; j++)
|
|
961 |
si.previous();
|
|
962 |
}
|
|
963 |
continue nextCand;
|
|
964 |
}
|
|
965 |
}
|
|
966 |
return candidate;
|
|
967 |
}
|
|
968 |
}
|
|
969 |
return -1; // No candidate matched the target
|
|
970 |
}
|
|
971 |
|
|
972 |
|
|
973 |
// Unmodifiable Wrappers
|
|
974 |
|
|
975 |
/**
|
|
976 |
* Returns an unmodifiable view of the specified collection. This method
|
|
977 |
* allows modules to provide users with "read-only" access to internal
|
|
978 |
* collections. Query operations on the returned collection "read through"
|
|
979 |
* to the specified collection, and attempts to modify the returned
|
|
980 |
* collection, whether direct or via its iterator, result in an
|
|
981 |
* <tt>UnsupportedOperationException</tt>.<p>
|
|
982 |
*
|
|
983 |
* The returned collection does <i>not</i> pass the hashCode and equals
|
|
984 |
* operations through to the backing collection, but relies on
|
|
985 |
* <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
|
|
986 |
* is necessary to preserve the contracts of these operations in the case
|
|
987 |
* that the backing collection is a set or a list.<p>
|
|
988 |
*
|
|
989 |
* The returned collection will be serializable if the specified collection
|
|
990 |
* is serializable.
|
|
991 |
*
|
|
992 |
* @param c the collection for which an unmodifiable view is to be
|
|
993 |
* returned.
|
|
994 |
* @return an unmodifiable view of the specified collection.
|
|
995 |
*/
|
|
996 |
public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
|
|
997 |
return new UnmodifiableCollection<T>(c);
|
|
998 |
}
|
|
999 |
|
|
1000 |
/**
|
|
1001 |
* @serial include
|
|
1002 |
*/
|
|
1003 |
static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
|
|
1004 |
private static final long serialVersionUID = 1820017752578914078L;
|
|
1005 |
|
|
1006 |
final Collection<? extends E> c;
|
|
1007 |
|
|
1008 |
UnmodifiableCollection(Collection<? extends E> c) {
|
|
1009 |
if (c==null)
|
|
1010 |
throw new NullPointerException();
|
|
1011 |
this.c = c;
|
|
1012 |
}
|
|
1013 |
|
|
1014 |
public int size() {return c.size();}
|
|
1015 |
public boolean isEmpty() {return c.isEmpty();}
|
|
1016 |
public boolean contains(Object o) {return c.contains(o);}
|
|
1017 |
public Object[] toArray() {return c.toArray();}
|
|
1018 |
public <T> T[] toArray(T[] a) {return c.toArray(a);}
|
|
1019 |
public String toString() {return c.toString();}
|
|
1020 |
|
|
1021 |
public Iterator<E> iterator() {
|
|
1022 |
return new Iterator<E>() {
|
|
1023 |
private final Iterator<? extends E> i = c.iterator();
|
|
1024 |
|
|
1025 |
public boolean hasNext() {return i.hasNext();}
|
|
1026 |
public E next() {return i.next();}
|
|
1027 |
public void remove() {
|
|
1028 |
throw new UnsupportedOperationException();
|
|
1029 |
}
|
|
1030 |
};
|
|
1031 |
}
|
|
1032 |
|
|
1033 |
public boolean add(E e) {
|
|
1034 |
throw new UnsupportedOperationException();
|
|
1035 |
}
|
|
1036 |
public boolean remove(Object o) {
|
|
1037 |
throw new UnsupportedOperationException();
|
|
1038 |
}
|
|
1039 |
|
|
1040 |
public boolean containsAll(Collection<?> coll) {
|
|
1041 |
return c.containsAll(coll);
|
|
1042 |
}
|
|
1043 |
public boolean addAll(Collection<? extends E> coll) {
|
|
1044 |
throw new UnsupportedOperationException();
|
|
1045 |
}
|
|
1046 |
public boolean removeAll(Collection<?> coll) {
|
|
1047 |
throw new UnsupportedOperationException();
|
|
1048 |
}
|
|
1049 |
public boolean retainAll(Collection<?> coll) {
|
|
1050 |
throw new UnsupportedOperationException();
|
|
1051 |
}
|
|
1052 |
public void clear() {
|
|
1053 |
throw new UnsupportedOperationException();
|
|
1054 |
}
|
|
1055 |
}
|
|
1056 |
|
|
1057 |
/**
|
|
1058 |
* Returns an unmodifiable view of the specified set. This method allows
|
|
1059 |
* modules to provide users with "read-only" access to internal sets.
|
|
1060 |
* Query operations on the returned set "read through" to the specified
|
|
1061 |
* set, and attempts to modify the returned set, whether direct or via its
|
|
1062 |
* iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
|
|
1063 |
*
|
|
1064 |
* The returned set will be serializable if the specified set
|
|
1065 |
* is serializable.
|
|
1066 |
*
|
|
1067 |
* @param s the set for which an unmodifiable view is to be returned.
|
|
1068 |
* @return an unmodifiable view of the specified set.
|
|
1069 |
*/
|
|
1070 |
public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
|
|
1071 |
return new UnmodifiableSet<T>(s);
|
|
1072 |
}
|
|
1073 |
|
|
1074 |
/**
|
|
1075 |
* @serial include
|
|
1076 |
*/
|
|
1077 |
static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
|
|
1078 |
implements Set<E>, Serializable {
|
|
1079 |
private static final long serialVersionUID = -9215047833775013803L;
|
|
1080 |
|
|
1081 |
UnmodifiableSet(Set<? extends E> s) {super(s);}
|
|
1082 |
public boolean equals(Object o) {return o == this || c.equals(o);}
|
|
1083 |
public int hashCode() {return c.hashCode();}
|
|
1084 |
}
|
|
1085 |
|
|
1086 |
/**
|
|
1087 |
* Returns an unmodifiable view of the specified sorted set. This method
|
|
1088 |
* allows modules to provide users with "read-only" access to internal
|
|
1089 |
* sorted sets. Query operations on the returned sorted set "read
|
|
1090 |
* through" to the specified sorted set. Attempts to modify the returned
|
|
1091 |
* sorted set, whether direct, via its iterator, or via its
|
|
1092 |
* <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
|
|
1093 |
* an <tt>UnsupportedOperationException</tt>.<p>
|
|
1094 |
*
|
|
1095 |
* The returned sorted set will be serializable if the specified sorted set
|
|
1096 |
* is serializable.
|
|
1097 |
*
|
|
1098 |
* @param s the sorted set for which an unmodifiable view is to be
|
|
1099 |
* returned.
|
|
1100 |
* @return an unmodifiable view of the specified sorted set.
|
|
1101 |
*/
|
|
1102 |
public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
|
|
1103 |
return new UnmodifiableSortedSet<T>(s);
|
|
1104 |
}
|
|
1105 |
|
|
1106 |
/**
|
|
1107 |
* @serial include
|
|
1108 |
*/
|
|
1109 |
static class UnmodifiableSortedSet<E>
|
|
1110 |
extends UnmodifiableSet<E>
|
|
1111 |
implements SortedSet<E>, Serializable {
|
|
1112 |
private static final long serialVersionUID = -4929149591599911165L;
|
|
1113 |
private final SortedSet<E> ss;
|
|
1114 |
|
|
1115 |
UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
|
|
1116 |
|
|
1117 |
public Comparator<? super E> comparator() {return ss.comparator();}
|
|
1118 |
|
|
1119 |
public SortedSet<E> subSet(E fromElement, E toElement) {
|
|
1120 |
return new UnmodifiableSortedSet<E>(ss.subSet(fromElement,toElement));
|
|
1121 |
}
|
|
1122 |
public SortedSet<E> headSet(E toElement) {
|
|
1123 |
return new UnmodifiableSortedSet<E>(ss.headSet(toElement));
|
|
1124 |
}
|
|
1125 |
public SortedSet<E> tailSet(E fromElement) {
|
|
1126 |
return new UnmodifiableSortedSet<E>(ss.tailSet(fromElement));
|
|
1127 |
}
|
|
1128 |
|
|
1129 |
public E first() {return ss.first();}
|
|
1130 |
public E last() {return ss.last();}
|
|
1131 |
}
|
|
1132 |
|
|
1133 |
/**
|
|
1134 |
* Returns an unmodifiable view of the specified list. This method allows
|
|
1135 |
* modules to provide users with "read-only" access to internal
|
|
1136 |
* lists. Query operations on the returned list "read through" to the
|
|
1137 |
* specified list, and attempts to modify the returned list, whether
|
|
1138 |
* direct or via its iterator, result in an
|
|
1139 |
* <tt>UnsupportedOperationException</tt>.<p>
|
|
1140 |
*
|
|
1141 |
* The returned list will be serializable if the specified list
|
|
1142 |
* is serializable. Similarly, the returned list will implement
|
|
1143 |
* {@link RandomAccess} if the specified list does.
|
|
1144 |
*
|
|
1145 |
* @param list the list for which an unmodifiable view is to be returned.
|
|
1146 |
* @return an unmodifiable view of the specified list.
|
|
1147 |
*/
|
|
1148 |
public static <T> List<T> unmodifiableList(List<? extends T> list) {
|
|
1149 |
return (list instanceof RandomAccess ?
|
|
1150 |
new UnmodifiableRandomAccessList<T>(list) :
|
|
1151 |
new UnmodifiableList<T>(list));
|
|
1152 |
}
|
|
1153 |
|
|
1154 |
/**
|
|
1155 |
* @serial include
|
|
1156 |
*/
|
|
1157 |
static class UnmodifiableList<E> extends UnmodifiableCollection<E>
|
|
1158 |
implements List<E> {
|
|
1159 |
private static final long serialVersionUID = -283967356065247728L;
|
|
1160 |
final List<? extends E> list;
|
|
1161 |
|
|
1162 |
UnmodifiableList(List<? extends E> list) {
|
|
1163 |
super(list);
|
|
1164 |
this.list = list;
|
|
1165 |
}
|
|
1166 |
|
|
1167 |
public boolean equals(Object o) {return o == this || list.equals(o);}
|
|
1168 |
public int hashCode() {return list.hashCode();}
|
|
1169 |
|
|
1170 |
public E get(int index) {return list.get(index);}
|
|
1171 |
public E set(int index, E element) {
|
|
1172 |
throw new UnsupportedOperationException();
|
|
1173 |
}
|
|
1174 |
public void add(int index, E element) {
|
|
1175 |
throw new UnsupportedOperationException();
|
|
1176 |
}
|
|
1177 |
public E remove(int index) {
|
|
1178 |
throw new UnsupportedOperationException();
|
|
1179 |
}
|
|
1180 |
public int indexOf(Object o) {return list.indexOf(o);}
|
|
1181 |
public int lastIndexOf(Object o) {return list.lastIndexOf(o);}
|
|
1182 |
public boolean addAll(int index, Collection<? extends E> c) {
|
|
1183 |
throw new UnsupportedOperationException();
|
|
1184 |
}
|
|
1185 |
public ListIterator<E> listIterator() {return listIterator(0);}
|
|
1186 |
|
|
1187 |
public ListIterator<E> listIterator(final int index) {
|
|
1188 |
return new ListIterator<E>() {
|
|
1189 |
private final ListIterator<? extends E> i
|
|
1190 |
= list.listIterator(index);
|
|
1191 |
|
|
1192 |
public boolean hasNext() {return i.hasNext();}
|
|
1193 |
public E next() {return i.next();}
|
|
1194 |
public boolean hasPrevious() {return i.hasPrevious();}
|
|
1195 |
public E previous() {return i.previous();}
|
|
1196 |
public int nextIndex() {return i.nextIndex();}
|
|
1197 |
public int previousIndex() {return i.previousIndex();}
|
|
1198 |
|
|
1199 |
public void remove() {
|
|
1200 |
throw new UnsupportedOperationException();
|
|
1201 |
}
|
|
1202 |
public void set(E e) {
|
|
1203 |
throw new UnsupportedOperationException();
|
|
1204 |
}
|
|
1205 |
public void add(E e) {
|
|
1206 |
throw new UnsupportedOperationException();
|
|
1207 |
}
|
|
1208 |
};
|
|
1209 |
}
|
|
1210 |
|
|
1211 |
public List<E> subList(int fromIndex, int toIndex) {
|
|
1212 |
return new UnmodifiableList<E>(list.subList(fromIndex, toIndex));
|
|
1213 |
}
|
|
1214 |
|
|
1215 |
/**
|
|
1216 |
* UnmodifiableRandomAccessList instances are serialized as
|
|
1217 |
* UnmodifiableList instances to allow them to be deserialized
|
|
1218 |
* in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
|
|
1219 |
* This method inverts the transformation. As a beneficial
|
|
1220 |
* side-effect, it also grafts the RandomAccess marker onto
|
|
1221 |
* UnmodifiableList instances that were serialized in pre-1.4 JREs.
|
|
1222 |
*
|
|
1223 |
* Note: Unfortunately, UnmodifiableRandomAccessList instances
|
|
1224 |
* serialized in 1.4.1 and deserialized in 1.4 will become
|
|
1225 |
* UnmodifiableList instances, as this method was missing in 1.4.
|
|
1226 |
*/
|
|
1227 |
private Object readResolve() {
|
|
1228 |
return (list instanceof RandomAccess
|
|
1229 |
? new UnmodifiableRandomAccessList<E>(list)
|
|
1230 |
: this);
|
|
1231 |
}
|
|
1232 |
}
|
|
1233 |
|
|
1234 |
/**
|
|
1235 |
* @serial include
|
|
1236 |
*/
|
|
1237 |
static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
|
|
1238 |
implements RandomAccess
|
|
1239 |
{
|
|
1240 |
UnmodifiableRandomAccessList(List<? extends E> list) {
|
|
1241 |
super(list);
|
|
1242 |
}
|
|
1243 |
|
|
1244 |
public List<E> subList(int fromIndex, int toIndex) {
|
|
1245 |
return new UnmodifiableRandomAccessList<E>(
|
|
1246 |
list.subList(fromIndex, toIndex));
|
|
1247 |
}
|
|
1248 |
|
|
1249 |
private static final long serialVersionUID = -2542308836966382001L;
|
|
1250 |
|
|
1251 |
/**
|
|
1252 |
* Allows instances to be deserialized in pre-1.4 JREs (which do
|
|
1253 |
* not have UnmodifiableRandomAccessList). UnmodifiableList has
|
|
1254 |
* a readResolve method that inverts this transformation upon
|
|
1255 |
* deserialization.
|
|
1256 |
*/
|
|
1257 |
private Object writeReplace() {
|
|
1258 |
return new UnmodifiableList<E>(list);
|
|
1259 |
}
|
|
1260 |
}
|
|
1261 |
|
|
1262 |
/**
|
|
1263 |
* Returns an unmodifiable view of the specified map. This method
|
|
1264 |
* allows modules to provide users with "read-only" access to internal
|
|
1265 |
* maps. Query operations on the returned map "read through"
|
|
1266 |
* to the specified map, and attempts to modify the returned
|
|
1267 |
* map, whether direct or via its collection views, result in an
|
|
1268 |
* <tt>UnsupportedOperationException</tt>.<p>
|
|
1269 |
*
|
|
1270 |
* The returned map will be serializable if the specified map
|
|
1271 |
* is serializable.
|
|
1272 |
*
|
|
1273 |
* @param m the map for which an unmodifiable view is to be returned.
|
|
1274 |
* @return an unmodifiable view of the specified map.
|
|
1275 |
*/
|
|
1276 |
public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
|
|
1277 |
return new UnmodifiableMap<K,V>(m);
|
|
1278 |
}
|
|
1279 |
|
|
1280 |
/**
|
|
1281 |
* @serial include
|
|
1282 |
*/
|
|
1283 |
private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
|
|
1284 |
private static final long serialVersionUID = -1034234728574286014L;
|
|
1285 |
|
|
1286 |
private final Map<? extends K, ? extends V> m;
|
|
1287 |
|
|
1288 |
UnmodifiableMap(Map<? extends K, ? extends V> m) {
|
|
1289 |
if (m==null)
|
|
1290 |
throw new NullPointerException();
|
|
1291 |
this.m = m;
|
|
1292 |
}
|
|
1293 |
|
|
1294 |
public int size() {return m.size();}
|
|
1295 |
public boolean isEmpty() {return m.isEmpty();}
|
|
1296 |
public boolean containsKey(Object key) {return m.containsKey(key);}
|
|
1297 |
public boolean containsValue(Object val) {return m.containsValue(val);}
|
|
1298 |
public V get(Object key) {return m.get(key);}
|
|
1299 |
|
|
1300 |
public V put(K key, V value) {
|
|
1301 |
throw new UnsupportedOperationException();
|
|
1302 |
}
|
|
1303 |
public V remove(Object key) {
|
|
1304 |
throw new UnsupportedOperationException();
|
|
1305 |
}
|
|
1306 |
public void putAll(Map<? extends K, ? extends V> m) {
|
|
1307 |
throw new UnsupportedOperationException();
|
|
1308 |
}
|
|
1309 |
public void clear() {
|
|
1310 |
throw new UnsupportedOperationException();
|
|
1311 |
}
|
|
1312 |
|
|
1313 |
private transient Set<K> keySet = null;
|
|
1314 |
private transient Set<Map.Entry<K,V>> entrySet = null;
|
|
1315 |
private transient Collection<V> values = null;
|
|
1316 |
|
|
1317 |
public Set<K> keySet() {
|
|
1318 |
if (keySet==null)
|
|
1319 |
keySet = unmodifiableSet(m.keySet());
|
|
1320 |
return keySet;
|
|
1321 |
}
|
|
1322 |
|
|
1323 |
public Set<Map.Entry<K,V>> entrySet() {
|
|
1324 |
if (entrySet==null)
|
|
1325 |
entrySet = new UnmodifiableEntrySet<K,V>(m.entrySet());
|
|
1326 |
return entrySet;
|
|
1327 |
}
|
|
1328 |
|
|
1329 |
public Collection<V> values() {
|
|
1330 |
if (values==null)
|
|
1331 |
values = unmodifiableCollection(m.values());
|
|
1332 |
return values;
|
|
1333 |
}
|
|
1334 |
|
|
1335 |
public boolean equals(Object o) {return o == this || m.equals(o);}
|
|
1336 |
public int hashCode() {return m.hashCode();}
|
|
1337 |
public String toString() {return m.toString();}
|
|
1338 |
|
|
1339 |
/**
|
|
1340 |
* We need this class in addition to UnmodifiableSet as
|
|
1341 |
* Map.Entries themselves permit modification of the backing Map
|
|
1342 |
* via their setValue operation. This class is subtle: there are
|
|
1343 |
* many possible attacks that must be thwarted.
|
|
1344 |
*
|
|
1345 |
* @serial include
|
|
1346 |
*/
|
|
1347 |
static class UnmodifiableEntrySet<K,V>
|
|
1348 |
extends UnmodifiableSet<Map.Entry<K,V>> {
|
|
1349 |
private static final long serialVersionUID = 7854390611657943733L;
|
|
1350 |
|
|
1351 |
UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
|
|
1352 |
super((Set)s);
|
|
1353 |
}
|
|
1354 |
public Iterator<Map.Entry<K,V>> iterator() {
|
|
1355 |
return new Iterator<Map.Entry<K,V>>() {
|
|
1356 |
private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
|
|
1357 |
|
|
1358 |
public boolean hasNext() {
|
|
1359 |
return i.hasNext();
|
|
1360 |
}
|
|
1361 |
public Map.Entry<K,V> next() {
|
|
1362 |
return new UnmodifiableEntry<K,V>(i.next());
|
|
1363 |
}
|
|
1364 |
public void remove() {
|
|
1365 |
throw new UnsupportedOperationException();
|
|
1366 |
}
|
|
1367 |
};
|
|
1368 |
}
|
|
1369 |
|
|
1370 |
public Object[] toArray() {
|
|
1371 |
Object[] a = c.toArray();
|
|
1372 |
for (int i=0; i<a.length; i++)
|
|
1373 |
a[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)a[i]);
|
|
1374 |
return a;
|
|
1375 |
}
|
|
1376 |
|
|
1377 |
public <T> T[] toArray(T[] a) {
|
|
1378 |
// We don't pass a to c.toArray, to avoid window of
|
|
1379 |
// vulnerability wherein an unscrupulous multithreaded client
|
|
1380 |
// could get his hands on raw (unwrapped) Entries from c.
|
|
1381 |
Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
|
|
1382 |
|
|
1383 |
for (int i=0; i<arr.length; i++)
|
|
1384 |
arr[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)arr[i]);
|
|
1385 |
|
|
1386 |
if (arr.length > a.length)
|
|
1387 |
return (T[])arr;
|
|
1388 |
|
|
1389 |
System.arraycopy(arr, 0, a, 0, arr.length);
|
|
1390 |
if (a.length > arr.length)
|
|
1391 |
a[arr.length] = null;
|
|
1392 |
return a;
|
|
1393 |
}
|
|
1394 |
|
|
1395 |
/**
|
|
1396 |
* This method is overridden to protect the backing set against
|
|
1397 |
* an object with a nefarious equals function that senses
|
|
1398 |
* that the equality-candidate is Map.Entry and calls its
|
|
1399 |
* setValue method.
|
|
1400 |
*/
|
|
1401 |
public boolean contains(Object o) {
|
|
1402 |
if (!(o instanceof Map.Entry))
|
|
1403 |
return false;
|
|
1404 |
return c.contains(
|
|
1405 |
new UnmodifiableEntry<Object,Object>((Map.Entry<?,?>) o));
|
|
1406 |
}
|
|
1407 |
|
|
1408 |
/**
|
|
1409 |
* The next two methods are overridden to protect against
|
|
1410 |
* an unscrupulous List whose contains(Object o) method senses
|
|
1411 |
* when o is a Map.Entry, and calls o.setValue.
|
|
1412 |
*/
|
|
1413 |
public boolean containsAll(Collection<?> coll) {
|
|
1414 |
Iterator<?> e = coll.iterator();
|
|
1415 |
while (e.hasNext())
|
|
1416 |
if (!contains(e.next())) // Invokes safe contains() above
|
|
1417 |
return false;
|
|
1418 |
return true;
|
|
1419 |
}
|
|
1420 |
public boolean equals(Object o) {
|
|
1421 |
if (o == this)
|
|
1422 |
return true;
|
|
1423 |
|
|
1424 |
if (!(o instanceof Set))
|
|
1425 |
return false;
|
|
1426 |
Set s = (Set) o;
|
|
1427 |
if (s.size() != c.size())
|
|
1428 |
return false;
|
|
1429 |
return containsAll(s); // Invokes safe containsAll() above
|
|
1430 |
}
|
|
1431 |
|
|
1432 |
/**
|
|
1433 |
* This "wrapper class" serves two purposes: it prevents
|
|
1434 |
* the client from modifying the backing Map, by short-circuiting
|
|
1435 |
* the setValue method, and it protects the backing Map against
|
|
1436 |
* an ill-behaved Map.Entry that attempts to modify another
|
|
1437 |
* Map Entry when asked to perform an equality check.
|
|
1438 |
*/
|
|
1439 |
private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
|
|
1440 |
private Map.Entry<? extends K, ? extends V> e;
|
|
1441 |
|
|
1442 |
UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
|
|
1443 |
|
|
1444 |
public K getKey() {return e.getKey();}
|
|
1445 |
public V getValue() {return e.getValue();}
|
|
1446 |
public V setValue(V value) {
|
|
1447 |
throw new UnsupportedOperationException();
|
|
1448 |
}
|
|
1449 |
public int hashCode() {return e.hashCode();}
|
|
1450 |
public boolean equals(Object o) {
|
|
1451 |
if (!(o instanceof Map.Entry))
|
|
1452 |
return false;
|
|
1453 |
Map.Entry t = (Map.Entry)o;
|
|
1454 |
return eq(e.getKey(), t.getKey()) &&
|
|
1455 |
eq(e.getValue(), t.getValue());
|
|
1456 |
}
|
|
1457 |
public String toString() {return e.toString();}
|
|
1458 |
}
|
|
1459 |
}
|
|
1460 |
}
|
|
1461 |
|
|
1462 |
/**
|
|
1463 |
* Returns an unmodifiable view of the specified sorted map. This method
|
|
1464 |
* allows modules to provide users with "read-only" access to internal
|
|
1465 |
* sorted maps. Query operations on the returned sorted map "read through"
|
|
1466 |
* to the specified sorted map. Attempts to modify the returned
|
|
1467 |
* sorted map, whether direct, via its collection views, or via its
|
|
1468 |
* <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
|
|
1469 |
* an <tt>UnsupportedOperationException</tt>.<p>
|
|
1470 |
*
|
|
1471 |
* The returned sorted map will be serializable if the specified sorted map
|
|
1472 |
* is serializable.
|
|
1473 |
*
|
|
1474 |
* @param m the sorted map for which an unmodifiable view is to be
|
|
1475 |
* returned.
|
|
1476 |
* @return an unmodifiable view of the specified sorted map.
|
|
1477 |
*/
|
|
1478 |
public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
|
|
1479 |
return new UnmodifiableSortedMap<K,V>(m);
|
|
1480 |
}
|
|
1481 |
|
|
1482 |
/**
|
|
1483 |
* @serial include
|
|
1484 |
*/
|
|
1485 |
static class UnmodifiableSortedMap<K,V>
|
|
1486 |
extends UnmodifiableMap<K,V>
|
|
1487 |
implements SortedMap<K,V>, Serializable {
|
|
1488 |
private static final long serialVersionUID = -8806743815996713206L;
|
|
1489 |
|
|
1490 |
private final SortedMap<K, ? extends V> sm;
|
|
1491 |
|
|
1492 |
UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
|
|
1493 |
|
|
1494 |
public Comparator<? super K> comparator() {return sm.comparator();}
|
|
1495 |
|
|
1496 |
public SortedMap<K,V> subMap(K fromKey, K toKey) {
|
|
1497 |
return new UnmodifiableSortedMap<K,V>(sm.subMap(fromKey, toKey));
|
|
1498 |
}
|
|
1499 |
public SortedMap<K,V> headMap(K toKey) {
|
|
1500 |
return new UnmodifiableSortedMap<K,V>(sm.headMap(toKey));
|
|
1501 |
}
|
|
1502 |
public SortedMap<K,V> tailMap(K fromKey) {
|
|
1503 |
return new UnmodifiableSortedMap<K,V>(sm.tailMap(fromKey));
|
|
1504 |
}
|
|
1505 |
|
|
1506 |
public K firstKey() {return sm.firstKey();}
|
|
1507 |
public K lastKey() {return sm.lastKey();}
|
|
1508 |
}
|
|
1509 |
|
|
1510 |
|
|
1511 |
// Synch Wrappers
|
|
1512 |
|
|
1513 |
/**
|
|
1514 |
* Returns a synchronized (thread-safe) collection backed by the specified
|
|
1515 |
* collection. In order to guarantee serial access, it is critical that
|
|
1516 |
* <strong>all</strong> access to the backing collection is accomplished
|
|
1517 |
* through the returned collection.<p>
|
|
1518 |
*
|
|
1519 |
* It is imperative that the user manually synchronize on the returned
|
|
1520 |
* collection when iterating over it:
|
|
1521 |
* <pre>
|
|
1522 |
* Collection c = Collections.synchronizedCollection(myCollection);
|
|
1523 |
* ...
|
|
1524 |
* synchronized(c) {
|
|
1525 |
* Iterator i = c.iterator(); // Must be in the synchronized block
|
|
1526 |
* while (i.hasNext())
|
|
1527 |
* foo(i.next());
|
|
1528 |
* }
|
|
1529 |
* </pre>
|
|
1530 |
* Failure to follow this advice may result in non-deterministic behavior.
|
|
1531 |
*
|
|
1532 |
* <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
|
|
1533 |
* and <tt>equals</tt> operations through to the backing collection, but
|
|
1534 |
* relies on <tt>Object</tt>'s equals and hashCode methods. This is
|
|
1535 |
* necessary to preserve the contracts of these operations in the case
|
|
1536 |
* that the backing collection is a set or a list.<p>
|
|
1537 |
*
|
|
1538 |
* The returned collection will be serializable if the specified collection
|
|
1539 |
* is serializable.
|
|
1540 |
*
|
|
1541 |
* @param c the collection to be "wrapped" in a synchronized collection.
|
|
1542 |
* @return a synchronized view of the specified collection.
|
|
1543 |
*/
|
|
1544 |
public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
|
|
1545 |
return new SynchronizedCollection<T>(c);
|
|
1546 |
}
|
|
1547 |
|
|
1548 |
static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
|
|
1549 |
return new SynchronizedCollection<T>(c, mutex);
|
|
1550 |
}
|
|
1551 |
|
|
1552 |
/**
|
|
1553 |
* @serial include
|
|
1554 |
*/
|
|
1555 |
static class SynchronizedCollection<E> implements Collection<E>, Serializable {
|
|
1556 |
private static final long serialVersionUID = 3053995032091335093L;
|
|
1557 |
|
|
1558 |
final Collection<E> c; // Backing Collection
|
|
1559 |
final Object mutex; // Object on which to synchronize
|
|
1560 |
|
|
1561 |
SynchronizedCollection(Collection<E> c) {
|
|
1562 |
if (c==null)
|
|
1563 |
throw new NullPointerException();
|
|
1564 |
this.c = c;
|
|
1565 |
mutex = this;
|
|
1566 |
}
|
|
1567 |
SynchronizedCollection(Collection<E> c, Object mutex) {
|
|
1568 |
this.c = c;
|
|
1569 |
this.mutex = mutex;
|
|
1570 |
}
|
|
1571 |
|
|
1572 |
public int size() {
|
|
1573 |
synchronized(mutex) {return c.size();}
|
|
1574 |
}
|
|
1575 |
public boolean isEmpty() {
|
|
1576 |
synchronized(mutex) {return c.isEmpty();}
|
|
1577 |
}
|
|
1578 |
public boolean contains(Object o) {
|
|
1579 |
synchronized(mutex) {return c.contains(o);}
|
|
1580 |
}
|
|
1581 |
public Object[] toArray() {
|
|
1582 |
synchronized(mutex) {return c.toArray();}
|
|
1583 |
}
|
|
1584 |
public <T> T[] toArray(T[] a) {
|
|
1585 |
synchronized(mutex) {return c.toArray(a);}
|
|
1586 |
}
|
|
1587 |
|
|
1588 |
public Iterator<E> iterator() {
|
|
1589 |
return c.iterator(); // Must be manually synched by user!
|
|
1590 |
}
|
|
1591 |
|
|
1592 |
public boolean add(E e) {
|
|
1593 |
synchronized(mutex) {return c.add(e);}
|
|
1594 |
}
|
|
1595 |
public boolean remove(Object o) {
|
|
1596 |
synchronized(mutex) {return c.remove(o);}
|
|
1597 |
}
|
|
1598 |
|
|
1599 |
public boolean containsAll(Collection<?> coll) {
|
|
1600 |
synchronized(mutex) {return c.containsAll(coll);}
|
|
1601 |
}
|
|
1602 |
public boolean addAll(Collection<? extends E> coll) {
|
|
1603 |
synchronized(mutex) {return c.addAll(coll);}
|
|
1604 |
}
|
|
1605 |
public boolean removeAll(Collection<?> coll) {
|
|
1606 |
synchronized(mutex) {return c.removeAll(coll);}
|
|
1607 |
}
|
|
1608 |
public boolean retainAll(Collection<?> coll) {
|
|
1609 |
synchronized(mutex) {return c.retainAll(coll);}
|
|
1610 |
}
|
|
1611 |
public void clear() {
|
|
1612 |
synchronized(mutex) {c.clear();}
|
|
1613 |
}
|
|
1614 |
public String toString() {
|
|
1615 |
synchronized(mutex) {return c.toString();}
|
|
1616 |
}
|
|
1617 |
private void writeObject(ObjectOutputStream s) throws IOException {
|
|
1618 |
synchronized(mutex) {s.defaultWriteObject();}
|
|
1619 |
}
|
|
1620 |
}
|
|
1621 |
|
|
1622 |
/**
|
|
1623 |
* Returns a synchronized (thread-safe) set backed by the specified
|
|
1624 |
* set. In order to guarantee serial access, it is critical that
|
|
1625 |
* <strong>all</strong> access to the backing set is accomplished
|
|
1626 |
* through the returned set.<p>
|
|
1627 |
*
|
|
1628 |
* It is imperative that the user manually synchronize on the returned
|
|
1629 |
* set when iterating over it:
|
|
1630 |
* <pre>
|
|
1631 |
* Set s = Collections.synchronizedSet(new HashSet());
|
|
1632 |
* ...
|
|
1633 |
* synchronized(s) {
|
|
1634 |
* Iterator i = s.iterator(); // Must be in the synchronized block
|
|
1635 |
* while (i.hasNext())
|
|
1636 |
* foo(i.next());
|
|
1637 |
* }
|
|
1638 |
* </pre>
|
|
1639 |
* Failure to follow this advice may result in non-deterministic behavior.
|
|
1640 |
*
|
|
1641 |
* <p>The returned set will be serializable if the specified set is
|
|
1642 |
* serializable.
|
|
1643 |
*
|
|
1644 |
* @param s the set to be "wrapped" in a synchronized set.
|
|
1645 |
* @return a synchronized view of the specified set.
|
|
1646 |
*/
|
|
1647 |
public static <T> Set<T> synchronizedSet(Set<T> s) {
|
|
1648 |
return new SynchronizedSet<T>(s);
|
|
1649 |
}
|
|
1650 |
|
|
1651 |
static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
|
|
1652 |
return new SynchronizedSet<T>(s, mutex);
|
|
1653 |
}
|
|
1654 |
|
|
1655 |
/**
|
|
1656 |
* @serial include
|
|
1657 |
*/
|
|
1658 |
static class SynchronizedSet<E>
|
|
1659 |
extends SynchronizedCollection<E>
|
|
1660 |
implements Set<E> {
|
|
1661 |
private static final long serialVersionUID = 487447009682186044L;
|
|
1662 |
|
|
1663 |
SynchronizedSet(Set<E> s) {
|
|
1664 |
super(s);
|
|
1665 |
}
|
|
1666 |
SynchronizedSet(Set<E> s, Object mutex) {
|
|
1667 |
super(s, mutex);
|
|
1668 |
}
|
|
1669 |
|
|
1670 |
public boolean equals(Object o) {
|
|
1671 |
synchronized(mutex) {return c.equals(o);}
|
|
1672 |
}
|
|
1673 |
public int hashCode() {
|
|
1674 |
synchronized(mutex) {return c.hashCode();}
|
|
1675 |
}
|
|
1676 |
}
|
|
1677 |
|
|
1678 |
/**
|
|
1679 |
* Returns a synchronized (thread-safe) sorted set backed by the specified
|
|
1680 |
* sorted set. In order to guarantee serial access, it is critical that
|
|
1681 |
* <strong>all</strong> access to the backing sorted set is accomplished
|
|
1682 |
* through the returned sorted set (or its views).<p>
|
|
1683 |
*
|
|
1684 |
* It is imperative that the user manually synchronize on the returned
|
|
1685 |
* sorted set when iterating over it or any of its <tt>subSet</tt>,
|
|
1686 |
* <tt>headSet</tt>, or <tt>tailSet</tt> views.
|
|
1687 |
* <pre>
|
|
1688 |
* SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
|
|
1689 |
* ...
|
|
1690 |
* synchronized(s) {
|
|
1691 |
* Iterator i = s.iterator(); // Must be in the synchronized block
|
|
1692 |
* while (i.hasNext())
|
|
1693 |
* foo(i.next());
|
|
1694 |
* }
|
|
1695 |
* </pre>
|
|
1696 |
* or:
|
|
1697 |
* <pre>
|
|
1698 |
* SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
|
|
1699 |
* SortedSet s2 = s.headSet(foo);
|
|
1700 |
* ...
|
|
1701 |
* synchronized(s) { // Note: s, not s2!!!
|
|
1702 |
* Iterator i = s2.iterator(); // Must be in the synchronized block
|
|
1703 |
* while (i.hasNext())
|
|
1704 |
* foo(i.next());
|
|
1705 |
* }
|
|
1706 |
* </pre>
|
|
1707 |
* Failure to follow this advice may result in non-deterministic behavior.
|
|
1708 |
*
|
|
1709 |
* <p>The returned sorted set will be serializable if the specified
|
|
1710 |
* sorted set is serializable.
|
|
1711 |
*
|
|
1712 |
* @param s the sorted set to be "wrapped" in a synchronized sorted set.
|
|
1713 |
* @return a synchronized view of the specified sorted set.
|
|
1714 |
*/
|
|
1715 |
public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
|
|
1716 |
return new SynchronizedSortedSet<T>(s);
|
|
1717 |
}
|
|
1718 |
|
|
1719 |
/**
|
|
1720 |
* @serial include
|
|
1721 |
*/
|
|
1722 |
static class SynchronizedSortedSet<E>
|
|
1723 |
extends SynchronizedSet<E>
|
|
1724 |
implements SortedSet<E>
|
|
1725 |
{
|
|
1726 |
private static final long serialVersionUID = 8695801310862127406L;
|
|
1727 |
|
|
1728 |
final private SortedSet<E> ss;
|
|
1729 |
|
|
1730 |
SynchronizedSortedSet(SortedSet<E> s) {
|
|
1731 |
super(s);
|
|
1732 |
ss = s;
|
|
1733 |
}
|
|
1734 |
SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
|
|
1735 |
super(s, mutex);
|
|
1736 |
ss = s;
|
|
1737 |
}
|
|
1738 |
|
|
1739 |
public Comparator<? super E> comparator() {
|
|
1740 |
synchronized(mutex) {return ss.comparator();}
|
|
1741 |
}
|
|
1742 |
|
|
1743 |
public SortedSet<E> subSet(E fromElement, E toElement) {
|
|
1744 |
synchronized(mutex) {
|
|
1745 |
return new SynchronizedSortedSet<E>(
|
|
1746 |
ss.subSet(fromElement, toElement), mutex);
|
|
1747 |
}
|
|
1748 |
}
|
|
1749 |
public SortedSet<E> headSet(E toElement) {
|
|
1750 |
synchronized(mutex) {
|
|
1751 |
return new SynchronizedSortedSet<E>(ss.headSet(toElement), mutex);
|
|
1752 |
}
|
|
1753 |
}
|
|
1754 |
public SortedSet<E> tailSet(E fromElement) {
|
|
1755 |
synchronized(mutex) {
|
|
1756 |
return new SynchronizedSortedSet<E>(ss.tailSet(fromElement),mutex);
|
|
1757 |
}
|
|
1758 |
}
|
|
1759 |
|
|
1760 |
public E first() {
|
|
1761 |
synchronized(mutex) {return ss.first();}
|
|
1762 |
}
|
|
1763 |
public E last() {
|
|
1764 |
synchronized(mutex) {return ss.last();}
|
|
1765 |
}
|
|
1766 |
}
|
|
1767 |
|
|
1768 |
/**
|
|
1769 |
* Returns a synchronized (thread-safe) list backed by the specified
|
|
1770 |
* list. In order to guarantee serial access, it is critical that
|
|
1771 |
* <strong>all</strong> access to the backing list is accomplished
|
|
1772 |
* through the returned list.<p>
|
|
1773 |
*
|
|
1774 |
* It is imperative that the user manually synchronize on the returned
|
|
1775 |
* list when iterating over it:
|
|
1776 |
* <pre>
|
|
1777 |
* List list = Collections.synchronizedList(new ArrayList());
|
|
1778 |
* ...
|
|
1779 |
* synchronized(list) {
|
|
1780 |
* Iterator i = list.iterator(); // Must be in synchronized block
|
|
1781 |
* while (i.hasNext())
|
|
1782 |
* foo(i.next());
|
|
1783 |
* }
|
|
1784 |
* </pre>
|
|
1785 |
* Failure to follow this advice may result in non-deterministic behavior.
|
|
1786 |
*
|
|
1787 |
* <p>The returned list will be serializable if the specified list is
|
|
1788 |
* serializable.
|
|
1789 |
*
|
|
1790 |
* @param list the list to be "wrapped" in a synchronized list.
|
|
1791 |
* @return a synchronized view of the specified list.
|
|
1792 |
*/
|
|
1793 |
public static <T> List<T> synchronizedList(List<T> list) {
|
|
1794 |
return (list instanceof RandomAccess ?
|
|
1795 |
new SynchronizedRandomAccessList<T>(list) :
|
|
1796 |
new SynchronizedList<T>(list));
|
|
1797 |
}
|
|
1798 |
|
|
1799 |
static <T> List<T> synchronizedList(List<T> list, Object mutex) {
|
|
1800 |
return (list instanceof RandomAccess ?
|
|
1801 |
new SynchronizedRandomAccessList<T>(list, mutex) :
|
|
1802 |
new SynchronizedList<T>(list, mutex));
|
|
1803 |
}
|
|
1804 |
|
|
1805 |
/**
|
|
1806 |
* @serial include
|
|
1807 |
*/
|
|
1808 |
static class SynchronizedList<E>
|
|
1809 |
extends SynchronizedCollection<E>
|
|
1810 |
implements List<E> {
|
|
1811 |
private static final long serialVersionUID = -7754090372962971524L;
|
|
1812 |
|
|
1813 |
final List<E> list;
|
|
1814 |
|
|
1815 |
SynchronizedList(List<E> list) {
|
|
1816 |
super(list);
|
|
1817 |
this.list = list;
|
|
1818 |
}
|
|
1819 |
SynchronizedList(List<E> list, Object mutex) {
|
|
1820 |
super(list, mutex);
|
|
1821 |
this.list = list;
|
|
1822 |
}
|
|
1823 |
|
|
1824 |
public boolean equals(Object o) {
|
|
1825 |
synchronized(mutex) {return list.equals(o);}
|
|
1826 |
}
|
|
1827 |
public int hashCode() {
|
|
1828 |
synchronized(mutex) {return list.hashCode();}
|
|
1829 |
}
|
|
1830 |
|
|
1831 |
public E get(int index) {
|
|
1832 |
synchronized(mutex) {return list.get(index);}
|
|
1833 |
}
|
|
1834 |
public E set(int index, E element) {
|
|
1835 |
synchronized(mutex) {return list.set(index, element);}
|
|
1836 |
}
|
|
1837 |
public void add(int index, E element) {
|
|
1838 |
synchronized(mutex) {list.add(index, element);}
|
|
1839 |
}
|
|
1840 |
public E remove(int index) {
|
|
1841 |
synchronized(mutex) {return list.remove(index);}
|
|
1842 |
}
|
|
1843 |
|
|
1844 |
public int indexOf(Object o) {
|
|
1845 |
synchronized(mutex) {return list.indexOf(o);}
|
|
1846 |
}
|
|
1847 |
public int lastIndexOf(Object o) {
|
|
1848 |
synchronized(mutex) {return list.lastIndexOf(o);}
|
|
1849 |
}
|
|
1850 |
|
|
1851 |
public boolean addAll(int index, Collection<? extends E> c) {
|
|
1852 |
synchronized(mutex) {return list.addAll(index, c);}
|
|
1853 |
}
|
|
1854 |
|
|
1855 |
public ListIterator<E> listIterator() {
|
|
1856 |
return list.listIterator(); // Must be manually synched by user
|
|
1857 |
}
|
|
1858 |
|
|
1859 |
public ListIterator<E> listIterator(int index) {
|
|
1860 |
return list.listIterator(index); // Must be manually synched by user
|
|
1861 |
}
|
|
1862 |
|
|
1863 |
public List<E> subList(int fromIndex, int toIndex) {
|
|
1864 |
synchronized(mutex) {
|
|
1865 |
return new SynchronizedList<E>(list.subList(fromIndex, toIndex),
|
|
1866 |
mutex);
|
|
1867 |
}
|
|
1868 |
}
|
|
1869 |
|
|
1870 |
/**
|
|
1871 |
* SynchronizedRandomAccessList instances are serialized as
|
|
1872 |
* SynchronizedList instances to allow them to be deserialized
|
|
1873 |
* in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
|
|
1874 |
* This method inverts the transformation. As a beneficial
|
|
1875 |
* side-effect, it also grafts the RandomAccess marker onto
|
|
1876 |
* SynchronizedList instances that were serialized in pre-1.4 JREs.
|
|
1877 |
*
|
|
1878 |
* Note: Unfortunately, SynchronizedRandomAccessList instances
|
|
1879 |
* serialized in 1.4.1 and deserialized in 1.4 will become
|
|
1880 |
* SynchronizedList instances, as this method was missing in 1.4.
|
|
1881 |
*/
|
|
1882 |
private Object readResolve() {
|
|
1883 |
return (list instanceof RandomAccess
|
|
1884 |
? new SynchronizedRandomAccessList<E>(list)
|
|
1885 |
: this);
|
|
1886 |
}
|
|
1887 |
}
|
|
1888 |
|
|
1889 |
/**
|
|
1890 |
* @serial include
|
|
1891 |
*/
|
|
1892 |
static class SynchronizedRandomAccessList<E>
|
|
1893 |
extends SynchronizedList<E>
|
|
1894 |
implements RandomAccess {
|
|
1895 |
|
|
1896 |
SynchronizedRandomAccessList(List<E> list) {
|
|
1897 |
super(list);
|
|
1898 |
}
|
|
1899 |
|
|
1900 |
SynchronizedRandomAccessList(List<E> list, Object mutex) {
|
|
1901 |
super(list, mutex);
|
|
1902 |
}
|
|
1903 |
|
|
1904 |
public List<E> subList(int fromIndex, int toIndex) {
|
|
1905 |
synchronized(mutex) {
|
|
1906 |
return new SynchronizedRandomAccessList<E>(
|
|
1907 |
list.subList(fromIndex, toIndex), mutex);
|
|
1908 |
}
|
|
1909 |
}
|
|
1910 |
|
|
1911 |
private static final long serialVersionUID = 1530674583602358482L;
|
|
1912 |
|
|
1913 |
/**
|
|
1914 |
* Allows instances to be deserialized in pre-1.4 JREs (which do
|
|
1915 |
* not have SynchronizedRandomAccessList). SynchronizedList has
|
|
1916 |
* a readResolve method that inverts this transformation upon
|
|
1917 |
* deserialization.
|
|
1918 |
*/
|
|
1919 |
private Object writeReplace() {
|
|
1920 |
return new SynchronizedList<E>(list);
|
|
1921 |
}
|
|
1922 |
}
|
|
1923 |
|
|
1924 |
/**
|
|
1925 |
* Returns a synchronized (thread-safe) map backed by the specified
|
|
1926 |
* map. In order to guarantee serial access, it is critical that
|
|
1927 |
* <strong>all</strong> access to the backing map is accomplished
|
|
1928 |
* through the returned map.<p>
|
|
1929 |
*
|
|
1930 |
* It is imperative that the user manually synchronize on the returned
|
|
1931 |
* map when iterating over any of its collection views:
|
|
1932 |
* <pre>
|
|
1933 |
* Map m = Collections.synchronizedMap(new HashMap());
|
|
1934 |
* ...
|
|
1935 |
* Set s = m.keySet(); // Needn't be in synchronized block
|
|
1936 |
* ...
|
|
1937 |
* synchronized(m) { // Synchronizing on m, not s!
|
|
1938 |
* Iterator i = s.iterator(); // Must be in synchronized block
|
|
1939 |
* while (i.hasNext())
|
|
1940 |
* foo(i.next());
|
|
1941 |
* }
|
|
1942 |
* </pre>
|
|
1943 |
* Failure to follow this advice may result in non-deterministic behavior.
|
|
1944 |
*
|
|
1945 |
* <p>The returned map will be serializable if the specified map is
|
|
1946 |
* serializable.
|
|
1947 |
*
|
|
1948 |
* @param m the map to be "wrapped" in a synchronized map.
|
|
1949 |
* @return a synchronized view of the specified map.
|
|
1950 |
*/
|
|
1951 |
public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
|
|
1952 |
return new SynchronizedMap<K,V>(m);
|
|
1953 |
}
|
|
1954 |
|
|
1955 |
/**
|
|
1956 |
* @serial include
|
|
1957 |
*/
|
|
1958 |
private static class SynchronizedMap<K,V>
|
|
1959 |
implements Map<K,V>, Serializable {
|
|
1960 |
private static final long serialVersionUID = 1978198479659022715L;
|
|
1961 |
|
|
1962 |
private final Map<K,V> m; // Backing Map
|
|
1963 |
final Object mutex; // Object on which to synchronize
|
|
1964 |
|
|
1965 |
SynchronizedMap(Map<K,V> m) {
|
|
1966 |
if (m==null)
|
|
1967 |
throw new NullPointerException();
|
|
1968 |
this.m = m;
|
|
1969 |
mutex = this;
|
|
1970 |
}
|
|
1971 |
|
|
1972 |
SynchronizedMap(Map<K,V> m, Object mutex) {
|
|
1973 |
this.m = m;
|
|
1974 |
this.mutex = mutex;
|
|
1975 |
}
|
|
1976 |
|
|
1977 |
public int size() {
|
|
1978 |
synchronized(mutex) {return m.size();}
|
|
1979 |
}
|
|
1980 |
public boolean isEmpty() {
|
|
1981 |
synchronized(mutex) {return m.isEmpty();}
|
|
1982 |
}
|
|
1983 |
public boolean containsKey(Object key) {
|
|
1984 |
synchronized(mutex) {return m.containsKey(key);}
|
|
1985 |
}
|
|
1986 |
public boolean containsValue(Object value) {
|
|
1987 |
synchronized(mutex) {return m.containsValue(value);}
|
|
1988 |
}
|
|
1989 |
public V get(Object key) {
|
|
1990 |
synchronized(mutex) {return m.get(key);}
|
|
1991 |
}
|
|
1992 |
|
|
1993 |
public V put(K key, V value) {
|
|
1994 |
synchronized(mutex) {return m.put(key, value);}
|
|
1995 |
}
|
|
1996 |
public V remove(Object key) {
|
|
1997 |
synchronized(mutex) {return m.remove(key);}
|
|
1998 |
}
|
|
1999 |
public void putAll(Map<? extends K, ? extends V> map) {
|
|
2000 |
synchronized(mutex) {m.putAll(map);}
|
|
2001 |
}
|
|
2002 |
public void clear() {
|
|
2003 |
synchronized(mutex) {m.clear();}
|
|
2004 |
}
|
|
2005 |
|
|
2006 |
private transient Set<K> keySet = null;
|
|
2007 |
private transient Set<Map.Entry<K,V>> entrySet = null;
|
|
2008 |
private transient Collection<V> values = null;
|
|
2009 |
|
|
2010 |
public Set<K> keySet() {
|
|
2011 |
synchronized(mutex) {
|
|
2012 |
if (keySet==null)
|
|
2013 |
keySet = new SynchronizedSet<K>(m.keySet(), mutex);
|
|
2014 |
return keySet;
|
|
2015 |
}
|
|
2016 |
}
|
|
2017 |
|
|
2018 |
public Set<Map.Entry<K,V>> entrySet() {
|
|
2019 |
synchronized(mutex) {
|
|
2020 |
if (entrySet==null)
|
|
2021 |
entrySet = new SynchronizedSet<Map.Entry<K,V>>(m.entrySet(), mutex);
|
|
2022 |
return entrySet;
|
|
2023 |
}
|
|
2024 |
}
|
|
2025 |
|
|
2026 |
public Collection<V> values() {
|
|
2027 |
synchronized(mutex) {
|
|
2028 |
if (values==null)
|
|
2029 |
values = new SynchronizedCollection<V>(m.values(), mutex);
|
|
2030 |
return values;
|
|
2031 |
}
|
|
2032 |
}
|
|
2033 |
|
|
2034 |
public boolean equals(Object o) {
|
|
2035 |
synchronized(mutex) {return m.equals(o);}
|
|
2036 |
}
|
|
2037 |
public int hashCode() {
|
|
2038 |
synchronized(mutex) {return m.hashCode();}
|
|
2039 |
}
|
|
2040 |
public String toString() {
|
|
2041 |
synchronized(mutex) {return m.toString();}
|
|
2042 |
}
|
|
2043 |
private void writeObject(ObjectOutputStream s) throws IOException {
|
|
2044 |
synchronized(mutex) {s.defaultWriteObject();}
|
|
2045 |
}
|
|
2046 |
}
|
|
2047 |
|
|
2048 |
/**
|
|
2049 |
* Returns a synchronized (thread-safe) sorted map backed by the specified
|
|
2050 |
* sorted map. In order to guarantee serial access, it is critical that
|
|
2051 |
* <strong>all</strong> access to the backing sorted map is accomplished
|
|
2052 |
* through the returned sorted map (or its views).<p>
|
|
2053 |
*
|
|
2054 |
* It is imperative that the user manually synchronize on the returned
|
|
2055 |
* sorted map when iterating over any of its collection views, or the
|
|
2056 |
* collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
|
|
2057 |
* <tt>tailMap</tt> views.
|
|
2058 |
* <pre>
|
|
2059 |
* SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
|
|
2060 |
* ...
|
|
2061 |
* Set s = m.keySet(); // Needn't be in synchronized block
|
|
2062 |
* ...
|
|
2063 |
* synchronized(m) { // Synchronizing on m, not s!
|
|
2064 |
* Iterator i = s.iterator(); // Must be in synchronized block
|
|
2065 |
* while (i.hasNext())
|
|
2066 |
* foo(i.next());
|
|
2067 |
* }
|
|
2068 |
* </pre>
|
|
2069 |
* or:
|
|
2070 |
* <pre>
|
|
2071 |
* SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
|
|
2072 |
* SortedMap m2 = m.subMap(foo, bar);
|
|
2073 |
* ...
|
|
2074 |
* Set s2 = m2.keySet(); // Needn't be in synchronized block
|
|
2075 |
* ...
|
|
2076 |
* synchronized(m) { // Synchronizing on m, not m2 or s2!
|
|
2077 |
* Iterator i = s.iterator(); // Must be in synchronized block
|
|
2078 |
* while (i.hasNext())
|
|
2079 |
* foo(i.next());
|
|
2080 |
* }
|
|
2081 |
* </pre>
|
|
2082 |
* Failure to follow this advice may result in non-deterministic behavior.
|
|
2083 |
*
|
|
2084 |
* <p>The returned sorted map will be serializable if the specified
|
|
2085 |
* sorted map is serializable.
|
|
2086 |
*
|
|
2087 |
* @param m the sorted map to be "wrapped" in a synchronized sorted map.
|
|
2088 |
* @return a synchronized view of the specified sorted map.
|
|
2089 |
*/
|
|
2090 |
public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
|
|
2091 |
return new SynchronizedSortedMap<K,V>(m);
|
|
2092 |
}
|
|
2093 |
|
|
2094 |
|
|
2095 |
/**
|
|
2096 |
* @serial include
|
|
2097 |
*/
|
|
2098 |
static class SynchronizedSortedMap<K,V>
|
|
2099 |
extends SynchronizedMap<K,V>
|
|
2100 |
implements SortedMap<K,V>
|
|
2101 |
{
|
|
2102 |
private static final long serialVersionUID = -8798146769416483793L;
|
|
2103 |
|
|
2104 |
private final SortedMap<K,V> sm;
|
|
2105 |
|
|
2106 |
SynchronizedSortedMap(SortedMap<K,V> m) {
|
|
2107 |
super(m);
|
|
2108 |
sm = m;
|
|
2109 |
}
|
|
2110 |
SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
|
|
2111 |
super(m, mutex);
|
|
2112 |
sm = m;
|
|
2113 |
}
|
|
2114 |
|
|
2115 |
public Comparator<? super K> comparator() {
|
|
2116 |
synchronized(mutex) {return sm.comparator();}
|
|
2117 |
}
|
|
2118 |
|
|
2119 |
public SortedMap<K,V> subMap(K fromKey, K toKey) {
|
|
2120 |
synchronized(mutex) {
|
|
2121 |
return new SynchronizedSortedMap<K,V>(
|
|
2122 |
sm.subMap(fromKey, toKey), mutex);
|
|
2123 |
}
|
|
2124 |
}
|
|
2125 |
public SortedMap<K,V> headMap(K toKey) {
|
|
2126 |
synchronized(mutex) {
|
|
2127 |
return new SynchronizedSortedMap<K,V>(sm.headMap(toKey), mutex);
|
|
2128 |
}
|
|
2129 |
}
|
|
2130 |
public SortedMap<K,V> tailMap(K fromKey) {
|
|
2131 |
synchronized(mutex) {
|
|
2132 |
return new SynchronizedSortedMap<K,V>(sm.tailMap(fromKey),mutex);
|
|
2133 |
}
|
|
2134 |
}
|
|
2135 |
|
|
2136 |
public K firstKey() {
|
|
2137 |
synchronized(mutex) {return sm.firstKey();}
|
|
2138 |
}
|
|
2139 |
public K lastKey() {
|
|
2140 |
synchronized(mutex) {return sm.lastKey();}
|
|
2141 |
}
|
|
2142 |
}
|
|
2143 |
|
|
2144 |
// Dynamically typesafe collection wrappers
|
|
2145 |
|
|
2146 |
/**
|
|
2147 |
* Returns a dynamically typesafe view of the specified collection.
|
|
2148 |
* Any attempt to insert an element of the wrong type will result in an
|
|
2149 |
* immediate {@link ClassCastException}. Assuming a collection
|
|
2150 |
* contains no incorrectly typed elements prior to the time a
|
|
2151 |
* dynamically typesafe view is generated, and that all subsequent
|
|
2152 |
* access to the collection takes place through the view, it is
|
|
2153 |
* <i>guaranteed</i> that the collection cannot contain an incorrectly
|
|
2154 |
* typed element.
|
|
2155 |
*
|
|
2156 |
* <p>The generics mechanism in the language provides compile-time
|
|
2157 |
* (static) type checking, but it is possible to defeat this mechanism
|
|
2158 |
* with unchecked casts. Usually this is not a problem, as the compiler
|
|
2159 |
* issues warnings on all such unchecked operations. There are, however,
|
|
2160 |
* times when static type checking alone is not sufficient. For example,
|
|
2161 |
* suppose a collection is passed to a third-party library and it is
|
|
2162 |
* imperative that the library code not corrupt the collection by
|
|
2163 |
* inserting an element of the wrong type.
|
|
2164 |
*
|
|
2165 |
* <p>Another use of dynamically typesafe views is debugging. Suppose a
|
|
2166 |
* program fails with a {@code ClassCastException}, indicating that an
|
|
2167 |
* incorrectly typed element was put into a parameterized collection.
|
|
2168 |
* Unfortunately, the exception can occur at any time after the erroneous
|
|
2169 |
* element is inserted, so it typically provides little or no information
|
|
2170 |
* as to the real source of the problem. If the problem is reproducible,
|
|
2171 |
* one can quickly determine its source by temporarily modifying the
|
|
2172 |
* program to wrap the collection with a dynamically typesafe view.
|
|
2173 |
* For example, this declaration:
|
|
2174 |
* <pre> {@code
|
|
2175 |
* Collection<String> c = new HashSet<String>();
|
|
2176 |
* }</pre>
|
|
2177 |
* may be replaced temporarily by this one:
|
|
2178 |
* <pre> {@code
|
|
2179 |
* Collection<String> c = Collections.checkedCollection(
|
|
2180 |
* new HashSet<String>(), String.class);
|
|
2181 |
* }</pre>
|
|
2182 |
* Running the program again will cause it to fail at the point where
|
|
2183 |
* an incorrectly typed element is inserted into the collection, clearly
|
|
2184 |
* identifying the source of the problem. Once the problem is fixed, the
|
|
2185 |
* modified declaration may be reverted back to the original.
|
|
2186 |
*
|
|
2187 |
* <p>The returned collection does <i>not</i> pass the hashCode and equals
|
|
2188 |
* operations through to the backing collection, but relies on
|
|
2189 |
* {@code Object}'s {@code equals} and {@code hashCode} methods. This
|
|
2190 |
* is necessary to preserve the contracts of these operations in the case
|
|
2191 |
* that the backing collection is a set or a list.
|
|
2192 |
*
|
|
2193 |
* <p>The returned collection will be serializable if the specified
|
|
2194 |
* collection is serializable.
|
|
2195 |
*
|
|
2196 |
* <p>Since {@code null} is considered to be a value of any reference
|
|
2197 |
* type, the returned collection permits insertion of null elements
|
|
2198 |
* whenever the backing collection does.
|
|
2199 |
*
|
|
2200 |
* @param c the collection for which a dynamically typesafe view is to be
|
|
2201 |
* returned
|
|
2202 |
* @param type the type of element that {@code c} is permitted to hold
|
|
2203 |
* @return a dynamically typesafe view of the specified collection
|
|
2204 |
* @since 1.5
|
|
2205 |
*/
|
|
2206 |
public static <E> Collection<E> checkedCollection(Collection<E> c,
|
|
2207 |
Class<E> type) {
|
|
2208 |
return new CheckedCollection<E>(c, type);
|
|
2209 |
}
|
|
2210 |
|
|
2211 |
@SuppressWarnings("unchecked")
|
|
2212 |
static <T> T[] zeroLengthArray(Class<T> type) {
|
|
2213 |
return (T[]) Array.newInstance(type, 0);
|
|
2214 |
}
|
|
2215 |
|
|
2216 |
/**
|
|
2217 |
* @serial include
|
|
2218 |
*/
|
|
2219 |
static class CheckedCollection<E> implements Collection<E>, Serializable {
|
|
2220 |
private static final long serialVersionUID = 1578914078182001775L;
|
|
2221 |
|
|
2222 |
final Collection<E> c;
|
|
2223 |
final Class<E> type;
|
|
2224 |
|
|
2225 |
void typeCheck(Object o) {
|
|
2226 |
if (o != null && !type.isInstance(o))
|
|
2227 |
throw new ClassCastException(badElementMsg(o));
|
|
2228 |
}
|
|
2229 |
|
|
2230 |
private String badElementMsg(Object o) {
|
|
2231 |
return "Attempt to insert " + o.getClass() +
|
|
2232 |
" element into collection with element type " + type;
|
|
2233 |
}
|
|
2234 |
|
|
2235 |
CheckedCollection(Collection<E> c, Class<E> type) {
|
|
2236 |
if (c==null || type == null)
|
|
2237 |
throw new NullPointerException();
|
|
2238 |
this.c = c;
|
|
2239 |
this.type = type;
|
|
2240 |
}
|
|
2241 |
|
|
2242 |
public int size() { return c.size(); }
|
|
2243 |
public boolean isEmpty() { return c.isEmpty(); }
|
|
2244 |
public boolean contains(Object o) { return c.contains(o); }
|
|
2245 |
public Object[] toArray() { return c.toArray(); }
|
|
2246 |
public <T> T[] toArray(T[] a) { return c.toArray(a); }
|
|
2247 |
public String toString() { return c.toString(); }
|
|
2248 |
public boolean remove(Object o) { return c.remove(o); }
|
|
2249 |
public void clear() { c.clear(); }
|
|
2250 |
|
|
2251 |
public boolean containsAll(Collection<?> coll) {
|
|
2252 |
return c.containsAll(coll);
|
|
2253 |
}
|
|
2254 |
public boolean removeAll(Collection<?> coll) {
|
|
2255 |
return c.removeAll(coll);
|
|
2256 |
}
|
|
2257 |
public boolean retainAll(Collection<?> coll) {
|
|
2258 |
return c.retainAll(coll);
|
|
2259 |
}
|
|
2260 |
|
|
2261 |
public Iterator<E> iterator() {
|
|
2262 |
final Iterator<E> it = c.iterator();
|
|
2263 |
return new Iterator<E>() {
|
|
2264 |
public boolean hasNext() { return it.hasNext(); }
|
|
2265 |
public E next() { return it.next(); }
|
|
2266 |
public void remove() { it.remove(); }};
|
|
2267 |
}
|
|
2268 |
|
|
2269 |
public boolean add(E e) {
|
|
2270 |
typeCheck(e);
|
|
2271 |
return c.add(e);
|
|
2272 |
}
|
|
2273 |
|
|
2274 |
private E[] zeroLengthElementArray = null; // Lazily initialized
|
|
2275 |
|
|
2276 |
private E[] zeroLengthElementArray() {
|
|
2277 |
return zeroLengthElementArray != null ? zeroLengthElementArray :
|
|
2278 |
(zeroLengthElementArray = zeroLengthArray(type));
|
|
2279 |
}
|
|
2280 |
|
|
2281 |
@SuppressWarnings("unchecked")
|
|
2282 |
Collection<E> checkedCopyOf(Collection<? extends E> coll) {
|
|
2283 |
Object[] a = null;
|
|
2284 |
try {
|
|
2285 |
E[] z = zeroLengthElementArray();
|
|
2286 |
a = coll.toArray(z);
|
|
2287 |
// Defend against coll violating the toArray contract
|
|
2288 |
if (a.getClass() != z.getClass())
|
|
2289 |
a = Arrays.copyOf(a, a.length, z.getClass());
|
|
2290 |
} catch (ArrayStoreException ignore) {
|
|
2291 |
// To get better and consistent diagnostics,
|
|
2292 |
// we call typeCheck explicitly on each element.
|
|
2293 |
// We call clone() to defend against coll retaining a
|
|
2294 |
// reference to the returned array and storing a bad
|
|
2295 |
// element into it after it has been type checked.
|
|
2296 |
a = coll.toArray().clone();
|
|
2297 |
for (Object o : a)
|
|
2298 |
typeCheck(o);
|
|
2299 |
}
|
|
2300 |
// A slight abuse of the type system, but safe here.
|
|
2301 |
return (Collection<E>) Arrays.asList(a);
|
|
2302 |
}
|
|
2303 |
|
|
2304 |
public boolean addAll(Collection<? extends E> coll) {
|
|
2305 |
// Doing things this way insulates us from concurrent changes
|
|
2306 |
// in the contents of coll and provides all-or-nothing
|
|
2307 |
// semantics (which we wouldn't get if we type-checked each
|
|
2308 |
// element as we added it)
|
|
2309 |
return c.addAll(checkedCopyOf(coll));
|
|
2310 |
}
|
|
2311 |
}
|
|
2312 |
|
|
2313 |
/**
|
|
2314 |
* Returns a dynamically typesafe view of the specified set.
|
|
2315 |
* Any attempt to insert an element of the wrong type will result in
|
|
2316 |
* an immediate {@link ClassCastException}. Assuming a set contains
|
|
2317 |
* no incorrectly typed elements prior to the time a dynamically typesafe
|
|
2318 |
* view is generated, and that all subsequent access to the set
|
|
2319 |
* takes place through the view, it is <i>guaranteed</i> that the
|
|
2320 |
* set cannot contain an incorrectly typed element.
|
|
2321 |
*
|
|
2322 |
* <p>A discussion of the use of dynamically typesafe views may be
|
|
2323 |
* found in the documentation for the {@link #checkedCollection
|
|
2324 |
* checkedCollection} method.
|
|
2325 |
*
|
|
2326 |
* <p>The returned set will be serializable if the specified set is
|
|
2327 |
* serializable.
|
|
2328 |
*
|
|
2329 |
* <p>Since {@code null} is considered to be a value of any reference
|
|
2330 |
* type, the returned set permits insertion of null elements whenever
|
|
2331 |
* the backing set does.
|
|
2332 |
*
|
|
2333 |
* @param s the set for which a dynamically typesafe view is to be
|
|
2334 |
* returned
|
|
2335 |
* @param type the type of element that {@code s} is permitted to hold
|
|
2336 |
* @return a dynamically typesafe view of the specified set
|
|
2337 |
* @since 1.5
|
|
2338 |
*/
|
|
2339 |
public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
|
|
2340 |
return new CheckedSet<E>(s, type);
|
|
2341 |
}
|
|
2342 |
|
|
2343 |
/**
|
|
2344 |
* @serial include
|
|
2345 |
*/
|
|
2346 |
static class CheckedSet<E> extends CheckedCollection<E>
|
|
2347 |
implements Set<E>, Serializable
|
|
2348 |
{
|
|
2349 |
private static final long serialVersionUID = 4694047833775013803L;
|
|
2350 |
|
|
2351 |
CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
|
|
2352 |
|
|
2353 |
public boolean equals(Object o) { return o == this || c.equals(o); }
|
|
2354 |
public int hashCode() { return c.hashCode(); }
|
|
2355 |
}
|
|
2356 |
|
|
2357 |
/**
|
|
2358 |
* Returns a dynamically typesafe view of the specified sorted set.
|
|
2359 |
* Any attempt to insert an element of the wrong type will result in an
|
|
2360 |
* immediate {@link ClassCastException}. Assuming a sorted set
|
|
2361 |
* contains no incorrectly typed elements prior to the time a
|
|
2362 |
* dynamically typesafe view is generated, and that all subsequent
|
|
2363 |
* access to the sorted set takes place through the view, it is
|
|
2364 |
* <i>guaranteed</i> that the sorted set cannot contain an incorrectly
|
|
2365 |
* typed element.
|
|
2366 |
*
|
|
2367 |
* <p>A discussion of the use of dynamically typesafe views may be
|
|
2368 |
* found in the documentation for the {@link #checkedCollection
|
|
2369 |
* checkedCollection} method.
|
|
2370 |
*
|
|
2371 |
* <p>The returned sorted set will be serializable if the specified sorted
|
|
2372 |
* set is serializable.
|
|
2373 |
*
|
|
2374 |
* <p>Since {@code null} is considered to be a value of any reference
|
|
2375 |
* type, the returned sorted set permits insertion of null elements
|
|
2376 |
* whenever the backing sorted set does.
|
|
2377 |
*
|
|
2378 |
* @param s the sorted set for which a dynamically typesafe view is to be
|
|
2379 |
* returned
|
|
2380 |
* @param type the type of element that {@code s} is permitted to hold
|
|
2381 |
* @return a dynamically typesafe view of the specified sorted set
|
|
2382 |
* @since 1.5
|
|
2383 |
*/
|
|
2384 |
public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
|
|
2385 |
Class<E> type) {
|
|
2386 |
return new CheckedSortedSet<E>(s, type);
|
|
2387 |
}
|
|
2388 |
|
|
2389 |
/**
|
|
2390 |
* @serial include
|
|
2391 |
*/
|
|
2392 |
static class CheckedSortedSet<E> extends CheckedSet<E>
|
|
2393 |
implements SortedSet<E>, Serializable
|
|
2394 |
{
|
|
2395 |
private static final long serialVersionUID = 1599911165492914959L;
|
|
2396 |
private final SortedSet<E> ss;
|
|
2397 |
|
|
2398 |
CheckedSortedSet(SortedSet<E> s, Class<E> type) {
|
|
2399 |
super(s, type);
|
|
2400 |
ss = s;
|
|
2401 |
}
|
|
2402 |
|
|
2403 |
public Comparator<? super E> comparator() { return ss.comparator(); }
|
|
2404 |
public E first() { return ss.first(); }
|
|
2405 |
public E last() { return ss.last(); }
|
|
2406 |
|
|
2407 |
public SortedSet<E> subSet(E fromElement, E toElement) {
|
|
2408 |
return checkedSortedSet(ss.subSet(fromElement,toElement), type);
|
|
2409 |
}
|
|
2410 |
public SortedSet<E> headSet(E toElement) {
|
|
2411 |
return checkedSortedSet(ss.headSet(toElement), type);
|
|
2412 |
}
|
|
2413 |
public SortedSet<E> tailSet(E fromElement) {
|
|
2414 |
return checkedSortedSet(ss.tailSet(fromElement), type);
|
|
2415 |
}
|
|
2416 |
}
|
|
2417 |
|
|
2418 |
/**
|
|
2419 |
* Returns a dynamically typesafe view of the specified list.
|
|
2420 |
* Any attempt to insert an element of the wrong type will result in
|
|
2421 |
* an immediate {@link ClassCastException}. Assuming a list contains
|
|
2422 |
* no incorrectly typed elements prior to the time a dynamically typesafe
|
|
2423 |
* view is generated, and that all subsequent access to the list
|
|
2424 |
* takes place through the view, it is <i>guaranteed</i> that the
|
|
2425 |
* list cannot contain an incorrectly typed element.
|
|
2426 |
*
|
|
2427 |
* <p>A discussion of the use of dynamically typesafe views may be
|
|
2428 |
* found in the documentation for the {@link #checkedCollection
|
|
2429 |
* checkedCollection} method.
|
|
2430 |
*
|
|
2431 |
* <p>The returned list will be serializable if the specified list
|
|
2432 |
* is serializable.
|
|
2433 |
*
|
|
2434 |
* <p>Since {@code null} is considered to be a value of any reference
|
|
2435 |
* type, the returned list permits insertion of null elements whenever
|
|
2436 |
* the backing list does.
|
|
2437 |
*
|
|
2438 |
* @param list the list for which a dynamically typesafe view is to be
|
|
2439 |
* returned
|
|
2440 |
* @param type the type of element that {@code list} is permitted to hold
|
|
2441 |
* @return a dynamically typesafe view of the specified list
|
|
2442 |
* @since 1.5
|
|
2443 |
*/
|
|
2444 |
public static <E> List<E> checkedList(List<E> list, Class<E> type) {
|
|
2445 |
return (list instanceof RandomAccess ?
|
|
2446 |
new CheckedRandomAccessList<E>(list, type) :
|
|
2447 |
new CheckedList<E>(list, type));
|
|
2448 |
}
|
|
2449 |
|
|
2450 |
/**
|
|
2451 |
* @serial include
|
|
2452 |
*/
|
|
2453 |
static class CheckedList<E>
|
|
2454 |
extends CheckedCollection<E>
|
|
2455 |
implements List<E>
|
|
2456 |
{
|
|
2457 |
private static final long serialVersionUID = 65247728283967356L;
|
|
2458 |
final List<E> list;
|
|
2459 |
|
|
2460 |
CheckedList(List<E> list, Class<E> type) {
|
|
2461 |
super(list, type);
|
|
2462 |
this.list = list;
|
|
2463 |
}
|
|
2464 |
|
|
2465 |
public boolean equals(Object o) { return o == this || list.equals(o); }
|
|
2466 |
public int hashCode() { return list.hashCode(); }
|
|
2467 |
public E get(int index) { return list.get(index); }
|
|
2468 |
public E remove(int index) { return list.remove(index); }
|
|
2469 |
public int indexOf(Object o) { return list.indexOf(o); }
|
|
2470 |
public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
|
|
2471 |
|
|
2472 |
public E set(int index, E element) {
|
|
2473 |
typeCheck(element);
|
|
2474 |
return list.set(index, element);
|
|
2475 |
}
|
|
2476 |
|
|
2477 |
public void add(int index, E element) {
|
|
2478 |
typeCheck(element);
|
|
2479 |
list.add(index, element);
|
|
2480 |
}
|
|
2481 |
|
|
2482 |
public boolean addAll(int index, Collection<? extends E> c) {
|
|
2483 |
return list.addAll(index, checkedCopyOf(c));
|
|
2484 |
}
|
|
2485 |
public ListIterator<E> listIterator() { return listIterator(0); }
|
|
2486 |
|
|
2487 |
public ListIterator<E> listIterator(final int index) {
|
|
2488 |
final ListIterator<E> i = list.listIterator(index);
|
|
2489 |
|
|
2490 |
return new ListIterator<E>() {
|
|
2491 |
public boolean hasNext() { return i.hasNext(); }
|
|
2492 |
public E next() { return i.next(); }
|
|
2493 |
public boolean hasPrevious() { return i.hasPrevious(); }
|
|
2494 |
public E previous() { return i.previous(); }
|
|
2495 |
public int nextIndex() { return i.nextIndex(); }
|
|
2496 |
public int previousIndex() { return i.previousIndex(); }
|
|
2497 |
public void remove() { i.remove(); }
|
|
2498 |
|
|
2499 |
public void set(E e) {
|
|
2500 |
typeCheck(e);
|
|
2501 |
i.set(e);
|
|
2502 |
}
|
|
2503 |
|
|
2504 |
public void add(E e) {
|
|
2505 |
typeCheck(e);
|
|
2506 |
i.add(e);
|
|
2507 |
}
|
|
2508 |
};
|
|
2509 |
}
|
|
2510 |
|
|
2511 |
public List<E> subList(int fromIndex, int toIndex) {
|
|
2512 |
return new CheckedList<E>(list.subList(fromIndex, toIndex), type);
|
|
2513 |
}
|
|
2514 |
}
|
|
2515 |
|
|
2516 |
/**
|
|
2517 |
* @serial include
|
|
2518 |
*/
|
|
2519 |
static class CheckedRandomAccessList<E> extends CheckedList<E>
|
|
2520 |
implements RandomAccess
|
|
2521 |
{
|
|
2522 |
private static final long serialVersionUID = 1638200125423088369L;
|
|
2523 |
|
|
2524 |
CheckedRandomAccessList(List<E> list, Class<E> type) {
|
|
2525 |
super(list, type);
|
|
2526 |
}
|
|
2527 |
|
|
2528 |
public List<E> subList(int fromIndex, int toIndex) {
|
|
2529 |
return new CheckedRandomAccessList<E>(
|
|
2530 |
list.subList(fromIndex, toIndex), type);
|
|
2531 |
}
|
|
2532 |
}
|
|
2533 |
|
|
2534 |
/**
|
|
2535 |
* Returns a dynamically typesafe view of the specified map.
|
|
2536 |
* Any attempt to insert a mapping whose key or value have the wrong
|
|
2537 |
* type will result in an immediate {@link ClassCastException}.
|
|
2538 |
* Similarly, any attempt to modify the value currently associated with
|
|
2539 |
* a key will result in an immediate {@link ClassCastException},
|
|
2540 |
* whether the modification is attempted directly through the map
|
|
2541 |
* itself, or through a {@link Map.Entry} instance obtained from the
|
|
2542 |
* map's {@link Map#entrySet() entry set} view.
|
|
2543 |
*
|
|
2544 |
* <p>Assuming a map contains no incorrectly typed keys or values
|
|
2545 |
* prior to the time a dynamically typesafe view is generated, and
|
|
2546 |
* that all subsequent access to the map takes place through the view
|
|
2547 |
* (or one of its collection views), it is <i>guaranteed</i> that the
|
|
2548 |
* map cannot contain an incorrectly typed key or value.
|
|
2549 |
*
|
|
2550 |
* <p>A discussion of the use of dynamically typesafe views may be
|
|
2551 |
* found in the documentation for the {@link #checkedCollection
|
|
2552 |
* checkedCollection} method.
|
|
2553 |
*
|
|
2554 |
* <p>The returned map will be serializable if the specified map is
|
|
2555 |
* serializable.
|
|
2556 |
*
|
|
2557 |
* <p>Since {@code null} is considered to be a value of any reference
|
|
2558 |
* type, the returned map permits insertion of null keys or values
|
|
2559 |
* whenever the backing map does.
|
|
2560 |
*
|
|
2561 |
* @param m the map for which a dynamically typesafe view is to be
|
|
2562 |
* returned
|
|
2563 |
* @param keyType the type of key that {@code m} is permitted to hold
|
|
2564 |
* @param valueType the type of value that {@code m} is permitted to hold
|
|
2565 |
* @return a dynamically typesafe view of the specified map
|
|
2566 |
* @since 1.5
|
|
2567 |
*/
|
|
2568 |
public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
|
|
2569 |
Class<K> keyType,
|
|
2570 |
Class<V> valueType) {
|
|
2571 |
return new CheckedMap<K,V>(m, keyType, valueType);
|
|
2572 |
}
|
|
2573 |
|
|
2574 |
|
|
2575 |
/**
|
|
2576 |
* @serial include
|
|
2577 |
*/
|
|
2578 |
private static class CheckedMap<K,V>
|
|
2579 |
implements Map<K,V>, Serializable
|
|
2580 |
{
|
|
2581 |
private static final long serialVersionUID = 5742860141034234728L;
|
|
2582 |
|
|
2583 |
private final Map<K, V> m;
|
|
2584 |
final Class<K> keyType;
|
|
2585 |
final Class<V> valueType;
|
|
2586 |
|
|
2587 |
private void typeCheck(Object key, Object value) {
|
|
2588 |
if (key != null && !keyType.isInstance(key))
|
|
2589 |
throw new ClassCastException(badKeyMsg(key));
|
|
2590 |
|
|
2591 |
if (value != null && !valueType.isInstance(value))
|
|
2592 |
throw new ClassCastException(badValueMsg(value));
|
|
2593 |
}
|
|
2594 |
|
|
2595 |
private String badKeyMsg(Object key) {
|
|
2596 |
return "Attempt to insert " + key.getClass() +
|
|
2597 |
" key into map with key type " + keyType;
|
|
2598 |
}
|
|
2599 |
|
|
2600 |
private String badValueMsg(Object value) {
|
|
2601 |
return "Attempt to insert " + value.getClass() +
|
|
2602 |
" value into map with value type " + valueType;
|
|
2603 |
}
|
|
2604 |
|
|
2605 |
CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
|
|
2606 |
if (m == null || keyType == null || valueType == null)
|
|
2607 |
throw new NullPointerException();
|
|
2608 |
this.m = m;
|
|
2609 |
this.keyType = keyType;
|
|
2610 |
this.valueType = valueType;
|
|
2611 |
}
|
|
2612 |
|
|
2613 |
public int size() { return m.size(); }
|
|
2614 |
public boolean isEmpty() { return m.isEmpty(); }
|
|
2615 |
public boolean containsKey(Object key) { return m.containsKey(key); }
|
|
2616 |
public boolean containsValue(Object v) { return m.containsValue(v); }
|
|
2617 |
public V get(Object key) { return m.get(key); }
|
|
2618 |
public V remove(Object key) { return m.remove(key); }
|
|
2619 |
public void clear() { m.clear(); }
|
|
2620 |
public Set<K> keySet() { return m.keySet(); }
|
|
2621 |
public Collection<V> values() { return m.values(); }
|
|
2622 |
public boolean equals(Object o) { return o == this || m.equals(o); }
|
|
2623 |
public int hashCode() { return m.hashCode(); }
|
|
2624 |
public String toString() { return m.toString(); }
|
|
2625 |
|
|
2626 |
public V put(K key, V value) {
|
|
2627 |
typeCheck(key, value);
|
|
2628 |
return m.put(key, value);
|
|
2629 |
}
|
|
2630 |
|
|
2631 |
@SuppressWarnings("unchecked")
|
|
2632 |
public void putAll(Map<? extends K, ? extends V> t) {
|
|
2633 |
// Satisfy the following goals:
|
|
2634 |
// - good diagnostics in case of type mismatch
|
|
2635 |
// - all-or-nothing semantics
|
|
2636 |
// - protection from malicious t
|
|
2637 |
// - correct behavior if t is a concurrent map
|
|
2638 |
Object[] entries = t.entrySet().toArray();
|
|
2639 |
List<Map.Entry<K,V>> checked =
|
|
2640 |
new ArrayList<Map.Entry<K,V>>(entries.length);
|
|
2641 |
for (Object o : entries) {
|
|
2642 |
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
|
|
2643 |
Object k = e.getKey();
|
|
2644 |
Object v = e.getValue();
|
|
2645 |
typeCheck(k, v);
|
|
2646 |
checked.add(
|
|
2647 |
new AbstractMap.SimpleImmutableEntry<K,V>((K) k, (V) v));
|
|
2648 |
}
|
|
2649 |
for (Map.Entry<K,V> e : checked)
|
|
2650 |
m.put(e.getKey(), e.getValue());
|
|
2651 |
}
|
|
2652 |
|
|
2653 |
private transient Set<Map.Entry<K,V>> entrySet = null;
|
|
2654 |
|
|
2655 |
public Set<Map.Entry<K,V>> entrySet() {
|
|
2656 |
if (entrySet==null)
|
|
2657 |
entrySet = new CheckedEntrySet<K,V>(m.entrySet(), valueType);
|
|
2658 |
return entrySet;
|
|
2659 |
}
|
|
2660 |
|
|
2661 |
/**
|
|
2662 |
* We need this class in addition to CheckedSet as Map.Entry permits
|
|
2663 |
* modification of the backing Map via the setValue operation. This
|
|
2664 |
* class is subtle: there are many possible attacks that must be
|
|
2665 |
* thwarted.
|
|
2666 |
*
|
|
2667 |
* @serial exclude
|
|
2668 |
*/
|
|
2669 |
static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
|
|
2670 |
private final Set<Map.Entry<K,V>> s;
|
|
2671 |
private final Class<V> valueType;
|
|
2672 |
|
|
2673 |
CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
|
|
2674 |
this.s = s;
|
|
2675 |
this.valueType = valueType;
|
|
2676 |
}
|
|
2677 |
|
|
2678 |
public int size() { return s.size(); }
|
|
2679 |
public boolean isEmpty() { return s.isEmpty(); }
|
|
2680 |
public String toString() { return s.toString(); }
|
|
2681 |
public int hashCode() { return s.hashCode(); }
|
|
2682 |
public void clear() { s.clear(); }
|
|
2683 |
|
|
2684 |
public boolean add(Map.Entry<K, V> e) {
|
|
2685 |
throw new UnsupportedOperationException();
|
|
2686 |
}
|
|
2687 |
public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
|
|
2688 |
throw new UnsupportedOperationException();
|
|
2689 |
}
|
|
2690 |
|
|
2691 |
public Iterator<Map.Entry<K,V>> iterator() {
|
|
2692 |
final Iterator<Map.Entry<K, V>> i = s.iterator();
|
|
2693 |
final Class<V> valueType = this.valueType;
|
|
2694 |
|
|
2695 |
return new Iterator<Map.Entry<K,V>>() {
|
|
2696 |
public boolean hasNext() { return i.hasNext(); }
|
|
2697 |
public void remove() { i.remove(); }
|
|
2698 |
|
|
2699 |
public Map.Entry<K,V> next() {
|
|
2700 |
return checkedEntry(i.next(), valueType);
|
|
2701 |
}
|
|
2702 |
};
|
|
2703 |
}
|
|
2704 |
|
|
2705 |
@SuppressWarnings("unchecked")
|
|
2706 |
public Object[] toArray() {
|
|
2707 |
Object[] source = s.toArray();
|
|
2708 |
|
|
2709 |
/*
|
|
2710 |
* Ensure that we don't get an ArrayStoreException even if
|
|
2711 |
* s.toArray returns an array of something other than Object
|
|
2712 |
*/
|
|
2713 |
Object[] dest = (CheckedEntry.class.isInstance(
|
|
2714 |
source.getClass().getComponentType()) ? source :
|
|
2715 |
new Object[source.length]);
|
|
2716 |
|
|
2717 |
for (int i = 0; i < source.length; i++)
|
|
2718 |
dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
|
|
2719 |
valueType);
|
|
2720 |
return dest;
|
|
2721 |
}
|
|
2722 |
|
|
2723 |
@SuppressWarnings("unchecked")
|
|
2724 |
public <T> T[] toArray(T[] a) {
|
|
2725 |
// We don't pass a to s.toArray, to avoid window of
|
|
2726 |
// vulnerability wherein an unscrupulous multithreaded client
|
|
2727 |
// could get his hands on raw (unwrapped) Entries from s.
|
|
2728 |
T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
|
|
2729 |
|
|
2730 |
for (int i=0; i<arr.length; i++)
|
|
2731 |
arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
|
|
2732 |
valueType);
|
|
2733 |
if (arr.length > a.length)
|
|
2734 |
return arr;
|
|
2735 |
|
|
2736 |
System.arraycopy(arr, 0, a, 0, arr.length);
|
|
2737 |
if (a.length > arr.length)
|
|
2738 |
a[arr.length] = null;
|
|
2739 |
return a;
|
|
2740 |
}
|
|
2741 |
|
|
2742 |
/**
|
|
2743 |
* This method is overridden to protect the backing set against
|
|
2744 |
* an object with a nefarious equals function that senses
|
|
2745 |
* that the equality-candidate is Map.Entry and calls its
|
|
2746 |
* setValue method.
|
|
2747 |
*/
|
|
2748 |
public boolean contains(Object o) {
|
|
2749 |
if (!(o instanceof Map.Entry))
|
|
2750 |
return false;
|
|
2751 |
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
|
|
2752 |
return s.contains(
|
|
2753 |
(e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
|
|
2754 |
}
|
|
2755 |
|
|
2756 |
/**
|
|
2757 |
* The bulk collection methods are overridden to protect
|
|
2758 |
* against an unscrupulous collection whose contains(Object o)
|
|
2759 |
* method senses when o is a Map.Entry, and calls o.setValue.
|
|
2760 |
*/
|
|
2761 |
public boolean containsAll(Collection<?> c) {
|
|
2762 |
for (Object o : c)
|
|
2763 |
if (!contains(o)) // Invokes safe contains() above
|
|
2764 |
return false;
|
|
2765 |
return true;
|
|
2766 |
}
|
|
2767 |
|
|
2768 |
public boolean remove(Object o) {
|
|
2769 |
if (!(o instanceof Map.Entry))
|
|
2770 |
return false;
|
|
2771 |
return s.remove(new AbstractMap.SimpleImmutableEntry
|
|
2772 |
<Object, Object>((Map.Entry<?,?>)o));
|
|
2773 |
}
|
|
2774 |
|
|
2775 |
public boolean removeAll(Collection<?> c) {
|
|
2776 |
return batchRemove(c, false);
|
|
2777 |
}
|
|
2778 |
public boolean retainAll(Collection<?> c) {
|
|
2779 |
return batchRemove(c, true);
|
|
2780 |
}
|
|
2781 |
private boolean batchRemove(Collection<?> c, boolean complement) {
|
|
2782 |
boolean modified = false;
|
|
2783 |
Iterator<Map.Entry<K,V>> it = iterator();
|
|
2784 |
while (it.hasNext()) {
|
|
2785 |
if (c.contains(it.next()) != complement) {
|
|
2786 |
it.remove();
|
|
2787 |
modified = true;
|
|
2788 |
}
|
|
2789 |
}
|
|
2790 |
return modified;
|
|
2791 |
}
|
|
2792 |
|
|
2793 |
public boolean equals(Object o) {
|
|
2794 |
if (o == this)
|
|
2795 |
return true;
|
|
2796 |
if (!(o instanceof Set))
|
|
2797 |
return false;
|
|
2798 |
Set<?> that = (Set<?>) o;
|
|
2799 |
return that.size() == s.size()
|
|
2800 |
&& containsAll(that); // Invokes safe containsAll() above
|
|
2801 |
}
|
|
2802 |
|
|
2803 |
static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
|
|
2804 |
Class<T> valueType) {
|
|
2805 |
return new CheckedEntry<K,V,T>(e, valueType);
|
|
2806 |
}
|
|
2807 |
|
|
2808 |
/**
|
|
2809 |
* This "wrapper class" serves two purposes: it prevents
|
|
2810 |
* the client from modifying the backing Map, by short-circuiting
|
|
2811 |
* the setValue method, and it protects the backing Map against
|
|
2812 |
* an ill-behaved Map.Entry that attempts to modify another
|
|
2813 |
* Map.Entry when asked to perform an equality check.
|
|
2814 |
*/
|
|
2815 |
private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
|
|
2816 |
private final Map.Entry<K, V> e;
|
|
2817 |
private final Class<T> valueType;
|
|
2818 |
|
|
2819 |
CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
|
|
2820 |
this.e = e;
|
|
2821 |
this.valueType = valueType;
|
|
2822 |
}
|
|
2823 |
|
|
2824 |
public K getKey() { return e.getKey(); }
|
|
2825 |
public V getValue() { return e.getValue(); }
|
|
2826 |
public int hashCode() { return e.hashCode(); }
|
|
2827 |
public String toString() { return e.toString(); }
|
|
2828 |
|
|
2829 |
public V setValue(V value) {
|
|
2830 |
if (value != null && !valueType.isInstance(value))
|
|
2831 |
throw new ClassCastException(badValueMsg(value));
|
|
2832 |
return e.setValue(value);
|
|
2833 |
}
|
|
2834 |
|
|
2835 |
private String badValueMsg(Object value) {
|
|
2836 |
return "Attempt to insert " + value.getClass() +
|
|
2837 |
" value into map with value type " + valueType;
|
|
2838 |
}
|
|
2839 |
|
|
2840 |
public boolean equals(Object o) {
|
|
2841 |
if (o == this)
|
|
2842 |
return true;
|
|
2843 |
if (!(o instanceof Map.Entry))
|
|
2844 |
return false;
|
|
2845 |
return e.equals(new AbstractMap.SimpleImmutableEntry
|
|
2846 |
<Object, Object>((Map.Entry<?,?>)o));
|
|
2847 |
}
|
|
2848 |
}
|
|
2849 |
}
|
|
2850 |
}
|
|
2851 |
|
|
2852 |
/**
|
|
2853 |
* Returns a dynamically typesafe view of the specified sorted map.
|
|
2854 |
* Any attempt to insert a mapping whose key or value have the wrong
|
|
2855 |
* type will result in an immediate {@link ClassCastException}.
|
|
2856 |
* Similarly, any attempt to modify the value currently associated with
|
|
2857 |
* a key will result in an immediate {@link ClassCastException},
|
|
2858 |
* whether the modification is attempted directly through the map
|
|
2859 |
* itself, or through a {@link Map.Entry} instance obtained from the
|
|
2860 |
* map's {@link Map#entrySet() entry set} view.
|
|
2861 |
*
|
|
2862 |
* <p>Assuming a map contains no incorrectly typed keys or values
|
|
2863 |
* prior to the time a dynamically typesafe view is generated, and
|
|
2864 |
* that all subsequent access to the map takes place through the view
|
|
2865 |
* (or one of its collection views), it is <i>guaranteed</i> that the
|
|
2866 |
* map cannot contain an incorrectly typed key or value.
|
|
2867 |
*
|
|
2868 |
* <p>A discussion of the use of dynamically typesafe views may be
|
|
2869 |
* found in the documentation for the {@link #checkedCollection
|
|
2870 |
* checkedCollection} method.
|
|
2871 |
*
|
|
2872 |
* <p>The returned map will be serializable if the specified map is
|
|
2873 |
* serializable.
|
|
2874 |
*
|
|
2875 |
* <p>Since {@code null} is considered to be a value of any reference
|
|
2876 |
* type, the returned map permits insertion of null keys or values
|
|
2877 |
* whenever the backing map does.
|
|
2878 |
*
|
|
2879 |
* @param m the map for which a dynamically typesafe view is to be
|
|
2880 |
* returned
|
|
2881 |
* @param keyType the type of key that {@code m} is permitted to hold
|
|
2882 |
* @param valueType the type of value that {@code m} is permitted to hold
|
|
2883 |
* @return a dynamically typesafe view of the specified map
|
|
2884 |
* @since 1.5
|
|
2885 |
*/
|
|
2886 |
public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
|
|
2887 |
Class<K> keyType,
|
|
2888 |
Class<V> valueType) {
|
|
2889 |
return new CheckedSortedMap<K,V>(m, keyType, valueType);
|
|
2890 |
}
|
|
2891 |
|
|
2892 |
/**
|
|
2893 |
* @serial include
|
|
2894 |
*/
|
|
2895 |
static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
|
|
2896 |
implements SortedMap<K,V>, Serializable
|
|
2897 |
{
|
|
2898 |
private static final long serialVersionUID = 1599671320688067438L;
|
|
2899 |
|
|
2900 |
private final SortedMap<K, V> sm;
|
|
2901 |
|
|
2902 |
CheckedSortedMap(SortedMap<K, V> m,
|
|
2903 |
Class<K> keyType, Class<V> valueType) {
|
|
2904 |
super(m, keyType, valueType);
|
|
2905 |
sm = m;
|
|
2906 |
}
|
|
2907 |
|
|
2908 |
public Comparator<? super K> comparator() { return sm.comparator(); }
|
|
2909 |
public K firstKey() { return sm.firstKey(); }
|
|
2910 |
public K lastKey() { return sm.lastKey(); }
|
|
2911 |
|
|
2912 |
public SortedMap<K,V> subMap(K fromKey, K toKey) {
|
|
2913 |
return checkedSortedMap(sm.subMap(fromKey, toKey),
|
|
2914 |
keyType, valueType);
|
|
2915 |
}
|
|
2916 |
public SortedMap<K,V> headMap(K toKey) {
|
|
2917 |
return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
|
|
2918 |
}
|
|
2919 |
public SortedMap<K,V> tailMap(K fromKey) {
|
|
2920 |
return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
|
|
2921 |
}
|
|
2922 |
}
|
|
2923 |
|
|
2924 |
// Empty collections
|
|
2925 |
|
|
2926 |
/**
|
|
2927 |
* Returns an iterator that has no elements. More precisely,
|
|
2928 |
*
|
|
2929 |
* <ul compact>
|
|
2930 |
*
|
|
2931 |
* <li>{@link Iterator#hasNext hasNext} always returns {@code
|
|
2932 |
* false}.
|
|
2933 |
*
|
|
2934 |
* <li>{@link Iterator#next next} always throws {@link
|
|
2935 |
* NoSuchElementException}.
|
|
2936 |
*
|
|
2937 |
* <li>{@link Iterator#remove remove} always throws {@link
|
|
2938 |
* IllegalStateException}.
|
|
2939 |
*
|
|
2940 |
* </ul>
|
|
2941 |
*
|
|
2942 |
* <p>Implementations of this method are permitted, but not
|
|
2943 |
* required, to return the same object from multiple invocations.
|
|
2944 |
*
|
|
2945 |
* @return an empty iterator
|
|
2946 |
* @since 1.7
|
|
2947 |
*/
|
|
2948 |
@SuppressWarnings("unchecked")
|
|
2949 |
public static <T> Iterator<T> emptyIterator() {
|
|
2950 |
return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
|
|
2951 |
}
|
|
2952 |
|
|
2953 |
private static class EmptyIterator<E> implements Iterator<E> {
|
|
2954 |
static final EmptyIterator<Object> EMPTY_ITERATOR
|
|
2955 |
= new EmptyIterator<Object>();
|
|
2956 |
|
|
2957 |
public boolean hasNext() { return false; }
|
|
2958 |
public E next() { throw new NoSuchElementException(); }
|
|
2959 |
public void remove() { throw new IllegalStateException(); }
|
|
2960 |
}
|
|
2961 |
|
|
2962 |
/**
|
|
2963 |
* Returns a list iterator that has no elements. More precisely,
|
|
2964 |
*
|
|
2965 |
* <ul compact>
|
|
2966 |
*
|
|
2967 |
* <li>{@link Iterator#hasNext hasNext} and {@link
|
|
2968 |
* ListIterator#hasPrevious hasPrevious} always return {@code
|
|
2969 |
* false}.
|
|
2970 |
*
|
|
2971 |
* <li>{@link Iterator#next next} and {@link ListIterator#previous
|
|
2972 |
* previous} always throw {@link NoSuchElementException}.
|
|
2973 |
*
|
|
2974 |
* <li>{@link Iterator#remove remove} and {@link ListIterator#set
|
|
2975 |
* set} always throw {@link IllegalStateException}.
|
|
2976 |
*
|
|
2977 |
* <li>{@link ListIterator#add add} always throws {@link
|
|
2978 |
* UnsupportedOperationException}.
|
|
2979 |
*
|
|
2980 |
* <li>{@link ListIterator#nextIndex nextIndex} always returns
|
|
2981 |
* {@code 0} .
|
|
2982 |
*
|
|
2983 |
* <li>{@link ListIterator#previousIndex previousIndex} always
|
|
2984 |
* returns {@code -1}.
|
|
2985 |
*
|
|
2986 |
* </ul>
|
|
2987 |
*
|
|
2988 |
* <p>Implementations of this method are permitted, but not
|
|
2989 |
* required, to return the same object from multiple invocations.
|
|
2990 |
*
|
|
2991 |
* @return an empty list iterator
|
|
2992 |
* @since 1.7
|
|
2993 |
*/
|
|
2994 |
@SuppressWarnings("unchecked")
|
|
2995 |
public static <T> ListIterator<T> emptyListIterator() {
|
|
2996 |
return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
|
|
2997 |
}
|
|
2998 |
|
|
2999 |
private static class EmptyListIterator<E>
|
|
3000 |
extends EmptyIterator<E>
|
|
3001 |
implements ListIterator<E>
|
|
3002 |
{
|
|
3003 |
static final EmptyListIterator<Object> EMPTY_ITERATOR
|
|
3004 |
= new EmptyListIterator<Object>();
|
|
3005 |
|
|
3006 |
public boolean hasPrevious() { return false; }
|
|
3007 |
public E previous() { throw new NoSuchElementException(); }
|
|
3008 |
public int nextIndex() { return 0; }
|
|
3009 |
public int previousIndex() { return -1; }
|
|
3010 |
public void set(E e) { throw new IllegalStateException(); }
|
|
3011 |
public void add(E e) { throw new UnsupportedOperationException(); }
|
|
3012 |
}
|
|
3013 |
|
|
3014 |
/**
|
|
3015 |
* Returns an enumeration that has no elements. More precisely,
|
|
3016 |
*
|
|
3017 |
* <ul compact>
|
|
3018 |
*
|
|
3019 |
* <li>{@link Enumeration#hasMoreElements hasMoreElements} always
|
|
3020 |
* returns {@code false}.
|
|
3021 |
*
|
|
3022 |
* <li> {@link Enumeration#nextElement nextElement} always throws
|
|
3023 |
* {@link NoSuchElementException}.
|
|
3024 |
*
|
|
3025 |
* </ul>
|
|
3026 |
*
|
|
3027 |
* <p>Implementations of this method are permitted, but not
|
|
3028 |
* required, to return the same object from multiple invocations.
|
|
3029 |
*
|
|
3030 |
* @return an empty enumeration
|
|
3031 |
* @since 1.7
|
|
3032 |
*/
|
|
3033 |
@SuppressWarnings("unchecked")
|
|
3034 |
public static <T> Enumeration<T> emptyEnumeration() {
|
|
3035 |
return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
|
|
3036 |
}
|
|
3037 |
|
|
3038 |
private static class EmptyEnumeration<E> implements Enumeration<E> {
|
|
3039 |
static final EmptyEnumeration<Object> EMPTY_ENUMERATION
|
|
3040 |
= new EmptyEnumeration<Object>();
|
|
3041 |
|
|
3042 |
public boolean hasMoreElements() { return false; }
|
|
3043 |
public E nextElement() { throw new NoSuchElementException(); }
|
|
3044 |
}
|
|
3045 |
|
|
3046 |
/**
|
|
3047 |
* The empty set (immutable). This set is serializable.
|
|
3048 |
*
|
|
3049 |
* @see #emptySet()
|
|
3050 |
*/
|
|
3051 |
@SuppressWarnings("unchecked")
|
|
3052 |
public static final Set EMPTY_SET = new EmptySet<Object>();
|
|
3053 |
|
|
3054 |
/**
|
|
3055 |
* Returns the empty set (immutable). This set is serializable.
|
|
3056 |
* Unlike the like-named field, this method is parameterized.
|
|
3057 |
*
|
|
3058 |
* <p>This example illustrates the type-safe way to obtain an empty set:
|
|
3059 |
* <pre>
|
|
3060 |
* Set<String> s = Collections.emptySet();
|
|
3061 |
* </pre>
|
|
3062 |
* Implementation note: Implementations of this method need not
|
|
3063 |
* create a separate <tt>Set</tt> object for each call. Using this
|
|
3064 |
* method is likely to have comparable cost to using the like-named
|
|
3065 |
* field. (Unlike this method, the field does not provide type safety.)
|
|
3066 |
*
|
|
3067 |
* @see #EMPTY_SET
|
|
3068 |
* @since 1.5
|
|
3069 |
*/
|
|
3070 |
@SuppressWarnings("unchecked")
|
|
3071 |
public static final <T> Set<T> emptySet() {
|
|
3072 |
return (Set<T>) EMPTY_SET;
|
|
3073 |
}
|
|
3074 |
|
|
3075 |
/**
|
|
3076 |
* @serial include
|
|
3077 |
*/
|
|
3078 |
private static class EmptySet<E>
|
|
3079 |
extends AbstractSet<E>
|
|
3080 |
implements Serializable
|
|
3081 |
{
|
|
3082 |
private static final long serialVersionUID = 1582296315990362920L;
|
|
3083 |
|
|
3084 |
public Iterator<E> iterator() { return emptyIterator(); }
|
|
3085 |
|
|
3086 |
public int size() {return 0;}
|
|
3087 |
public boolean isEmpty() {return true;}
|
|
3088 |
|
|
3089 |
public boolean contains(Object obj) {return false;}
|
|
3090 |
public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
|
|
3091 |
|
|
3092 |
public Object[] toArray() { return new Object[0]; }
|
|
3093 |
|
|
3094 |
public <T> T[] toArray(T[] a) {
|
|
3095 |
if (a.length > 0)
|
|
3096 |
a[0] = null;
|
|
3097 |
return a;
|
|
3098 |
}
|
|
3099 |
|
|
3100 |
// Preserves singleton property
|
|
3101 |
private Object readResolve() {
|
|
3102 |
return EMPTY_SET;
|
|
3103 |
}
|
|
3104 |
}
|
|
3105 |
|
|
3106 |
/**
|
|
3107 |
* The empty list (immutable). This list is serializable.
|
|
3108 |
*
|
|
3109 |
* @see #emptyList()
|
|
3110 |
*/
|
|
3111 |
@SuppressWarnings("unchecked")
|
|
3112 |
public static final List EMPTY_LIST = new EmptyList<Object>();
|
|
3113 |
|
|
3114 |
/**
|
|
3115 |
* Returns the empty list (immutable). This list is serializable.
|
|
3116 |
*
|
|
3117 |
* <p>This example illustrates the type-safe way to obtain an empty list:
|
|
3118 |
* <pre>
|
|
3119 |
* List<String> s = Collections.emptyList();
|
|
3120 |
* </pre>
|
|
3121 |
* Implementation note: Implementations of this method need not
|
|
3122 |
* create a separate <tt>List</tt> object for each call. Using this
|
|
3123 |
* method is likely to have comparable cost to using the like-named
|
|
3124 |
* field. (Unlike this method, the field does not provide type safety.)
|
|
3125 |
*
|
|
3126 |
* @see #EMPTY_LIST
|
|
3127 |
* @since 1.5
|
|
3128 |
*/
|
|
3129 |
@SuppressWarnings("unchecked")
|
|
3130 |
public static final <T> List<T> emptyList() {
|
|
3131 |
return (List<T>) EMPTY_LIST;
|
|
3132 |
}
|
|
3133 |
|
|
3134 |
/**
|
|
3135 |
* @serial include
|
|
3136 |
*/
|
|
3137 |
private static class EmptyList<E>
|
|
3138 |
extends AbstractList<E>
|
|
3139 |
implements RandomAccess, Serializable {
|
|
3140 |
private static final long serialVersionUID = 8842843931221139166L;
|
|
3141 |
|
|
3142 |
public Iterator<E> iterator() {
|
|
3143 |
return emptyIterator();
|
|
3144 |
}
|
|
3145 |
public ListIterator<E> listIterator() {
|
|
3146 |
return emptyListIterator();
|
|
3147 |
}
|
|
3148 |
|
|
3149 |
public int size() {return 0;}
|
|
3150 |
public boolean isEmpty() {return true;}
|
|
3151 |
|
|
3152 |
public boolean contains(Object obj) {return false;}
|
|
3153 |
public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
|
|
3154 |
|
|
3155 |
public Object[] toArray() { return new Object[0]; }
|
|
3156 |
|
|
3157 |
public <T> T[] toArray(T[] a) {
|
|
3158 |
if (a.length > 0)
|
|
3159 |
a[0] = null;
|
|
3160 |
return a;
|
|
3161 |
}
|
|
3162 |
|
|
3163 |
public E get(int index) {
|
|
3164 |
throw new IndexOutOfBoundsException("Index: "+index);
|
|
3165 |
}
|
|
3166 |
|
|
3167 |
public boolean equals(Object o) {
|
|
3168 |
return (o instanceof List) && ((List<?>)o).isEmpty();
|
|
3169 |
}
|
|
3170 |
|
|
3171 |
public int hashCode() { return 1; }
|
|
3172 |
|
|
3173 |
// Preserves singleton property
|
|
3174 |
private Object readResolve() {
|
|
3175 |
return EMPTY_LIST;
|
|
3176 |
}
|
|
3177 |
}
|
|
3178 |
|
|
3179 |
/**
|
|
3180 |
* The empty map (immutable). This map is serializable.
|
|
3181 |
*
|
|
3182 |
* @see #emptyMap()
|
|
3183 |
* @since 1.3
|
|
3184 |
*/
|
|
3185 |
@SuppressWarnings("unchecked")
|
|
3186 |
public static final Map EMPTY_MAP = new EmptyMap<Object,Object>();
|
|
3187 |
|
|
3188 |
/**
|
|
3189 |
* Returns the empty map (immutable). This map is serializable.
|
|
3190 |
*
|
|
3191 |
* <p>This example illustrates the type-safe way to obtain an empty set:
|
|
3192 |
* <pre>
|
|
3193 |
* Map<String, Date> s = Collections.emptyMap();
|
|
3194 |
* </pre>
|
|
3195 |
* Implementation note: Implementations of this method need not
|
|
3196 |
* create a separate <tt>Map</tt> object for each call. Using this
|
|
3197 |
* method is likely to have comparable cost to using the like-named
|
|
3198 |
* field. (Unlike this method, the field does not provide type safety.)
|
|
3199 |
*
|
|
3200 |
* @see #EMPTY_MAP
|
|
3201 |
* @since 1.5
|
|
3202 |
*/
|
|
3203 |
@SuppressWarnings("unchecked")
|
|
3204 |
public static final <K,V> Map<K,V> emptyMap() {
|
|
3205 |
return (Map<K,V>) EMPTY_MAP;
|
|
3206 |
}
|
|
3207 |
|
|
3208 |
/**
|
|
3209 |
* @serial include
|
|
3210 |
*/
|
|
3211 |
private static class EmptyMap<K,V>
|
|
3212 |
extends AbstractMap<K,V>
|
|
3213 |
implements Serializable
|
|
3214 |
{
|
|
3215 |
private static final long serialVersionUID = 6428348081105594320L;
|
|
3216 |
|
|
3217 |
public int size() {return 0;}
|
|
3218 |
public boolean isEmpty() {return true;}
|
|
3219 |
public boolean containsKey(Object key) {return false;}
|
|
3220 |
public boolean containsValue(Object value) {return false;}
|
|
3221 |
public V get(Object key) {return null;}
|
|
3222 |
public Set<K> keySet() {return emptySet();}
|
|
3223 |
public Collection<V> values() {return emptySet();}
|
|
3224 |
public Set<Map.Entry<K,V>> entrySet() {return emptySet();}
|
|
3225 |
|
|
3226 |
public boolean equals(Object o) {
|
|
3227 |
return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
|
|
3228 |
}
|
|
3229 |
|
|
3230 |
public int hashCode() {return 0;}
|
|
3231 |
|
|
3232 |
// Preserves singleton property
|
|
3233 |
private Object readResolve() {
|
|
3234 |
return EMPTY_MAP;
|
|
3235 |
}
|
|
3236 |
}
|
|
3237 |
|
|
3238 |
// Singleton collections
|
|
3239 |
|
|
3240 |
/**
|
|
3241 |
* Returns an immutable set containing only the specified object.
|
|
3242 |
* The returned set is serializable.
|
|
3243 |
*
|
|
3244 |
* @param o the sole object to be stored in the returned set.
|
|
3245 |
* @return an immutable set containing only the specified object.
|
|
3246 |
*/
|
|
3247 |
public static <T> Set<T> singleton(T o) {
|
|
3248 |
return new SingletonSet<T>(o);
|
|
3249 |
}
|
|
3250 |
|
|
3251 |
static <E> Iterator<E> singletonIterator(final E e) {
|
|
3252 |
return new Iterator<E>() {
|
|
3253 |
private boolean hasNext = true;
|
|
3254 |
public boolean hasNext() {
|
|
3255 |
return hasNext;
|
|
3256 |
}
|
|
3257 |
public E next() {
|
|
3258 |
if (hasNext) {
|
|
3259 |
hasNext = false;
|
|
3260 |
return e;
|
|
3261 |
}
|
|
3262 |
throw new NoSuchElementException();
|
|
3263 |
}
|
|
3264 |
public void remove() {
|
|
3265 |
throw new UnsupportedOperationException();
|
|
3266 |
}
|
|
3267 |
};
|
|
3268 |
}
|
|
3269 |
|
|
3270 |
/**
|
|
3271 |
* @serial include
|
|
3272 |
*/
|
|
3273 |
private static class SingletonSet<E>
|
|
3274 |
extends AbstractSet<E>
|
|
3275 |
implements Serializable
|
|
3276 |
{
|
|
3277 |
private static final long serialVersionUID = 3193687207550431679L;
|
|
3278 |
|
|
3279 |
final private E element;
|
|
3280 |
|
|
3281 |
SingletonSet(E e) {element = e;}
|
|
3282 |
|
|
3283 |
public Iterator<E> iterator() {
|
|
3284 |
return singletonIterator(element);
|
|
3285 |
}
|
|
3286 |
|
|
3287 |
public int size() {return 1;}
|
|
3288 |
|
|
3289 |
public boolean contains(Object o) {return eq(o, element);}
|
|
3290 |
}
|
|
3291 |
|
|
3292 |
/**
|
|
3293 |
* Returns an immutable list containing only the specified object.
|
|
3294 |
* The returned list is serializable.
|
|
3295 |
*
|
|
3296 |
* @param o the sole object to be stored in the returned list.
|
|
3297 |
* @return an immutable list containing only the specified object.
|
|
3298 |
* @since 1.3
|
|
3299 |
*/
|
|
3300 |
public static <T> List<T> singletonList(T o) {
|
|
3301 |
return new SingletonList<T>(o);
|
|
3302 |
}
|
|
3303 |
|
|
3304 |
/**
|
|
3305 |
* @serial include
|
|
3306 |
*/
|
|
3307 |
private static class SingletonList<E>
|
|
3308 |
extends AbstractList<E>
|
|
3309 |
implements RandomAccess, Serializable {
|
|
3310 |
|
|
3311 |
private static final long serialVersionUID = 3093736618740652951L;
|
|
3312 |
|
|
3313 |
private final E element;
|
|
3314 |
|
|
3315 |
SingletonList(E obj) {element = obj;}
|
|
3316 |
|
|
3317 |
public Iterator<E> iterator() {
|
|
3318 |
return singletonIterator(element);
|
|
3319 |
}
|
|
3320 |
|
|
3321 |
public int size() {return 1;}
|
|
3322 |
|
|
3323 |
public boolean contains(Object obj) {return eq(obj, element);}
|
|
3324 |
|
|
3325 |
public E get(int index) {
|
|
3326 |
if (index != 0)
|
|
3327 |
throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
|
|
3328 |
return element;
|
|
3329 |
}
|
|
3330 |
}
|
|
3331 |
|
|
3332 |
/**
|
|
3333 |
* Returns an immutable map, mapping only the specified key to the
|
|
3334 |
* specified value. The returned map is serializable.
|
|
3335 |
*
|
|
3336 |
* @param key the sole key to be stored in the returned map.
|
|
3337 |
* @param value the value to which the returned map maps <tt>key</tt>.
|
|
3338 |
* @return an immutable map containing only the specified key-value
|
|
3339 |
* mapping.
|
|
3340 |
* @since 1.3
|
|
3341 |
*/
|
|
3342 |
public static <K,V> Map<K,V> singletonMap(K key, V value) {
|
|
3343 |
return new SingletonMap<K,V>(key, value);
|
|
3344 |
}
|
|
3345 |
|
|
3346 |
/**
|
|
3347 |
* @serial include
|
|
3348 |
*/
|
|
3349 |
private static class SingletonMap<K,V>
|
|
3350 |
extends AbstractMap<K,V>
|
|
3351 |
implements Serializable {
|
|
3352 |
private static final long serialVersionUID = -6979724477215052911L;
|
|
3353 |
|
|
3354 |
private final K k;
|
|
3355 |
private final V v;
|
|
3356 |
|
|
3357 |
SingletonMap(K key, V value) {
|
|
3358 |
k = key;
|
|
3359 |
v = value;
|
|
3360 |
}
|
|
3361 |
|
|
3362 |
public int size() {return 1;}
|
|
3363 |
|
|
3364 |
public boolean isEmpty() {return false;}
|
|
3365 |
|
|
3366 |
public boolean containsKey(Object key) {return eq(key, k);}
|
|
3367 |
|
|
3368 |
public boolean containsValue(Object value) {return eq(value, v);}
|
|
3369 |
|
|
3370 |
public V get(Object key) {return (eq(key, k) ? v : null);}
|
|
3371 |
|
|
3372 |
private transient Set<K> keySet = null;
|
|
3373 |
private transient Set<Map.Entry<K,V>> entrySet = null;
|
|
3374 |
private transient Collection<V> values = null;
|
|
3375 |
|
|
3376 |
public Set<K> keySet() {
|
|
3377 |
if (keySet==null)
|
|
3378 |
keySet = singleton(k);
|
|
3379 |
return keySet;
|
|
3380 |
}
|
|
3381 |
|
|
3382 |
public Set<Map.Entry<K,V>> entrySet() {
|
|
3383 |
if (entrySet==null)
|
|
3384 |
entrySet = Collections.<Map.Entry<K,V>>singleton(
|
|
3385 |
new SimpleImmutableEntry<K,V>(k, v));
|
|
3386 |
return entrySet;
|
|
3387 |
}
|
|
3388 |
|
|
3389 |
public Collection<V> values() {
|
|
3390 |
if (values==null)
|
|
3391 |
values = singleton(v);
|
|
3392 |
return values;
|
|
3393 |
}
|
|
3394 |
|
|
3395 |
}
|
|
3396 |
|
|
3397 |
// Miscellaneous
|
|
3398 |
|
|
3399 |
/**
|
|
3400 |
* Returns an immutable list consisting of <tt>n</tt> copies of the
|
|
3401 |
* specified object. The newly allocated data object is tiny (it contains
|
|
3402 |
* a single reference to the data object). This method is useful in
|
|
3403 |
* combination with the <tt>List.addAll</tt> method to grow lists.
|
|
3404 |
* The returned list is serializable.
|
|
3405 |
*
|
|
3406 |
* @param n the number of elements in the returned list.
|
|
3407 |
* @param o the element to appear repeatedly in the returned list.
|
|
3408 |
* @return an immutable list consisting of <tt>n</tt> copies of the
|
|
3409 |
* specified object.
|
|
3410 |
* @throws IllegalArgumentException if n < 0.
|
|
3411 |
* @see List#addAll(Collection)
|
|
3412 |
* @see List#addAll(int, Collection)
|
|
3413 |
*/
|
|
3414 |
public static <T> List<T> nCopies(int n, T o) {
|
|
3415 |
if (n < 0)
|
|
3416 |
throw new IllegalArgumentException("List length = " + n);
|
|
3417 |
return new CopiesList<T>(n, o);
|
|
3418 |
}
|
|
3419 |
|
|
3420 |
/**
|
|
3421 |
* @serial include
|
|
3422 |
*/
|
|
3423 |
private static class CopiesList<E>
|
|
3424 |
extends AbstractList<E>
|
|
3425 |
implements RandomAccess, Serializable
|
|
3426 |
{
|
|
3427 |
private static final long serialVersionUID = 2739099268398711800L;
|
|
3428 |
|
|
3429 |
final int n;
|
|
3430 |
final E element;
|
|
3431 |
|
|
3432 |
CopiesList(int n, E e) {
|
|
3433 |
assert n >= 0;
|
|
3434 |
this.n = n;
|
|
3435 |
element = e;
|
|
3436 |
}
|
|
3437 |
|
|
3438 |
public int size() {
|
|
3439 |
return n;
|
|
3440 |
}
|
|
3441 |
|
|
3442 |
public boolean contains(Object obj) {
|
|
3443 |
return n != 0 && eq(obj, element);
|
|
3444 |
}
|
|
3445 |
|
|
3446 |
public int indexOf(Object o) {
|
|
3447 |
return contains(o) ? 0 : -1;
|
|
3448 |
}
|
|
3449 |
|
|
3450 |
public int lastIndexOf(Object o) {
|
|
3451 |
return contains(o) ? n - 1 : -1;
|
|
3452 |
}
|
|
3453 |
|
|
3454 |
public E get(int index) {
|
|
3455 |
if (index < 0 || index >= n)
|
|
3456 |
throw new IndexOutOfBoundsException("Index: "+index+
|
|
3457 |
", Size: "+n);
|
|
3458 |
return element;
|
|
3459 |
}
|
|
3460 |
|
|
3461 |
public Object[] toArray() {
|
|
3462 |
final Object[] a = new Object[n];
|
|
3463 |
if (element != null)
|
|
3464 |
Arrays.fill(a, 0, n, element);
|
|
3465 |
return a;
|
|
3466 |
}
|
|
3467 |
|
|
3468 |
public <T> T[] toArray(T[] a) {
|
|
3469 |
final int n = this.n;
|
|
3470 |
if (a.length < n) {
|
|
3471 |
a = (T[])java.lang.reflect.Array
|
|
3472 |
.newInstance(a.getClass().getComponentType(), n);
|
|
3473 |
if (element != null)
|
|
3474 |
Arrays.fill(a, 0, n, element);
|
|
3475 |
} else {
|
|
3476 |
Arrays.fill(a, 0, n, element);
|
|
3477 |
if (a.length > n)
|
|
3478 |
a[n] = null;
|
|
3479 |
}
|
|
3480 |
return a;
|
|
3481 |
}
|
|
3482 |
|
|
3483 |
public List<E> subList(int fromIndex, int toIndex) {
|
|
3484 |
if (fromIndex < 0)
|
|
3485 |
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
|
|
3486 |
if (toIndex > n)
|
|
3487 |
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
|
|
3488 |
if (fromIndex > toIndex)
|
|
3489 |
throw new IllegalArgumentException("fromIndex(" + fromIndex +
|
|
3490 |
") > toIndex(" + toIndex + ")");
|
|
3491 |
return new CopiesList<E>(toIndex - fromIndex, element);
|
|
3492 |
}
|
|
3493 |
}
|
|
3494 |
|
|
3495 |
/**
|
|
3496 |
* Returns a comparator that imposes the reverse of the <i>natural
|
|
3497 |
* ordering</i> on a collection of objects that implement the
|
|
3498 |
* <tt>Comparable</tt> interface. (The natural ordering is the ordering
|
|
3499 |
* imposed by the objects' own <tt>compareTo</tt> method.) This enables a
|
|
3500 |
* simple idiom for sorting (or maintaining) collections (or arrays) of
|
|
3501 |
* objects that implement the <tt>Comparable</tt> interface in
|
|
3502 |
* reverse-natural-order. For example, suppose a is an array of
|
|
3503 |
* strings. Then: <pre>
|
|
3504 |
* Arrays.sort(a, Collections.reverseOrder());
|
|
3505 |
* </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
|
|
3506 |
*
|
|
3507 |
* The returned comparator is serializable.
|
|
3508 |
*
|
|
3509 |
* @return a comparator that imposes the reverse of the <i>natural
|
|
3510 |
* ordering</i> on a collection of objects that implement
|
|
3511 |
* the <tt>Comparable</tt> interface.
|
|
3512 |
* @see Comparable
|
|
3513 |
*/
|
|
3514 |
public static <T> Comparator<T> reverseOrder() {
|
|
3515 |
return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
|
|
3516 |
}
|
|
3517 |
|
|
3518 |
/**
|
|
3519 |
* @serial include
|
|
3520 |
*/
|
|
3521 |
private static class ReverseComparator
|
|
3522 |
implements Comparator<Comparable<Object>>, Serializable {
|
|
3523 |
|
|
3524 |
private static final long serialVersionUID = 7207038068494060240L;
|
|
3525 |
|
|
3526 |
static final ReverseComparator REVERSE_ORDER
|
|
3527 |
= new ReverseComparator();
|
|
3528 |
|
|
3529 |
public int compare(Comparable<Object> c1, Comparable<Object> c2) {
|
|
3530 |
return c2.compareTo(c1);
|
|
3531 |
}
|
|
3532 |
|
|
3533 |
private Object readResolve() { return reverseOrder(); }
|
|
3534 |
}
|
|
3535 |
|
|
3536 |
/**
|
|
3537 |
* Returns a comparator that imposes the reverse ordering of the specified
|
|
3538 |
* comparator. If the specified comparator is null, this method is
|
|
3539 |
* equivalent to {@link #reverseOrder()} (in other words, it returns a
|
|
3540 |
* comparator that imposes the reverse of the <i>natural ordering</i> on a
|
|
3541 |
* collection of objects that implement the Comparable interface).
|
|
3542 |
*
|
|
3543 |
* <p>The returned comparator is serializable (assuming the specified
|
|
3544 |
* comparator is also serializable or null).
|
|
3545 |
*
|
|
3546 |
* @return a comparator that imposes the reverse ordering of the
|
|
3547 |
* specified comparator
|
|
3548 |
* @since 1.5
|
|
3549 |
*/
|
|
3550 |
public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
|
|
3551 |
if (cmp == null)
|
|
3552 |
return reverseOrder();
|
|
3553 |
|
|
3554 |
if (cmp instanceof ReverseComparator2)
|
|
3555 |
return ((ReverseComparator2<T>)cmp).cmp;
|
|
3556 |
|
|
3557 |
return new ReverseComparator2<T>(cmp);
|
|
3558 |
}
|
|
3559 |
|
|
3560 |
/**
|
|
3561 |
* @serial include
|
|
3562 |
*/
|
|
3563 |
private static class ReverseComparator2<T> implements Comparator<T>,
|
|
3564 |
Serializable
|
|
3565 |
{
|
|
3566 |
private static final long serialVersionUID = 4374092139857L;
|
|
3567 |
|
|
3568 |
/**
|
|
3569 |
* The comparator specified in the static factory. This will never
|
|
3570 |
* be null, as the static factory returns a ReverseComparator
|
|
3571 |
* instance if its argument is null.
|
|
3572 |
*
|
|
3573 |
* @serial
|
|
3574 |
*/
|
|
3575 |
final Comparator<T> cmp;
|
|
3576 |
|
|
3577 |
ReverseComparator2(Comparator<T> cmp) {
|
|
3578 |
assert cmp != null;
|
|
3579 |
this.cmp = cmp;
|
|
3580 |
}
|
|
3581 |
|
|
3582 |
public int compare(T t1, T t2) {
|
|
3583 |
return cmp.compare(t2, t1);
|
|
3584 |
}
|
|
3585 |
|
|
3586 |
public boolean equals(Object o) {
|
|
3587 |
return (o == this) ||
|
|
3588 |
(o instanceof ReverseComparator2 &&
|
|
3589 |
cmp.equals(((ReverseComparator2)o).cmp));
|
|
3590 |
}
|
|
3591 |
|
|
3592 |
public int hashCode() {
|
|
3593 |
return cmp.hashCode() ^ Integer.MIN_VALUE;
|
|
3594 |
}
|
|
3595 |
}
|
|
3596 |
|
|
3597 |
/**
|
|
3598 |
* Returns an enumeration over the specified collection. This provides
|
|
3599 |
* interoperability with legacy APIs that require an enumeration
|
|
3600 |
* as input.
|
|
3601 |
*
|
|
3602 |
* @param c the collection for which an enumeration is to be returned.
|
|
3603 |
* @return an enumeration over the specified collection.
|
|
3604 |
* @see Enumeration
|
|
3605 |
*/
|
|
3606 |
public static <T> Enumeration<T> enumeration(final Collection<T> c) {
|
|
3607 |
return new Enumeration<T>() {
|
|
3608 |
private final Iterator<T> i = c.iterator();
|
|
3609 |
|
|
3610 |
public boolean hasMoreElements() {
|
|
3611 |
return i.hasNext();
|
|
3612 |
}
|
|
3613 |
|
|
3614 |
public T nextElement() {
|
|
3615 |
return i.next();
|
|
3616 |
}
|
|
3617 |
};
|
|
3618 |
}
|
|
3619 |
|
|
3620 |
/**
|
|
3621 |
* Returns an array list containing the elements returned by the
|
|
3622 |
* specified enumeration in the order they are returned by the
|
|
3623 |
* enumeration. This method provides interoperability between
|
|
3624 |
* legacy APIs that return enumerations and new APIs that require
|
|
3625 |
* collections.
|
|
3626 |
*
|
|
3627 |
* @param e enumeration providing elements for the returned
|
|
3628 |
* array list
|
|
3629 |
* @return an array list containing the elements returned
|
|
3630 |
* by the specified enumeration.
|
|
3631 |
* @since 1.4
|
|
3632 |
* @see Enumeration
|
|
3633 |
* @see ArrayList
|
|
3634 |
*/
|
|
3635 |
public static <T> ArrayList<T> list(Enumeration<T> e) {
|
|
3636 |
ArrayList<T> l = new ArrayList<T>();
|
|
3637 |
while (e.hasMoreElements())
|
|
3638 |
l.add(e.nextElement());
|
|
3639 |
return l;
|
|
3640 |
}
|
|
3641 |
|
|
3642 |
/**
|
|
3643 |
* Returns true if the specified arguments are equal, or both null.
|
|
3644 |
*/
|
|
3645 |
static boolean eq(Object o1, Object o2) {
|
|
3646 |
return o1==null ? o2==null : o1.equals(o2);
|
|
3647 |
}
|
|
3648 |
|
|
3649 |
/**
|
|
3650 |
* Returns the number of elements in the specified collection equal to the
|
|
3651 |
* specified object. More formally, returns the number of elements
|
|
3652 |
* <tt>e</tt> in the collection such that
|
|
3653 |
* <tt>(o == null ? e == null : o.equals(e))</tt>.
|
|
3654 |
*
|
|
3655 |
* @param c the collection in which to determine the frequency
|
|
3656 |
* of <tt>o</tt>
|
|
3657 |
* @param o the object whose frequency is to be determined
|
|
3658 |
* @throws NullPointerException if <tt>c</tt> is null
|
|
3659 |
* @since 1.5
|
|
3660 |
*/
|
|
3661 |
public static int frequency(Collection<?> c, Object o) {
|
|
3662 |
int result = 0;
|
|
3663 |
if (o == null) {
|
|
3664 |
for (Object e : c)
|
|
3665 |
if (e == null)
|
|
3666 |
result++;
|
|
3667 |
} else {
|
|
3668 |
for (Object e : c)
|
|
3669 |
if (o.equals(e))
|
|
3670 |
result++;
|
|
3671 |
}
|
|
3672 |
return result;
|
|
3673 |
}
|
|
3674 |
|
|
3675 |
/**
|
|
3676 |
* Returns <tt>true</tt> if the two specified collections have no
|
|
3677 |
* elements in common.
|
|
3678 |
*
|
|
3679 |
* <p>Care must be exercised if this method is used on collections that
|
|
3680 |
* do not comply with the general contract for <tt>Collection</tt>.
|
|
3681 |
* Implementations may elect to iterate over either collection and test
|
|
3682 |
* for containment in the other collection (or to perform any equivalent
|
|
3683 |
* computation). If either collection uses a nonstandard equality test
|
|
3684 |
* (as does a {@link SortedSet} whose ordering is not <i>compatible with
|
|
3685 |
* equals</i>, or the key set of an {@link IdentityHashMap}), both
|
|
3686 |
* collections must use the same nonstandard equality test, or the
|
|
3687 |
* result of this method is undefined.
|
|
3688 |
*
|
|
3689 |
* <p>Note that it is permissible to pass the same collection in both
|
|
3690 |
* parameters, in which case the method will return true if and only if
|
|
3691 |
* the collection is empty.
|
|
3692 |
*
|
|
3693 |
* @param c1 a collection
|
|
3694 |
* @param c2 a collection
|
|
3695 |
* @throws NullPointerException if either collection is null
|
|
3696 |
* @since 1.5
|
|
3697 |
*/
|
|
3698 |
public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
|
|
3699 |
/*
|
|
3700 |
* We're going to iterate through c1 and test for inclusion in c2.
|
|
3701 |
* If c1 is a Set and c2 isn't, swap the collections. Otherwise,
|
|
3702 |
* place the shorter collection in c1. Hopefully this heuristic
|
|
3703 |
* will minimize the cost of the operation.
|
|
3704 |
*/
|
|
3705 |
if ((c1 instanceof Set) && !(c2 instanceof Set) ||
|
|
3706 |
(c1.size() > c2.size())) {
|
|
3707 |
Collection<?> tmp = c1;
|
|
3708 |
c1 = c2;
|
|
3709 |
c2 = tmp;
|
|
3710 |
}
|
|
3711 |
|
|
3712 |
for (Object e : c1)
|
|
3713 |
if (c2.contains(e))
|
|
3714 |
return false;
|
|
3715 |
return true;
|
|
3716 |
}
|
|
3717 |
|
|
3718 |
/**
|
|
3719 |
* Adds all of the specified elements to the specified collection.
|
|
3720 |
* Elements to be added may be specified individually or as an array.
|
|
3721 |
* The behavior of this convenience method is identical to that of
|
|
3722 |
* <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
|
|
3723 |
* to run significantly faster under most implementations.
|
|
3724 |
*
|
|
3725 |
* <p>When elements are specified individually, this method provides a
|
|
3726 |
* convenient way to add a few elements to an existing collection:
|
|
3727 |
* <pre>
|
|
3728 |
* Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
|
|
3729 |
* </pre>
|
|
3730 |
*
|
|
3731 |
* @param c the collection into which <tt>elements</tt> are to be inserted
|
|
3732 |
* @param elements the elements to insert into <tt>c</tt>
|
|
3733 |
* @return <tt>true</tt> if the collection changed as a result of the call
|
|
3734 |
* @throws UnsupportedOperationException if <tt>c</tt> does not support
|
|
3735 |
* the <tt>add</tt> operation
|
|
3736 |
* @throws NullPointerException if <tt>elements</tt> contains one or more
|
|
3737 |
* null values and <tt>c</tt> does not permit null elements, or
|
|
3738 |
* if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
|
|
3739 |
* @throws IllegalArgumentException if some property of a value in
|
|
3740 |
* <tt>elements</tt> prevents it from being added to <tt>c</tt>
|
|
3741 |
* @see Collection#addAll(Collection)
|
|
3742 |
* @since 1.5
|
|
3743 |
*/
|
|
3744 |
public static <T> boolean addAll(Collection<? super T> c, T... elements) {
|
|
3745 |
boolean result = false;
|
|
3746 |
for (T element : elements)
|
|
3747 |
result |= c.add(element);
|
|
3748 |
return result;
|
|
3749 |
}
|
|
3750 |
|
|
3751 |
/**
|
|
3752 |
* Returns a set backed by the specified map. The resulting set displays
|
|
3753 |
* the same ordering, concurrency, and performance characteristics as the
|
|
3754 |
* backing map. In essence, this factory method provides a {@link Set}
|
|
3755 |
* implementation corresponding to any {@link Map} implementation. There
|
|
3756 |
* is no need to use this method on a {@link Map} implementation that
|
|
3757 |
* already has a corresponding {@link Set} implementation (such as {@link
|
|
3758 |
* HashMap} or {@link TreeMap}).
|
|
3759 |
*
|
|
3760 |
* <p>Each method invocation on the set returned by this method results in
|
|
3761 |
* exactly one method invocation on the backing map or its <tt>keySet</tt>
|
|
3762 |
* view, with one exception. The <tt>addAll</tt> method is implemented
|
|
3763 |
* as a sequence of <tt>put</tt> invocations on the backing map.
|
|
3764 |
*
|
|
3765 |
* <p>The specified map must be empty at the time this method is invoked,
|
|
3766 |
* and should not be accessed directly after this method returns. These
|
|
3767 |
* conditions are ensured if the map is created empty, passed directly
|
|
3768 |
* to this method, and no reference to the map is retained, as illustrated
|
|
3769 |
* in the following code fragment:
|
|
3770 |
* <pre>
|
|
3771 |
* Set<Object> weakHashSet = Collections.newSetFromMap(
|
|
3772 |
* new WeakHashMap<Object, Boolean>());
|
|
3773 |
* </pre>
|
|
3774 |
*
|
|
3775 |
* @param map the backing map
|
|
3776 |
* @return the set backed by the map
|
|
3777 |
* @throws IllegalArgumentException if <tt>map</tt> is not empty
|
|
3778 |
* @since 1.6
|
|
3779 |
*/
|
|
3780 |
public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
|
|
3781 |
return new SetFromMap<E>(map);
|
|
3782 |
}
|
|
3783 |
|
|
3784 |
/**
|
|
3785 |
* @serial include
|
|
3786 |
*/
|
|
3787 |
private static class SetFromMap<E> extends AbstractSet<E>
|
|
3788 |
implements Set<E>, Serializable
|
|
3789 |
{
|
|
3790 |
private final Map<E, Boolean> m; // The backing map
|
|
3791 |
private transient Set<E> s; // Its keySet
|
|
3792 |
|
|
3793 |
SetFromMap(Map<E, Boolean> map) {
|
|
3794 |
if (!map.isEmpty())
|
|
3795 |
throw new IllegalArgumentException("Map is non-empty");
|
|
3796 |
m = map;
|
|
3797 |
s = map.keySet();
|
|
3798 |
}
|
|
3799 |
|
|
3800 |
public void clear() { m.clear(); }
|
|
3801 |
public int size() { return m.size(); }
|
|
3802 |
public boolean isEmpty() { return m.isEmpty(); }
|
|
3803 |
public boolean contains(Object o) { return m.containsKey(o); }
|
|
3804 |
public boolean remove(Object o) { return m.remove(o) != null; }
|
|
3805 |
public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
|
|
3806 |
public Iterator<E> iterator() { return s.iterator(); }
|
|
3807 |
public Object[] toArray() { return s.toArray(); }
|
|
3808 |
public <T> T[] toArray(T[] a) { return s.toArray(a); }
|
|
3809 |
public String toString() { return s.toString(); }
|
|
3810 |
public int hashCode() { return s.hashCode(); }
|
|
3811 |
public boolean equals(Object o) { return o == this || s.equals(o); }
|
|
3812 |
public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
|
|
3813 |
public boolean removeAll(Collection<?> c) {return s.removeAll(c);}
|
|
3814 |
public boolean retainAll(Collection<?> c) {return s.retainAll(c);}
|
|
3815 |
// addAll is the only inherited implementation
|
|
3816 |
|
|
3817 |
private static final long serialVersionUID = 2454657854757543876L;
|
|
3818 |
|
|
3819 |
private void readObject(java.io.ObjectInputStream stream)
|
|
3820 |
throws IOException, ClassNotFoundException
|
|
3821 |
{
|
|
3822 |
stream.defaultReadObject();
|
|
3823 |
s = m.keySet();
|
|
3824 |
}
|
|
3825 |
}
|
|
3826 |
|
|
3827 |
/**
|
|
3828 |
* Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
|
|
3829 |
* {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
|
|
3830 |
* <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
|
|
3831 |
* view can be useful when you would like to use a method
|
|
3832 |
* requiring a <tt>Queue</tt> but you need Lifo ordering.
|
|
3833 |
*
|
|
3834 |
* <p>Each method invocation on the queue returned by this method
|
|
3835 |
* results in exactly one method invocation on the backing deque, with
|
|
3836 |
* one exception. The {@link Queue#addAll addAll} method is
|
|
3837 |
* implemented as a sequence of {@link Deque#addFirst addFirst}
|
|
3838 |
* invocations on the backing deque.
|
|
3839 |
*
|
|
3840 |
* @param deque the deque
|
|
3841 |
* @return the queue
|
|
3842 |
* @since 1.6
|
|
3843 |
*/
|
|
3844 |
public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
|
|
3845 |
return new AsLIFOQueue<T>(deque);
|
|
3846 |
}
|
|
3847 |
|
|
3848 |
/**
|
|
3849 |
* @serial include
|
|
3850 |
*/
|
|
3851 |
static class AsLIFOQueue<E> extends AbstractQueue<E>
|
|
3852 |
implements Queue<E>, Serializable {
|
|
3853 |
private static final long serialVersionUID = 1802017725587941708L;
|
|
3854 |
private final Deque<E> q;
|
|
3855 |
AsLIFOQueue(Deque<E> q) { this.q = q; }
|
|
3856 |
public boolean add(E e) { q.addFirst(e); return true; }
|
|
3857 |
public boolean offer(E e) { return q.offerFirst(e); }
|
|
3858 |
public E poll() { return q.pollFirst(); }
|
|
3859 |
public E remove() { return q.removeFirst(); }
|
|
3860 |
public E peek() { return q.peekFirst(); }
|
|
3861 |
public E element() { return q.getFirst(); }
|
|
3862 |
public void clear() { q.clear(); }
|
|
3863 |
public int size() { return q.size(); }
|
|
3864 |
public boolean isEmpty() { return q.isEmpty(); }
|
|
3865 |
public boolean contains(Object o) { return q.contains(o); }
|
|
3866 |
public boolean remove(Object o) { return q.remove(o); }
|
|
3867 |
public Iterator<E> iterator() { return q.iterator(); }
|
|
3868 |
public Object[] toArray() { return q.toArray(); }
|
|
3869 |
public <T> T[] toArray(T[] a) { return q.toArray(a); }
|
|
3870 |
public String toString() { return q.toString(); }
|
|
3871 |
public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
|
|
3872 |
public boolean removeAll(Collection<?> c) {return q.removeAll(c);}
|
|
3873 |
public boolean retainAll(Collection<?> c) {return q.retainAll(c);}
|
|
3874 |
// We use inherited addAll; forwarding addAll would be wrong
|
|
3875 |
}
|
|
3876 |
}
|