jdk/src/share/classes/java/util/Collections.java
changeset 2 90ce3da70b43
child 3420 bba8035eebfa
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/util/Collections.java	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,3876 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+package java.util;
+import java.io.Serializable;
+import java.io.ObjectOutputStream;
+import java.io.IOException;
+import java.lang.reflect.Array;
+
+/**
+ * This class consists exclusively of static methods that operate on or return
+ * collections.  It contains polymorphic algorithms that operate on
+ * collections, "wrappers", which return a new collection backed by a
+ * specified collection, and a few other odds and ends.
+ *
+ * <p>The methods of this class all throw a <tt>NullPointerException</tt>
+ * if the collections or class objects provided to them are null.
+ *
+ * <p>The documentation for the polymorphic algorithms contained in this class
+ * generally includes a brief description of the <i>implementation</i>.  Such
+ * descriptions should be regarded as <i>implementation notes</i>, rather than
+ * parts of the <i>specification</i>.  Implementors should feel free to
+ * substitute other algorithms, so long as the specification itself is adhered
+ * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
+ * a mergesort, but it does have to be <i>stable</i>.)
+ *
+ * <p>The "destructive" algorithms contained in this class, that is, the
+ * algorithms that modify the collection on which they operate, are specified
+ * to throw <tt>UnsupportedOperationException</tt> if the collection does not
+ * support the appropriate mutation primitive(s), such as the <tt>set</tt>
+ * method.  These algorithms may, but are not required to, throw this
+ * exception if an invocation would have no effect on the collection.  For
+ * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
+ * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
+ *
+ * <p>This class is a member of the
+ * <a href="{@docRoot}/../technotes/guides/collections/index.html">
+ * Java Collections Framework</a>.
+ *
+ * @author  Josh Bloch
+ * @author  Neal Gafter
+ * @see     Collection
+ * @see     Set
+ * @see     List
+ * @see     Map
+ * @since   1.2
+ */
+
+public class Collections {
+    // Suppresses default constructor, ensuring non-instantiability.
+    private Collections() {
+    }
+
+    // Algorithms
+
+    /*
+     * Tuning parameters for algorithms - Many of the List algorithms have
+     * two implementations, one of which is appropriate for RandomAccess
+     * lists, the other for "sequential."  Often, the random access variant
+     * yields better performance on small sequential access lists.  The
+     * tuning parameters below determine the cutoff point for what constitutes
+     * a "small" sequential access list for each algorithm.  The values below
+     * were empirically determined to work well for LinkedList. Hopefully
+     * they should be reasonable for other sequential access List
+     * implementations.  Those doing performance work on this code would
+     * do well to validate the values of these parameters from time to time.
+     * (The first word of each tuning parameter name is the algorithm to which
+     * it applies.)
+     */
+    private static final int BINARYSEARCH_THRESHOLD   = 5000;
+    private static final int REVERSE_THRESHOLD        =   18;
+    private static final int SHUFFLE_THRESHOLD        =    5;
+    private static final int FILL_THRESHOLD           =   25;
+    private static final int ROTATE_THRESHOLD         =  100;
+    private static final int COPY_THRESHOLD           =   10;
+    private static final int REPLACEALL_THRESHOLD     =   11;
+    private static final int INDEXOFSUBLIST_THRESHOLD =   35;
+
+    /**
+     * Sorts the specified list into ascending order, according to the
+     * <i>natural ordering</i> of its elements.  All elements in the list must
+     * implement the <tt>Comparable</tt> interface.  Furthermore, all elements
+     * in the list must be <i>mutually comparable</i> (that is,
+     * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt>
+     * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
+     *
+     * This sort is guaranteed to be <i>stable</i>:  equal elements will
+     * not be reordered as a result of the sort.<p>
+     *
+     * The specified list must be modifiable, but need not be resizable.<p>
+     *
+     * The sorting algorithm is a modified mergesort (in which the merge is
+     * omitted if the highest element in the low sublist is less than the
+     * lowest element in the high sublist).  This algorithm offers guaranteed
+     * n log(n) performance.
+     *
+     * This implementation dumps the specified list into an array, sorts
+     * the array, and iterates over the list resetting each element
+     * from the corresponding position in the array.  This avoids the
+     * n<sup>2</sup> log(n) performance that would result from attempting
+     * to sort a linked list in place.
+     *
+     * @param  list the list to be sorted.
+     * @throws ClassCastException if the list contains elements that are not
+     *         <i>mutually comparable</i> (for example, strings and integers).
+     * @throws UnsupportedOperationException if the specified list's
+     *         list-iterator does not support the <tt>set</tt> operation.
+     * @see Comparable
+     */
+    public static <T extends Comparable<? super T>> void sort(List<T> list) {
+        Object[] a = list.toArray();
+        Arrays.sort(a);
+        ListIterator<T> i = list.listIterator();
+        for (int j=0; j<a.length; j++) {
+            i.next();
+            i.set((T)a[j]);
+        }
+    }
+
+    /**
+     * Sorts the specified list according to the order induced by the
+     * specified comparator.  All elements in the list must be <i>mutually
+     * comparable</i> using the specified comparator (that is,
+     * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
+     * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
+     *
+     * This sort is guaranteed to be <i>stable</i>:  equal elements will
+     * not be reordered as a result of the sort.<p>
+     *
+     * The sorting algorithm is a modified mergesort (in which the merge is
+     * omitted if the highest element in the low sublist is less than the
+     * lowest element in the high sublist).  This algorithm offers guaranteed
+     * n log(n) performance.
+     *
+     * The specified list must be modifiable, but need not be resizable.
+     * This implementation dumps the specified list into an array, sorts
+     * the array, and iterates over the list resetting each element
+     * from the corresponding position in the array.  This avoids the
+     * n<sup>2</sup> log(n) performance that would result from attempting
+     * to sort a linked list in place.
+     *
+     * @param  list the list to be sorted.
+     * @param  c the comparator to determine the order of the list.  A
+     *        <tt>null</tt> value indicates that the elements' <i>natural
+     *        ordering</i> should be used.
+     * @throws ClassCastException if the list contains elements that are not
+     *         <i>mutually comparable</i> using the specified comparator.
+     * @throws UnsupportedOperationException if the specified list's
+     *         list-iterator does not support the <tt>set</tt> operation.
+     * @see Comparator
+     */
+    public static <T> void sort(List<T> list, Comparator<? super T> c) {
+        Object[] a = list.toArray();
+        Arrays.sort(a, (Comparator)c);
+        ListIterator i = list.listIterator();
+        for (int j=0; j<a.length; j++) {
+            i.next();
+            i.set(a[j]);
+        }
+    }
+
+
+    /**
+     * Searches the specified list for the specified object using the binary
+     * search algorithm.  The list must be sorted into ascending order
+     * according to the {@linkplain Comparable natural ordering} of its
+     * elements (as by the {@link #sort(List)} method) prior to making this
+     * call.  If it is not sorted, the results are undefined.  If the list
+     * contains multiple elements equal to the specified object, there is no
+     * guarantee which one will be found.
+     *
+     * <p>This method runs in log(n) time for a "random access" list (which
+     * provides near-constant-time positional access).  If the specified list
+     * does not implement the {@link RandomAccess} interface and is large,
+     * this method will do an iterator-based binary search that performs
+     * O(n) link traversals and O(log n) element comparisons.
+     *
+     * @param  list the list to be searched.
+     * @param  key the key to be searched for.
+     * @return the index of the search key, if it is contained in the list;
+     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
+     *         <i>insertion point</i> is defined as the point at which the
+     *         key would be inserted into the list: the index of the first
+     *         element greater than the key, or <tt>list.size()</tt> if all
+     *         elements in the list are less than the specified key.  Note
+     *         that this guarantees that the return value will be &gt;= 0 if
+     *         and only if the key is found.
+     * @throws ClassCastException if the list contains elements that are not
+     *         <i>mutually comparable</i> (for example, strings and
+     *         integers), or the search key is not mutually comparable
+     *         with the elements of the list.
+     */
+    public static <T>
+    int binarySearch(List<? extends Comparable<? super T>> list, T key) {
+        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
+            return Collections.indexedBinarySearch(list, key);
+        else
+            return Collections.iteratorBinarySearch(list, key);
+    }
+
+    private static <T>
+    int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
+    {
+        int low = 0;
+        int high = list.size()-1;
+
+        while (low <= high) {
+            int mid = (low + high) >>> 1;
+            Comparable<? super T> midVal = list.get(mid);
+            int cmp = midVal.compareTo(key);
+
+            if (cmp < 0)
+                low = mid + 1;
+            else if (cmp > 0)
+                high = mid - 1;
+            else
+                return mid; // key found
+        }
+        return -(low + 1);  // key not found
+    }
+
+    private static <T>
+    int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
+    {
+        int low = 0;
+        int high = list.size()-1;
+        ListIterator<? extends Comparable<? super T>> i = list.listIterator();
+
+        while (low <= high) {
+            int mid = (low + high) >>> 1;
+            Comparable<? super T> midVal = get(i, mid);
+            int cmp = midVal.compareTo(key);
+
+            if (cmp < 0)
+                low = mid + 1;
+            else if (cmp > 0)
+                high = mid - 1;
+            else
+                return mid; // key found
+        }
+        return -(low + 1);  // key not found
+    }
+
+    /**
+     * Gets the ith element from the given list by repositioning the specified
+     * list listIterator.
+     */
+    private static <T> T get(ListIterator<? extends T> i, int index) {
+        T obj = null;
+        int pos = i.nextIndex();
+        if (pos <= index) {
+            do {
+                obj = i.next();
+            } while (pos++ < index);
+        } else {
+            do {
+                obj = i.previous();
+            } while (--pos > index);
+        }
+        return obj;
+    }
+
+    /**
+     * Searches the specified list for the specified object using the binary
+     * search algorithm.  The list must be sorted into ascending order
+     * according to the specified comparator (as by the
+     * {@link #sort(List, Comparator) sort(List, Comparator)}
+     * method), prior to making this call.  If it is
+     * not sorted, the results are undefined.  If the list contains multiple
+     * elements equal to the specified object, there is no guarantee which one
+     * will be found.
+     *
+     * <p>This method runs in log(n) time for a "random access" list (which
+     * provides near-constant-time positional access).  If the specified list
+     * does not implement the {@link RandomAccess} interface and is large,
+     * this method will do an iterator-based binary search that performs
+     * O(n) link traversals and O(log n) element comparisons.
+     *
+     * @param  list the list to be searched.
+     * @param  key the key to be searched for.
+     * @param  c the comparator by which the list is ordered.
+     *         A <tt>null</tt> value indicates that the elements'
+     *         {@linkplain Comparable natural ordering} should be used.
+     * @return the index of the search key, if it is contained in the list;
+     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
+     *         <i>insertion point</i> is defined as the point at which the
+     *         key would be inserted into the list: the index of the first
+     *         element greater than the key, or <tt>list.size()</tt> if all
+     *         elements in the list are less than the specified key.  Note
+     *         that this guarantees that the return value will be &gt;= 0 if
+     *         and only if the key is found.
+     * @throws ClassCastException if the list contains elements that are not
+     *         <i>mutually comparable</i> using the specified comparator,
+     *         or the search key is not mutually comparable with the
+     *         elements of the list using this comparator.
+     */
+    public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
+        if (c==null)
+            return binarySearch((List) list, key);
+
+        if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
+            return Collections.indexedBinarySearch(list, key, c);
+        else
+            return Collections.iteratorBinarySearch(list, key, c);
+    }
+
+    private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
+        int low = 0;
+        int high = l.size()-1;
+
+        while (low <= high) {
+            int mid = (low + high) >>> 1;
+            T midVal = l.get(mid);
+            int cmp = c.compare(midVal, key);
+
+            if (cmp < 0)
+                low = mid + 1;
+            else if (cmp > 0)
+                high = mid - 1;
+            else
+                return mid; // key found
+        }
+        return -(low + 1);  // key not found
+    }
+
+    private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
+        int low = 0;
+        int high = l.size()-1;
+        ListIterator<? extends T> i = l.listIterator();
+
+        while (low <= high) {
+            int mid = (low + high) >>> 1;
+            T midVal = get(i, mid);
+            int cmp = c.compare(midVal, key);
+
+            if (cmp < 0)
+                low = mid + 1;
+            else if (cmp > 0)
+                high = mid - 1;
+            else
+                return mid; // key found
+        }
+        return -(low + 1);  // key not found
+    }
+
+    private interface SelfComparable extends Comparable<SelfComparable> {}
+
+
+    /**
+     * Reverses the order of the elements in the specified list.<p>
+     *
+     * This method runs in linear time.
+     *
+     * @param  list the list whose elements are to be reversed.
+     * @throws UnsupportedOperationException if the specified list or
+     *         its list-iterator does not support the <tt>set</tt> operation.
+     */
+    public static void reverse(List<?> list) {
+        int size = list.size();
+        if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
+            for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
+                swap(list, i, j);
+        } else {
+            ListIterator fwd = list.listIterator();
+            ListIterator rev = list.listIterator(size);
+            for (int i=0, mid=list.size()>>1; i<mid; i++) {
+                Object tmp = fwd.next();
+                fwd.set(rev.previous());
+                rev.set(tmp);
+            }
+        }
+    }
+
+    /**
+     * Randomly permutes the specified list using a default source of
+     * randomness.  All permutations occur with approximately equal
+     * likelihood.<p>
+     *
+     * The hedge "approximately" is used in the foregoing description because
+     * default source of randomness is only approximately an unbiased source
+     * of independently chosen bits. If it were a perfect source of randomly
+     * chosen bits, then the algorithm would choose permutations with perfect
+     * uniformity.<p>
+     *
+     * This implementation traverses the list backwards, from the last element
+     * up to the second, repeatedly swapping a randomly selected element into
+     * the "current position".  Elements are randomly selected from the
+     * portion of the list that runs from the first element to the current
+     * position, inclusive.<p>
+     *
+     * This method runs in linear time.  If the specified list does not
+     * implement the {@link RandomAccess} interface and is large, this
+     * implementation dumps the specified list into an array before shuffling
+     * it, and dumps the shuffled array back into the list.  This avoids the
+     * quadratic behavior that would result from shuffling a "sequential
+     * access" list in place.
+     *
+     * @param  list the list to be shuffled.
+     * @throws UnsupportedOperationException if the specified list or
+     *         its list-iterator does not support the <tt>set</tt> operation.
+     */
+    public static void shuffle(List<?> list) {
+        if (r == null) {
+            r = new Random();
+        }
+        shuffle(list, r);
+    }
+    private static Random r;
+
+    /**
+     * Randomly permute the specified list using the specified source of
+     * randomness.  All permutations occur with equal likelihood
+     * assuming that the source of randomness is fair.<p>
+     *
+     * This implementation traverses the list backwards, from the last element
+     * up to the second, repeatedly swapping a randomly selected element into
+     * the "current position".  Elements are randomly selected from the
+     * portion of the list that runs from the first element to the current
+     * position, inclusive.<p>
+     *
+     * This method runs in linear time.  If the specified list does not
+     * implement the {@link RandomAccess} interface and is large, this
+     * implementation dumps the specified list into an array before shuffling
+     * it, and dumps the shuffled array back into the list.  This avoids the
+     * quadratic behavior that would result from shuffling a "sequential
+     * access" list in place.
+     *
+     * @param  list the list to be shuffled.
+     * @param  rnd the source of randomness to use to shuffle the list.
+     * @throws UnsupportedOperationException if the specified list or its
+     *         list-iterator does not support the <tt>set</tt> operation.
+     */
+    public static void shuffle(List<?> list, Random rnd) {
+        int size = list.size();
+        if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
+            for (int i=size; i>1; i--)
+                swap(list, i-1, rnd.nextInt(i));
+        } else {
+            Object arr[] = list.toArray();
+
+            // Shuffle array
+            for (int i=size; i>1; i--)
+                swap(arr, i-1, rnd.nextInt(i));
+
+            // Dump array back into list
+            ListIterator it = list.listIterator();
+            for (int i=0; i<arr.length; i++) {
+                it.next();
+                it.set(arr[i]);
+            }
+        }
+    }
+
+    /**
+     * Swaps the elements at the specified positions in the specified list.
+     * (If the specified positions are equal, invoking this method leaves
+     * the list unchanged.)
+     *
+     * @param list The list in which to swap elements.
+     * @param i the index of one element to be swapped.
+     * @param j the index of the other element to be swapped.
+     * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
+     *         is out of range (i &lt; 0 || i &gt;= list.size()
+     *         || j &lt; 0 || j &gt;= list.size()).
+     * @since 1.4
+     */
+    public static void swap(List<?> list, int i, int j) {
+        final List l = list;
+        l.set(i, l.set(j, l.get(i)));
+    }
+
+    /**
+     * Swaps the two specified elements in the specified array.
+     */
+    private static void swap(Object[] arr, int i, int j) {
+        Object tmp = arr[i];
+        arr[i] = arr[j];
+        arr[j] = tmp;
+    }
+
+    /**
+     * Replaces all of the elements of the specified list with the specified
+     * element. <p>
+     *
+     * This method runs in linear time.
+     *
+     * @param  list the list to be filled with the specified element.
+     * @param  obj The element with which to fill the specified list.
+     * @throws UnsupportedOperationException if the specified list or its
+     *         list-iterator does not support the <tt>set</tt> operation.
+     */
+    public static <T> void fill(List<? super T> list, T obj) {
+        int size = list.size();
+
+        if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
+            for (int i=0; i<size; i++)
+                list.set(i, obj);
+        } else {
+            ListIterator<? super T> itr = list.listIterator();
+            for (int i=0; i<size; i++) {
+                itr.next();
+                itr.set(obj);
+            }
+        }
+    }
+
+    /**
+     * Copies all of the elements from one list into another.  After the
+     * operation, the index of each copied element in the destination list
+     * will be identical to its index in the source list.  The destination
+     * list must be at least as long as the source list.  If it is longer, the
+     * remaining elements in the destination list are unaffected. <p>
+     *
+     * This method runs in linear time.
+     *
+     * @param  dest The destination list.
+     * @param  src The source list.
+     * @throws IndexOutOfBoundsException if the destination list is too small
+     *         to contain the entire source List.
+     * @throws UnsupportedOperationException if the destination list's
+     *         list-iterator does not support the <tt>set</tt> operation.
+     */
+    public static <T> void copy(List<? super T> dest, List<? extends T> src) {
+        int srcSize = src.size();
+        if (srcSize > dest.size())
+            throw new IndexOutOfBoundsException("Source does not fit in dest");
+
+        if (srcSize < COPY_THRESHOLD ||
+            (src instanceof RandomAccess && dest instanceof RandomAccess)) {
+            for (int i=0; i<srcSize; i++)
+                dest.set(i, src.get(i));
+        } else {
+            ListIterator<? super T> di=dest.listIterator();
+            ListIterator<? extends T> si=src.listIterator();
+            for (int i=0; i<srcSize; i++) {
+                di.next();
+                di.set(si.next());
+            }
+        }
+    }
+
+    /**
+     * Returns the minimum element of the given collection, according to the
+     * <i>natural ordering</i> of its elements.  All elements in the
+     * collection must implement the <tt>Comparable</tt> interface.
+     * Furthermore, all elements in the collection must be <i>mutually
+     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
+     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
+     * <tt>e2</tt> in the collection).<p>
+     *
+     * This method iterates over the entire collection, hence it requires
+     * time proportional to the size of the collection.
+     *
+     * @param  coll the collection whose minimum element is to be determined.
+     * @return the minimum element of the given collection, according
+     *         to the <i>natural ordering</i> of its elements.
+     * @throws ClassCastException if the collection contains elements that are
+     *         not <i>mutually comparable</i> (for example, strings and
+     *         integers).
+     * @throws NoSuchElementException if the collection is empty.
+     * @see Comparable
+     */
+    public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
+        Iterator<? extends T> i = coll.iterator();
+        T candidate = i.next();
+
+        while (i.hasNext()) {
+            T next = i.next();
+            if (next.compareTo(candidate) < 0)
+                candidate = next;
+        }
+        return candidate;
+    }
+
+    /**
+     * Returns the minimum element of the given collection, according to the
+     * order induced by the specified comparator.  All elements in the
+     * collection must be <i>mutually comparable</i> by the specified
+     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
+     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
+     * <tt>e2</tt> in the collection).<p>
+     *
+     * This method iterates over the entire collection, hence it requires
+     * time proportional to the size of the collection.
+     *
+     * @param  coll the collection whose minimum element is to be determined.
+     * @param  comp the comparator with which to determine the minimum element.
+     *         A <tt>null</tt> value indicates that the elements' <i>natural
+     *         ordering</i> should be used.
+     * @return the minimum element of the given collection, according
+     *         to the specified comparator.
+     * @throws ClassCastException if the collection contains elements that are
+     *         not <i>mutually comparable</i> using the specified comparator.
+     * @throws NoSuchElementException if the collection is empty.
+     * @see Comparable
+     */
+    public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
+        if (comp==null)
+            return (T)min((Collection<SelfComparable>) (Collection) coll);
+
+        Iterator<? extends T> i = coll.iterator();
+        T candidate = i.next();
+
+        while (i.hasNext()) {
+            T next = i.next();
+            if (comp.compare(next, candidate) < 0)
+                candidate = next;
+        }
+        return candidate;
+    }
+
+    /**
+     * Returns the maximum element of the given collection, according to the
+     * <i>natural ordering</i> of its elements.  All elements in the
+     * collection must implement the <tt>Comparable</tt> interface.
+     * Furthermore, all elements in the collection must be <i>mutually
+     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
+     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
+     * <tt>e2</tt> in the collection).<p>
+     *
+     * This method iterates over the entire collection, hence it requires
+     * time proportional to the size of the collection.
+     *
+     * @param  coll the collection whose maximum element is to be determined.
+     * @return the maximum element of the given collection, according
+     *         to the <i>natural ordering</i> of its elements.
+     * @throws ClassCastException if the collection contains elements that are
+     *         not <i>mutually comparable</i> (for example, strings and
+     *         integers).
+     * @throws NoSuchElementException if the collection is empty.
+     * @see Comparable
+     */
+    public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
+        Iterator<? extends T> i = coll.iterator();
+        T candidate = i.next();
+
+        while (i.hasNext()) {
+            T next = i.next();
+            if (next.compareTo(candidate) > 0)
+                candidate = next;
+        }
+        return candidate;
+    }
+
+    /**
+     * Returns the maximum element of the given collection, according to the
+     * order induced by the specified comparator.  All elements in the
+     * collection must be <i>mutually comparable</i> by the specified
+     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
+     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
+     * <tt>e2</tt> in the collection).<p>
+     *
+     * This method iterates over the entire collection, hence it requires
+     * time proportional to the size of the collection.
+     *
+     * @param  coll the collection whose maximum element is to be determined.
+     * @param  comp the comparator with which to determine the maximum element.
+     *         A <tt>null</tt> value indicates that the elements' <i>natural
+     *        ordering</i> should be used.
+     * @return the maximum element of the given collection, according
+     *         to the specified comparator.
+     * @throws ClassCastException if the collection contains elements that are
+     *         not <i>mutually comparable</i> using the specified comparator.
+     * @throws NoSuchElementException if the collection is empty.
+     * @see Comparable
+     */
+    public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
+        if (comp==null)
+            return (T)max((Collection<SelfComparable>) (Collection) coll);
+
+        Iterator<? extends T> i = coll.iterator();
+        T candidate = i.next();
+
+        while (i.hasNext()) {
+            T next = i.next();
+            if (comp.compare(next, candidate) > 0)
+                candidate = next;
+        }
+        return candidate;
+    }
+
+    /**
+     * Rotates the elements in the specified list by the specified distance.
+     * After calling this method, the element at index <tt>i</tt> will be
+     * the element previously at index <tt>(i - distance)</tt> mod
+     * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
+     * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
+     * the size of the list.)
+     *
+     * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
+     * After invoking <tt>Collections.rotate(list, 1)</tt> (or
+     * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
+     * <tt>[s, t, a, n, k]</tt>.
+     *
+     * <p>Note that this method can usefully be applied to sublists to
+     * move one or more elements within a list while preserving the
+     * order of the remaining elements.  For example, the following idiom
+     * moves the element at index <tt>j</tt> forward to position
+     * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
+     * <pre>
+     *     Collections.rotate(list.subList(j, k+1), -1);
+     * </pre>
+     * To make this concrete, suppose <tt>list</tt> comprises
+     * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
+     * (<tt>b</tt>) forward two positions, perform the following invocation:
+     * <pre>
+     *     Collections.rotate(l.subList(1, 4), -1);
+     * </pre>
+     * The resulting list is <tt>[a, c, d, b, e]</tt>.
+     *
+     * <p>To move more than one element forward, increase the absolute value
+     * of the rotation distance.  To move elements backward, use a positive
+     * shift distance.
+     *
+     * <p>If the specified list is small or implements the {@link
+     * RandomAccess} interface, this implementation exchanges the first
+     * element into the location it should go, and then repeatedly exchanges
+     * the displaced element into the location it should go until a displaced
+     * element is swapped into the first element.  If necessary, the process
+     * is repeated on the second and successive elements, until the rotation
+     * is complete.  If the specified list is large and doesn't implement the
+     * <tt>RandomAccess</tt> interface, this implementation breaks the
+     * list into two sublist views around index <tt>-distance mod size</tt>.
+     * Then the {@link #reverse(List)} method is invoked on each sublist view,
+     * and finally it is invoked on the entire list.  For a more complete
+     * description of both algorithms, see Section 2.3 of Jon Bentley's
+     * <i>Programming Pearls</i> (Addison-Wesley, 1986).
+     *
+     * @param list the list to be rotated.
+     * @param distance the distance to rotate the list.  There are no
+     *        constraints on this value; it may be zero, negative, or
+     *        greater than <tt>list.size()</tt>.
+     * @throws UnsupportedOperationException if the specified list or
+     *         its list-iterator does not support the <tt>set</tt> operation.
+     * @since 1.4
+     */
+    public static void rotate(List<?> list, int distance) {
+        if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
+            rotate1(list, distance);
+        else
+            rotate2(list, distance);
+    }
+
+    private static <T> void rotate1(List<T> list, int distance) {
+        int size = list.size();
+        if (size == 0)
+            return;
+        distance = distance % size;
+        if (distance < 0)
+            distance += size;
+        if (distance == 0)
+            return;
+
+        for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
+            T displaced = list.get(cycleStart);
+            int i = cycleStart;
+            do {
+                i += distance;
+                if (i >= size)
+                    i -= size;
+                displaced = list.set(i, displaced);
+                nMoved ++;
+            } while(i != cycleStart);
+        }
+    }
+
+    private static void rotate2(List<?> list, int distance) {
+        int size = list.size();
+        if (size == 0)
+            return;
+        int mid =  -distance % size;
+        if (mid < 0)
+            mid += size;
+        if (mid == 0)
+            return;
+
+        reverse(list.subList(0, mid));
+        reverse(list.subList(mid, size));
+        reverse(list);
+    }
+
+    /**
+     * Replaces all occurrences of one specified value in a list with another.
+     * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
+     * in <tt>list</tt> such that
+     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
+     * (This method has no effect on the size of the list.)
+     *
+     * @param list the list in which replacement is to occur.
+     * @param oldVal the old value to be replaced.
+     * @param newVal the new value with which <tt>oldVal</tt> is to be
+     *        replaced.
+     * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
+     *         <tt>e</tt> such that
+     *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
+     * @throws UnsupportedOperationException if the specified list or
+     *         its list-iterator does not support the <tt>set</tt> operation.
+     * @since  1.4
+     */
+    public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
+        boolean result = false;
+        int size = list.size();
+        if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
+            if (oldVal==null) {
+                for (int i=0; i<size; i++) {
+                    if (list.get(i)==null) {
+                        list.set(i, newVal);
+                        result = true;
+                    }
+                }
+            } else {
+                for (int i=0; i<size; i++) {
+                    if (oldVal.equals(list.get(i))) {
+                        list.set(i, newVal);
+                        result = true;
+                    }
+                }
+            }
+        } else {
+            ListIterator<T> itr=list.listIterator();
+            if (oldVal==null) {
+                for (int i=0; i<size; i++) {
+                    if (itr.next()==null) {
+                        itr.set(newVal);
+                        result = true;
+                    }
+                }
+            } else {
+                for (int i=0; i<size; i++) {
+                    if (oldVal.equals(itr.next())) {
+                        itr.set(newVal);
+                        result = true;
+                    }
+                }
+            }
+        }
+        return result;
+    }
+
+    /**
+     * Returns the starting position of the first occurrence of the specified
+     * target list within the specified source list, or -1 if there is no
+     * such occurrence.  More formally, returns the lowest index <tt>i</tt>
+     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
+     * or -1 if there is no such index.  (Returns -1 if
+     * <tt>target.size() > source.size()</tt>.)
+     *
+     * <p>This implementation uses the "brute force" technique of scanning
+     * over the source list, looking for a match with the target at each
+     * location in turn.
+     *
+     * @param source the list in which to search for the first occurrence
+     *        of <tt>target</tt>.
+     * @param target the list to search for as a subList of <tt>source</tt>.
+     * @return the starting position of the first occurrence of the specified
+     *         target list within the specified source list, or -1 if there
+     *         is no such occurrence.
+     * @since  1.4
+     */
+    public static int indexOfSubList(List<?> source, List<?> target) {
+        int sourceSize = source.size();
+        int targetSize = target.size();
+        int maxCandidate = sourceSize - targetSize;
+
+        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
+            (source instanceof RandomAccess&&target instanceof RandomAccess)) {
+        nextCand:
+            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
+                for (int i=0, j=candidate; i<targetSize; i++, j++)
+                    if (!eq(target.get(i), source.get(j)))
+                        continue nextCand;  // Element mismatch, try next cand
+                return candidate;  // All elements of candidate matched target
+            }
+        } else {  // Iterator version of above algorithm
+            ListIterator<?> si = source.listIterator();
+        nextCand:
+            for (int candidate = 0; candidate <= maxCandidate; candidate++) {
+                ListIterator<?> ti = target.listIterator();
+                for (int i=0; i<targetSize; i++) {
+                    if (!eq(ti.next(), si.next())) {
+                        // Back up source iterator to next candidate
+                        for (int j=0; j<i; j++)
+                            si.previous();
+                        continue nextCand;
+                    }
+                }
+                return candidate;
+            }
+        }
+        return -1;  // No candidate matched the target
+    }
+
+    /**
+     * Returns the starting position of the last occurrence of the specified
+     * target list within the specified source list, or -1 if there is no such
+     * occurrence.  More formally, returns the highest index <tt>i</tt>
+     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
+     * or -1 if there is no such index.  (Returns -1 if
+     * <tt>target.size() > source.size()</tt>.)
+     *
+     * <p>This implementation uses the "brute force" technique of iterating
+     * over the source list, looking for a match with the target at each
+     * location in turn.
+     *
+     * @param source the list in which to search for the last occurrence
+     *        of <tt>target</tt>.
+     * @param target the list to search for as a subList of <tt>source</tt>.
+     * @return the starting position of the last occurrence of the specified
+     *         target list within the specified source list, or -1 if there
+     *         is no such occurrence.
+     * @since  1.4
+     */
+    public static int lastIndexOfSubList(List<?> source, List<?> target) {
+        int sourceSize = source.size();
+        int targetSize = target.size();
+        int maxCandidate = sourceSize - targetSize;
+
+        if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
+            source instanceof RandomAccess) {   // Index access version
+        nextCand:
+            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
+                for (int i=0, j=candidate; i<targetSize; i++, j++)
+                    if (!eq(target.get(i), source.get(j)))
+                        continue nextCand;  // Element mismatch, try next cand
+                return candidate;  // All elements of candidate matched target
+            }
+        } else {  // Iterator version of above algorithm
+            if (maxCandidate < 0)
+                return -1;
+            ListIterator<?> si = source.listIterator(maxCandidate);
+        nextCand:
+            for (int candidate = maxCandidate; candidate >= 0; candidate--) {
+                ListIterator<?> ti = target.listIterator();
+                for (int i=0; i<targetSize; i++) {
+                    if (!eq(ti.next(), si.next())) {
+                        if (candidate != 0) {
+                            // Back up source iterator to next candidate
+                            for (int j=0; j<=i+1; j++)
+                                si.previous();
+                        }
+                        continue nextCand;
+                    }
+                }
+                return candidate;
+            }
+        }
+        return -1;  // No candidate matched the target
+    }
+
+
+    // Unmodifiable Wrappers
+
+    /**
+     * Returns an unmodifiable view of the specified collection.  This method
+     * allows modules to provide users with "read-only" access to internal
+     * collections.  Query operations on the returned collection "read through"
+     * to the specified collection, and attempts to modify the returned
+     * collection, whether direct or via its iterator, result in an
+     * <tt>UnsupportedOperationException</tt>.<p>
+     *
+     * The returned collection does <i>not</i> pass the hashCode and equals
+     * operations through to the backing collection, but relies on
+     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
+     * is necessary to preserve the contracts of these operations in the case
+     * that the backing collection is a set or a list.<p>
+     *
+     * The returned collection will be serializable if the specified collection
+     * is serializable.
+     *
+     * @param  c the collection for which an unmodifiable view is to be
+     *         returned.
+     * @return an unmodifiable view of the specified collection.
+     */
+    public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
+        return new UnmodifiableCollection<T>(c);
+    }
+
+    /**
+     * @serial include
+     */
+    static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
+        private static final long serialVersionUID = 1820017752578914078L;
+
+        final Collection<? extends E> c;
+
+        UnmodifiableCollection(Collection<? extends E> c) {
+            if (c==null)
+                throw new NullPointerException();
+            this.c = c;
+        }
+
+        public int size()                   {return c.size();}
+        public boolean isEmpty()            {return c.isEmpty();}
+        public boolean contains(Object o)   {return c.contains(o);}
+        public Object[] toArray()           {return c.toArray();}
+        public <T> T[] toArray(T[] a)       {return c.toArray(a);}
+        public String toString()            {return c.toString();}
+
+        public Iterator<E> iterator() {
+            return new Iterator<E>() {
+                private final Iterator<? extends E> i = c.iterator();
+
+                public boolean hasNext() {return i.hasNext();}
+                public E next()          {return i.next();}
+                public void remove() {
+                    throw new UnsupportedOperationException();
+                }
+            };
+        }
+
+        public boolean add(E e) {
+            throw new UnsupportedOperationException();
+        }
+        public boolean remove(Object o) {
+            throw new UnsupportedOperationException();
+        }
+
+        public boolean containsAll(Collection<?> coll) {
+            return c.containsAll(coll);
+        }
+        public boolean addAll(Collection<? extends E> coll) {
+            throw new UnsupportedOperationException();
+        }
+        public boolean removeAll(Collection<?> coll) {
+            throw new UnsupportedOperationException();
+        }
+        public boolean retainAll(Collection<?> coll) {
+            throw new UnsupportedOperationException();
+        }
+        public void clear() {
+            throw new UnsupportedOperationException();
+        }
+    }
+
+    /**
+     * Returns an unmodifiable view of the specified set.  This method allows
+     * modules to provide users with "read-only" access to internal sets.
+     * Query operations on the returned set "read through" to the specified
+     * set, and attempts to modify the returned set, whether direct or via its
+     * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
+     *
+     * The returned set will be serializable if the specified set
+     * is serializable.
+     *
+     * @param  s the set for which an unmodifiable view is to be returned.
+     * @return an unmodifiable view of the specified set.
+     */
+    public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
+        return new UnmodifiableSet<T>(s);
+    }
+
+    /**
+     * @serial include
+     */
+    static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
+                                 implements Set<E>, Serializable {
+        private static final long serialVersionUID = -9215047833775013803L;
+
+        UnmodifiableSet(Set<? extends E> s)     {super(s);}
+        public boolean equals(Object o) {return o == this || c.equals(o);}
+        public int hashCode()           {return c.hashCode();}
+    }
+
+    /**
+     * Returns an unmodifiable view of the specified sorted set.  This method
+     * allows modules to provide users with "read-only" access to internal
+     * sorted sets.  Query operations on the returned sorted set "read
+     * through" to the specified sorted set.  Attempts to modify the returned
+     * sorted set, whether direct, via its iterator, or via its
+     * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
+     * an <tt>UnsupportedOperationException</tt>.<p>
+     *
+     * The returned sorted set will be serializable if the specified sorted set
+     * is serializable.
+     *
+     * @param s the sorted set for which an unmodifiable view is to be
+     *        returned.
+     * @return an unmodifiable view of the specified sorted set.
+     */
+    public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
+        return new UnmodifiableSortedSet<T>(s);
+    }
+
+    /**
+     * @serial include
+     */
+    static class UnmodifiableSortedSet<E>
+                             extends UnmodifiableSet<E>
+                             implements SortedSet<E>, Serializable {
+        private static final long serialVersionUID = -4929149591599911165L;
+        private final SortedSet<E> ss;
+
+        UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
+
+        public Comparator<? super E> comparator() {return ss.comparator();}
+
+        public SortedSet<E> subSet(E fromElement, E toElement) {
+            return new UnmodifiableSortedSet<E>(ss.subSet(fromElement,toElement));
+        }
+        public SortedSet<E> headSet(E toElement) {
+            return new UnmodifiableSortedSet<E>(ss.headSet(toElement));
+        }
+        public SortedSet<E> tailSet(E fromElement) {
+            return new UnmodifiableSortedSet<E>(ss.tailSet(fromElement));
+        }
+
+        public E first()                   {return ss.first();}
+        public E last()                    {return ss.last();}
+    }
+
+    /**
+     * Returns an unmodifiable view of the specified list.  This method allows
+     * modules to provide users with "read-only" access to internal
+     * lists.  Query operations on the returned list "read through" to the
+     * specified list, and attempts to modify the returned list, whether
+     * direct or via its iterator, result in an
+     * <tt>UnsupportedOperationException</tt>.<p>
+     *
+     * The returned list will be serializable if the specified list
+     * is serializable. Similarly, the returned list will implement
+     * {@link RandomAccess} if the specified list does.
+     *
+     * @param  list the list for which an unmodifiable view is to be returned.
+     * @return an unmodifiable view of the specified list.
+     */
+    public static <T> List<T> unmodifiableList(List<? extends T> list) {
+        return (list instanceof RandomAccess ?
+                new UnmodifiableRandomAccessList<T>(list) :
+                new UnmodifiableList<T>(list));
+    }
+
+    /**
+     * @serial include
+     */
+    static class UnmodifiableList<E> extends UnmodifiableCollection<E>
+                                  implements List<E> {
+        private static final long serialVersionUID = -283967356065247728L;
+        final List<? extends E> list;
+
+        UnmodifiableList(List<? extends E> list) {
+            super(list);
+            this.list = list;
+        }
+
+        public boolean equals(Object o) {return o == this || list.equals(o);}
+        public int hashCode()           {return list.hashCode();}
+
+        public E get(int index) {return list.get(index);}
+        public E set(int index, E element) {
+            throw new UnsupportedOperationException();
+        }
+        public void add(int index, E element) {
+            throw new UnsupportedOperationException();
+        }
+        public E remove(int index) {
+            throw new UnsupportedOperationException();
+        }
+        public int indexOf(Object o)            {return list.indexOf(o);}
+        public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
+        public boolean addAll(int index, Collection<? extends E> c) {
+            throw new UnsupportedOperationException();
+        }
+        public ListIterator<E> listIterator()   {return listIterator(0);}
+
+        public ListIterator<E> listIterator(final int index) {
+            return new ListIterator<E>() {
+                private final ListIterator<? extends E> i
+                    = list.listIterator(index);
+
+                public boolean hasNext()     {return i.hasNext();}
+                public E next()              {return i.next();}
+                public boolean hasPrevious() {return i.hasPrevious();}
+                public E previous()          {return i.previous();}
+                public int nextIndex()       {return i.nextIndex();}
+                public int previousIndex()   {return i.previousIndex();}
+
+                public void remove() {
+                    throw new UnsupportedOperationException();
+                }
+                public void set(E e) {
+                    throw new UnsupportedOperationException();
+                }
+                public void add(E e) {
+                    throw new UnsupportedOperationException();
+                }
+            };
+        }
+
+        public List<E> subList(int fromIndex, int toIndex) {
+            return new UnmodifiableList<E>(list.subList(fromIndex, toIndex));
+        }
+
+        /**
+         * UnmodifiableRandomAccessList instances are serialized as
+         * UnmodifiableList instances to allow them to be deserialized
+         * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
+         * This method inverts the transformation.  As a beneficial
+         * side-effect, it also grafts the RandomAccess marker onto
+         * UnmodifiableList instances that were serialized in pre-1.4 JREs.
+         *
+         * Note: Unfortunately, UnmodifiableRandomAccessList instances
+         * serialized in 1.4.1 and deserialized in 1.4 will become
+         * UnmodifiableList instances, as this method was missing in 1.4.
+         */
+        private Object readResolve() {
+            return (list instanceof RandomAccess
+                    ? new UnmodifiableRandomAccessList<E>(list)
+                    : this);
+        }
+    }
+
+    /**
+     * @serial include
+     */
+    static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
+                                              implements RandomAccess
+    {
+        UnmodifiableRandomAccessList(List<? extends E> list) {
+            super(list);
+        }
+
+        public List<E> subList(int fromIndex, int toIndex) {
+            return new UnmodifiableRandomAccessList<E>(
+                list.subList(fromIndex, toIndex));
+        }
+
+        private static final long serialVersionUID = -2542308836966382001L;
+
+        /**
+         * Allows instances to be deserialized in pre-1.4 JREs (which do
+         * not have UnmodifiableRandomAccessList).  UnmodifiableList has
+         * a readResolve method that inverts this transformation upon
+         * deserialization.
+         */
+        private Object writeReplace() {
+            return new UnmodifiableList<E>(list);
+        }
+    }
+
+    /**
+     * Returns an unmodifiable view of the specified map.  This method
+     * allows modules to provide users with "read-only" access to internal
+     * maps.  Query operations on the returned map "read through"
+     * to the specified map, and attempts to modify the returned
+     * map, whether direct or via its collection views, result in an
+     * <tt>UnsupportedOperationException</tt>.<p>
+     *
+     * The returned map will be serializable if the specified map
+     * is serializable.
+     *
+     * @param  m the map for which an unmodifiable view is to be returned.
+     * @return an unmodifiable view of the specified map.
+     */
+    public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
+        return new UnmodifiableMap<K,V>(m);
+    }
+
+    /**
+     * @serial include
+     */
+    private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
+        private static final long serialVersionUID = -1034234728574286014L;
+
+        private final Map<? extends K, ? extends V> m;
+
+        UnmodifiableMap(Map<? extends K, ? extends V> m) {
+            if (m==null)
+                throw new NullPointerException();
+            this.m = m;
+        }
+
+        public int size()                        {return m.size();}
+        public boolean isEmpty()                 {return m.isEmpty();}
+        public boolean containsKey(Object key)   {return m.containsKey(key);}
+        public boolean containsValue(Object val) {return m.containsValue(val);}
+        public V get(Object key)                 {return m.get(key);}
+
+        public V put(K key, V value) {
+            throw new UnsupportedOperationException();
+        }
+        public V remove(Object key) {
+            throw new UnsupportedOperationException();
+        }
+        public void putAll(Map<? extends K, ? extends V> m) {
+            throw new UnsupportedOperationException();
+        }
+        public void clear() {
+            throw new UnsupportedOperationException();
+        }
+
+        private transient Set<K> keySet = null;
+        private transient Set<Map.Entry<K,V>> entrySet = null;
+        private transient Collection<V> values = null;
+
+        public Set<K> keySet() {
+            if (keySet==null)
+                keySet = unmodifiableSet(m.keySet());
+            return keySet;
+        }
+
+        public Set<Map.Entry<K,V>> entrySet() {
+            if (entrySet==null)
+                entrySet = new UnmodifiableEntrySet<K,V>(m.entrySet());
+            return entrySet;
+        }
+
+        public Collection<V> values() {
+            if (values==null)
+                values = unmodifiableCollection(m.values());
+            return values;
+        }
+
+        public boolean equals(Object o) {return o == this || m.equals(o);}
+        public int hashCode()           {return m.hashCode();}
+        public String toString()        {return m.toString();}
+
+        /**
+         * We need this class in addition to UnmodifiableSet as
+         * Map.Entries themselves permit modification of the backing Map
+         * via their setValue operation.  This class is subtle: there are
+         * many possible attacks that must be thwarted.
+         *
+         * @serial include
+         */
+        static class UnmodifiableEntrySet<K,V>
+            extends UnmodifiableSet<Map.Entry<K,V>> {
+            private static final long serialVersionUID = 7854390611657943733L;
+
+            UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
+                super((Set)s);
+            }
+            public Iterator<Map.Entry<K,V>> iterator() {
+                return new Iterator<Map.Entry<K,V>>() {
+                    private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
+
+                    public boolean hasNext() {
+                        return i.hasNext();
+                    }
+                    public Map.Entry<K,V> next() {
+                        return new UnmodifiableEntry<K,V>(i.next());
+                    }
+                    public void remove() {
+                        throw new UnsupportedOperationException();
+                    }
+                };
+            }
+
+            public Object[] toArray() {
+                Object[] a = c.toArray();
+                for (int i=0; i<a.length; i++)
+                    a[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)a[i]);
+                return a;
+            }
+
+            public <T> T[] toArray(T[] a) {
+                // We don't pass a to c.toArray, to avoid window of
+                // vulnerability wherein an unscrupulous multithreaded client
+                // could get his hands on raw (unwrapped) Entries from c.
+                Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
+
+                for (int i=0; i<arr.length; i++)
+                    arr[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)arr[i]);
+
+                if (arr.length > a.length)
+                    return (T[])arr;
+
+                System.arraycopy(arr, 0, a, 0, arr.length);
+                if (a.length > arr.length)
+                    a[arr.length] = null;
+                return a;
+            }
+
+            /**
+             * This method is overridden to protect the backing set against
+             * an object with a nefarious equals function that senses
+             * that the equality-candidate is Map.Entry and calls its
+             * setValue method.
+             */
+            public boolean contains(Object o) {
+                if (!(o instanceof Map.Entry))
+                    return false;
+                return c.contains(
+                    new UnmodifiableEntry<Object,Object>((Map.Entry<?,?>) o));
+            }
+
+            /**
+             * The next two methods are overridden to protect against
+             * an unscrupulous List whose contains(Object o) method senses
+             * when o is a Map.Entry, and calls o.setValue.
+             */
+            public boolean containsAll(Collection<?> coll) {
+                Iterator<?> e = coll.iterator();
+                while (e.hasNext())
+                    if (!contains(e.next())) // Invokes safe contains() above
+                        return false;
+                return true;
+            }
+            public boolean equals(Object o) {
+                if (o == this)
+                    return true;
+
+                if (!(o instanceof Set))
+                    return false;
+                Set s = (Set) o;
+                if (s.size() != c.size())
+                    return false;
+                return containsAll(s); // Invokes safe containsAll() above
+            }
+
+            /**
+             * This "wrapper class" serves two purposes: it prevents
+             * the client from modifying the backing Map, by short-circuiting
+             * the setValue method, and it protects the backing Map against
+             * an ill-behaved Map.Entry that attempts to modify another
+             * Map Entry when asked to perform an equality check.
+             */
+            private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
+                private Map.Entry<? extends K, ? extends V> e;
+
+                UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
+
+                public K getKey()         {return e.getKey();}
+                public V getValue()  {return e.getValue();}
+                public V setValue(V value) {
+                    throw new UnsupportedOperationException();
+                }
+                public int hashCode()     {return e.hashCode();}
+                public boolean equals(Object o) {
+                    if (!(o instanceof Map.Entry))
+                        return false;
+                    Map.Entry t = (Map.Entry)o;
+                    return eq(e.getKey(),   t.getKey()) &&
+                           eq(e.getValue(), t.getValue());
+                }
+                public String toString()  {return e.toString();}
+            }
+        }
+    }
+
+    /**
+     * Returns an unmodifiable view of the specified sorted map.  This method
+     * allows modules to provide users with "read-only" access to internal
+     * sorted maps.  Query operations on the returned sorted map "read through"
+     * to the specified sorted map.  Attempts to modify the returned
+     * sorted map, whether direct, via its collection views, or via its
+     * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
+     * an <tt>UnsupportedOperationException</tt>.<p>
+     *
+     * The returned sorted map will be serializable if the specified sorted map
+     * is serializable.
+     *
+     * @param m the sorted map for which an unmodifiable view is to be
+     *        returned.
+     * @return an unmodifiable view of the specified sorted map.
+     */
+    public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
+        return new UnmodifiableSortedMap<K,V>(m);
+    }
+
+    /**
+     * @serial include
+     */
+    static class UnmodifiableSortedMap<K,V>
+          extends UnmodifiableMap<K,V>
+          implements SortedMap<K,V>, Serializable {
+        private static final long serialVersionUID = -8806743815996713206L;
+
+        private final SortedMap<K, ? extends V> sm;
+
+        UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
+
+        public Comparator<? super K> comparator() {return sm.comparator();}
+
+        public SortedMap<K,V> subMap(K fromKey, K toKey) {
+            return new UnmodifiableSortedMap<K,V>(sm.subMap(fromKey, toKey));
+        }
+        public SortedMap<K,V> headMap(K toKey) {
+            return new UnmodifiableSortedMap<K,V>(sm.headMap(toKey));
+        }
+        public SortedMap<K,V> tailMap(K fromKey) {
+            return new UnmodifiableSortedMap<K,V>(sm.tailMap(fromKey));
+        }
+
+        public K firstKey()           {return sm.firstKey();}
+        public K lastKey()            {return sm.lastKey();}
+    }
+
+
+    // Synch Wrappers
+
+    /**
+     * Returns a synchronized (thread-safe) collection backed by the specified
+     * collection.  In order to guarantee serial access, it is critical that
+     * <strong>all</strong> access to the backing collection is accomplished
+     * through the returned collection.<p>
+     *
+     * It is imperative that the user manually synchronize on the returned
+     * collection when iterating over it:
+     * <pre>
+     *  Collection c = Collections.synchronizedCollection(myCollection);
+     *     ...
+     *  synchronized(c) {
+     *      Iterator i = c.iterator(); // Must be in the synchronized block
+     *      while (i.hasNext())
+     *         foo(i.next());
+     *  }
+     * </pre>
+     * Failure to follow this advice may result in non-deterministic behavior.
+     *
+     * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
+     * and <tt>equals</tt> operations through to the backing collection, but
+     * relies on <tt>Object</tt>'s equals and hashCode methods.  This is
+     * necessary to preserve the contracts of these operations in the case
+     * that the backing collection is a set or a list.<p>
+     *
+     * The returned collection will be serializable if the specified collection
+     * is serializable.
+     *
+     * @param  c the collection to be "wrapped" in a synchronized collection.
+     * @return a synchronized view of the specified collection.
+     */
+    public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
+        return new SynchronizedCollection<T>(c);
+    }
+
+    static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
+        return new SynchronizedCollection<T>(c, mutex);
+    }
+
+    /**
+     * @serial include
+     */
+    static class SynchronizedCollection<E> implements Collection<E>, Serializable {
+        private static final long serialVersionUID = 3053995032091335093L;
+
+        final Collection<E> c;  // Backing Collection
+        final Object mutex;     // Object on which to synchronize
+
+        SynchronizedCollection(Collection<E> c) {
+            if (c==null)
+                throw new NullPointerException();
+            this.c = c;
+            mutex = this;
+        }
+        SynchronizedCollection(Collection<E> c, Object mutex) {
+            this.c = c;
+            this.mutex = mutex;
+        }
+
+        public int size() {
+            synchronized(mutex) {return c.size();}
+        }
+        public boolean isEmpty() {
+            synchronized(mutex) {return c.isEmpty();}
+        }
+        public boolean contains(Object o) {
+            synchronized(mutex) {return c.contains(o);}
+        }
+        public Object[] toArray() {
+            synchronized(mutex) {return c.toArray();}
+        }
+        public <T> T[] toArray(T[] a) {
+            synchronized(mutex) {return c.toArray(a);}
+        }
+
+        public Iterator<E> iterator() {
+            return c.iterator(); // Must be manually synched by user!
+        }
+
+        public boolean add(E e) {
+            synchronized(mutex) {return c.add(e);}
+        }
+        public boolean remove(Object o) {
+            synchronized(mutex) {return c.remove(o);}
+        }
+
+        public boolean containsAll(Collection<?> coll) {
+            synchronized(mutex) {return c.containsAll(coll);}
+        }
+        public boolean addAll(Collection<? extends E> coll) {
+            synchronized(mutex) {return c.addAll(coll);}
+        }
+        public boolean removeAll(Collection<?> coll) {
+            synchronized(mutex) {return c.removeAll(coll);}
+        }
+        public boolean retainAll(Collection<?> coll) {
+            synchronized(mutex) {return c.retainAll(coll);}
+        }
+        public void clear() {
+            synchronized(mutex) {c.clear();}
+        }
+        public String toString() {
+            synchronized(mutex) {return c.toString();}
+        }
+        private void writeObject(ObjectOutputStream s) throws IOException {
+            synchronized(mutex) {s.defaultWriteObject();}
+        }
+    }
+
+    /**
+     * Returns a synchronized (thread-safe) set backed by the specified
+     * set.  In order to guarantee serial access, it is critical that
+     * <strong>all</strong> access to the backing set is accomplished
+     * through the returned set.<p>
+     *
+     * It is imperative that the user manually synchronize on the returned
+     * set when iterating over it:
+     * <pre>
+     *  Set s = Collections.synchronizedSet(new HashSet());
+     *      ...
+     *  synchronized(s) {
+     *      Iterator i = s.iterator(); // Must be in the synchronized block
+     *      while (i.hasNext())
+     *          foo(i.next());
+     *  }
+     * </pre>
+     * Failure to follow this advice may result in non-deterministic behavior.
+     *
+     * <p>The returned set will be serializable if the specified set is
+     * serializable.
+     *
+     * @param  s the set to be "wrapped" in a synchronized set.
+     * @return a synchronized view of the specified set.
+     */
+    public static <T> Set<T> synchronizedSet(Set<T> s) {
+        return new SynchronizedSet<T>(s);
+    }
+
+    static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
+        return new SynchronizedSet<T>(s, mutex);
+    }
+
+    /**
+     * @serial include
+     */
+    static class SynchronizedSet<E>
+          extends SynchronizedCollection<E>
+          implements Set<E> {
+        private static final long serialVersionUID = 487447009682186044L;
+
+        SynchronizedSet(Set<E> s) {
+            super(s);
+        }
+        SynchronizedSet(Set<E> s, Object mutex) {
+            super(s, mutex);
+        }
+
+        public boolean equals(Object o) {
+            synchronized(mutex) {return c.equals(o);}
+        }
+        public int hashCode() {
+            synchronized(mutex) {return c.hashCode();}
+        }
+    }
+
+    /**
+     * Returns a synchronized (thread-safe) sorted set backed by the specified
+     * sorted set.  In order to guarantee serial access, it is critical that
+     * <strong>all</strong> access to the backing sorted set is accomplished
+     * through the returned sorted set (or its views).<p>
+     *
+     * It is imperative that the user manually synchronize on the returned
+     * sorted set when iterating over it or any of its <tt>subSet</tt>,
+     * <tt>headSet</tt>, or <tt>tailSet</tt> views.
+     * <pre>
+     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
+     *      ...
+     *  synchronized(s) {
+     *      Iterator i = s.iterator(); // Must be in the synchronized block
+     *      while (i.hasNext())
+     *          foo(i.next());
+     *  }
+     * </pre>
+     * or:
+     * <pre>
+     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
+     *  SortedSet s2 = s.headSet(foo);
+     *      ...
+     *  synchronized(s) {  // Note: s, not s2!!!
+     *      Iterator i = s2.iterator(); // Must be in the synchronized block
+     *      while (i.hasNext())
+     *          foo(i.next());
+     *  }
+     * </pre>
+     * Failure to follow this advice may result in non-deterministic behavior.
+     *
+     * <p>The returned sorted set will be serializable if the specified
+     * sorted set is serializable.
+     *
+     * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
+     * @return a synchronized view of the specified sorted set.
+     */
+    public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
+        return new SynchronizedSortedSet<T>(s);
+    }
+
+    /**
+     * @serial include
+     */
+    static class SynchronizedSortedSet<E>
+        extends SynchronizedSet<E>
+        implements SortedSet<E>
+    {
+        private static final long serialVersionUID = 8695801310862127406L;
+
+        final private SortedSet<E> ss;
+
+        SynchronizedSortedSet(SortedSet<E> s) {
+            super(s);
+            ss = s;
+        }
+        SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
+            super(s, mutex);
+            ss = s;
+        }
+
+        public Comparator<? super E> comparator() {
+            synchronized(mutex) {return ss.comparator();}
+        }
+
+        public SortedSet<E> subSet(E fromElement, E toElement) {
+            synchronized(mutex) {
+                return new SynchronizedSortedSet<E>(
+                    ss.subSet(fromElement, toElement), mutex);
+            }
+        }
+        public SortedSet<E> headSet(E toElement) {
+            synchronized(mutex) {
+                return new SynchronizedSortedSet<E>(ss.headSet(toElement), mutex);
+            }
+        }
+        public SortedSet<E> tailSet(E fromElement) {
+            synchronized(mutex) {
+               return new SynchronizedSortedSet<E>(ss.tailSet(fromElement),mutex);
+            }
+        }
+
+        public E first() {
+            synchronized(mutex) {return ss.first();}
+        }
+        public E last() {
+            synchronized(mutex) {return ss.last();}
+        }
+    }
+
+    /**
+     * Returns a synchronized (thread-safe) list backed by the specified
+     * list.  In order to guarantee serial access, it is critical that
+     * <strong>all</strong> access to the backing list is accomplished
+     * through the returned list.<p>
+     *
+     * It is imperative that the user manually synchronize on the returned
+     * list when iterating over it:
+     * <pre>
+     *  List list = Collections.synchronizedList(new ArrayList());
+     *      ...
+     *  synchronized(list) {
+     *      Iterator i = list.iterator(); // Must be in synchronized block
+     *      while (i.hasNext())
+     *          foo(i.next());
+     *  }
+     * </pre>
+     * Failure to follow this advice may result in non-deterministic behavior.
+     *
+     * <p>The returned list will be serializable if the specified list is
+     * serializable.
+     *
+     * @param  list the list to be "wrapped" in a synchronized list.
+     * @return a synchronized view of the specified list.
+     */
+    public static <T> List<T> synchronizedList(List<T> list) {
+        return (list instanceof RandomAccess ?
+                new SynchronizedRandomAccessList<T>(list) :
+                new SynchronizedList<T>(list));
+    }
+
+    static <T> List<T> synchronizedList(List<T> list, Object mutex) {
+        return (list instanceof RandomAccess ?
+                new SynchronizedRandomAccessList<T>(list, mutex) :
+                new SynchronizedList<T>(list, mutex));
+    }
+
+    /**
+     * @serial include
+     */
+    static class SynchronizedList<E>
+        extends SynchronizedCollection<E>
+        implements List<E> {
+        private static final long serialVersionUID = -7754090372962971524L;
+
+        final List<E> list;
+
+        SynchronizedList(List<E> list) {
+            super(list);
+            this.list = list;
+        }
+        SynchronizedList(List<E> list, Object mutex) {
+            super(list, mutex);
+            this.list = list;
+        }
+
+        public boolean equals(Object o) {
+            synchronized(mutex) {return list.equals(o);}
+        }
+        public int hashCode() {
+            synchronized(mutex) {return list.hashCode();}
+        }
+
+        public E get(int index) {
+            synchronized(mutex) {return list.get(index);}
+        }
+        public E set(int index, E element) {
+            synchronized(mutex) {return list.set(index, element);}
+        }
+        public void add(int index, E element) {
+            synchronized(mutex) {list.add(index, element);}
+        }
+        public E remove(int index) {
+            synchronized(mutex) {return list.remove(index);}
+        }
+
+        public int indexOf(Object o) {
+            synchronized(mutex) {return list.indexOf(o);}
+        }
+        public int lastIndexOf(Object o) {
+            synchronized(mutex) {return list.lastIndexOf(o);}
+        }
+
+        public boolean addAll(int index, Collection<? extends E> c) {
+            synchronized(mutex) {return list.addAll(index, c);}
+        }
+
+        public ListIterator<E> listIterator() {
+            return list.listIterator(); // Must be manually synched by user
+        }
+
+        public ListIterator<E> listIterator(int index) {
+            return list.listIterator(index); // Must be manually synched by user
+        }
+
+        public List<E> subList(int fromIndex, int toIndex) {
+            synchronized(mutex) {
+                return new SynchronizedList<E>(list.subList(fromIndex, toIndex),
+                                            mutex);
+            }
+        }
+
+        /**
+         * SynchronizedRandomAccessList instances are serialized as
+         * SynchronizedList instances to allow them to be deserialized
+         * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
+         * This method inverts the transformation.  As a beneficial
+         * side-effect, it also grafts the RandomAccess marker onto
+         * SynchronizedList instances that were serialized in pre-1.4 JREs.
+         *
+         * Note: Unfortunately, SynchronizedRandomAccessList instances
+         * serialized in 1.4.1 and deserialized in 1.4 will become
+         * SynchronizedList instances, as this method was missing in 1.4.
+         */
+        private Object readResolve() {
+            return (list instanceof RandomAccess
+                    ? new SynchronizedRandomAccessList<E>(list)
+                    : this);
+        }
+    }
+
+    /**
+     * @serial include
+     */
+    static class SynchronizedRandomAccessList<E>
+        extends SynchronizedList<E>
+        implements RandomAccess {
+
+        SynchronizedRandomAccessList(List<E> list) {
+            super(list);
+        }
+
+        SynchronizedRandomAccessList(List<E> list, Object mutex) {
+            super(list, mutex);
+        }
+
+        public List<E> subList(int fromIndex, int toIndex) {
+            synchronized(mutex) {
+                return new SynchronizedRandomAccessList<E>(
+                    list.subList(fromIndex, toIndex), mutex);
+            }
+        }
+
+        private static final long serialVersionUID = 1530674583602358482L;
+
+        /**
+         * Allows instances to be deserialized in pre-1.4 JREs (which do
+         * not have SynchronizedRandomAccessList).  SynchronizedList has
+         * a readResolve method that inverts this transformation upon
+         * deserialization.
+         */
+        private Object writeReplace() {
+            return new SynchronizedList<E>(list);
+        }
+    }
+
+    /**
+     * Returns a synchronized (thread-safe) map backed by the specified
+     * map.  In order to guarantee serial access, it is critical that
+     * <strong>all</strong> access to the backing map is accomplished
+     * through the returned map.<p>
+     *
+     * It is imperative that the user manually synchronize on the returned
+     * map when iterating over any of its collection views:
+     * <pre>
+     *  Map m = Collections.synchronizedMap(new HashMap());
+     *      ...
+     *  Set s = m.keySet();  // Needn't be in synchronized block
+     *      ...
+     *  synchronized(m) {  // Synchronizing on m, not s!
+     *      Iterator i = s.iterator(); // Must be in synchronized block
+     *      while (i.hasNext())
+     *          foo(i.next());
+     *  }
+     * </pre>
+     * Failure to follow this advice may result in non-deterministic behavior.
+     *
+     * <p>The returned map will be serializable if the specified map is
+     * serializable.
+     *
+     * @param  m the map to be "wrapped" in a synchronized map.
+     * @return a synchronized view of the specified map.
+     */
+    public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
+        return new SynchronizedMap<K,V>(m);
+    }
+
+    /**
+     * @serial include
+     */
+    private static class SynchronizedMap<K,V>
+        implements Map<K,V>, Serializable {
+        private static final long serialVersionUID = 1978198479659022715L;
+
+        private final Map<K,V> m;     // Backing Map
+        final Object      mutex;        // Object on which to synchronize
+
+        SynchronizedMap(Map<K,V> m) {
+            if (m==null)
+                throw new NullPointerException();
+            this.m = m;
+            mutex = this;
+        }
+
+        SynchronizedMap(Map<K,V> m, Object mutex) {
+            this.m = m;
+            this.mutex = mutex;
+        }
+
+        public int size() {
+            synchronized(mutex) {return m.size();}
+        }
+        public boolean isEmpty() {
+            synchronized(mutex) {return m.isEmpty();}
+        }
+        public boolean containsKey(Object key) {
+            synchronized(mutex) {return m.containsKey(key);}
+        }
+        public boolean containsValue(Object value) {
+            synchronized(mutex) {return m.containsValue(value);}
+        }
+        public V get(Object key) {
+            synchronized(mutex) {return m.get(key);}
+        }
+
+        public V put(K key, V value) {
+            synchronized(mutex) {return m.put(key, value);}
+        }
+        public V remove(Object key) {
+            synchronized(mutex) {return m.remove(key);}
+        }
+        public void putAll(Map<? extends K, ? extends V> map) {
+            synchronized(mutex) {m.putAll(map);}
+        }
+        public void clear() {
+            synchronized(mutex) {m.clear();}
+        }
+
+        private transient Set<K> keySet = null;
+        private transient Set<Map.Entry<K,V>> entrySet = null;
+        private transient Collection<V> values = null;
+
+        public Set<K> keySet() {
+            synchronized(mutex) {
+                if (keySet==null)
+                    keySet = new SynchronizedSet<K>(m.keySet(), mutex);
+                return keySet;
+            }
+        }
+
+        public Set<Map.Entry<K,V>> entrySet() {
+            synchronized(mutex) {
+                if (entrySet==null)
+                    entrySet = new SynchronizedSet<Map.Entry<K,V>>(m.entrySet(), mutex);
+                return entrySet;
+            }
+        }
+
+        public Collection<V> values() {
+            synchronized(mutex) {
+                if (values==null)
+                    values = new SynchronizedCollection<V>(m.values(), mutex);
+                return values;
+            }
+        }
+
+        public boolean equals(Object o) {
+            synchronized(mutex) {return m.equals(o);}
+        }
+        public int hashCode() {
+            synchronized(mutex) {return m.hashCode();}
+        }
+        public String toString() {
+            synchronized(mutex) {return m.toString();}
+        }
+        private void writeObject(ObjectOutputStream s) throws IOException {
+            synchronized(mutex) {s.defaultWriteObject();}
+        }
+    }
+
+    /**
+     * Returns a synchronized (thread-safe) sorted map backed by the specified
+     * sorted map.  In order to guarantee serial access, it is critical that
+     * <strong>all</strong> access to the backing sorted map is accomplished
+     * through the returned sorted map (or its views).<p>
+     *
+     * It is imperative that the user manually synchronize on the returned
+     * sorted map when iterating over any of its collection views, or the
+     * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
+     * <tt>tailMap</tt> views.
+     * <pre>
+     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
+     *      ...
+     *  Set s = m.keySet();  // Needn't be in synchronized block
+     *      ...
+     *  synchronized(m) {  // Synchronizing on m, not s!
+     *      Iterator i = s.iterator(); // Must be in synchronized block
+     *      while (i.hasNext())
+     *          foo(i.next());
+     *  }
+     * </pre>
+     * or:
+     * <pre>
+     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
+     *  SortedMap m2 = m.subMap(foo, bar);
+     *      ...
+     *  Set s2 = m2.keySet();  // Needn't be in synchronized block
+     *      ...
+     *  synchronized(m) {  // Synchronizing on m, not m2 or s2!
+     *      Iterator i = s.iterator(); // Must be in synchronized block
+     *      while (i.hasNext())
+     *          foo(i.next());
+     *  }
+     * </pre>
+     * Failure to follow this advice may result in non-deterministic behavior.
+     *
+     * <p>The returned sorted map will be serializable if the specified
+     * sorted map is serializable.
+     *
+     * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
+     * @return a synchronized view of the specified sorted map.
+     */
+    public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
+        return new SynchronizedSortedMap<K,V>(m);
+    }
+
+
+    /**
+     * @serial include
+     */
+    static class SynchronizedSortedMap<K,V>
+        extends SynchronizedMap<K,V>
+        implements SortedMap<K,V>
+    {
+        private static final long serialVersionUID = -8798146769416483793L;
+
+        private final SortedMap<K,V> sm;
+
+        SynchronizedSortedMap(SortedMap<K,V> m) {
+            super(m);
+            sm = m;
+        }
+        SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
+            super(m, mutex);
+            sm = m;
+        }
+
+        public Comparator<? super K> comparator() {
+            synchronized(mutex) {return sm.comparator();}
+        }
+
+        public SortedMap<K,V> subMap(K fromKey, K toKey) {
+            synchronized(mutex) {
+                return new SynchronizedSortedMap<K,V>(
+                    sm.subMap(fromKey, toKey), mutex);
+            }
+        }
+        public SortedMap<K,V> headMap(K toKey) {
+            synchronized(mutex) {
+                return new SynchronizedSortedMap<K,V>(sm.headMap(toKey), mutex);
+            }
+        }
+        public SortedMap<K,V> tailMap(K fromKey) {
+            synchronized(mutex) {
+               return new SynchronizedSortedMap<K,V>(sm.tailMap(fromKey),mutex);
+            }
+        }
+
+        public K firstKey() {
+            synchronized(mutex) {return sm.firstKey();}
+        }
+        public K lastKey() {
+            synchronized(mutex) {return sm.lastKey();}
+        }
+    }
+
+    // Dynamically typesafe collection wrappers
+
+    /**
+     * Returns a dynamically typesafe view of the specified collection.
+     * Any attempt to insert an element of the wrong type will result in an
+     * immediate {@link ClassCastException}.  Assuming a collection
+     * contains no incorrectly typed elements prior to the time a
+     * dynamically typesafe view is generated, and that all subsequent
+     * access to the collection takes place through the view, it is
+     * <i>guaranteed</i> that the collection cannot contain an incorrectly
+     * typed element.
+     *
+     * <p>The generics mechanism in the language provides compile-time
+     * (static) type checking, but it is possible to defeat this mechanism
+     * with unchecked casts.  Usually this is not a problem, as the compiler
+     * issues warnings on all such unchecked operations.  There are, however,
+     * times when static type checking alone is not sufficient.  For example,
+     * suppose a collection is passed to a third-party library and it is
+     * imperative that the library code not corrupt the collection by
+     * inserting an element of the wrong type.
+     *
+     * <p>Another use of dynamically typesafe views is debugging.  Suppose a
+     * program fails with a {@code ClassCastException}, indicating that an
+     * incorrectly typed element was put into a parameterized collection.
+     * Unfortunately, the exception can occur at any time after the erroneous
+     * element is inserted, so it typically provides little or no information
+     * as to the real source of the problem.  If the problem is reproducible,
+     * one can quickly determine its source by temporarily modifying the
+     * program to wrap the collection with a dynamically typesafe view.
+     * For example, this declaration:
+     *  <pre> {@code
+     *     Collection<String> c = new HashSet<String>();
+     * }</pre>
+     * may be replaced temporarily by this one:
+     *  <pre> {@code
+     *     Collection<String> c = Collections.checkedCollection(
+     *         new HashSet<String>(), String.class);
+     * }</pre>
+     * Running the program again will cause it to fail at the point where
+     * an incorrectly typed element is inserted into the collection, clearly
+     * identifying the source of the problem.  Once the problem is fixed, the
+     * modified declaration may be reverted back to the original.
+     *
+     * <p>The returned collection does <i>not</i> pass the hashCode and equals
+     * operations through to the backing collection, but relies on
+     * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
+     * is necessary to preserve the contracts of these operations in the case
+     * that the backing collection is a set or a list.
+     *
+     * <p>The returned collection will be serializable if the specified
+     * collection is serializable.
+     *
+     * <p>Since {@code null} is considered to be a value of any reference
+     * type, the returned collection permits insertion of null elements
+     * whenever the backing collection does.
+     *
+     * @param c the collection for which a dynamically typesafe view is to be
+     *          returned
+     * @param type the type of element that {@code c} is permitted to hold
+     * @return a dynamically typesafe view of the specified collection
+     * @since 1.5
+     */
+    public static <E> Collection<E> checkedCollection(Collection<E> c,
+                                                      Class<E> type) {
+        return new CheckedCollection<E>(c, type);
+    }
+
+    @SuppressWarnings("unchecked")
+    static <T> T[] zeroLengthArray(Class<T> type) {
+        return (T[]) Array.newInstance(type, 0);
+    }
+
+    /**
+     * @serial include
+     */
+    static class CheckedCollection<E> implements Collection<E>, Serializable {
+        private static final long serialVersionUID = 1578914078182001775L;
+
+        final Collection<E> c;
+        final Class<E> type;
+
+        void typeCheck(Object o) {
+            if (o != null && !type.isInstance(o))
+                throw new ClassCastException(badElementMsg(o));
+        }
+
+        private String badElementMsg(Object o) {
+            return "Attempt to insert " + o.getClass() +
+                " element into collection with element type " + type;
+        }
+
+        CheckedCollection(Collection<E> c, Class<E> type) {
+            if (c==null || type == null)
+                throw new NullPointerException();
+            this.c = c;
+            this.type = type;
+        }
+
+        public int size()                 { return c.size(); }
+        public boolean isEmpty()          { return c.isEmpty(); }
+        public boolean contains(Object o) { return c.contains(o); }
+        public Object[] toArray()         { return c.toArray(); }
+        public <T> T[] toArray(T[] a)     { return c.toArray(a); }
+        public String toString()          { return c.toString(); }
+        public boolean remove(Object o)   { return c.remove(o); }
+        public void clear()               {        c.clear(); }
+
+        public boolean containsAll(Collection<?> coll) {
+            return c.containsAll(coll);
+        }
+        public boolean removeAll(Collection<?> coll) {
+            return c.removeAll(coll);
+        }
+        public boolean retainAll(Collection<?> coll) {
+            return c.retainAll(coll);
+        }
+
+        public Iterator<E> iterator() {
+            final Iterator<E> it = c.iterator();
+            return new Iterator<E>() {
+                public boolean hasNext() { return it.hasNext(); }
+                public E next()          { return it.next(); }
+                public void remove()     {        it.remove(); }};
+        }
+
+        public boolean add(E e) {
+            typeCheck(e);
+            return c.add(e);
+        }
+
+        private E[] zeroLengthElementArray = null; // Lazily initialized
+
+        private E[] zeroLengthElementArray() {
+            return zeroLengthElementArray != null ? zeroLengthElementArray :
+                (zeroLengthElementArray = zeroLengthArray(type));
+        }
+
+        @SuppressWarnings("unchecked")
+        Collection<E> checkedCopyOf(Collection<? extends E> coll) {
+            Object[] a = null;
+            try {
+                E[] z = zeroLengthElementArray();
+                a = coll.toArray(z);
+                // Defend against coll violating the toArray contract
+                if (a.getClass() != z.getClass())
+                    a = Arrays.copyOf(a, a.length, z.getClass());
+            } catch (ArrayStoreException ignore) {
+                // To get better and consistent diagnostics,
+                // we call typeCheck explicitly on each element.
+                // We call clone() to defend against coll retaining a
+                // reference to the returned array and storing a bad
+                // element into it after it has been type checked.
+                a = coll.toArray().clone();
+                for (Object o : a)
+                    typeCheck(o);
+            }
+            // A slight abuse of the type system, but safe here.
+            return (Collection<E>) Arrays.asList(a);
+        }
+
+        public boolean addAll(Collection<? extends E> coll) {
+            // Doing things this way insulates us from concurrent changes
+            // in the contents of coll and provides all-or-nothing
+            // semantics (which we wouldn't get if we type-checked each
+            // element as we added it)
+            return c.addAll(checkedCopyOf(coll));
+        }
+    }
+
+    /**
+     * Returns a dynamically typesafe view of the specified set.
+     * Any attempt to insert an element of the wrong type will result in
+     * an immediate {@link ClassCastException}.  Assuming a set contains
+     * no incorrectly typed elements prior to the time a dynamically typesafe
+     * view is generated, and that all subsequent access to the set
+     * takes place through the view, it is <i>guaranteed</i> that the
+     * set cannot contain an incorrectly typed element.
+     *
+     * <p>A discussion of the use of dynamically typesafe views may be
+     * found in the documentation for the {@link #checkedCollection
+     * checkedCollection} method.
+     *
+     * <p>The returned set will be serializable if the specified set is
+     * serializable.
+     *
+     * <p>Since {@code null} is considered to be a value of any reference
+     * type, the returned set permits insertion of null elements whenever
+     * the backing set does.
+     *
+     * @param s the set for which a dynamically typesafe view is to be
+     *          returned
+     * @param type the type of element that {@code s} is permitted to hold
+     * @return a dynamically typesafe view of the specified set
+     * @since 1.5
+     */
+    public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
+        return new CheckedSet<E>(s, type);
+    }
+
+    /**
+     * @serial include
+     */
+    static class CheckedSet<E> extends CheckedCollection<E>
+                                 implements Set<E>, Serializable
+    {
+        private static final long serialVersionUID = 4694047833775013803L;
+
+        CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
+
+        public boolean equals(Object o) { return o == this || c.equals(o); }
+        public int hashCode()           { return c.hashCode(); }
+    }
+
+    /**
+     * Returns a dynamically typesafe view of the specified sorted set.
+     * Any attempt to insert an element of the wrong type will result in an
+     * immediate {@link ClassCastException}.  Assuming a sorted set
+     * contains no incorrectly typed elements prior to the time a
+     * dynamically typesafe view is generated, and that all subsequent
+     * access to the sorted set takes place through the view, it is
+     * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
+     * typed element.
+     *
+     * <p>A discussion of the use of dynamically typesafe views may be
+     * found in the documentation for the {@link #checkedCollection
+     * checkedCollection} method.
+     *
+     * <p>The returned sorted set will be serializable if the specified sorted
+     * set is serializable.
+     *
+     * <p>Since {@code null} is considered to be a value of any reference
+     * type, the returned sorted set permits insertion of null elements
+     * whenever the backing sorted set does.
+     *
+     * @param s the sorted set for which a dynamically typesafe view is to be
+     *          returned
+     * @param type the type of element that {@code s} is permitted to hold
+     * @return a dynamically typesafe view of the specified sorted set
+     * @since 1.5
+     */
+    public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
+                                                    Class<E> type) {
+        return new CheckedSortedSet<E>(s, type);
+    }
+
+    /**
+     * @serial include
+     */
+    static class CheckedSortedSet<E> extends CheckedSet<E>
+        implements SortedSet<E>, Serializable
+    {
+        private static final long serialVersionUID = 1599911165492914959L;
+        private final SortedSet<E> ss;
+
+        CheckedSortedSet(SortedSet<E> s, Class<E> type) {
+            super(s, type);
+            ss = s;
+        }
+
+        public Comparator<? super E> comparator() { return ss.comparator(); }
+        public E first()                   { return ss.first(); }
+        public E last()                    { return ss.last(); }
+
+        public SortedSet<E> subSet(E fromElement, E toElement) {
+            return checkedSortedSet(ss.subSet(fromElement,toElement), type);
+        }
+        public SortedSet<E> headSet(E toElement) {
+            return checkedSortedSet(ss.headSet(toElement), type);
+        }
+        public SortedSet<E> tailSet(E fromElement) {
+            return checkedSortedSet(ss.tailSet(fromElement), type);
+        }
+    }
+
+    /**
+     * Returns a dynamically typesafe view of the specified list.
+     * Any attempt to insert an element of the wrong type will result in
+     * an immediate {@link ClassCastException}.  Assuming a list contains
+     * no incorrectly typed elements prior to the time a dynamically typesafe
+     * view is generated, and that all subsequent access to the list
+     * takes place through the view, it is <i>guaranteed</i> that the
+     * list cannot contain an incorrectly typed element.
+     *
+     * <p>A discussion of the use of dynamically typesafe views may be
+     * found in the documentation for the {@link #checkedCollection
+     * checkedCollection} method.
+     *
+     * <p>The returned list will be serializable if the specified list
+     * is serializable.
+     *
+     * <p>Since {@code null} is considered to be a value of any reference
+     * type, the returned list permits insertion of null elements whenever
+     * the backing list does.
+     *
+     * @param list the list for which a dynamically typesafe view is to be
+     *             returned
+     * @param type the type of element that {@code list} is permitted to hold
+     * @return a dynamically typesafe view of the specified list
+     * @since 1.5
+     */
+    public static <E> List<E> checkedList(List<E> list, Class<E> type) {
+        return (list instanceof RandomAccess ?
+                new CheckedRandomAccessList<E>(list, type) :
+                new CheckedList<E>(list, type));
+    }
+
+    /**
+     * @serial include
+     */
+    static class CheckedList<E>
+        extends CheckedCollection<E>
+        implements List<E>
+    {
+        private static final long serialVersionUID = 65247728283967356L;
+        final List<E> list;
+
+        CheckedList(List<E> list, Class<E> type) {
+            super(list, type);
+            this.list = list;
+        }
+
+        public boolean equals(Object o)  { return o == this || list.equals(o); }
+        public int hashCode()            { return list.hashCode(); }
+        public E get(int index)          { return list.get(index); }
+        public E remove(int index)       { return list.remove(index); }
+        public int indexOf(Object o)     { return list.indexOf(o); }
+        public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
+
+        public E set(int index, E element) {
+            typeCheck(element);
+            return list.set(index, element);
+        }
+
+        public void add(int index, E element) {
+            typeCheck(element);
+            list.add(index, element);
+        }
+
+        public boolean addAll(int index, Collection<? extends E> c) {
+            return list.addAll(index, checkedCopyOf(c));
+        }
+        public ListIterator<E> listIterator()   { return listIterator(0); }
+
+        public ListIterator<E> listIterator(final int index) {
+            final ListIterator<E> i = list.listIterator(index);
+
+            return new ListIterator<E>() {
+                public boolean hasNext()     { return i.hasNext(); }
+                public E next()              { return i.next(); }
+                public boolean hasPrevious() { return i.hasPrevious(); }
+                public E previous()          { return i.previous(); }
+                public int nextIndex()       { return i.nextIndex(); }
+                public int previousIndex()   { return i.previousIndex(); }
+                public void remove()         {        i.remove(); }
+
+                public void set(E e) {
+                    typeCheck(e);
+                    i.set(e);
+                }
+
+                public void add(E e) {
+                    typeCheck(e);
+                    i.add(e);
+                }
+            };
+        }
+
+        public List<E> subList(int fromIndex, int toIndex) {
+            return new CheckedList<E>(list.subList(fromIndex, toIndex), type);
+        }
+    }
+
+    /**
+     * @serial include
+     */
+    static class CheckedRandomAccessList<E> extends CheckedList<E>
+                                            implements RandomAccess
+    {
+        private static final long serialVersionUID = 1638200125423088369L;
+
+        CheckedRandomAccessList(List<E> list, Class<E> type) {
+            super(list, type);
+        }
+
+        public List<E> subList(int fromIndex, int toIndex) {
+            return new CheckedRandomAccessList<E>(
+                list.subList(fromIndex, toIndex), type);
+        }
+    }
+
+    /**
+     * Returns a dynamically typesafe view of the specified map.
+     * Any attempt to insert a mapping whose key or value have the wrong
+     * type will result in an immediate {@link ClassCastException}.
+     * Similarly, any attempt to modify the value currently associated with
+     * a key will result in an immediate {@link ClassCastException},
+     * whether the modification is attempted directly through the map
+     * itself, or through a {@link Map.Entry} instance obtained from the
+     * map's {@link Map#entrySet() entry set} view.
+     *
+     * <p>Assuming a map contains no incorrectly typed keys or values
+     * prior to the time a dynamically typesafe view is generated, and
+     * that all subsequent access to the map takes place through the view
+     * (or one of its collection views), it is <i>guaranteed</i> that the
+     * map cannot contain an incorrectly typed key or value.
+     *
+     * <p>A discussion of the use of dynamically typesafe views may be
+     * found in the documentation for the {@link #checkedCollection
+     * checkedCollection} method.
+     *
+     * <p>The returned map will be serializable if the specified map is
+     * serializable.
+     *
+     * <p>Since {@code null} is considered to be a value of any reference
+     * type, the returned map permits insertion of null keys or values
+     * whenever the backing map does.
+     *
+     * @param m the map for which a dynamically typesafe view is to be
+     *          returned
+     * @param keyType the type of key that {@code m} is permitted to hold
+     * @param valueType the type of value that {@code m} is permitted to hold
+     * @return a dynamically typesafe view of the specified map
+     * @since 1.5
+     */
+    public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
+                                              Class<K> keyType,
+                                              Class<V> valueType) {
+        return new CheckedMap<K,V>(m, keyType, valueType);
+    }
+
+
+    /**
+     * @serial include
+     */
+    private static class CheckedMap<K,V>
+        implements Map<K,V>, Serializable
+    {
+        private static final long serialVersionUID = 5742860141034234728L;
+
+        private final Map<K, V> m;
+        final Class<K> keyType;
+        final Class<V> valueType;
+
+        private void typeCheck(Object key, Object value) {
+            if (key != null && !keyType.isInstance(key))
+                throw new ClassCastException(badKeyMsg(key));
+
+            if (value != null && !valueType.isInstance(value))
+                throw new ClassCastException(badValueMsg(value));
+        }
+
+        private String badKeyMsg(Object key) {
+            return "Attempt to insert " + key.getClass() +
+                " key into map with key type " + keyType;
+        }
+
+        private String badValueMsg(Object value) {
+            return "Attempt to insert " + value.getClass() +
+                " value into map with value type " + valueType;
+        }
+
+        CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
+            if (m == null || keyType == null || valueType == null)
+                throw new NullPointerException();
+            this.m = m;
+            this.keyType = keyType;
+            this.valueType = valueType;
+        }
+
+        public int size()                      { return m.size(); }
+        public boolean isEmpty()               { return m.isEmpty(); }
+        public boolean containsKey(Object key) { return m.containsKey(key); }
+        public boolean containsValue(Object v) { return m.containsValue(v); }
+        public V get(Object key)               { return m.get(key); }
+        public V remove(Object key)            { return m.remove(key); }
+        public void clear()                    { m.clear(); }
+        public Set<K> keySet()                 { return m.keySet(); }
+        public Collection<V> values()          { return m.values(); }
+        public boolean equals(Object o)        { return o == this || m.equals(o); }
+        public int hashCode()                  { return m.hashCode(); }
+        public String toString()               { return m.toString(); }
+
+        public V put(K key, V value) {
+            typeCheck(key, value);
+            return m.put(key, value);
+        }
+
+        @SuppressWarnings("unchecked")
+        public void putAll(Map<? extends K, ? extends V> t) {
+            // Satisfy the following goals:
+            // - good diagnostics in case of type mismatch
+            // - all-or-nothing semantics
+            // - protection from malicious t
+            // - correct behavior if t is a concurrent map
+            Object[] entries = t.entrySet().toArray();
+            List<Map.Entry<K,V>> checked =
+                new ArrayList<Map.Entry<K,V>>(entries.length);
+            for (Object o : entries) {
+                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
+                Object k = e.getKey();
+                Object v = e.getValue();
+                typeCheck(k, v);
+                checked.add(
+                    new AbstractMap.SimpleImmutableEntry<K,V>((K) k, (V) v));
+            }
+            for (Map.Entry<K,V> e : checked)
+                m.put(e.getKey(), e.getValue());
+        }
+
+        private transient Set<Map.Entry<K,V>> entrySet = null;
+
+        public Set<Map.Entry<K,V>> entrySet() {
+            if (entrySet==null)
+                entrySet = new CheckedEntrySet<K,V>(m.entrySet(), valueType);
+            return entrySet;
+        }
+
+        /**
+         * We need this class in addition to CheckedSet as Map.Entry permits
+         * modification of the backing Map via the setValue operation.  This
+         * class is subtle: there are many possible attacks that must be
+         * thwarted.
+         *
+         * @serial exclude
+         */
+        static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
+            private final Set<Map.Entry<K,V>> s;
+            private final Class<V> valueType;
+
+            CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
+                this.s = s;
+                this.valueType = valueType;
+            }
+
+            public int size()        { return s.size(); }
+            public boolean isEmpty() { return s.isEmpty(); }
+            public String toString() { return s.toString(); }
+            public int hashCode()    { return s.hashCode(); }
+            public void clear()      {        s.clear(); }
+
+            public boolean add(Map.Entry<K, V> e) {
+                throw new UnsupportedOperationException();
+            }
+            public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
+                throw new UnsupportedOperationException();
+            }
+
+            public Iterator<Map.Entry<K,V>> iterator() {
+                final Iterator<Map.Entry<K, V>> i = s.iterator();
+                final Class<V> valueType = this.valueType;
+
+                return new Iterator<Map.Entry<K,V>>() {
+                    public boolean hasNext() { return i.hasNext(); }
+                    public void remove()     { i.remove(); }
+
+                    public Map.Entry<K,V> next() {
+                        return checkedEntry(i.next(), valueType);
+                    }
+                };
+            }
+
+            @SuppressWarnings("unchecked")
+            public Object[] toArray() {
+                Object[] source = s.toArray();
+
+                /*
+                 * Ensure that we don't get an ArrayStoreException even if
+                 * s.toArray returns an array of something other than Object
+                 */
+                Object[] dest = (CheckedEntry.class.isInstance(
+                    source.getClass().getComponentType()) ? source :
+                                 new Object[source.length]);
+
+                for (int i = 0; i < source.length; i++)
+                    dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
+                                           valueType);
+                return dest;
+            }
+
+            @SuppressWarnings("unchecked")
+            public <T> T[] toArray(T[] a) {
+                // We don't pass a to s.toArray, to avoid window of
+                // vulnerability wherein an unscrupulous multithreaded client
+                // could get his hands on raw (unwrapped) Entries from s.
+                T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
+
+                for (int i=0; i<arr.length; i++)
+                    arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
+                                              valueType);
+                if (arr.length > a.length)
+                    return arr;
+
+                System.arraycopy(arr, 0, a, 0, arr.length);
+                if (a.length > arr.length)
+                    a[arr.length] = null;
+                return a;
+            }
+
+            /**
+             * This method is overridden to protect the backing set against
+             * an object with a nefarious equals function that senses
+             * that the equality-candidate is Map.Entry and calls its
+             * setValue method.
+             */
+            public boolean contains(Object o) {
+                if (!(o instanceof Map.Entry))
+                    return false;
+                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
+                return s.contains(
+                    (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
+            }
+
+            /**
+             * The bulk collection methods are overridden to protect
+             * against an unscrupulous collection whose contains(Object o)
+             * method senses when o is a Map.Entry, and calls o.setValue.
+             */
+            public boolean containsAll(Collection<?> c) {
+                for (Object o : c)
+                    if (!contains(o)) // Invokes safe contains() above
+                        return false;
+                return true;
+            }
+
+            public boolean remove(Object o) {
+                if (!(o instanceof Map.Entry))
+                    return false;
+                return s.remove(new AbstractMap.SimpleImmutableEntry
+                                <Object, Object>((Map.Entry<?,?>)o));
+            }
+
+            public boolean removeAll(Collection<?> c) {
+                return batchRemove(c, false);
+            }
+            public boolean retainAll(Collection<?> c) {
+                return batchRemove(c, true);
+            }
+            private boolean batchRemove(Collection<?> c, boolean complement) {
+                boolean modified = false;
+                Iterator<Map.Entry<K,V>> it = iterator();
+                while (it.hasNext()) {
+                    if (c.contains(it.next()) != complement) {
+                        it.remove();
+                        modified = true;
+                    }
+                }
+                return modified;
+            }
+
+            public boolean equals(Object o) {
+                if (o == this)
+                    return true;
+                if (!(o instanceof Set))
+                    return false;
+                Set<?> that = (Set<?>) o;
+                return that.size() == s.size()
+                    && containsAll(that); // Invokes safe containsAll() above
+            }
+
+            static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
+                                                            Class<T> valueType) {
+                return new CheckedEntry<K,V,T>(e, valueType);
+            }
+
+            /**
+             * This "wrapper class" serves two purposes: it prevents
+             * the client from modifying the backing Map, by short-circuiting
+             * the setValue method, and it protects the backing Map against
+             * an ill-behaved Map.Entry that attempts to modify another
+             * Map.Entry when asked to perform an equality check.
+             */
+            private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
+                private final Map.Entry<K, V> e;
+                private final Class<T> valueType;
+
+                CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
+                    this.e = e;
+                    this.valueType = valueType;
+                }
+
+                public K getKey()        { return e.getKey(); }
+                public V getValue()      { return e.getValue(); }
+                public int hashCode()    { return e.hashCode(); }
+                public String toString() { return e.toString(); }
+
+                public V setValue(V value) {
+                    if (value != null && !valueType.isInstance(value))
+                        throw new ClassCastException(badValueMsg(value));
+                    return e.setValue(value);
+                }
+
+                private String badValueMsg(Object value) {
+                    return "Attempt to insert " + value.getClass() +
+                        " value into map with value type " + valueType;
+                }
+
+                public boolean equals(Object o) {
+                    if (o == this)
+                        return true;
+                    if (!(o instanceof Map.Entry))
+                        return false;
+                    return e.equals(new AbstractMap.SimpleImmutableEntry
+                                    <Object, Object>((Map.Entry<?,?>)o));
+                }
+            }
+        }
+    }
+
+    /**
+     * Returns a dynamically typesafe view of the specified sorted map.
+     * Any attempt to insert a mapping whose key or value have the wrong
+     * type will result in an immediate {@link ClassCastException}.
+     * Similarly, any attempt to modify the value currently associated with
+     * a key will result in an immediate {@link ClassCastException},
+     * whether the modification is attempted directly through the map
+     * itself, or through a {@link Map.Entry} instance obtained from the
+     * map's {@link Map#entrySet() entry set} view.
+     *
+     * <p>Assuming a map contains no incorrectly typed keys or values
+     * prior to the time a dynamically typesafe view is generated, and
+     * that all subsequent access to the map takes place through the view
+     * (or one of its collection views), it is <i>guaranteed</i> that the
+     * map cannot contain an incorrectly typed key or value.
+     *
+     * <p>A discussion of the use of dynamically typesafe views may be
+     * found in the documentation for the {@link #checkedCollection
+     * checkedCollection} method.
+     *
+     * <p>The returned map will be serializable if the specified map is
+     * serializable.
+     *
+     * <p>Since {@code null} is considered to be a value of any reference
+     * type, the returned map permits insertion of null keys or values
+     * whenever the backing map does.
+     *
+     * @param m the map for which a dynamically typesafe view is to be
+     *          returned
+     * @param keyType the type of key that {@code m} is permitted to hold
+     * @param valueType the type of value that {@code m} is permitted to hold
+     * @return a dynamically typesafe view of the specified map
+     * @since 1.5
+     */
+    public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
+                                                        Class<K> keyType,
+                                                        Class<V> valueType) {
+        return new CheckedSortedMap<K,V>(m, keyType, valueType);
+    }
+
+    /**
+     * @serial include
+     */
+    static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
+        implements SortedMap<K,V>, Serializable
+    {
+        private static final long serialVersionUID = 1599671320688067438L;
+
+        private final SortedMap<K, V> sm;
+
+        CheckedSortedMap(SortedMap<K, V> m,
+                         Class<K> keyType, Class<V> valueType) {
+            super(m, keyType, valueType);
+            sm = m;
+        }
+
+        public Comparator<? super K> comparator() { return sm.comparator(); }
+        public K firstKey()                       { return sm.firstKey(); }
+        public K lastKey()                        { return sm.lastKey(); }
+
+        public SortedMap<K,V> subMap(K fromKey, K toKey) {
+            return checkedSortedMap(sm.subMap(fromKey, toKey),
+                                    keyType, valueType);
+        }
+        public SortedMap<K,V> headMap(K toKey) {
+            return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
+        }
+        public SortedMap<K,V> tailMap(K fromKey) {
+            return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
+        }
+    }
+
+    // Empty collections
+
+    /**
+     * Returns an iterator that has no elements.  More precisely,
+     *
+     * <ul compact>
+     *
+     * <li>{@link Iterator#hasNext hasNext} always returns {@code
+     * false}.
+     *
+     * <li>{@link Iterator#next next} always throws {@link
+     * NoSuchElementException}.
+     *
+     * <li>{@link Iterator#remove remove} always throws {@link
+     * IllegalStateException}.
+     *
+     * </ul>
+     *
+     * <p>Implementations of this method are permitted, but not
+     * required, to return the same object from multiple invocations.
+     *
+     * @return an empty iterator
+     * @since 1.7
+     */
+    @SuppressWarnings("unchecked")
+    public static <T> Iterator<T> emptyIterator() {
+        return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
+    }
+
+    private static class EmptyIterator<E> implements Iterator<E> {
+        static final EmptyIterator<Object> EMPTY_ITERATOR
+            = new EmptyIterator<Object>();
+
+        public boolean hasNext() { return false; }
+        public E next() { throw new NoSuchElementException(); }
+        public void remove() { throw new IllegalStateException(); }
+    }
+
+    /**
+     * Returns a list iterator that has no elements.  More precisely,
+     *
+     * <ul compact>
+     *
+     * <li>{@link Iterator#hasNext hasNext} and {@link
+     * ListIterator#hasPrevious hasPrevious} always return {@code
+     * false}.
+     *
+     * <li>{@link Iterator#next next} and {@link ListIterator#previous
+     * previous} always throw {@link NoSuchElementException}.
+     *
+     * <li>{@link Iterator#remove remove} and {@link ListIterator#set
+     * set} always throw {@link IllegalStateException}.
+     *
+     * <li>{@link ListIterator#add add} always throws {@link
+     * UnsupportedOperationException}.
+     *
+     * <li>{@link ListIterator#nextIndex nextIndex} always returns
+     * {@code 0} .
+     *
+     * <li>{@link ListIterator#previousIndex previousIndex} always
+     * returns {@code -1}.
+     *
+     * </ul>
+     *
+     * <p>Implementations of this method are permitted, but not
+     * required, to return the same object from multiple invocations.
+     *
+     * @return an empty list iterator
+     * @since 1.7
+     */
+    @SuppressWarnings("unchecked")
+    public static <T> ListIterator<T> emptyListIterator() {
+        return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
+    }
+
+    private static class EmptyListIterator<E>
+        extends EmptyIterator<E>
+        implements ListIterator<E>
+    {
+        static final EmptyListIterator<Object> EMPTY_ITERATOR
+            = new EmptyListIterator<Object>();
+
+        public boolean hasPrevious() { return false; }
+        public E previous() { throw new NoSuchElementException(); }
+        public int nextIndex()     { return 0; }
+        public int previousIndex() { return -1; }
+        public void set(E e) { throw new IllegalStateException(); }
+        public void add(E e) { throw new UnsupportedOperationException(); }
+    }
+
+    /**
+     * Returns an enumeration that has no elements.  More precisely,
+     *
+     * <ul compact>
+     *
+     * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
+     * returns {@code false}.
+     *
+     * <li> {@link Enumeration#nextElement nextElement} always throws
+     * {@link NoSuchElementException}.
+     *
+     * </ul>
+     *
+     * <p>Implementations of this method are permitted, but not
+     * required, to return the same object from multiple invocations.
+     *
+     * @return an empty enumeration
+     * @since 1.7
+     */
+    @SuppressWarnings("unchecked")
+    public static <T> Enumeration<T> emptyEnumeration() {
+        return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
+    }
+
+    private static class EmptyEnumeration<E> implements Enumeration<E> {
+        static final EmptyEnumeration<Object> EMPTY_ENUMERATION
+            = new EmptyEnumeration<Object>();
+
+        public boolean hasMoreElements() { return false; }
+        public E nextElement() { throw new NoSuchElementException(); }
+    }
+
+    /**
+     * The empty set (immutable).  This set is serializable.
+     *
+     * @see #emptySet()
+     */
+    @SuppressWarnings("unchecked")
+    public static final Set EMPTY_SET = new EmptySet<Object>();
+
+    /**
+     * Returns the empty set (immutable).  This set is serializable.
+     * Unlike the like-named field, this method is parameterized.
+     *
+     * <p>This example illustrates the type-safe way to obtain an empty set:
+     * <pre>
+     *     Set&lt;String&gt; s = Collections.emptySet();
+     * </pre>
+     * Implementation note:  Implementations of this method need not
+     * create a separate <tt>Set</tt> object for each call.   Using this
+     * method is likely to have comparable cost to using the like-named
+     * field.  (Unlike this method, the field does not provide type safety.)
+     *
+     * @see #EMPTY_SET
+     * @since 1.5
+     */
+    @SuppressWarnings("unchecked")
+    public static final <T> Set<T> emptySet() {
+        return (Set<T>) EMPTY_SET;
+    }
+
+    /**
+     * @serial include
+     */
+    private static class EmptySet<E>
+        extends AbstractSet<E>
+        implements Serializable
+    {
+        private static final long serialVersionUID = 1582296315990362920L;
+
+        public Iterator<E> iterator() { return emptyIterator(); }
+
+        public int size() {return 0;}
+        public boolean isEmpty() {return true;}
+
+        public boolean contains(Object obj) {return false;}
+        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
+
+        public Object[] toArray() { return new Object[0]; }
+
+        public <T> T[] toArray(T[] a) {
+            if (a.length > 0)
+                a[0] = null;
+            return a;
+        }
+
+        // Preserves singleton property
+        private Object readResolve() {
+            return EMPTY_SET;
+        }
+    }
+
+    /**
+     * The empty list (immutable).  This list is serializable.
+     *
+     * @see #emptyList()
+     */
+    @SuppressWarnings("unchecked")
+    public static final List EMPTY_LIST = new EmptyList<Object>();
+
+    /**
+     * Returns the empty list (immutable).  This list is serializable.
+     *
+     * <p>This example illustrates the type-safe way to obtain an empty list:
+     * <pre>
+     *     List&lt;String&gt; s = Collections.emptyList();
+     * </pre>
+     * Implementation note:  Implementations of this method need not
+     * create a separate <tt>List</tt> object for each call.   Using this
+     * method is likely to have comparable cost to using the like-named
+     * field.  (Unlike this method, the field does not provide type safety.)
+     *
+     * @see #EMPTY_LIST
+     * @since 1.5
+     */
+    @SuppressWarnings("unchecked")
+    public static final <T> List<T> emptyList() {
+        return (List<T>) EMPTY_LIST;
+    }
+
+    /**
+     * @serial include
+     */
+    private static class EmptyList<E>
+        extends AbstractList<E>
+        implements RandomAccess, Serializable {
+        private static final long serialVersionUID = 8842843931221139166L;
+
+        public Iterator<E> iterator() {
+            return emptyIterator();
+        }
+        public ListIterator<E> listIterator() {
+            return emptyListIterator();
+        }
+
+        public int size() {return 0;}
+        public boolean isEmpty() {return true;}
+
+        public boolean contains(Object obj) {return false;}
+        public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
+
+        public Object[] toArray() { return new Object[0]; }
+
+        public <T> T[] toArray(T[] a) {
+            if (a.length > 0)
+                a[0] = null;
+            return a;
+        }
+
+        public E get(int index) {
+            throw new IndexOutOfBoundsException("Index: "+index);
+        }
+
+        public boolean equals(Object o) {
+            return (o instanceof List) && ((List<?>)o).isEmpty();
+        }
+
+        public int hashCode() { return 1; }
+
+        // Preserves singleton property
+        private Object readResolve() {
+            return EMPTY_LIST;
+        }
+    }
+
+    /**
+     * The empty map (immutable).  This map is serializable.
+     *
+     * @see #emptyMap()
+     * @since 1.3
+     */
+    @SuppressWarnings("unchecked")
+    public static final Map EMPTY_MAP = new EmptyMap<Object,Object>();
+
+    /**
+     * Returns the empty map (immutable).  This map is serializable.
+     *
+     * <p>This example illustrates the type-safe way to obtain an empty set:
+     * <pre>
+     *     Map&lt;String, Date&gt; s = Collections.emptyMap();
+     * </pre>
+     * Implementation note:  Implementations of this method need not
+     * create a separate <tt>Map</tt> object for each call.   Using this
+     * method is likely to have comparable cost to using the like-named
+     * field.  (Unlike this method, the field does not provide type safety.)
+     *
+     * @see #EMPTY_MAP
+     * @since 1.5
+     */
+    @SuppressWarnings("unchecked")
+    public static final <K,V> Map<K,V> emptyMap() {
+        return (Map<K,V>) EMPTY_MAP;
+    }
+
+    /**
+     * @serial include
+     */
+    private static class EmptyMap<K,V>
+        extends AbstractMap<K,V>
+        implements Serializable
+    {
+        private static final long serialVersionUID = 6428348081105594320L;
+
+        public int size()                          {return 0;}
+        public boolean isEmpty()                   {return true;}
+        public boolean containsKey(Object key)     {return false;}
+        public boolean containsValue(Object value) {return false;}
+        public V get(Object key)                   {return null;}
+        public Set<K> keySet()                     {return emptySet();}
+        public Collection<V> values()              {return emptySet();}
+        public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
+
+        public boolean equals(Object o) {
+            return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
+        }
+
+        public int hashCode()                      {return 0;}
+
+        // Preserves singleton property
+        private Object readResolve() {
+            return EMPTY_MAP;
+        }
+    }
+
+    // Singleton collections
+
+    /**
+     * Returns an immutable set containing only the specified object.
+     * The returned set is serializable.
+     *
+     * @param o the sole object to be stored in the returned set.
+     * @return an immutable set containing only the specified object.
+     */
+    public static <T> Set<T> singleton(T o) {
+        return new SingletonSet<T>(o);
+    }
+
+    static <E> Iterator<E> singletonIterator(final E e) {
+        return new Iterator<E>() {
+            private boolean hasNext = true;
+            public boolean hasNext() {
+                return hasNext;
+            }
+            public E next() {
+                if (hasNext) {
+                    hasNext = false;
+                    return e;
+                }
+                throw new NoSuchElementException();
+            }
+            public void remove() {
+                throw new UnsupportedOperationException();
+            }
+        };
+    }
+
+    /**
+     * @serial include
+     */
+    private static class SingletonSet<E>
+        extends AbstractSet<E>
+        implements Serializable
+    {
+        private static final long serialVersionUID = 3193687207550431679L;
+
+        final private E element;
+
+        SingletonSet(E e) {element = e;}
+
+        public Iterator<E> iterator() {
+            return singletonIterator(element);
+        }
+
+        public int size() {return 1;}
+
+        public boolean contains(Object o) {return eq(o, element);}
+    }
+
+    /**
+     * Returns an immutable list containing only the specified object.
+     * The returned list is serializable.
+     *
+     * @param o the sole object to be stored in the returned list.
+     * @return an immutable list containing only the specified object.
+     * @since 1.3
+     */
+    public static <T> List<T> singletonList(T o) {
+        return new SingletonList<T>(o);
+    }
+
+    /**
+     * @serial include
+     */
+    private static class SingletonList<E>
+        extends AbstractList<E>
+        implements RandomAccess, Serializable {
+
+        private static final long serialVersionUID = 3093736618740652951L;
+
+        private final E element;
+
+        SingletonList(E obj)                {element = obj;}
+
+        public Iterator<E> iterator() {
+            return singletonIterator(element);
+        }
+
+        public int size()                   {return 1;}
+
+        public boolean contains(Object obj) {return eq(obj, element);}
+
+        public E get(int index) {
+            if (index != 0)
+              throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
+            return element;
+        }
+    }
+
+    /**
+     * Returns an immutable map, mapping only the specified key to the
+     * specified value.  The returned map is serializable.
+     *
+     * @param key the sole key to be stored in the returned map.
+     * @param value the value to which the returned map maps <tt>key</tt>.
+     * @return an immutable map containing only the specified key-value
+     *         mapping.
+     * @since 1.3
+     */
+    public static <K,V> Map<K,V> singletonMap(K key, V value) {
+        return new SingletonMap<K,V>(key, value);
+    }
+
+    /**
+     * @serial include
+     */
+    private static class SingletonMap<K,V>
+          extends AbstractMap<K,V>
+          implements Serializable {
+        private static final long serialVersionUID = -6979724477215052911L;
+
+        private final K k;
+        private final V v;
+
+        SingletonMap(K key, V value) {
+            k = key;
+            v = value;
+        }
+
+        public int size()                          {return 1;}
+
+        public boolean isEmpty()                   {return false;}
+
+        public boolean containsKey(Object key)     {return eq(key, k);}
+
+        public boolean containsValue(Object value) {return eq(value, v);}
+
+        public V get(Object key)                   {return (eq(key, k) ? v : null);}
+
+        private transient Set<K> keySet = null;
+        private transient Set<Map.Entry<K,V>> entrySet = null;
+        private transient Collection<V> values = null;
+
+        public Set<K> keySet() {
+            if (keySet==null)
+                keySet = singleton(k);
+            return keySet;
+        }
+
+        public Set<Map.Entry<K,V>> entrySet() {
+            if (entrySet==null)
+                entrySet = Collections.<Map.Entry<K,V>>singleton(
+                    new SimpleImmutableEntry<K,V>(k, v));
+            return entrySet;
+        }
+
+        public Collection<V> values() {
+            if (values==null)
+                values = singleton(v);
+            return values;
+        }
+
+    }
+
+    // Miscellaneous
+
+    /**
+     * Returns an immutable list consisting of <tt>n</tt> copies of the
+     * specified object.  The newly allocated data object is tiny (it contains
+     * a single reference to the data object).  This method is useful in
+     * combination with the <tt>List.addAll</tt> method to grow lists.
+     * The returned list is serializable.
+     *
+     * @param  n the number of elements in the returned list.
+     * @param  o the element to appear repeatedly in the returned list.
+     * @return an immutable list consisting of <tt>n</tt> copies of the
+     *         specified object.
+     * @throws IllegalArgumentException if n &lt; 0.
+     * @see    List#addAll(Collection)
+     * @see    List#addAll(int, Collection)
+     */
+    public static <T> List<T> nCopies(int n, T o) {
+        if (n < 0)
+            throw new IllegalArgumentException("List length = " + n);
+        return new CopiesList<T>(n, o);
+    }
+
+    /**
+     * @serial include
+     */
+    private static class CopiesList<E>
+        extends AbstractList<E>
+        implements RandomAccess, Serializable
+    {
+        private static final long serialVersionUID = 2739099268398711800L;
+
+        final int n;
+        final E element;
+
+        CopiesList(int n, E e) {
+            assert n >= 0;
+            this.n = n;
+            element = e;
+        }
+
+        public int size() {
+            return n;
+        }
+
+        public boolean contains(Object obj) {
+            return n != 0 && eq(obj, element);
+        }
+
+        public int indexOf(Object o) {
+            return contains(o) ? 0 : -1;
+        }
+
+        public int lastIndexOf(Object o) {
+            return contains(o) ? n - 1 : -1;
+        }
+
+        public E get(int index) {
+            if (index < 0 || index >= n)
+                throw new IndexOutOfBoundsException("Index: "+index+
+                                                    ", Size: "+n);
+            return element;
+        }
+
+        public Object[] toArray() {
+            final Object[] a = new Object[n];
+            if (element != null)
+                Arrays.fill(a, 0, n, element);
+            return a;
+        }
+
+        public <T> T[] toArray(T[] a) {
+            final int n = this.n;
+            if (a.length < n) {
+                a = (T[])java.lang.reflect.Array
+                    .newInstance(a.getClass().getComponentType(), n);
+                if (element != null)
+                    Arrays.fill(a, 0, n, element);
+            } else {
+                Arrays.fill(a, 0, n, element);
+                if (a.length > n)
+                    a[n] = null;
+            }
+            return a;
+        }
+
+        public List<E> subList(int fromIndex, int toIndex) {
+            if (fromIndex < 0)
+                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
+            if (toIndex > n)
+                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
+            if (fromIndex > toIndex)
+                throw new IllegalArgumentException("fromIndex(" + fromIndex +
+                                                   ") > toIndex(" + toIndex + ")");
+            return new CopiesList<E>(toIndex - fromIndex, element);
+        }
+    }
+
+    /**
+     * Returns a comparator that imposes the reverse of the <i>natural
+     * ordering</i> on a collection of objects that implement the
+     * <tt>Comparable</tt> interface.  (The natural ordering is the ordering
+     * imposed by the objects' own <tt>compareTo</tt> method.)  This enables a
+     * simple idiom for sorting (or maintaining) collections (or arrays) of
+     * objects that implement the <tt>Comparable</tt> interface in
+     * reverse-natural-order.  For example, suppose a is an array of
+     * strings. Then: <pre>
+     *          Arrays.sort(a, Collections.reverseOrder());
+     * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
+     *
+     * The returned comparator is serializable.
+     *
+     * @return a comparator that imposes the reverse of the <i>natural
+     *         ordering</i> on a collection of objects that implement
+     *         the <tt>Comparable</tt> interface.
+     * @see Comparable
+     */
+    public static <T> Comparator<T> reverseOrder() {
+        return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
+    }
+
+    /**
+     * @serial include
+     */
+    private static class ReverseComparator
+        implements Comparator<Comparable<Object>>, Serializable {
+
+        private static final long serialVersionUID = 7207038068494060240L;
+
+        static final ReverseComparator REVERSE_ORDER
+            = new ReverseComparator();
+
+        public int compare(Comparable<Object> c1, Comparable<Object> c2) {
+            return c2.compareTo(c1);
+        }
+
+        private Object readResolve() { return reverseOrder(); }
+    }
+
+    /**
+     * Returns a comparator that imposes the reverse ordering of the specified
+     * comparator.  If the specified comparator is null, this method is
+     * equivalent to {@link #reverseOrder()} (in other words, it returns a
+     * comparator that imposes the reverse of the <i>natural ordering</i> on a
+     * collection of objects that implement the Comparable interface).
+     *
+     * <p>The returned comparator is serializable (assuming the specified
+     * comparator is also serializable or null).
+     *
+     * @return a comparator that imposes the reverse ordering of the
+     *         specified comparator
+     * @since 1.5
+     */
+    public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
+        if (cmp == null)
+            return reverseOrder();
+
+        if (cmp instanceof ReverseComparator2)
+            return ((ReverseComparator2<T>)cmp).cmp;
+
+        return new ReverseComparator2<T>(cmp);
+    }
+
+    /**
+     * @serial include
+     */
+    private static class ReverseComparator2<T> implements Comparator<T>,
+        Serializable
+    {
+        private static final long serialVersionUID = 4374092139857L;
+
+        /**
+         * The comparator specified in the static factory.  This will never
+         * be null, as the static factory returns a ReverseComparator
+         * instance if its argument is null.
+         *
+         * @serial
+         */
+        final Comparator<T> cmp;
+
+        ReverseComparator2(Comparator<T> cmp) {
+            assert cmp != null;
+            this.cmp = cmp;
+        }
+
+        public int compare(T t1, T t2) {
+            return cmp.compare(t2, t1);
+        }
+
+        public boolean equals(Object o) {
+            return (o == this) ||
+                (o instanceof ReverseComparator2 &&
+                 cmp.equals(((ReverseComparator2)o).cmp));
+        }
+
+        public int hashCode() {
+            return cmp.hashCode() ^ Integer.MIN_VALUE;
+        }
+    }
+
+    /**
+     * Returns an enumeration over the specified collection.  This provides
+     * interoperability with legacy APIs that require an enumeration
+     * as input.
+     *
+     * @param c the collection for which an enumeration is to be returned.
+     * @return an enumeration over the specified collection.
+     * @see Enumeration
+     */
+    public static <T> Enumeration<T> enumeration(final Collection<T> c) {
+        return new Enumeration<T>() {
+            private final Iterator<T> i = c.iterator();
+
+            public boolean hasMoreElements() {
+                return i.hasNext();
+            }
+
+            public T nextElement() {
+                return i.next();
+            }
+        };
+    }
+
+    /**
+     * Returns an array list containing the elements returned by the
+     * specified enumeration in the order they are returned by the
+     * enumeration.  This method provides interoperability between
+     * legacy APIs that return enumerations and new APIs that require
+     * collections.
+     *
+     * @param e enumeration providing elements for the returned
+     *          array list
+     * @return an array list containing the elements returned
+     *         by the specified enumeration.
+     * @since 1.4
+     * @see Enumeration
+     * @see ArrayList
+     */
+    public static <T> ArrayList<T> list(Enumeration<T> e) {
+        ArrayList<T> l = new ArrayList<T>();
+        while (e.hasMoreElements())
+            l.add(e.nextElement());
+        return l;
+    }
+
+    /**
+     * Returns true if the specified arguments are equal, or both null.
+     */
+    static boolean eq(Object o1, Object o2) {
+        return o1==null ? o2==null : o1.equals(o2);
+    }
+
+    /**
+     * Returns the number of elements in the specified collection equal to the
+     * specified object.  More formally, returns the number of elements
+     * <tt>e</tt> in the collection such that
+     * <tt>(o == null ? e == null : o.equals(e))</tt>.
+     *
+     * @param c the collection in which to determine the frequency
+     *     of <tt>o</tt>
+     * @param o the object whose frequency is to be determined
+     * @throws NullPointerException if <tt>c</tt> is null
+     * @since 1.5
+     */
+    public static int frequency(Collection<?> c, Object o) {
+        int result = 0;
+        if (o == null) {
+            for (Object e : c)
+                if (e == null)
+                    result++;
+        } else {
+            for (Object e : c)
+                if (o.equals(e))
+                    result++;
+        }
+        return result;
+    }
+
+    /**
+     * Returns <tt>true</tt> if the two specified collections have no
+     * elements in common.
+     *
+     * <p>Care must be exercised if this method is used on collections that
+     * do not comply with the general contract for <tt>Collection</tt>.
+     * Implementations may elect to iterate over either collection and test
+     * for containment in the other collection (or to perform any equivalent
+     * computation).  If either collection uses a nonstandard equality test
+     * (as does a {@link SortedSet} whose ordering is not <i>compatible with
+     * equals</i>, or the key set of an {@link IdentityHashMap}), both
+     * collections must use the same nonstandard equality test, or the
+     * result of this method is undefined.
+     *
+     * <p>Note that it is permissible to pass the same collection in both
+     * parameters, in which case the method will return true if and only if
+     * the collection is empty.
+     *
+     * @param c1 a collection
+     * @param c2 a collection
+     * @throws NullPointerException if either collection is null
+     * @since 1.5
+     */
+    public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
+        /*
+         * We're going to iterate through c1 and test for inclusion in c2.
+         * If c1 is a Set and c2 isn't, swap the collections.  Otherwise,
+         * place the shorter collection in c1.  Hopefully this heuristic
+         * will minimize the cost of the operation.
+         */
+        if ((c1 instanceof Set) && !(c2 instanceof Set) ||
+            (c1.size() > c2.size())) {
+            Collection<?> tmp = c1;
+            c1 = c2;
+            c2 = tmp;
+        }
+
+        for (Object e : c1)
+            if (c2.contains(e))
+                return false;
+        return true;
+    }
+
+    /**
+     * Adds all of the specified elements to the specified collection.
+     * Elements to be added may be specified individually or as an array.
+     * The behavior of this convenience method is identical to that of
+     * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
+     * to run significantly faster under most implementations.
+     *
+     * <p>When elements are specified individually, this method provides a
+     * convenient way to add a few elements to an existing collection:
+     * <pre>
+     *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
+     * </pre>
+     *
+     * @param c the collection into which <tt>elements</tt> are to be inserted
+     * @param elements the elements to insert into <tt>c</tt>
+     * @return <tt>true</tt> if the collection changed as a result of the call
+     * @throws UnsupportedOperationException if <tt>c</tt> does not support
+     *         the <tt>add</tt> operation
+     * @throws NullPointerException if <tt>elements</tt> contains one or more
+     *         null values and <tt>c</tt> does not permit null elements, or
+     *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
+     * @throws IllegalArgumentException if some property of a value in
+     *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
+     * @see Collection#addAll(Collection)
+     * @since 1.5
+     */
+    public static <T> boolean addAll(Collection<? super T> c, T... elements) {
+        boolean result = false;
+        for (T element : elements)
+            result |= c.add(element);
+        return result;
+    }
+
+    /**
+     * Returns a set backed by the specified map.  The resulting set displays
+     * the same ordering, concurrency, and performance characteristics as the
+     * backing map.  In essence, this factory method provides a {@link Set}
+     * implementation corresponding to any {@link Map} implementation.  There
+     * is no need to use this method on a {@link Map} implementation that
+     * already has a corresponding {@link Set} implementation (such as {@link
+     * HashMap} or {@link TreeMap}).
+     *
+     * <p>Each method invocation on the set returned by this method results in
+     * exactly one method invocation on the backing map or its <tt>keySet</tt>
+     * view, with one exception.  The <tt>addAll</tt> method is implemented
+     * as a sequence of <tt>put</tt> invocations on the backing map.
+     *
+     * <p>The specified map must be empty at the time this method is invoked,
+     * and should not be accessed directly after this method returns.  These
+     * conditions are ensured if the map is created empty, passed directly
+     * to this method, and no reference to the map is retained, as illustrated
+     * in the following code fragment:
+     * <pre>
+     *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
+     *        new WeakHashMap&lt;Object, Boolean&gt;());
+     * </pre>
+     *
+     * @param map the backing map
+     * @return the set backed by the map
+     * @throws IllegalArgumentException if <tt>map</tt> is not empty
+     * @since 1.6
+     */
+    public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
+        return new SetFromMap<E>(map);
+    }
+
+    /**
+     * @serial include
+     */
+    private static class SetFromMap<E> extends AbstractSet<E>
+        implements Set<E>, Serializable
+    {
+        private final Map<E, Boolean> m;  // The backing map
+        private transient Set<E> s;       // Its keySet
+
+        SetFromMap(Map<E, Boolean> map) {
+            if (!map.isEmpty())
+                throw new IllegalArgumentException("Map is non-empty");
+            m = map;
+            s = map.keySet();
+        }
+
+        public void clear()               {        m.clear(); }
+        public int size()                 { return m.size(); }
+        public boolean isEmpty()          { return m.isEmpty(); }
+        public boolean contains(Object o) { return m.containsKey(o); }
+        public boolean remove(Object o)   { return m.remove(o) != null; }
+        public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
+        public Iterator<E> iterator()     { return s.iterator(); }
+        public Object[] toArray()         { return s.toArray(); }
+        public <T> T[] toArray(T[] a)     { return s.toArray(a); }
+        public String toString()          { return s.toString(); }
+        public int hashCode()             { return s.hashCode(); }
+        public boolean equals(Object o)   { return o == this || s.equals(o); }
+        public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
+        public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
+        public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
+        // addAll is the only inherited implementation
+
+        private static final long serialVersionUID = 2454657854757543876L;
+
+        private void readObject(java.io.ObjectInputStream stream)
+            throws IOException, ClassNotFoundException
+        {
+            stream.defaultReadObject();
+            s = m.keySet();
+        }
+    }
+
+    /**
+     * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
+     * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
+     * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
+     * view can be useful when you would like to use a method
+     * requiring a <tt>Queue</tt> but you need Lifo ordering.
+     *
+     * <p>Each method invocation on the queue returned by this method
+     * results in exactly one method invocation on the backing deque, with
+     * one exception.  The {@link Queue#addAll addAll} method is
+     * implemented as a sequence of {@link Deque#addFirst addFirst}
+     * invocations on the backing deque.
+     *
+     * @param deque the deque
+     * @return the queue
+     * @since  1.6
+     */
+    public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
+        return new AsLIFOQueue<T>(deque);
+    }
+
+    /**
+     * @serial include
+     */
+    static class AsLIFOQueue<E> extends AbstractQueue<E>
+        implements Queue<E>, Serializable {
+        private static final long serialVersionUID = 1802017725587941708L;
+        private final Deque<E> q;
+        AsLIFOQueue(Deque<E> q)           { this.q = q; }
+        public boolean add(E e)           { q.addFirst(e); return true; }
+        public boolean offer(E e)         { return q.offerFirst(e); }
+        public E poll()                   { return q.pollFirst(); }
+        public E remove()                 { return q.removeFirst(); }
+        public E peek()                   { return q.peekFirst(); }
+        public E element()                { return q.getFirst(); }
+        public void clear()               {        q.clear(); }
+        public int size()                 { return q.size(); }
+        public boolean isEmpty()          { return q.isEmpty(); }
+        public boolean contains(Object o) { return q.contains(o); }
+        public boolean remove(Object o)   { return q.remove(o); }
+        public Iterator<E> iterator()     { return q.iterator(); }
+        public Object[] toArray()         { return q.toArray(); }
+        public <T> T[] toArray(T[] a)     { return q.toArray(a); }
+        public String toString()          { return q.toString(); }
+        public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
+        public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
+        public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
+        // We use inherited addAll; forwarding addAll would be wrong
+    }
+}