2
|
1 |
/*
|
|
2 |
* Copyright 1995-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
*
|
|
4 |
* Redistribution and use in source and binary forms, with or without
|
|
5 |
* modification, are permitted provided that the following conditions
|
|
6 |
* are met:
|
|
7 |
*
|
|
8 |
* - Redistributions of source code must retain the above copyright
|
|
9 |
* notice, this list of conditions and the following disclaimer.
|
|
10 |
*
|
|
11 |
* - Redistributions in binary form must reproduce the above copyright
|
|
12 |
* notice, this list of conditions and the following disclaimer in the
|
|
13 |
* documentation and/or other materials provided with the distribution.
|
|
14 |
*
|
|
15 |
* - Neither the name of Sun Microsystems nor the names of its
|
|
16 |
* contributors may be used to endorse or promote products derived
|
|
17 |
* from this software without specific prior written permission.
|
|
18 |
*
|
|
19 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
20 |
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
21 |
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
22 |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
23 |
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
24 |
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
25 |
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
26 |
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
27 |
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
28 |
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
29 |
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
30 |
*/
|
|
31 |
|
|
32 |
/*
|
|
33 |
*/
|
|
34 |
|
|
35 |
/** A fairly conventional 3D matrix object that can transform sets of
|
|
36 |
3D points and perform a variety of manipulations on the transform */
|
|
37 |
class Matrix3D {
|
|
38 |
float xx, xy, xz, xo;
|
|
39 |
float yx, yy, yz, yo;
|
|
40 |
float zx, zy, zz, zo;
|
|
41 |
static final double pi = 3.14159265;
|
|
42 |
/** Create a new unit matrix */
|
|
43 |
Matrix3D () {
|
|
44 |
xx = 1.0f;
|
|
45 |
yy = 1.0f;
|
|
46 |
zz = 1.0f;
|
|
47 |
}
|
|
48 |
/** Scale by f in all dimensions */
|
|
49 |
void scale(float f) {
|
|
50 |
xx *= f;
|
|
51 |
xy *= f;
|
|
52 |
xz *= f;
|
|
53 |
xo *= f;
|
|
54 |
yx *= f;
|
|
55 |
yy *= f;
|
|
56 |
yz *= f;
|
|
57 |
yo *= f;
|
|
58 |
zx *= f;
|
|
59 |
zy *= f;
|
|
60 |
zz *= f;
|
|
61 |
zo *= f;
|
|
62 |
}
|
|
63 |
/** Scale along each axis independently */
|
|
64 |
void scale(float xf, float yf, float zf) {
|
|
65 |
xx *= xf;
|
|
66 |
xy *= xf;
|
|
67 |
xz *= xf;
|
|
68 |
xo *= xf;
|
|
69 |
yx *= yf;
|
|
70 |
yy *= yf;
|
|
71 |
yz *= yf;
|
|
72 |
yo *= yf;
|
|
73 |
zx *= zf;
|
|
74 |
zy *= zf;
|
|
75 |
zz *= zf;
|
|
76 |
zo *= zf;
|
|
77 |
}
|
|
78 |
/** Translate the origin */
|
|
79 |
void translate(float x, float y, float z) {
|
|
80 |
xo += x;
|
|
81 |
yo += y;
|
|
82 |
zo += z;
|
|
83 |
}
|
|
84 |
/** rotate theta degrees about the y axis */
|
|
85 |
void yrot(double theta) {
|
|
86 |
theta *= (pi / 180);
|
|
87 |
double ct = Math.cos(theta);
|
|
88 |
double st = Math.sin(theta);
|
|
89 |
|
|
90 |
float Nxx = (float) (xx * ct + zx * st);
|
|
91 |
float Nxy = (float) (xy * ct + zy * st);
|
|
92 |
float Nxz = (float) (xz * ct + zz * st);
|
|
93 |
float Nxo = (float) (xo * ct + zo * st);
|
|
94 |
|
|
95 |
float Nzx = (float) (zx * ct - xx * st);
|
|
96 |
float Nzy = (float) (zy * ct - xy * st);
|
|
97 |
float Nzz = (float) (zz * ct - xz * st);
|
|
98 |
float Nzo = (float) (zo * ct - xo * st);
|
|
99 |
|
|
100 |
xo = Nxo;
|
|
101 |
xx = Nxx;
|
|
102 |
xy = Nxy;
|
|
103 |
xz = Nxz;
|
|
104 |
zo = Nzo;
|
|
105 |
zx = Nzx;
|
|
106 |
zy = Nzy;
|
|
107 |
zz = Nzz;
|
|
108 |
}
|
|
109 |
/** rotate theta degrees about the x axis */
|
|
110 |
void xrot(double theta) {
|
|
111 |
theta *= (pi / 180);
|
|
112 |
double ct = Math.cos(theta);
|
|
113 |
double st = Math.sin(theta);
|
|
114 |
|
|
115 |
float Nyx = (float) (yx * ct + zx * st);
|
|
116 |
float Nyy = (float) (yy * ct + zy * st);
|
|
117 |
float Nyz = (float) (yz * ct + zz * st);
|
|
118 |
float Nyo = (float) (yo * ct + zo * st);
|
|
119 |
|
|
120 |
float Nzx = (float) (zx * ct - yx * st);
|
|
121 |
float Nzy = (float) (zy * ct - yy * st);
|
|
122 |
float Nzz = (float) (zz * ct - yz * st);
|
|
123 |
float Nzo = (float) (zo * ct - yo * st);
|
|
124 |
|
|
125 |
yo = Nyo;
|
|
126 |
yx = Nyx;
|
|
127 |
yy = Nyy;
|
|
128 |
yz = Nyz;
|
|
129 |
zo = Nzo;
|
|
130 |
zx = Nzx;
|
|
131 |
zy = Nzy;
|
|
132 |
zz = Nzz;
|
|
133 |
}
|
|
134 |
/** rotate theta degrees about the z axis */
|
|
135 |
void zrot(double theta) {
|
|
136 |
theta *= (pi / 180);
|
|
137 |
double ct = Math.cos(theta);
|
|
138 |
double st = Math.sin(theta);
|
|
139 |
|
|
140 |
float Nyx = (float) (yx * ct + xx * st);
|
|
141 |
float Nyy = (float) (yy * ct + xy * st);
|
|
142 |
float Nyz = (float) (yz * ct + xz * st);
|
|
143 |
float Nyo = (float) (yo * ct + xo * st);
|
|
144 |
|
|
145 |
float Nxx = (float) (xx * ct - yx * st);
|
|
146 |
float Nxy = (float) (xy * ct - yy * st);
|
|
147 |
float Nxz = (float) (xz * ct - yz * st);
|
|
148 |
float Nxo = (float) (xo * ct - yo * st);
|
|
149 |
|
|
150 |
yo = Nyo;
|
|
151 |
yx = Nyx;
|
|
152 |
yy = Nyy;
|
|
153 |
yz = Nyz;
|
|
154 |
xo = Nxo;
|
|
155 |
xx = Nxx;
|
|
156 |
xy = Nxy;
|
|
157 |
xz = Nxz;
|
|
158 |
}
|
|
159 |
/** Multiply this matrix by a second: M = M*R */
|
|
160 |
void mult(Matrix3D rhs) {
|
|
161 |
float lxx = xx * rhs.xx + yx * rhs.xy + zx * rhs.xz;
|
|
162 |
float lxy = xy * rhs.xx + yy * rhs.xy + zy * rhs.xz;
|
|
163 |
float lxz = xz * rhs.xx + yz * rhs.xy + zz * rhs.xz;
|
|
164 |
float lxo = xo * rhs.xx + yo * rhs.xy + zo * rhs.xz + rhs.xo;
|
|
165 |
|
|
166 |
float lyx = xx * rhs.yx + yx * rhs.yy + zx * rhs.yz;
|
|
167 |
float lyy = xy * rhs.yx + yy * rhs.yy + zy * rhs.yz;
|
|
168 |
float lyz = xz * rhs.yx + yz * rhs.yy + zz * rhs.yz;
|
|
169 |
float lyo = xo * rhs.yx + yo * rhs.yy + zo * rhs.yz + rhs.yo;
|
|
170 |
|
|
171 |
float lzx = xx * rhs.zx + yx * rhs.zy + zx * rhs.zz;
|
|
172 |
float lzy = xy * rhs.zx + yy * rhs.zy + zy * rhs.zz;
|
|
173 |
float lzz = xz * rhs.zx + yz * rhs.zy + zz * rhs.zz;
|
|
174 |
float lzo = xo * rhs.zx + yo * rhs.zy + zo * rhs.zz + rhs.zo;
|
|
175 |
|
|
176 |
xx = lxx;
|
|
177 |
xy = lxy;
|
|
178 |
xz = lxz;
|
|
179 |
xo = lxo;
|
|
180 |
|
|
181 |
yx = lyx;
|
|
182 |
yy = lyy;
|
|
183 |
yz = lyz;
|
|
184 |
yo = lyo;
|
|
185 |
|
|
186 |
zx = lzx;
|
|
187 |
zy = lzy;
|
|
188 |
zz = lzz;
|
|
189 |
zo = lzo;
|
|
190 |
}
|
|
191 |
|
|
192 |
/** Reinitialize to the unit matrix */
|
|
193 |
void unit() {
|
|
194 |
xo = 0;
|
|
195 |
xx = 1;
|
|
196 |
xy = 0;
|
|
197 |
xz = 0;
|
|
198 |
yo = 0;
|
|
199 |
yx = 0;
|
|
200 |
yy = 1;
|
|
201 |
yz = 0;
|
|
202 |
zo = 0;
|
|
203 |
zx = 0;
|
|
204 |
zy = 0;
|
|
205 |
zz = 1;
|
|
206 |
}
|
|
207 |
/** Transform nvert points from v into tv. v contains the input
|
|
208 |
coordinates in floating point. Three successive entries in
|
|
209 |
the array constitute a point. tv ends up holding the transformed
|
|
210 |
points as integers; three successive entries per point */
|
|
211 |
void transform(float v[], int tv[], int nvert) {
|
|
212 |
float lxx = xx, lxy = xy, lxz = xz, lxo = xo;
|
|
213 |
float lyx = yx, lyy = yy, lyz = yz, lyo = yo;
|
|
214 |
float lzx = zx, lzy = zy, lzz = zz, lzo = zo;
|
|
215 |
for (int i = nvert * 3; (i -= 3) >= 0;) {
|
|
216 |
float x = v[i];
|
|
217 |
float y = v[i + 1];
|
|
218 |
float z = v[i + 2];
|
|
219 |
tv[i ] = (int) (x * lxx + y * lxy + z * lxz + lxo);
|
|
220 |
tv[i + 1] = (int) (x * lyx + y * lyy + z * lyz + lyo);
|
|
221 |
tv[i + 2] = (int) (x * lzx + y * lzy + z * lzz + lzo);
|
|
222 |
}
|
|
223 |
}
|
|
224 |
public String toString() {
|
|
225 |
return ("[" + xo + "," + xx + "," + xy + "," + xz + ";"
|
|
226 |
+ yo + "," + yx + "," + yy + "," + yz + ";"
|
|
227 |
+ zo + "," + zx + "," + zy + "," + zz + "]");
|
|
228 |
}
|
|
229 |
}
|