author | ctornqvi |
Fri, 13 Feb 2015 05:17:41 -0800 | |
changeset 28957 | 75ca61f0b7c7 |
parent 24425 | 53764d2358f9 |
permissions | -rw-r--r-- |
1 | 1 |
/* |
8320 | 2 |
* Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
1
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
1
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
1
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
7397 | 25 |
#ifndef SHARE_VM_OPTO_INDEXSET_HPP |
26 |
#define SHARE_VM_OPTO_INDEXSET_HPP |
|
27 |
||
28 |
#include "memory/allocation.hpp" |
|
29 |
#include "memory/resourceArea.hpp" |
|
30 |
#include "opto/compile.hpp" |
|
31 |
#include "opto/regmask.hpp" |
|
32 |
||
1 | 33 |
// This file defines the IndexSet class, a set of sparse integer indices. |
34 |
// This data structure is used by the compiler in its liveness analysis and |
|
35 |
// during register allocation. |
|
36 |
||
37 |
//-------------------------------- class IndexSet ---------------------------- |
|
38 |
// An IndexSet is a piece-wise bitvector. At the top level, we have an array |
|
39 |
// of pointers to bitvector chunks called BitBlocks. Each BitBlock has a fixed |
|
40 |
// size and is allocated from a shared free list. The bits which are set in |
|
41 |
// each BitBlock correspond to the elements of the set. |
|
42 |
||
43 |
class IndexSet : public ResourceObj { |
|
44 |
friend class IndexSetIterator; |
|
45 |
||
46 |
public: |
|
47 |
// When we allocate an IndexSet, it starts off with an array of top level block |
|
48 |
// pointers of a set length. This size is intended to be large enough for the |
|
49 |
// majority of IndexSets. In the cases when this size is not large enough, |
|
50 |
// a separately allocated array is used. |
|
51 |
||
52 |
// The length of the preallocated top level block array |
|
53 |
enum { preallocated_block_list_size = 16 }; |
|
54 |
||
55 |
// Elements of a IndexSet get decomposed into three fields. The highest order |
|
56 |
// bits are the block index, which tell which high level block holds the element. |
|
57 |
// Within that block, the word index indicates which word holds the element. |
|
58 |
// Finally, the bit index determines which single bit within that word indicates |
|
59 |
// membership of the element in the set. |
|
60 |
||
61 |
// The lengths of the index bitfields |
|
62 |
enum { bit_index_length = 5, |
|
63 |
word_index_length = 3, |
|
64 |
block_index_length = 8 // not used |
|
65 |
}; |
|
66 |
||
67 |
// Derived constants used for manipulating the index bitfields |
|
68 |
enum { |
|
69 |
bit_index_offset = 0, // not used |
|
70 |
word_index_offset = bit_index_length, |
|
71 |
block_index_offset = bit_index_length + word_index_length, |
|
72 |
||
73 |
bits_per_word = 1 << bit_index_length, |
|
74 |
words_per_block = 1 << word_index_length, |
|
75 |
bits_per_block = bits_per_word * words_per_block, |
|
76 |
||
77 |
bit_index_mask = right_n_bits(bit_index_length), |
|
78 |
word_index_mask = right_n_bits(word_index_length) |
|
79 |
}; |
|
80 |
||
81 |
// These routines are used for extracting the block, word, and bit index |
|
82 |
// from an element. |
|
83 |
static uint get_block_index(uint element) { |
|
84 |
return element >> block_index_offset; |
|
85 |
} |
|
86 |
static uint get_word_index(uint element) { |
|
87 |
return mask_bits(element >> word_index_offset,word_index_mask); |
|
88 |
} |
|
89 |
static uint get_bit_index(uint element) { |
|
90 |
return mask_bits(element,bit_index_mask); |
|
91 |
} |
|
92 |
||
93 |
//------------------------------ class BitBlock ---------------------------- |
|
94 |
// The BitBlock class is a segment of a bitvector set. |
|
95 |
||
96 |
class BitBlock : public ResourceObj { |
|
97 |
friend class IndexSetIterator; |
|
98 |
friend class IndexSet; |
|
99 |
||
100 |
private: |
|
101 |
// All of BitBlocks fields and methods are declared private. We limit |
|
102 |
// access to IndexSet and IndexSetIterator. |
|
103 |
||
104 |
// A BitBlock is composed of some number of 32 bit words. When a BitBlock |
|
105 |
// is not in use by any IndexSet, it is stored on a free list. The next field |
|
106 |
// is used by IndexSet to mainting this free list. |
|
107 |
||
108 |
union { |
|
24425 | 109 |
uint32_t _words[words_per_block]; |
1 | 110 |
BitBlock *_next; |
111 |
} _data; |
|
112 |
||
113 |
// accessors |
|
24425 | 114 |
uint32_t* words() { return _data._words; } |
1 | 115 |
void set_next(BitBlock *next) { _data._next = next; } |
116 |
BitBlock *next() { return _data._next; } |
|
117 |
||
118 |
// Operations. A BitBlock supports four simple operations, |
|
119 |
// clear(), member(), insert(), and remove(). These methods do |
|
120 |
// not assume that the block index has been masked out. |
|
121 |
||
122 |
void clear() { |
|
24425 | 123 |
memset(words(), 0, sizeof(uint32_t) * words_per_block); |
1 | 124 |
} |
125 |
||
126 |
bool member(uint element) { |
|
127 |
uint word_index = IndexSet::get_word_index(element); |
|
128 |
uint bit_index = IndexSet::get_bit_index(element); |
|
129 |
||
24425 | 130 |
return ((words()[word_index] & (uint32_t)(0x1 << bit_index)) != 0); |
1 | 131 |
} |
132 |
||
133 |
bool insert(uint element) { |
|
134 |
uint word_index = IndexSet::get_word_index(element); |
|
135 |
uint bit_index = IndexSet::get_bit_index(element); |
|
136 |
||
24425 | 137 |
uint32_t bit = (0x1 << bit_index); |
138 |
uint32_t before = words()[word_index]; |
|
1 | 139 |
words()[word_index] = before | bit; |
140 |
return ((before & bit) != 0); |
|
141 |
} |
|
142 |
||
143 |
bool remove(uint element) { |
|
144 |
uint word_index = IndexSet::get_word_index(element); |
|
145 |
uint bit_index = IndexSet::get_bit_index(element); |
|
146 |
||
24425 | 147 |
uint32_t bit = (0x1 << bit_index); |
148 |
uint32_t before = words()[word_index]; |
|
1 | 149 |
words()[word_index] = before & ~bit; |
150 |
return ((before & bit) != 0); |
|
151 |
} |
|
152 |
}; |
|
153 |
||
154 |
//-------------------------- BitBlock allocation --------------------------- |
|
155 |
private: |
|
156 |
||
157 |
// All IndexSets share an arena from which they allocate BitBlocks. Unused |
|
158 |
// BitBlocks are placed on a free list. |
|
159 |
||
160 |
// The number of BitBlocks to allocate at a time |
|
161 |
enum { bitblock_alloc_chunk_size = 50 }; |
|
162 |
||
163 |
static Arena *arena() { return Compile::current()->indexSet_arena(); } |
|
164 |
||
165 |
static void populate_free_list(); |
|
166 |
||
167 |
public: |
|
168 |
||
169 |
// Invalidate the current free BitBlock list and begin allocation |
|
170 |
// from a new arena. It is essential that this method is called whenever |
|
171 |
// the Arena being used for BitBlock allocation is reset. |
|
172 |
static void reset_memory(Compile* compile, Arena *arena) { |
|
173 |
compile->set_indexSet_free_block_list(NULL); |
|
174 |
compile->set_indexSet_arena(arena); |
|
175 |
||
176 |
// This should probably be done in a static initializer |
|
177 |
_empty_block.clear(); |
|
178 |
} |
|
179 |
||
180 |
private: |
|
181 |
friend class BitBlock; |
|
182 |
// A distinguished BitBlock which always remains empty. When a new IndexSet is |
|
183 |
// created, all of its top level BitBlock pointers are initialized to point to |
|
184 |
// this. |
|
185 |
static BitBlock _empty_block; |
|
186 |
||
187 |
//-------------------------- Members ------------------------------------------ |
|
188 |
||
189 |
// The number of elements in the set |
|
190 |
uint _count; |
|
191 |
||
192 |
// Our top level array of bitvector segments |
|
193 |
BitBlock **_blocks; |
|
194 |
||
195 |
BitBlock *_preallocated_block_list[preallocated_block_list_size]; |
|
196 |
||
197 |
// The number of top level array entries in use |
|
198 |
uint _max_blocks; |
|
199 |
||
200 |
// Our assertions need to know the maximum number allowed in the set |
|
201 |
#ifdef ASSERT |
|
202 |
uint _max_elements; |
|
203 |
#endif |
|
204 |
||
205 |
// The next IndexSet on the free list (not used at same time as count) |
|
206 |
IndexSet *_next; |
|
207 |
||
208 |
public: |
|
209 |
//-------------------------- Free list operations ------------------------------ |
|
210 |
// Individual IndexSets can be placed on a free list. This is done in PhaseLive. |
|
211 |
||
212 |
IndexSet *next() { |
|
213 |
#ifdef ASSERT |
|
214 |
if( VerifyOpto ) { |
|
215 |
check_watch("removed from free list?", ((_next == NULL) ? 0 : _next->_serial_number)); |
|
216 |
} |
|
217 |
#endif |
|
218 |
return _next; |
|
219 |
} |
|
220 |
||
221 |
void set_next(IndexSet *next) { |
|
222 |
#ifdef ASSERT |
|
223 |
if( VerifyOpto ) { |
|
224 |
check_watch("put on free list?", ((next == NULL) ? 0 : next->_serial_number)); |
|
225 |
} |
|
226 |
#endif |
|
227 |
_next = next; |
|
228 |
} |
|
229 |
||
230 |
private: |
|
231 |
//-------------------------- Utility methods ----------------------------------- |
|
232 |
||
233 |
// Get the block which holds element |
|
234 |
BitBlock *get_block_containing(uint element) const { |
|
235 |
assert(element < _max_elements, "element out of bounds"); |
|
236 |
return _blocks[get_block_index(element)]; |
|
237 |
} |
|
238 |
||
239 |
// Set a block in the top level array |
|
240 |
void set_block(uint index, BitBlock *block) { |
|
241 |
#ifdef ASSERT |
|
242 |
if( VerifyOpto ) |
|
243 |
check_watch("set block", index); |
|
244 |
#endif |
|
245 |
_blocks[index] = block; |
|
246 |
} |
|
247 |
||
248 |
// Get a BitBlock from the free list |
|
249 |
BitBlock *alloc_block(); |
|
250 |
||
251 |
// Get a BitBlock from the free list and place it in the top level array |
|
252 |
BitBlock *alloc_block_containing(uint element); |
|
253 |
||
254 |
// Free a block from the top level array, placing it on the free BitBlock list |
|
255 |
void free_block(uint i); |
|
256 |
||
257 |
public: |
|
258 |
//-------------------------- Primitive set operations -------------------------- |
|
259 |
||
260 |
void clear() { |
|
261 |
#ifdef ASSERT |
|
262 |
if( VerifyOpto ) |
|
263 |
check_watch("clear"); |
|
264 |
#endif |
|
265 |
_count = 0; |
|
266 |
for (uint i = 0; i < _max_blocks; i++) { |
|
267 |
BitBlock *block = _blocks[i]; |
|
268 |
if (block != &_empty_block) { |
|
269 |
free_block(i); |
|
270 |
} |
|
271 |
} |
|
272 |
} |
|
273 |
||
274 |
uint count() const { return _count; } |
|
275 |
||
276 |
bool is_empty() const { return _count == 0; } |
|
277 |
||
278 |
bool member(uint element) const { |
|
279 |
return get_block_containing(element)->member(element); |
|
280 |
} |
|
281 |
||
282 |
bool insert(uint element) { |
|
283 |
#ifdef ASSERT |
|
284 |
if( VerifyOpto ) |
|
285 |
check_watch("insert", element); |
|
286 |
#endif |
|
287 |
if (element == 0) { |
|
288 |
return 0; |
|
289 |
} |
|
290 |
BitBlock *block = get_block_containing(element); |
|
291 |
if (block == &_empty_block) { |
|
292 |
block = alloc_block_containing(element); |
|
293 |
} |
|
294 |
bool present = block->insert(element); |
|
295 |
if (!present) { |
|
296 |
_count++; |
|
297 |
} |
|
298 |
return !present; |
|
299 |
} |
|
300 |
||
301 |
bool remove(uint element) { |
|
302 |
#ifdef ASSERT |
|
303 |
if( VerifyOpto ) |
|
304 |
check_watch("remove", element); |
|
305 |
#endif |
|
306 |
||
307 |
BitBlock *block = get_block_containing(element); |
|
308 |
bool present = block->remove(element); |
|
309 |
if (present) { |
|
310 |
_count--; |
|
311 |
} |
|
312 |
return present; |
|
313 |
} |
|
314 |
||
315 |
//-------------------------- Compound set operations ------------------------ |
|
316 |
// Compute the union of all elements of one and two which interfere |
|
317 |
// with the RegMask mask. If the degree of the union becomes |
|
318 |
// exceeds fail_degree, the union bails out. The underlying set is |
|
319 |
// cleared before the union is performed. |
|
320 |
uint lrg_union(uint lr1, uint lr2, |
|
321 |
const uint fail_degree, |
|
322 |
const class PhaseIFG *ifg, |
|
323 |
const RegMask &mask); |
|
324 |
||
325 |
||
326 |
//------------------------- Construction, initialization ----------------------- |
|
327 |
||
328 |
IndexSet() {} |
|
329 |
||
330 |
// This constructor is used for making a deep copy of a IndexSet. |
|
331 |
IndexSet(IndexSet *set); |
|
332 |
||
333 |
// Perform initialization on a IndexSet |
|
334 |
void initialize(uint max_element); |
|
335 |
||
336 |
// Initialize a IndexSet. If the top level BitBlock array needs to be |
|
337 |
// allocated, do it from the proffered arena. BitBlocks are still allocated |
|
338 |
// from the static Arena member. |
|
339 |
void initialize(uint max_element, Arena *arena); |
|
340 |
||
341 |
// Exchange two sets |
|
342 |
void swap(IndexSet *set); |
|
343 |
||
344 |
//-------------------------- Debugging and statistics -------------------------- |
|
345 |
||
346 |
#ifndef PRODUCT |
|
347 |
// Output a IndexSet for debugging |
|
348 |
void dump() const; |
|
349 |
#endif |
|
350 |
||
351 |
#ifdef ASSERT |
|
352 |
void tally_iteration_statistics() const; |
|
353 |
||
354 |
// BitBlock allocation statistics |
|
8320 | 355 |
static julong _alloc_new; |
356 |
static julong _alloc_total; |
|
1 | 357 |
|
358 |
// Block density statistics |
|
8320 | 359 |
static julong _total_bits; |
360 |
static julong _total_used_blocks; |
|
361 |
static julong _total_unused_blocks; |
|
1 | 362 |
|
363 |
// Sanity tests |
|
364 |
void verify() const; |
|
365 |
||
366 |
static int _serial_count; |
|
367 |
int _serial_number; |
|
368 |
||
369 |
// Check to see if the serial number of the current set is the one we're tracing. |
|
370 |
// If it is, print a message. |
|
371 |
void check_watch(const char *operation, uint operand) const { |
|
372 |
if (IndexSetWatch != 0) { |
|
373 |
if (IndexSetWatch == -1 || _serial_number == IndexSetWatch) { |
|
374 |
tty->print_cr("IndexSet %d : %s ( %d )", _serial_number, operation, operand); |
|
375 |
} |
|
376 |
} |
|
377 |
} |
|
378 |
void check_watch(const char *operation) const { |
|
379 |
if (IndexSetWatch != 0) { |
|
380 |
if (IndexSetWatch == -1 || _serial_number == IndexSetWatch) { |
|
381 |
tty->print_cr("IndexSet %d : %s", _serial_number, operation); |
|
382 |
} |
|
383 |
} |
|
384 |
} |
|
385 |
||
386 |
public: |
|
387 |
static void print_statistics(); |
|
388 |
||
389 |
#endif |
|
390 |
}; |
|
391 |
||
392 |
||
393 |
//-------------------------------- class IndexSetIterator -------------------- |
|
394 |
// An iterator for IndexSets. |
|
395 |
||
396 |
class IndexSetIterator VALUE_OBJ_CLASS_SPEC { |
|
397 |
friend class IndexSet; |
|
398 |
||
399 |
public: |
|
400 |
||
401 |
// We walk over the bits in a word in chunks of size window_size. |
|
402 |
enum { window_size = 5, |
|
403 |
window_mask = right_n_bits(window_size), |
|
404 |
table_size = (1 << window_size) }; |
|
405 |
||
406 |
// For an integer of length window_size, what is the first set bit? |
|
24425 | 407 |
static const uint8_t _first_bit[table_size]; |
1 | 408 |
|
409 |
// For an integer of length window_size, what is the second set bit? |
|
24425 | 410 |
static const uint8_t _second_bit[table_size]; |
1 | 411 |
|
412 |
private: |
|
413 |
// The current word we are inspecting |
|
24425 | 414 |
uint32_t _current; |
1 | 415 |
|
416 |
// What element number are we currently on? |
|
417 |
uint _value; |
|
418 |
||
419 |
// The index of the next word we will inspect |
|
420 |
uint _next_word; |
|
421 |
||
422 |
// A pointer to the contents of the current block |
|
24425 | 423 |
uint32_t *_words; |
1 | 424 |
|
425 |
// The index of the next block we will inspect |
|
426 |
uint _next_block; |
|
427 |
||
428 |
// A pointer to the blocks in our set |
|
429 |
IndexSet::BitBlock **_blocks; |
|
430 |
||
431 |
// The number of blocks in the set |
|
432 |
uint _max_blocks; |
|
433 |
||
434 |
// If the iterator was created from a non-const set, we replace |
|
435 |
// non-canonical empty blocks with the _empty_block pointer. If |
|
436 |
// _set is NULL, we do no replacement. |
|
437 |
IndexSet *_set; |
|
438 |
||
439 |
// Advance to the next non-empty word and return the next |
|
440 |
// element in the set. |
|
441 |
uint advance_and_next(); |
|
442 |
||
443 |
||
444 |
public: |
|
445 |
||
446 |
// If an iterator is built from a constant set then empty blocks |
|
447 |
// are not canonicalized. |
|
448 |
IndexSetIterator(IndexSet *set); |
|
449 |
IndexSetIterator(const IndexSet *set); |
|
450 |
||
451 |
// Return the next element of the set. Return 0 when done. |
|
452 |
uint next() { |
|
453 |
uint current = _current; |
|
454 |
if (current != 0) { |
|
455 |
uint value = _value; |
|
456 |
while (mask_bits(current,window_mask) == 0) { |
|
457 |
current >>= window_size; |
|
458 |
value += window_size; |
|
459 |
} |
|
460 |
||
461 |
uint advance = _second_bit[mask_bits(current,window_mask)]; |
|
462 |
_current = current >> advance; |
|
463 |
_value = value + advance; |
|
464 |
return value + _first_bit[mask_bits(current,window_mask)]; |
|
465 |
} else { |
|
466 |
return advance_and_next(); |
|
467 |
} |
|
468 |
} |
|
469 |
}; |
|
7397 | 470 |
|
471 |
#endif // SHARE_VM_OPTO_INDEXSET_HPP |