47126
|
1 |
/*
|
|
2 |
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Oracle designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Oracle in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
22 |
* or visit www.oracle.com if you need additional information or have any
|
|
23 |
* questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
package sun.java2d.marlin;
|
|
27 |
|
|
28 |
import java.util.Arrays;
|
|
29 |
|
|
30 |
/**
|
|
31 |
* The <code>DDasher</code> class takes a series of linear commands
|
|
32 |
* (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
|
|
33 |
* <code>end</code>) and breaks them into smaller segments according to a
|
|
34 |
* dash pattern array and a starting dash phase.
|
|
35 |
*
|
|
36 |
* <p> Issues: in J2Se, a zero length dash segment as drawn as a very
|
|
37 |
* short dash, whereas Pisces does not draw anything. The PostScript
|
|
38 |
* semantics are unclear.
|
|
39 |
*
|
|
40 |
*/
|
|
41 |
final class DDasher implements DPathConsumer2D, MarlinConst {
|
|
42 |
|
|
43 |
static final int REC_LIMIT = 4;
|
|
44 |
static final double ERR = 0.01d;
|
|
45 |
static final double MIN_T_INC = 1.0d / (1 << REC_LIMIT);
|
|
46 |
|
|
47 |
// More than 24 bits of mantissa means we can no longer accurately
|
|
48 |
// measure the number of times cycled through the dash array so we
|
|
49 |
// punt and override the phase to just be 0 past that point.
|
|
50 |
static final double MAX_CYCLES = 16000000.0d;
|
|
51 |
|
|
52 |
private DPathConsumer2D out;
|
|
53 |
private double[] dash;
|
|
54 |
private int dashLen;
|
|
55 |
private double startPhase;
|
|
56 |
private boolean startDashOn;
|
|
57 |
private int startIdx;
|
|
58 |
|
|
59 |
private boolean starting;
|
|
60 |
private boolean needsMoveTo;
|
|
61 |
|
|
62 |
private int idx;
|
|
63 |
private boolean dashOn;
|
|
64 |
private double phase;
|
|
65 |
|
|
66 |
private double sx, sy;
|
|
67 |
private double x0, y0;
|
|
68 |
|
|
69 |
// temporary storage for the current curve
|
|
70 |
private final double[] curCurvepts;
|
|
71 |
|
|
72 |
// per-thread renderer context
|
|
73 |
final DRendererContext rdrCtx;
|
|
74 |
|
|
75 |
// flag to recycle dash array copy
|
|
76 |
boolean recycleDashes;
|
|
77 |
|
|
78 |
// dashes ref (dirty)
|
|
79 |
final DoubleArrayCache.Reference dashes_ref;
|
|
80 |
// firstSegmentsBuffer ref (dirty)
|
|
81 |
final DoubleArrayCache.Reference firstSegmentsBuffer_ref;
|
|
82 |
|
|
83 |
/**
|
|
84 |
* Constructs a <code>DDasher</code>.
|
|
85 |
* @param rdrCtx per-thread renderer context
|
|
86 |
*/
|
|
87 |
DDasher(final DRendererContext rdrCtx) {
|
|
88 |
this.rdrCtx = rdrCtx;
|
|
89 |
|
|
90 |
dashes_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K
|
|
91 |
|
|
92 |
firstSegmentsBuffer_ref = rdrCtx.newDirtyDoubleArrayRef(INITIAL_ARRAY); // 1K
|
|
93 |
firstSegmentsBuffer = firstSegmentsBuffer_ref.initial;
|
|
94 |
|
|
95 |
// we need curCurvepts to be able to contain 2 curves because when
|
|
96 |
// dashing curves, we need to subdivide it
|
|
97 |
curCurvepts = new double[8 * 2];
|
|
98 |
}
|
|
99 |
|
|
100 |
/**
|
|
101 |
* Initialize the <code>DDasher</code>.
|
|
102 |
*
|
|
103 |
* @param out an output <code>DPathConsumer2D</code>.
|
|
104 |
* @param dash an array of <code>double</code>s containing the dash pattern
|
|
105 |
* @param dashLen length of the given dash array
|
|
106 |
* @param phase a <code>double</code> containing the dash phase
|
|
107 |
* @param recycleDashes true to indicate to recycle the given dash array
|
|
108 |
* @return this instance
|
|
109 |
*/
|
|
110 |
DDasher init(final DPathConsumer2D out, double[] dash, int dashLen,
|
|
111 |
double phase, boolean recycleDashes)
|
|
112 |
{
|
|
113 |
this.out = out;
|
|
114 |
|
|
115 |
// Normalize so 0 <= phase < dash[0]
|
|
116 |
int sidx = 0;
|
|
117 |
dashOn = true;
|
|
118 |
double sum = 0.0d;
|
|
119 |
for (double d : dash) {
|
|
120 |
sum += d;
|
|
121 |
}
|
|
122 |
double cycles = phase / sum;
|
|
123 |
if (phase < 0.0d) {
|
|
124 |
if (-cycles >= MAX_CYCLES) {
|
|
125 |
phase = 0.0d;
|
|
126 |
} else {
|
|
127 |
int fullcycles = FloatMath.floor_int(-cycles);
|
|
128 |
if ((fullcycles & dash.length & 1) != 0) {
|
|
129 |
dashOn = !dashOn;
|
|
130 |
}
|
|
131 |
phase += fullcycles * sum;
|
|
132 |
while (phase < 0.0d) {
|
|
133 |
if (--sidx < 0) {
|
|
134 |
sidx = dash.length - 1;
|
|
135 |
}
|
|
136 |
phase += dash[sidx];
|
|
137 |
dashOn = !dashOn;
|
|
138 |
}
|
|
139 |
}
|
|
140 |
} else if (phase > 0) {
|
|
141 |
if (cycles >= MAX_CYCLES) {
|
|
142 |
phase = 0.0d;
|
|
143 |
} else {
|
|
144 |
int fullcycles = FloatMath.floor_int(cycles);
|
|
145 |
if ((fullcycles & dash.length & 1) != 0) {
|
|
146 |
dashOn = !dashOn;
|
|
147 |
}
|
|
148 |
phase -= fullcycles * sum;
|
|
149 |
double d;
|
|
150 |
while (phase >= (d = dash[sidx])) {
|
|
151 |
phase -= d;
|
|
152 |
sidx = (sidx + 1) % dash.length;
|
|
153 |
dashOn = !dashOn;
|
|
154 |
}
|
|
155 |
}
|
|
156 |
}
|
|
157 |
|
|
158 |
this.dash = dash;
|
|
159 |
this.dashLen = dashLen;
|
|
160 |
this.startPhase = this.phase = phase;
|
|
161 |
this.startDashOn = dashOn;
|
|
162 |
this.startIdx = sidx;
|
|
163 |
this.starting = true;
|
|
164 |
needsMoveTo = false;
|
|
165 |
firstSegidx = 0;
|
|
166 |
|
|
167 |
this.recycleDashes = recycleDashes;
|
|
168 |
|
|
169 |
return this; // fluent API
|
|
170 |
}
|
|
171 |
|
|
172 |
/**
|
|
173 |
* Disposes this dasher:
|
|
174 |
* clean up before reusing this instance
|
|
175 |
*/
|
|
176 |
void dispose() {
|
|
177 |
if (DO_CLEAN_DIRTY) {
|
|
178 |
// Force zero-fill dirty arrays:
|
|
179 |
Arrays.fill(curCurvepts, 0.0d);
|
|
180 |
}
|
|
181 |
// Return arrays:
|
|
182 |
if (recycleDashes) {
|
|
183 |
dash = dashes_ref.putArray(dash);
|
|
184 |
}
|
|
185 |
firstSegmentsBuffer = firstSegmentsBuffer_ref.putArray(firstSegmentsBuffer);
|
|
186 |
}
|
|
187 |
|
|
188 |
double[] copyDashArray(final float[] dashes) {
|
|
189 |
final int len = dashes.length;
|
|
190 |
final double[] newDashes;
|
|
191 |
if (len <= MarlinConst.INITIAL_ARRAY) {
|
|
192 |
newDashes = dashes_ref.initial;
|
|
193 |
} else {
|
|
194 |
if (DO_STATS) {
|
|
195 |
rdrCtx.stats.stat_array_dasher_dasher.add(len);
|
|
196 |
}
|
|
197 |
newDashes = dashes_ref.getArray(len);
|
|
198 |
}
|
|
199 |
for (int i = 0; i < len; i++) { newDashes[i] = dashes[i]; }
|
|
200 |
return newDashes;
|
|
201 |
}
|
|
202 |
|
|
203 |
@Override
|
|
204 |
public void moveTo(double x0, double y0) {
|
|
205 |
if (firstSegidx > 0) {
|
|
206 |
out.moveTo(sx, sy);
|
|
207 |
emitFirstSegments();
|
|
208 |
}
|
|
209 |
needsMoveTo = true;
|
|
210 |
this.idx = startIdx;
|
|
211 |
this.dashOn = this.startDashOn;
|
|
212 |
this.phase = this.startPhase;
|
|
213 |
this.sx = this.x0 = x0;
|
|
214 |
this.sy = this.y0 = y0;
|
|
215 |
this.starting = true;
|
|
216 |
}
|
|
217 |
|
|
218 |
private void emitSeg(double[] buf, int off, int type) {
|
|
219 |
switch (type) {
|
|
220 |
case 8:
|
|
221 |
out.curveTo(buf[off+0], buf[off+1],
|
|
222 |
buf[off+2], buf[off+3],
|
|
223 |
buf[off+4], buf[off+5]);
|
|
224 |
return;
|
|
225 |
case 6:
|
|
226 |
out.quadTo(buf[off+0], buf[off+1],
|
|
227 |
buf[off+2], buf[off+3]);
|
|
228 |
return;
|
|
229 |
case 4:
|
|
230 |
out.lineTo(buf[off], buf[off+1]);
|
|
231 |
return;
|
|
232 |
default:
|
|
233 |
}
|
|
234 |
}
|
|
235 |
|
|
236 |
private void emitFirstSegments() {
|
|
237 |
final double[] fSegBuf = firstSegmentsBuffer;
|
|
238 |
|
|
239 |
for (int i = 0; i < firstSegidx; ) {
|
|
240 |
int type = (int)fSegBuf[i];
|
|
241 |
emitSeg(fSegBuf, i + 1, type);
|
|
242 |
i += (type - 1);
|
|
243 |
}
|
|
244 |
firstSegidx = 0;
|
|
245 |
}
|
|
246 |
// We don't emit the first dash right away. If we did, caps would be
|
|
247 |
// drawn on it, but we need joins to be drawn if there's a closePath()
|
|
248 |
// So, we store the path elements that make up the first dash in the
|
|
249 |
// buffer below.
|
|
250 |
private double[] firstSegmentsBuffer; // dynamic array
|
|
251 |
private int firstSegidx;
|
|
252 |
|
|
253 |
// precondition: pts must be in relative coordinates (relative to x0,y0)
|
|
254 |
private void goTo(double[] pts, int off, final int type) {
|
|
255 |
double x = pts[off + type - 4];
|
|
256 |
double y = pts[off + type - 3];
|
|
257 |
if (dashOn) {
|
|
258 |
if (starting) {
|
|
259 |
int len = type - 1; // - 2 + 1
|
|
260 |
int segIdx = firstSegidx;
|
|
261 |
double[] buf = firstSegmentsBuffer;
|
|
262 |
if (segIdx + len > buf.length) {
|
|
263 |
if (DO_STATS) {
|
|
264 |
rdrCtx.stats.stat_array_dasher_firstSegmentsBuffer
|
|
265 |
.add(segIdx + len);
|
|
266 |
}
|
|
267 |
firstSegmentsBuffer = buf
|
|
268 |
= firstSegmentsBuffer_ref.widenArray(buf, segIdx,
|
|
269 |
segIdx + len);
|
|
270 |
}
|
|
271 |
buf[segIdx++] = type;
|
|
272 |
len--;
|
|
273 |
// small arraycopy (2, 4 or 6) but with offset:
|
|
274 |
System.arraycopy(pts, off, buf, segIdx, len);
|
|
275 |
segIdx += len;
|
|
276 |
firstSegidx = segIdx;
|
|
277 |
} else {
|
|
278 |
if (needsMoveTo) {
|
|
279 |
out.moveTo(x0, y0);
|
|
280 |
needsMoveTo = false;
|
|
281 |
}
|
|
282 |
emitSeg(pts, off, type);
|
|
283 |
}
|
|
284 |
} else {
|
|
285 |
starting = false;
|
|
286 |
needsMoveTo = true;
|
|
287 |
}
|
|
288 |
this.x0 = x;
|
|
289 |
this.y0 = y;
|
|
290 |
}
|
|
291 |
|
|
292 |
@Override
|
|
293 |
public void lineTo(double x1, double y1) {
|
|
294 |
double dx = x1 - x0;
|
|
295 |
double dy = y1 - y0;
|
|
296 |
|
|
297 |
double len = dx*dx + dy*dy;
|
|
298 |
if (len == 0.0d) {
|
|
299 |
return;
|
|
300 |
}
|
|
301 |
len = Math.sqrt(len);
|
|
302 |
|
|
303 |
// The scaling factors needed to get the dx and dy of the
|
|
304 |
// transformed dash segments.
|
|
305 |
final double cx = dx / len;
|
|
306 |
final double cy = dy / len;
|
|
307 |
|
|
308 |
final double[] _curCurvepts = curCurvepts;
|
|
309 |
final double[] _dash = dash;
|
|
310 |
|
|
311 |
double leftInThisDashSegment;
|
|
312 |
double dashdx, dashdy, p;
|
|
313 |
|
|
314 |
while (true) {
|
|
315 |
leftInThisDashSegment = _dash[idx] - phase;
|
|
316 |
|
|
317 |
if (len <= leftInThisDashSegment) {
|
|
318 |
_curCurvepts[0] = x1;
|
|
319 |
_curCurvepts[1] = y1;
|
|
320 |
goTo(_curCurvepts, 0, 4);
|
|
321 |
|
|
322 |
// Advance phase within current dash segment
|
|
323 |
phase += len;
|
|
324 |
// TODO: compare double values using epsilon:
|
|
325 |
if (len == leftInThisDashSegment) {
|
|
326 |
phase = 0.0d;
|
|
327 |
idx = (idx + 1) % dashLen;
|
|
328 |
dashOn = !dashOn;
|
|
329 |
}
|
|
330 |
return;
|
|
331 |
}
|
|
332 |
|
|
333 |
dashdx = _dash[idx] * cx;
|
|
334 |
dashdy = _dash[idx] * cy;
|
|
335 |
|
|
336 |
if (phase == 0.0d) {
|
|
337 |
_curCurvepts[0] = x0 + dashdx;
|
|
338 |
_curCurvepts[1] = y0 + dashdy;
|
|
339 |
} else {
|
|
340 |
p = leftInThisDashSegment / _dash[idx];
|
|
341 |
_curCurvepts[0] = x0 + p * dashdx;
|
|
342 |
_curCurvepts[1] = y0 + p * dashdy;
|
|
343 |
}
|
|
344 |
|
|
345 |
goTo(_curCurvepts, 0, 4);
|
|
346 |
|
|
347 |
len -= leftInThisDashSegment;
|
|
348 |
// Advance to next dash segment
|
|
349 |
idx = (idx + 1) % dashLen;
|
|
350 |
dashOn = !dashOn;
|
|
351 |
phase = 0.0d;
|
|
352 |
}
|
|
353 |
}
|
|
354 |
|
|
355 |
// shared instance in DDasher
|
|
356 |
private final LengthIterator li = new LengthIterator();
|
|
357 |
|
|
358 |
// preconditions: curCurvepts must be an array of length at least 2 * type,
|
|
359 |
// that contains the curve we want to dash in the first type elements
|
|
360 |
private void somethingTo(int type) {
|
|
361 |
if (pointCurve(curCurvepts, type)) {
|
|
362 |
return;
|
|
363 |
}
|
|
364 |
li.initializeIterationOnCurve(curCurvepts, type);
|
|
365 |
|
|
366 |
// initially the current curve is at curCurvepts[0...type]
|
|
367 |
int curCurveoff = 0;
|
|
368 |
double lastSplitT = 0.0d;
|
|
369 |
double t;
|
|
370 |
double leftInThisDashSegment = dash[idx] - phase;
|
|
371 |
|
|
372 |
while ((t = li.next(leftInThisDashSegment)) < 1.0d) {
|
|
373 |
if (t != 0.0d) {
|
|
374 |
DHelpers.subdivideAt((t - lastSplitT) / (1.0d - lastSplitT),
|
|
375 |
curCurvepts, curCurveoff,
|
|
376 |
curCurvepts, 0,
|
|
377 |
curCurvepts, type, type);
|
|
378 |
lastSplitT = t;
|
|
379 |
goTo(curCurvepts, 2, type);
|
|
380 |
curCurveoff = type;
|
|
381 |
}
|
|
382 |
// Advance to next dash segment
|
|
383 |
idx = (idx + 1) % dashLen;
|
|
384 |
dashOn = !dashOn;
|
|
385 |
phase = 0.0d;
|
|
386 |
leftInThisDashSegment = dash[idx];
|
|
387 |
}
|
|
388 |
goTo(curCurvepts, curCurveoff+2, type);
|
|
389 |
phase += li.lastSegLen();
|
|
390 |
if (phase >= dash[idx]) {
|
|
391 |
phase = 0.0d;
|
|
392 |
idx = (idx + 1) % dashLen;
|
|
393 |
dashOn = !dashOn;
|
|
394 |
}
|
|
395 |
// reset LengthIterator:
|
|
396 |
li.reset();
|
|
397 |
}
|
|
398 |
|
|
399 |
private static boolean pointCurve(double[] curve, int type) {
|
|
400 |
for (int i = 2; i < type; i++) {
|
|
401 |
if (curve[i] != curve[i-2]) {
|
|
402 |
return false;
|
|
403 |
}
|
|
404 |
}
|
|
405 |
return true;
|
|
406 |
}
|
|
407 |
|
|
408 |
// Objects of this class are used to iterate through curves. They return
|
|
409 |
// t values where the left side of the curve has a specified length.
|
|
410 |
// It does this by subdividing the input curve until a certain error
|
|
411 |
// condition has been met. A recursive subdivision procedure would
|
|
412 |
// return as many as 1<<limit curves, but this is an iterator and we
|
|
413 |
// don't need all the curves all at once, so what we carry out a
|
|
414 |
// lazy inorder traversal of the recursion tree (meaning we only move
|
|
415 |
// through the tree when we need the next subdivided curve). This saves
|
|
416 |
// us a lot of memory because at any one time we only need to store
|
|
417 |
// limit+1 curves - one for each level of the tree + 1.
|
|
418 |
// NOTE: the way we do things here is not enough to traverse a general
|
|
419 |
// tree; however, the trees we are interested in have the property that
|
|
420 |
// every non leaf node has exactly 2 children
|
|
421 |
static final class LengthIterator {
|
|
422 |
private enum Side {LEFT, RIGHT};
|
|
423 |
// Holds the curves at various levels of the recursion. The root
|
|
424 |
// (i.e. the original curve) is at recCurveStack[0] (but then it
|
|
425 |
// gets subdivided, the left half is put at 1, so most of the time
|
|
426 |
// only the right half of the original curve is at 0)
|
|
427 |
private final double[][] recCurveStack; // dirty
|
|
428 |
// sides[i] indicates whether the node at level i+1 in the path from
|
|
429 |
// the root to the current leaf is a left or right child of its parent.
|
|
430 |
private final Side[] sides; // dirty
|
|
431 |
private int curveType;
|
|
432 |
// lastT and nextT delimit the current leaf.
|
|
433 |
private double nextT;
|
|
434 |
private double lenAtNextT;
|
|
435 |
private double lastT;
|
|
436 |
private double lenAtLastT;
|
|
437 |
private double lenAtLastSplit;
|
|
438 |
private double lastSegLen;
|
|
439 |
// the current level in the recursion tree. 0 is the root. limit
|
|
440 |
// is the deepest possible leaf.
|
|
441 |
private int recLevel;
|
|
442 |
private boolean done;
|
|
443 |
|
|
444 |
// the lengths of the lines of the control polygon. Only its first
|
|
445 |
// curveType/2 - 1 elements are valid. This is an optimization. See
|
|
446 |
// next() for more detail.
|
|
447 |
private final double[] curLeafCtrlPolyLengths = new double[3];
|
|
448 |
|
|
449 |
LengthIterator() {
|
|
450 |
this.recCurveStack = new double[REC_LIMIT + 1][8];
|
|
451 |
this.sides = new Side[REC_LIMIT];
|
|
452 |
// if any methods are called without first initializing this object
|
|
453 |
// on a curve, we want it to fail ASAP.
|
|
454 |
this.nextT = Double.MAX_VALUE;
|
|
455 |
this.lenAtNextT = Double.MAX_VALUE;
|
|
456 |
this.lenAtLastSplit = Double.MIN_VALUE;
|
|
457 |
this.recLevel = Integer.MIN_VALUE;
|
|
458 |
this.lastSegLen = Double.MAX_VALUE;
|
|
459 |
this.done = true;
|
|
460 |
}
|
|
461 |
|
|
462 |
/**
|
|
463 |
* Reset this LengthIterator.
|
|
464 |
*/
|
|
465 |
void reset() {
|
|
466 |
// keep data dirty
|
|
467 |
// as it appears not useful to reset data:
|
|
468 |
if (DO_CLEAN_DIRTY) {
|
|
469 |
final int recLimit = recCurveStack.length - 1;
|
|
470 |
for (int i = recLimit; i >= 0; i--) {
|
|
471 |
Arrays.fill(recCurveStack[i], 0.0d);
|
|
472 |
}
|
|
473 |
Arrays.fill(sides, Side.LEFT);
|
|
474 |
Arrays.fill(curLeafCtrlPolyLengths, 0.0d);
|
|
475 |
Arrays.fill(nextRoots, 0.0d);
|
|
476 |
Arrays.fill(flatLeafCoefCache, 0.0d);
|
|
477 |
flatLeafCoefCache[2] = -1.0d;
|
|
478 |
}
|
|
479 |
}
|
|
480 |
|
|
481 |
void initializeIterationOnCurve(double[] pts, int type) {
|
|
482 |
// optimize arraycopy (8 values faster than 6 = type):
|
|
483 |
System.arraycopy(pts, 0, recCurveStack[0], 0, 8);
|
|
484 |
this.curveType = type;
|
|
485 |
this.recLevel = 0;
|
|
486 |
this.lastT = 0.0d;
|
|
487 |
this.lenAtLastT = 0.0d;
|
|
488 |
this.nextT = 0.0d;
|
|
489 |
this.lenAtNextT = 0.0d;
|
|
490 |
goLeft(); // initializes nextT and lenAtNextT properly
|
|
491 |
this.lenAtLastSplit = 0.0d;
|
|
492 |
if (recLevel > 0) {
|
|
493 |
this.sides[0] = Side.LEFT;
|
|
494 |
this.done = false;
|
|
495 |
} else {
|
|
496 |
// the root of the tree is a leaf so we're done.
|
|
497 |
this.sides[0] = Side.RIGHT;
|
|
498 |
this.done = true;
|
|
499 |
}
|
|
500 |
this.lastSegLen = 0.0d;
|
|
501 |
}
|
|
502 |
|
|
503 |
// 0 == false, 1 == true, -1 == invalid cached value.
|
|
504 |
private int cachedHaveLowAcceleration = -1;
|
|
505 |
|
|
506 |
private boolean haveLowAcceleration(double err) {
|
|
507 |
if (cachedHaveLowAcceleration == -1) {
|
|
508 |
final double len1 = curLeafCtrlPolyLengths[0];
|
|
509 |
final double len2 = curLeafCtrlPolyLengths[1];
|
|
510 |
// the test below is equivalent to !within(len1/len2, 1, err).
|
|
511 |
// It is using a multiplication instead of a division, so it
|
|
512 |
// should be a bit faster.
|
|
513 |
if (!DHelpers.within(len1, len2, err * len2)) {
|
|
514 |
cachedHaveLowAcceleration = 0;
|
|
515 |
return false;
|
|
516 |
}
|
|
517 |
if (curveType == 8) {
|
|
518 |
final double len3 = curLeafCtrlPolyLengths[2];
|
|
519 |
// if len1 is close to 2 and 2 is close to 3, that probably
|
|
520 |
// means 1 is close to 3 so the second part of this test might
|
|
521 |
// not be needed, but it doesn't hurt to include it.
|
|
522 |
final double errLen3 = err * len3;
|
|
523 |
if (!(DHelpers.within(len2, len3, errLen3) &&
|
|
524 |
DHelpers.within(len1, len3, errLen3))) {
|
|
525 |
cachedHaveLowAcceleration = 0;
|
|
526 |
return false;
|
|
527 |
}
|
|
528 |
}
|
|
529 |
cachedHaveLowAcceleration = 1;
|
|
530 |
return true;
|
|
531 |
}
|
|
532 |
|
|
533 |
return (cachedHaveLowAcceleration == 1);
|
|
534 |
}
|
|
535 |
|
|
536 |
// we want to avoid allocations/gc so we keep this array so we
|
|
537 |
// can put roots in it,
|
|
538 |
private final double[] nextRoots = new double[4];
|
|
539 |
|
|
540 |
// caches the coefficients of the current leaf in its flattened
|
|
541 |
// form (see inside next() for what that means). The cache is
|
|
542 |
// invalid when it's third element is negative, since in any
|
|
543 |
// valid flattened curve, this would be >= 0.
|
|
544 |
private final double[] flatLeafCoefCache = new double[]{0.0d, 0.0d, -1.0d, 0.0d};
|
|
545 |
|
|
546 |
// returns the t value where the remaining curve should be split in
|
|
547 |
// order for the left subdivided curve to have length len. If len
|
|
548 |
// is >= than the length of the uniterated curve, it returns 1.
|
|
549 |
double next(final double len) {
|
|
550 |
final double targetLength = lenAtLastSplit + len;
|
|
551 |
while (lenAtNextT < targetLength) {
|
|
552 |
if (done) {
|
|
553 |
lastSegLen = lenAtNextT - lenAtLastSplit;
|
|
554 |
return 1.0d;
|
|
555 |
}
|
|
556 |
goToNextLeaf();
|
|
557 |
}
|
|
558 |
lenAtLastSplit = targetLength;
|
|
559 |
final double leaflen = lenAtNextT - lenAtLastT;
|
|
560 |
double t = (targetLength - lenAtLastT) / leaflen;
|
|
561 |
|
|
562 |
// cubicRootsInAB is a fairly expensive call, so we just don't do it
|
|
563 |
// if the acceleration in this section of the curve is small enough.
|
|
564 |
if (!haveLowAcceleration(0.05d)) {
|
|
565 |
// We flatten the current leaf along the x axis, so that we're
|
|
566 |
// left with a, b, c which define a 1D Bezier curve. We then
|
|
567 |
// solve this to get the parameter of the original leaf that
|
|
568 |
// gives us the desired length.
|
|
569 |
final double[] _flatLeafCoefCache = flatLeafCoefCache;
|
|
570 |
|
|
571 |
if (_flatLeafCoefCache[2] < 0.0d) {
|
|
572 |
double x = curLeafCtrlPolyLengths[0],
|
|
573 |
y = x + curLeafCtrlPolyLengths[1];
|
|
574 |
if (curveType == 8) {
|
|
575 |
double z = y + curLeafCtrlPolyLengths[2];
|
|
576 |
_flatLeafCoefCache[0] = 3.0d * (x - y) + z;
|
|
577 |
_flatLeafCoefCache[1] = 3.0d * (y - 2.0d * x);
|
|
578 |
_flatLeafCoefCache[2] = 3.0d * x;
|
|
579 |
_flatLeafCoefCache[3] = -z;
|
|
580 |
} else if (curveType == 6) {
|
|
581 |
_flatLeafCoefCache[0] = 0.0d;
|
|
582 |
_flatLeafCoefCache[1] = y - 2.0d * x;
|
|
583 |
_flatLeafCoefCache[2] = 2.0d * x;
|
|
584 |
_flatLeafCoefCache[3] = -y;
|
|
585 |
}
|
|
586 |
}
|
|
587 |
double a = _flatLeafCoefCache[0];
|
|
588 |
double b = _flatLeafCoefCache[1];
|
|
589 |
double c = _flatLeafCoefCache[2];
|
|
590 |
double d = t * _flatLeafCoefCache[3];
|
|
591 |
|
|
592 |
// we use cubicRootsInAB here, because we want only roots in 0, 1,
|
|
593 |
// and our quadratic root finder doesn't filter, so it's just a
|
|
594 |
// matter of convenience.
|
|
595 |
int n = DHelpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0.0d, 1.0d);
|
|
596 |
if (n == 1 && !Double.isNaN(nextRoots[0])) {
|
|
597 |
t = nextRoots[0];
|
|
598 |
}
|
|
599 |
}
|
|
600 |
// t is relative to the current leaf, so we must make it a valid parameter
|
|
601 |
// of the original curve.
|
|
602 |
t = t * (nextT - lastT) + lastT;
|
|
603 |
if (t >= 1.0d) {
|
|
604 |
t = 1.0d;
|
|
605 |
done = true;
|
|
606 |
}
|
|
607 |
// even if done = true, if we're here, that means targetLength
|
|
608 |
// is equal to, or very, very close to the total length of the
|
|
609 |
// curve, so lastSegLen won't be too high. In cases where len
|
|
610 |
// overshoots the curve, this method will exit in the while
|
|
611 |
// loop, and lastSegLen will still be set to the right value.
|
|
612 |
lastSegLen = len;
|
|
613 |
return t;
|
|
614 |
}
|
|
615 |
|
|
616 |
double lastSegLen() {
|
|
617 |
return lastSegLen;
|
|
618 |
}
|
|
619 |
|
|
620 |
// go to the next leaf (in an inorder traversal) in the recursion tree
|
|
621 |
// preconditions: must be on a leaf, and that leaf must not be the root.
|
|
622 |
private void goToNextLeaf() {
|
|
623 |
// We must go to the first ancestor node that has an unvisited
|
|
624 |
// right child.
|
|
625 |
int _recLevel = recLevel;
|
|
626 |
final Side[] _sides = sides;
|
|
627 |
|
|
628 |
_recLevel--;
|
|
629 |
while(_sides[_recLevel] == Side.RIGHT) {
|
|
630 |
if (_recLevel == 0) {
|
|
631 |
recLevel = 0;
|
|
632 |
done = true;
|
|
633 |
return;
|
|
634 |
}
|
|
635 |
_recLevel--;
|
|
636 |
}
|
|
637 |
|
|
638 |
_sides[_recLevel] = Side.RIGHT;
|
|
639 |
// optimize arraycopy (8 values faster than 6 = type):
|
|
640 |
System.arraycopy(recCurveStack[_recLevel], 0,
|
|
641 |
recCurveStack[_recLevel+1], 0, 8);
|
|
642 |
_recLevel++;
|
|
643 |
|
|
644 |
recLevel = _recLevel;
|
|
645 |
goLeft();
|
|
646 |
}
|
|
647 |
|
|
648 |
// go to the leftmost node from the current node. Return its length.
|
|
649 |
private void goLeft() {
|
|
650 |
double len = onLeaf();
|
|
651 |
if (len >= 0.0d) {
|
|
652 |
lastT = nextT;
|
|
653 |
lenAtLastT = lenAtNextT;
|
|
654 |
nextT += (1 << (REC_LIMIT - recLevel)) * MIN_T_INC;
|
|
655 |
lenAtNextT += len;
|
|
656 |
// invalidate caches
|
|
657 |
flatLeafCoefCache[2] = -1.0d;
|
|
658 |
cachedHaveLowAcceleration = -1;
|
|
659 |
} else {
|
|
660 |
DHelpers.subdivide(recCurveStack[recLevel], 0,
|
|
661 |
recCurveStack[recLevel+1], 0,
|
|
662 |
recCurveStack[recLevel], 0, curveType);
|
|
663 |
sides[recLevel] = Side.LEFT;
|
|
664 |
recLevel++;
|
|
665 |
goLeft();
|
|
666 |
}
|
|
667 |
}
|
|
668 |
|
|
669 |
// this is a bit of a hack. It returns -1 if we're not on a leaf, and
|
|
670 |
// the length of the leaf if we are on a leaf.
|
|
671 |
private double onLeaf() {
|
|
672 |
double[] curve = recCurveStack[recLevel];
|
|
673 |
double polyLen = 0.0d;
|
|
674 |
|
|
675 |
double x0 = curve[0], y0 = curve[1];
|
|
676 |
for (int i = 2; i < curveType; i += 2) {
|
|
677 |
final double x1 = curve[i], y1 = curve[i+1];
|
|
678 |
final double len = DHelpers.linelen(x0, y0, x1, y1);
|
|
679 |
polyLen += len;
|
|
680 |
curLeafCtrlPolyLengths[i/2 - 1] = len;
|
|
681 |
x0 = x1;
|
|
682 |
y0 = y1;
|
|
683 |
}
|
|
684 |
|
|
685 |
final double lineLen = DHelpers.linelen(curve[0], curve[1],
|
|
686 |
curve[curveType-2],
|
|
687 |
curve[curveType-1]);
|
|
688 |
if ((polyLen - lineLen) < ERR || recLevel == REC_LIMIT) {
|
|
689 |
return (polyLen + lineLen) / 2.0d;
|
|
690 |
}
|
|
691 |
return -1.0d;
|
|
692 |
}
|
|
693 |
}
|
|
694 |
|
|
695 |
@Override
|
|
696 |
public void curveTo(double x1, double y1,
|
|
697 |
double x2, double y2,
|
|
698 |
double x3, double y3)
|
|
699 |
{
|
|
700 |
final double[] _curCurvepts = curCurvepts;
|
|
701 |
_curCurvepts[0] = x0; _curCurvepts[1] = y0;
|
|
702 |
_curCurvepts[2] = x1; _curCurvepts[3] = y1;
|
|
703 |
_curCurvepts[4] = x2; _curCurvepts[5] = y2;
|
|
704 |
_curCurvepts[6] = x3; _curCurvepts[7] = y3;
|
|
705 |
somethingTo(8);
|
|
706 |
}
|
|
707 |
|
|
708 |
@Override
|
|
709 |
public void quadTo(double x1, double y1, double x2, double y2) {
|
|
710 |
final double[] _curCurvepts = curCurvepts;
|
|
711 |
_curCurvepts[0] = x0; _curCurvepts[1] = y0;
|
|
712 |
_curCurvepts[2] = x1; _curCurvepts[3] = y1;
|
|
713 |
_curCurvepts[4] = x2; _curCurvepts[5] = y2;
|
|
714 |
somethingTo(6);
|
|
715 |
}
|
|
716 |
|
|
717 |
@Override
|
|
718 |
public void closePath() {
|
|
719 |
lineTo(sx, sy);
|
|
720 |
if (firstSegidx > 0) {
|
|
721 |
if (!dashOn || needsMoveTo) {
|
|
722 |
out.moveTo(sx, sy);
|
|
723 |
}
|
|
724 |
emitFirstSegments();
|
|
725 |
}
|
|
726 |
moveTo(sx, sy);
|
|
727 |
}
|
|
728 |
|
|
729 |
@Override
|
|
730 |
public void pathDone() {
|
|
731 |
if (firstSegidx > 0) {
|
|
732 |
out.moveTo(sx, sy);
|
|
733 |
emitFirstSegments();
|
|
734 |
}
|
|
735 |
out.pathDone();
|
|
736 |
|
|
737 |
// Dispose this instance:
|
|
738 |
dispose();
|
|
739 |
}
|
|
740 |
|
|
741 |
@Override
|
|
742 |
public long getNativeConsumer() {
|
|
743 |
throw new InternalError("DDasher does not use a native consumer");
|
|
744 |
}
|
|
745 |
}
|
|
746 |
|