author | xdono |
Thu, 02 Oct 2008 19:58:19 -0700 | |
changeset 1217 | 5eb97f366a6a |
parent 1057 | 44220ef9a775 |
child 1412 | 2bb3fe3e00ea |
permissions | -rw-r--r-- |
1 | 1 |
/* |
1217 | 2 |
* Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 |
* have any questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
#include "incls/_precompiled.incl" |
|
26 |
#include "incls/_ifg.cpp.incl" |
|
27 |
||
28 |
#define EXACT_PRESSURE 1 |
|
29 |
||
30 |
//============================================================================= |
|
31 |
//------------------------------IFG-------------------------------------------- |
|
32 |
PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) { |
|
33 |
} |
|
34 |
||
35 |
//------------------------------init------------------------------------------- |
|
36 |
void PhaseIFG::init( uint maxlrg ) { |
|
37 |
_maxlrg = maxlrg; |
|
38 |
_yanked = new (_arena) VectorSet(_arena); |
|
39 |
_is_square = false; |
|
40 |
// Make uninitialized adjacency lists |
|
41 |
_adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg); |
|
42 |
// Also make empty live range structures |
|
43 |
_lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) ); |
|
44 |
memset(_lrgs,0,sizeof(LRG)*maxlrg); |
|
45 |
// Init all to empty |
|
46 |
for( uint i = 0; i < maxlrg; i++ ) { |
|
47 |
_adjs[i].initialize(maxlrg); |
|
48 |
_lrgs[i].Set_All(); |
|
49 |
} |
|
50 |
} |
|
51 |
||
52 |
//------------------------------add-------------------------------------------- |
|
53 |
// Add edge between vertices a & b. These are sorted (triangular matrix), |
|
54 |
// then the smaller number is inserted in the larger numbered array. |
|
55 |
int PhaseIFG::add_edge( uint a, uint b ) { |
|
56 |
lrgs(a).invalid_degree(); |
|
57 |
lrgs(b).invalid_degree(); |
|
58 |
// Sort a and b, so that a is bigger |
|
59 |
assert( !_is_square, "only on triangular" ); |
|
60 |
if( a < b ) { uint tmp = a; a = b; b = tmp; } |
|
61 |
return _adjs[a].insert( b ); |
|
62 |
} |
|
63 |
||
64 |
//------------------------------add_vector------------------------------------- |
|
65 |
// Add an edge between 'a' and everything in the vector. |
|
66 |
void PhaseIFG::add_vector( uint a, IndexSet *vec ) { |
|
67 |
// IFG is triangular, so do the inserts where 'a' < 'b'. |
|
68 |
assert( !_is_square, "only on triangular" ); |
|
69 |
IndexSet *adjs_a = &_adjs[a]; |
|
70 |
if( !vec->count() ) return; |
|
71 |
||
72 |
IndexSetIterator elements(vec); |
|
73 |
uint neighbor; |
|
74 |
while ((neighbor = elements.next()) != 0) { |
|
75 |
add_edge( a, neighbor ); |
|
76 |
} |
|
77 |
} |
|
78 |
||
79 |
//------------------------------test------------------------------------------- |
|
80 |
// Is there an edge between a and b? |
|
81 |
int PhaseIFG::test_edge( uint a, uint b ) const { |
|
82 |
// Sort a and b, so that a is larger |
|
83 |
assert( !_is_square, "only on triangular" ); |
|
84 |
if( a < b ) { uint tmp = a; a = b; b = tmp; } |
|
85 |
return _adjs[a].member(b); |
|
86 |
} |
|
87 |
||
88 |
//------------------------------SquareUp--------------------------------------- |
|
89 |
// Convert triangular matrix to square matrix |
|
90 |
void PhaseIFG::SquareUp() { |
|
91 |
assert( !_is_square, "only on triangular" ); |
|
92 |
||
93 |
// Simple transpose |
|
94 |
for( uint i = 0; i < _maxlrg; i++ ) { |
|
95 |
IndexSetIterator elements(&_adjs[i]); |
|
96 |
uint datum; |
|
97 |
while ((datum = elements.next()) != 0) { |
|
98 |
_adjs[datum].insert( i ); |
|
99 |
} |
|
100 |
} |
|
101 |
_is_square = true; |
|
102 |
} |
|
103 |
||
104 |
//------------------------------Compute_Effective_Degree----------------------- |
|
105 |
// Compute effective degree in bulk |
|
106 |
void PhaseIFG::Compute_Effective_Degree() { |
|
107 |
assert( _is_square, "only on square" ); |
|
108 |
||
109 |
for( uint i = 0; i < _maxlrg; i++ ) |
|
110 |
lrgs(i).set_degree(effective_degree(i)); |
|
111 |
} |
|
112 |
||
113 |
//------------------------------test_edge_sq----------------------------------- |
|
114 |
int PhaseIFG::test_edge_sq( uint a, uint b ) const { |
|
115 |
assert( _is_square, "only on square" ); |
|
116 |
// Swap, so that 'a' has the lesser count. Then binary search is on |
|
117 |
// the smaller of a's list and b's list. |
|
118 |
if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; } |
|
119 |
//return _adjs[a].unordered_member(b); |
|
120 |
return _adjs[a].member(b); |
|
121 |
} |
|
122 |
||
123 |
//------------------------------Union------------------------------------------ |
|
124 |
// Union edges of B into A |
|
125 |
void PhaseIFG::Union( uint a, uint b ) { |
|
126 |
assert( _is_square, "only on square" ); |
|
127 |
IndexSet *A = &_adjs[a]; |
|
128 |
IndexSetIterator b_elements(&_adjs[b]); |
|
129 |
uint datum; |
|
130 |
while ((datum = b_elements.next()) != 0) { |
|
131 |
if(A->insert(datum)) { |
|
132 |
_adjs[datum].insert(a); |
|
133 |
lrgs(a).invalid_degree(); |
|
134 |
lrgs(datum).invalid_degree(); |
|
135 |
} |
|
136 |
} |
|
137 |
} |
|
138 |
||
139 |
//------------------------------remove_node------------------------------------ |
|
140 |
// Yank a Node and all connected edges from the IFG. Return a |
|
141 |
// list of neighbors (edges) yanked. |
|
142 |
IndexSet *PhaseIFG::remove_node( uint a ) { |
|
143 |
assert( _is_square, "only on square" ); |
|
144 |
assert( !_yanked->test(a), "" ); |
|
145 |
_yanked->set(a); |
|
146 |
||
147 |
// I remove the LRG from all neighbors. |
|
148 |
IndexSetIterator elements(&_adjs[a]); |
|
149 |
LRG &lrg_a = lrgs(a); |
|
150 |
uint datum; |
|
151 |
while ((datum = elements.next()) != 0) { |
|
152 |
_adjs[datum].remove(a); |
|
153 |
lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) ); |
|
154 |
} |
|
155 |
return neighbors(a); |
|
156 |
} |
|
157 |
||
158 |
//------------------------------re_insert-------------------------------------- |
|
159 |
// Re-insert a yanked Node. |
|
160 |
void PhaseIFG::re_insert( uint a ) { |
|
161 |
assert( _is_square, "only on square" ); |
|
162 |
assert( _yanked->test(a), "" ); |
|
163 |
(*_yanked) >>= a; |
|
164 |
||
165 |
IndexSetIterator elements(&_adjs[a]); |
|
166 |
uint datum; |
|
167 |
while ((datum = elements.next()) != 0) { |
|
168 |
_adjs[datum].insert(a); |
|
169 |
lrgs(datum).invalid_degree(); |
|
170 |
} |
|
171 |
} |
|
172 |
||
173 |
//------------------------------compute_degree--------------------------------- |
|
174 |
// Compute the degree between 2 live ranges. If both live ranges are |
|
175 |
// aligned-adjacent powers-of-2 then we use the MAX size. If either is |
|
176 |
// mis-aligned (or for Fat-Projections, not-adjacent) then we have to |
|
177 |
// MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why |
|
178 |
// this is so. |
|
179 |
int LRG::compute_degree( LRG &l ) const { |
|
180 |
int tmp; |
|
181 |
int num_regs = _num_regs; |
|
182 |
int nregs = l.num_regs(); |
|
183 |
tmp = (_fat_proj || l._fat_proj) // either is a fat-proj? |
|
184 |
? (num_regs * nregs) // then use product |
|
185 |
: MAX2(num_regs,nregs); // else use max |
|
186 |
return tmp; |
|
187 |
} |
|
188 |
||
189 |
//------------------------------effective_degree------------------------------- |
|
190 |
// Compute effective degree for this live range. If both live ranges are |
|
191 |
// aligned-adjacent powers-of-2 then we use the MAX size. If either is |
|
192 |
// mis-aligned (or for Fat-Projections, not-adjacent) then we have to |
|
193 |
// MULTIPLY the sizes. Inspect Brigg's thesis on register pairs to see why |
|
194 |
// this is so. |
|
195 |
int PhaseIFG::effective_degree( uint lidx ) const { |
|
196 |
int eff = 0; |
|
197 |
int num_regs = lrgs(lidx).num_regs(); |
|
198 |
int fat_proj = lrgs(lidx)._fat_proj; |
|
199 |
IndexSet *s = neighbors(lidx); |
|
200 |
IndexSetIterator elements(s); |
|
201 |
uint nidx; |
|
202 |
while((nidx = elements.next()) != 0) { |
|
203 |
LRG &lrgn = lrgs(nidx); |
|
204 |
int nregs = lrgn.num_regs(); |
|
205 |
eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj? |
|
206 |
? (num_regs * nregs) // then use product |
|
207 |
: MAX2(num_regs,nregs); // else use max |
|
208 |
} |
|
209 |
return eff; |
|
210 |
} |
|
211 |
||
212 |
||
213 |
#ifndef PRODUCT |
|
214 |
//------------------------------dump------------------------------------------- |
|
215 |
void PhaseIFG::dump() const { |
|
216 |
tty->print_cr("-- Interference Graph --%s--", |
|
217 |
_is_square ? "square" : "triangular" ); |
|
218 |
if( _is_square ) { |
|
219 |
for( uint i = 0; i < _maxlrg; i++ ) { |
|
220 |
tty->print( (*_yanked)[i] ? "XX " : " "); |
|
221 |
tty->print("L%d: { ",i); |
|
222 |
IndexSetIterator elements(&_adjs[i]); |
|
223 |
uint datum; |
|
224 |
while ((datum = elements.next()) != 0) { |
|
225 |
tty->print("L%d ", datum); |
|
226 |
} |
|
227 |
tty->print_cr("}"); |
|
228 |
||
229 |
} |
|
230 |
return; |
|
231 |
} |
|
232 |
||
233 |
// Triangular |
|
234 |
for( uint i = 0; i < _maxlrg; i++ ) { |
|
235 |
uint j; |
|
236 |
tty->print( (*_yanked)[i] ? "XX " : " "); |
|
237 |
tty->print("L%d: { ",i); |
|
238 |
for( j = _maxlrg; j > i; j-- ) |
|
239 |
if( test_edge(j - 1,i) ) { |
|
240 |
tty->print("L%d ",j - 1); |
|
241 |
} |
|
242 |
tty->print("| "); |
|
243 |
IndexSetIterator elements(&_adjs[i]); |
|
244 |
uint datum; |
|
245 |
while ((datum = elements.next()) != 0) { |
|
246 |
tty->print("L%d ", datum); |
|
247 |
} |
|
248 |
tty->print("}\n"); |
|
249 |
} |
|
250 |
tty->print("\n"); |
|
251 |
} |
|
252 |
||
253 |
//------------------------------stats------------------------------------------ |
|
254 |
void PhaseIFG::stats() const { |
|
255 |
ResourceMark rm; |
|
256 |
int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2); |
|
257 |
memset( h_cnt, 0, sizeof(int)*_maxlrg*2 ); |
|
258 |
uint i; |
|
259 |
for( i = 0; i < _maxlrg; i++ ) { |
|
260 |
h_cnt[neighbor_cnt(i)]++; |
|
261 |
} |
|
262 |
tty->print_cr("--Histogram of counts--"); |
|
263 |
for( i = 0; i < _maxlrg*2; i++ ) |
|
264 |
if( h_cnt[i] ) |
|
265 |
tty->print("%d/%d ",i,h_cnt[i]); |
|
266 |
tty->print_cr(""); |
|
267 |
} |
|
268 |
||
269 |
//------------------------------verify----------------------------------------- |
|
270 |
void PhaseIFG::verify( const PhaseChaitin *pc ) const { |
|
271 |
// IFG is square, sorted and no need for Find |
|
272 |
for( uint i = 0; i < _maxlrg; i++ ) { |
|
273 |
assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" ); |
|
274 |
IndexSet *set = &_adjs[i]; |
|
275 |
IndexSetIterator elements(set); |
|
276 |
uint idx; |
|
277 |
uint last = 0; |
|
278 |
while ((idx = elements.next()) != 0) { |
|
279 |
assert( idx != i, "Must have empty diagonal"); |
|
280 |
assert( pc->Find_const(idx) == idx, "Must not need Find" ); |
|
281 |
assert( _adjs[idx].member(i), "IFG not square" ); |
|
282 |
assert( !(*_yanked)[idx], "No yanked neighbors" ); |
|
283 |
assert( last < idx, "not sorted increasing"); |
|
284 |
last = idx; |
|
285 |
} |
|
286 |
assert( !lrgs(i)._degree_valid || |
|
287 |
effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong" ); |
|
288 |
} |
|
289 |
} |
|
290 |
#endif |
|
291 |
||
292 |
//------------------------------interfere_with_live---------------------------- |
|
293 |
// Interfere this register with everything currently live. Use the RegMasks |
|
294 |
// to trim the set of possible interferences. Return a count of register-only |
|
295 |
// inteferences as an estimate of register pressure. |
|
296 |
void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) { |
|
297 |
uint retval = 0; |
|
298 |
// Interfere with everything live. |
|
299 |
const RegMask &rm = lrgs(r).mask(); |
|
300 |
// Check for interference by checking overlap of regmasks. |
|
301 |
// Only interfere if acceptable register masks overlap. |
|
302 |
IndexSetIterator elements(liveout); |
|
303 |
uint l; |
|
304 |
while( (l = elements.next()) != 0 ) |
|
305 |
if( rm.overlap( lrgs(l).mask() ) ) |
|
306 |
_ifg->add_edge( r, l ); |
|
307 |
} |
|
308 |
||
309 |
//------------------------------build_ifg_virtual------------------------------ |
|
310 |
// Actually build the interference graph. Uses virtual registers only, no |
|
311 |
// physical register masks. This allows me to be very aggressive when |
|
312 |
// coalescing copies. Some of this aggressiveness will have to be undone |
|
313 |
// later, but I'd rather get all the copies I can now (since unremoved copies |
|
314 |
// at this point can end up in bad places). Copies I re-insert later I have |
|
315 |
// more opportunity to insert them in low-frequency locations. |
|
316 |
void PhaseChaitin::build_ifg_virtual( ) { |
|
317 |
||
318 |
// For all blocks (in any order) do... |
|
319 |
for( uint i=0; i<_cfg._num_blocks; i++ ) { |
|
320 |
Block *b = _cfg._blocks[i]; |
|
321 |
IndexSet *liveout = _live->live(b); |
|
322 |
||
323 |
// The IFG is built by a single reverse pass over each basic block. |
|
324 |
// Starting with the known live-out set, we remove things that get |
|
325 |
// defined and add things that become live (essentially executing one |
|
326 |
// pass of a standard LIVE analysis). Just before a Node defines a value |
|
327 |
// (and removes it from the live-ness set) that value is certainly live. |
|
328 |
// The defined value interferes with everything currently live. The |
|
329 |
// value is then removed from the live-ness set and it's inputs are |
|
330 |
// added to the live-ness set. |
|
331 |
for( uint j = b->end_idx() + 1; j > 1; j-- ) { |
|
332 |
Node *n = b->_nodes[j-1]; |
|
333 |
||
334 |
// Get value being defined |
|
335 |
uint r = n2lidx(n); |
|
336 |
||
337 |
// Some special values do not allocate |
|
338 |
if( r ) { |
|
339 |
||
340 |
// Remove from live-out set |
|
341 |
liveout->remove(r); |
|
342 |
||
343 |
// Copies do not define a new value and so do not interfere. |
|
344 |
// Remove the copies source from the liveout set before interfering. |
|
345 |
uint idx = n->is_Copy(); |
|
346 |
if( idx ) liveout->remove( n2lidx(n->in(idx)) ); |
|
347 |
||
348 |
// Interfere with everything live |
|
349 |
interfere_with_live( r, liveout ); |
|
350 |
} |
|
351 |
||
352 |
// Make all inputs live |
|
353 |
if( !n->is_Phi() ) { // Phi function uses come from prior block |
|
354 |
for( uint k = 1; k < n->req(); k++ ) |
|
355 |
liveout->insert( n2lidx(n->in(k)) ); |
|
356 |
} |
|
357 |
||
358 |
// 2-address instructions always have the defined value live |
|
359 |
// on entry to the instruction, even though it is being defined |
|
360 |
// by the instruction. We pretend a virtual copy sits just prior |
|
361 |
// to the instruction and kills the src-def'd register. |
|
362 |
// In other words, for 2-address instructions the defined value |
|
363 |
// interferes with all inputs. |
|
364 |
uint idx; |
|
365 |
if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) { |
|
366 |
const MachNode *mach = n->as_Mach(); |
|
367 |
// Sometimes my 2-address ADDs are commuted in a bad way. |
|
368 |
// We generally want the USE-DEF register to refer to the |
|
369 |
// loop-varying quantity, to avoid a copy. |
|
370 |
uint op = mach->ideal_Opcode(); |
|
371 |
// Check that mach->num_opnds() == 3 to ensure instruction is |
|
372 |
// not subsuming constants, effectively excludes addI_cin_imm |
|
373 |
// Can NOT swap for instructions like addI_cin_imm since it |
|
374 |
// is adding zero to yhi + carry and the second ideal-input |
|
375 |
// points to the result of adding low-halves. |
|
376 |
// Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm |
|
377 |
if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) && |
|
378 |
n->in(1)->bottom_type()->base() == Type::Int && |
|
379 |
// See if the ADD is involved in a tight data loop the wrong way |
|
380 |
n->in(2)->is_Phi() && |
|
381 |
n->in(2)->in(2) == n ) { |
|
382 |
Node *tmp = n->in(1); |
|
383 |
n->set_req( 1, n->in(2) ); |
|
384 |
n->set_req( 2, tmp ); |
|
385 |
} |
|
386 |
// Defined value interferes with all inputs |
|
387 |
uint lidx = n2lidx(n->in(idx)); |
|
388 |
for( uint k = 1; k < n->req(); k++ ) { |
|
389 |
uint kidx = n2lidx(n->in(k)); |
|
390 |
if( kidx != lidx ) |
|
391 |
_ifg->add_edge( r, kidx ); |
|
392 |
} |
|
393 |
} |
|
394 |
} // End of forall instructions in block |
|
395 |
} // End of forall blocks |
|
396 |
} |
|
397 |
||
398 |
//------------------------------count_int_pressure----------------------------- |
|
399 |
uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) { |
|
400 |
IndexSetIterator elements(liveout); |
|
401 |
uint lidx; |
|
402 |
uint cnt = 0; |
|
403 |
while ((lidx = elements.next()) != 0) { |
|
404 |
if( lrgs(lidx).mask().is_UP() && |
|
405 |
lrgs(lidx).mask_size() && |
|
406 |
!lrgs(lidx)._is_float && |
|
407 |
lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) |
|
408 |
cnt += lrgs(lidx).reg_pressure(); |
|
409 |
} |
|
410 |
return cnt; |
|
411 |
} |
|
412 |
||
413 |
//------------------------------count_float_pressure--------------------------- |
|
414 |
uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) { |
|
415 |
IndexSetIterator elements(liveout); |
|
416 |
uint lidx; |
|
417 |
uint cnt = 0; |
|
418 |
while ((lidx = elements.next()) != 0) { |
|
419 |
if( lrgs(lidx).mask().is_UP() && |
|
420 |
lrgs(lidx).mask_size() && |
|
421 |
lrgs(lidx)._is_float ) |
|
422 |
cnt += lrgs(lidx).reg_pressure(); |
|
423 |
} |
|
424 |
return cnt; |
|
425 |
} |
|
426 |
||
427 |
//------------------------------lower_pressure--------------------------------- |
|
428 |
// Adjust register pressure down by 1. Capture last hi-to-low transition, |
|
429 |
static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) { |
|
430 |
if( lrg->mask().is_UP() && lrg->mask_size() ) { |
|
431 |
if( lrg->_is_float ) { |
|
432 |
pressure[1] -= lrg->reg_pressure(); |
|
433 |
if( pressure[1] == (uint)FLOATPRESSURE ) { |
|
434 |
hrp_index[1] = where; |
|
435 |
#ifdef EXACT_PRESSURE |
|
436 |
if( pressure[1] > b->_freg_pressure ) |
|
437 |
b->_freg_pressure = pressure[1]+1; |
|
438 |
#else |
|
439 |
b->_freg_pressure = (uint)FLOATPRESSURE+1; |
|
440 |
#endif |
|
441 |
} |
|
442 |
} else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) { |
|
443 |
pressure[0] -= lrg->reg_pressure(); |
|
444 |
if( pressure[0] == (uint)INTPRESSURE ) { |
|
445 |
hrp_index[0] = where; |
|
446 |
#ifdef EXACT_PRESSURE |
|
447 |
if( pressure[0] > b->_reg_pressure ) |
|
448 |
b->_reg_pressure = pressure[0]+1; |
|
449 |
#else |
|
450 |
b->_reg_pressure = (uint)INTPRESSURE+1; |
|
451 |
#endif |
|
452 |
} |
|
453 |
} |
|
454 |
} |
|
455 |
} |
|
456 |
||
457 |
//------------------------------build_ifg_physical----------------------------- |
|
458 |
// Build the interference graph using physical registers when available. |
|
459 |
// That is, if 2 live ranges are simultaneously alive but in their acceptable |
|
460 |
// register sets do not overlap, then they do not interfere. |
|
461 |
uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) { |
|
462 |
NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); ) |
|
463 |
||
464 |
uint spill_reg = LRG::SPILL_REG; |
|
465 |
uint must_spill = 0; |
|
466 |
||
467 |
// For all blocks (in any order) do... |
|
468 |
for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
469 |
Block *b = _cfg._blocks[i]; |
|
470 |
// Clone (rather than smash in place) the liveout info, so it is alive |
|
471 |
// for the "collect_gc_info" phase later. |
|
472 |
IndexSet liveout(_live->live(b)); |
|
473 |
uint last_inst = b->end_idx(); |
|
474 |
// Compute last phi index |
|
475 |
uint last_phi; |
|
476 |
for( last_phi = 1; last_phi < last_inst; last_phi++ ) |
|
477 |
if( !b->_nodes[last_phi]->is_Phi() ) |
|
478 |
break; |
|
479 |
||
480 |
// Reset block's register pressure values for each ifg construction |
|
481 |
uint pressure[2], hrp_index[2]; |
|
482 |
pressure[0] = pressure[1] = 0; |
|
483 |
hrp_index[0] = hrp_index[1] = last_inst+1; |
|
484 |
b->_reg_pressure = b->_freg_pressure = 0; |
|
485 |
// Liveout things are presumed live for the whole block. We accumulate |
|
486 |
// 'area' accordingly. If they get killed in the block, we'll subtract |
|
487 |
// the unused part of the block from the area. |
|
488 |
double cost = b->_freq * double(last_inst-last_phi); |
|
489 |
assert( cost >= 0, "negative spill cost" ); |
|
490 |
IndexSetIterator elements(&liveout); |
|
491 |
uint lidx; |
|
492 |
while ((lidx = elements.next()) != 0) { |
|
493 |
LRG &lrg = lrgs(lidx); |
|
494 |
lrg._area += cost; |
|
495 |
// Compute initial register pressure |
|
496 |
if( lrg.mask().is_UP() && lrg.mask_size() ) { |
|
497 |
if( lrg._is_float ) { // Count float pressure |
|
498 |
pressure[1] += lrg.reg_pressure(); |
|
499 |
#ifdef EXACT_PRESSURE |
|
500 |
if( pressure[1] > b->_freg_pressure ) |
|
501 |
b->_freg_pressure = pressure[1]; |
|
502 |
#endif |
|
503 |
// Count int pressure, but do not count the SP, flags |
|
504 |
} else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) { |
|
505 |
pressure[0] += lrg.reg_pressure(); |
|
506 |
#ifdef EXACT_PRESSURE |
|
507 |
if( pressure[0] > b->_reg_pressure ) |
|
508 |
b->_reg_pressure = pressure[0]; |
|
509 |
#endif |
|
510 |
} |
|
511 |
} |
|
512 |
} |
|
513 |
assert( pressure[0] == count_int_pressure (&liveout), "" ); |
|
514 |
assert( pressure[1] == count_float_pressure(&liveout), "" ); |
|
515 |
||
516 |
// The IFG is built by a single reverse pass over each basic block. |
|
517 |
// Starting with the known live-out set, we remove things that get |
|
518 |
// defined and add things that become live (essentially executing one |
|
519 |
// pass of a standard LIVE analysis). Just before a Node defines a value |
|
520 |
// (and removes it from the live-ness set) that value is certainly live. |
|
521 |
// The defined value interferes with everything currently live. The |
|
522 |
// value is then removed from the live-ness set and it's inputs are added |
|
523 |
// to the live-ness set. |
|
524 |
uint j; |
|
525 |
for( j = last_inst + 1; j > 1; j-- ) { |
|
526 |
Node *n = b->_nodes[j - 1]; |
|
527 |
||
528 |
// Get value being defined |
|
529 |
uint r = n2lidx(n); |
|
530 |
||
531 |
// Some special values do not allocate |
|
532 |
if( r ) { |
|
533 |
// A DEF normally costs block frequency; rematerialized values are |
|
534 |
// removed from the DEF sight, so LOWER costs here. |
|
535 |
lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq; |
|
536 |
||
537 |
// If it is not live, then this instruction is dead. Probably caused |
|
538 |
// by spilling and rematerialization. Who cares why, yank this baby. |
|
539 |
if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) { |
|
540 |
Node *def = n->in(0); |
|
541 |
if( !n->is_Proj() || |
|
542 |
// Could also be a flags-projection of a dead ADD or such. |
|
543 |
(n2lidx(def) && !liveout.member(n2lidx(def)) ) ) { |
|
544 |
b->_nodes.remove(j - 1); |
|
545 |
if( lrgs(r)._def == n ) lrgs(r)._def = 0; |
|
546 |
n->disconnect_inputs(NULL); |
|
547 |
_cfg._bbs.map(n->_idx,NULL); |
|
548 |
n->replace_by(C->top()); |
|
549 |
// Since yanking a Node from block, high pressure moves up one |
|
550 |
hrp_index[0]--; |
|
551 |
hrp_index[1]--; |
|
552 |
continue; |
|
553 |
} |
|
554 |
||
555 |
// Fat-projections kill many registers which cannot be used to |
|
556 |
// hold live ranges. |
|
557 |
if( lrgs(r)._fat_proj ) { |
|
558 |
// Count the int-only registers |
|
559 |
RegMask itmp = lrgs(r).mask(); |
|
560 |
itmp.AND(*Matcher::idealreg2regmask[Op_RegI]); |
|
561 |
int iregs = itmp.Size(); |
|
562 |
#ifdef EXACT_PRESSURE |
|
563 |
if( pressure[0]+iregs > b->_reg_pressure ) |
|
564 |
b->_reg_pressure = pressure[0]+iregs; |
|
565 |
#endif |
|
566 |
if( pressure[0] <= (uint)INTPRESSURE && |
|
567 |
pressure[0]+iregs > (uint)INTPRESSURE ) { |
|
568 |
#ifndef EXACT_PRESSURE |
|
569 |
b->_reg_pressure = (uint)INTPRESSURE+1; |
|
570 |
#endif |
|
571 |
hrp_index[0] = j-1; |
|
572 |
} |
|
573 |
// Count the float-only registers |
|
574 |
RegMask ftmp = lrgs(r).mask(); |
|
575 |
ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]); |
|
576 |
int fregs = ftmp.Size(); |
|
577 |
#ifdef EXACT_PRESSURE |
|
578 |
if( pressure[1]+fregs > b->_freg_pressure ) |
|
579 |
b->_freg_pressure = pressure[1]+fregs; |
|
580 |
#endif |
|
581 |
if( pressure[1] <= (uint)FLOATPRESSURE && |
|
582 |
pressure[1]+fregs > (uint)FLOATPRESSURE ) { |
|
583 |
#ifndef EXACT_PRESSURE |
|
584 |
b->_freg_pressure = (uint)FLOATPRESSURE+1; |
|
585 |
#endif |
|
586 |
hrp_index[1] = j-1; |
|
587 |
} |
|
588 |
} |
|
589 |
||
590 |
} else { // Else it is live |
|
591 |
// A DEF also ends 'area' partway through the block. |
|
592 |
lrgs(r)._area -= cost; |
|
593 |
assert( lrgs(r)._area >= 0, "negative spill area" ); |
|
594 |
||
595 |
// Insure high score for immediate-use spill copies so they get a color |
|
596 |
if( n->is_SpillCopy() |
|
1057
44220ef9a775
6732194: Data corruption dependent on -server/-client/-Xbatch
never
parents:
1
diff
changeset
|
597 |
&& lrgs(r).is_singledef() // MultiDef live range can still split |
1 | 598 |
&& n->outcnt() == 1 // and use must be in this block |
599 |
&& _cfg._bbs[n->unique_out()->_idx] == b ) { |
|
600 |
// All single-use MachSpillCopy(s) that immediately precede their |
|
601 |
// use must color early. If a longer live range steals their |
|
602 |
// color, the spill copy will split and may push another spill copy |
|
603 |
// further away resulting in an infinite spill-split-retry cycle. |
|
604 |
// Assigning a zero area results in a high score() and a good |
|
605 |
// location in the simplify list. |
|
606 |
// |
|
607 |
||
608 |
Node *single_use = n->unique_out(); |
|
609 |
assert( b->find_node(single_use) >= j, "Use must be later in block"); |
|
610 |
// Use can be earlier in block if it is a Phi, but then I should be a MultiDef |
|
611 |
||
612 |
// Find first non SpillCopy 'm' that follows the current instruction |
|
613 |
// (j - 1) is index for current instruction 'n' |
|
614 |
Node *m = n; |
|
615 |
for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; } |
|
616 |
if( m == single_use ) { |
|
617 |
lrgs(r)._area = 0.0; |
|
618 |
} |
|
619 |
} |
|
620 |
||
621 |
// Remove from live-out set |
|
622 |
if( liveout.remove(r) ) { |
|
623 |
// Adjust register pressure. |
|
624 |
// Capture last hi-to-lo pressure transition |
|
625 |
lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index ); |
|
626 |
assert( pressure[0] == count_int_pressure (&liveout), "" ); |
|
627 |
assert( pressure[1] == count_float_pressure(&liveout), "" ); |
|
628 |
} |
|
629 |
||
630 |
// Copies do not define a new value and so do not interfere. |
|
631 |
// Remove the copies source from the liveout set before interfering. |
|
632 |
uint idx = n->is_Copy(); |
|
633 |
if( idx ) { |
|
634 |
uint x = n2lidx(n->in(idx)); |
|
635 |
if( liveout.remove( x ) ) { |
|
636 |
lrgs(x)._area -= cost; |
|
637 |
// Adjust register pressure. |
|
638 |
lower_pressure( &lrgs(x), j-1, b, pressure, hrp_index ); |
|
639 |
assert( pressure[0] == count_int_pressure (&liveout), "" ); |
|
640 |
assert( pressure[1] == count_float_pressure(&liveout), "" ); |
|
641 |
} |
|
642 |
} |
|
643 |
} // End of if live or not |
|
644 |
||
645 |
// Interfere with everything live. If the defined value must |
|
646 |
// go in a particular register, just remove that register from |
|
647 |
// all conflicting parties and avoid the interference. |
|
648 |
||
649 |
// Make exclusions for rematerializable defs. Since rematerializable |
|
650 |
// DEFs are not bound but the live range is, some uses must be bound. |
|
651 |
// If we spill live range 'r', it can rematerialize at each use site |
|
652 |
// according to its bindings. |
|
653 |
const RegMask &rmask = lrgs(r).mask(); |
|
654 |
if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) { |
|
655 |
// Smear odd bits; leave only aligned pairs of bits. |
|
656 |
RegMask r2mask = rmask; |
|
657 |
r2mask.SmearToPairs(); |
|
658 |
// Check for common case |
|
659 |
int r_size = lrgs(r).num_regs(); |
|
660 |
OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical; |
|
661 |
||
662 |
IndexSetIterator elements(&liveout); |
|
663 |
uint l; |
|
664 |
while ((l = elements.next()) != 0) { |
|
665 |
LRG &lrg = lrgs(l); |
|
666 |
// If 'l' must spill already, do not further hack his bits. |
|
667 |
// He'll get some interferences and be forced to spill later. |
|
668 |
if( lrg._must_spill ) continue; |
|
669 |
// Remove bound register(s) from 'l's choices |
|
670 |
RegMask old = lrg.mask(); |
|
671 |
uint old_size = lrg.mask_size(); |
|
672 |
// Remove the bits from LRG 'r' from LRG 'l' so 'l' no |
|
673 |
// longer interferes with 'r'. If 'l' requires aligned |
|
674 |
// adjacent pairs, subtract out bit pairs. |
|
675 |
if( lrg.num_regs() == 2 && !lrg._fat_proj ) { |
|
676 |
lrg.SUBTRACT( r2mask ); |
|
677 |
lrg.compute_set_mask_size(); |
|
678 |
} else if( r_size != 1 ) { |
|
679 |
lrg.SUBTRACT( rmask ); |
|
680 |
lrg.compute_set_mask_size(); |
|
681 |
} else { // Common case: size 1 bound removal |
|
682 |
if( lrg.mask().Member(r_reg) ) { |
|
683 |
lrg.Remove(r_reg); |
|
684 |
lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1); |
|
685 |
} |
|
686 |
} |
|
687 |
// If 'l' goes completely dry, it must spill. |
|
688 |
if( lrg.not_free() ) { |
|
689 |
// Give 'l' some kind of reasonable mask, so he picks up |
|
690 |
// interferences (and will spill later). |
|
691 |
lrg.set_mask( old ); |
|
692 |
lrg.set_mask_size(old_size); |
|
693 |
must_spill++; |
|
694 |
lrg._must_spill = 1; |
|
695 |
lrg.set_reg(OptoReg::Name(LRG::SPILL_REG)); |
|
696 |
} |
|
697 |
} |
|
698 |
} // End of if bound |
|
699 |
||
700 |
// Now interference with everything that is live and has |
|
701 |
// compatible register sets. |
|
702 |
interfere_with_live(r,&liveout); |
|
703 |
||
704 |
} // End of if normal register-allocated value |
|
705 |
||
706 |
cost -= b->_freq; // Area remaining in the block |
|
707 |
if( cost < 0.0 ) cost = 0.0; // Cost goes negative in the Phi area |
|
708 |
||
709 |
// Make all inputs live |
|
710 |
if( !n->is_Phi() ) { // Phi function uses come from prior block |
|
711 |
JVMState* jvms = n->jvms(); |
|
712 |
uint debug_start = jvms ? jvms->debug_start() : 999999; |
|
713 |
// Start loop at 1 (skip control edge) for most Nodes. |
|
714 |
// SCMemProj's might be the sole use of a StoreLConditional. |
|
715 |
// While StoreLConditionals set memory (the SCMemProj use) |
|
716 |
// they also def flags; if that flag def is unused the |
|
717 |
// allocator sees a flag-setting instruction with no use of |
|
718 |
// the flags and assumes it's dead. This keeps the (useless) |
|
719 |
// flag-setting behavior alive while also keeping the (useful) |
|
720 |
// memory update effect. |
|
721 |
for( uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++ ) { |
|
722 |
Node *def = n->in(k); |
|
723 |
uint x = n2lidx(def); |
|
724 |
if( !x ) continue; |
|
725 |
LRG &lrg = lrgs(x); |
|
726 |
// No use-side cost for spilling debug info |
|
727 |
if( k < debug_start ) |
|
728 |
// A USE costs twice block frequency (once for the Load, once |
|
729 |
// for a Load-delay). Rematerialized uses only cost once. |
|
730 |
lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq)); |
|
731 |
// It is live now |
|
732 |
if( liveout.insert( x ) ) { |
|
733 |
// Newly live things assumed live from here to top of block |
|
734 |
lrg._area += cost; |
|
735 |
// Adjust register pressure |
|
736 |
if( lrg.mask().is_UP() && lrg.mask_size() ) { |
|
737 |
if( lrg._is_float ) { |
|
738 |
pressure[1] += lrg.reg_pressure(); |
|
739 |
#ifdef EXACT_PRESSURE |
|
740 |
if( pressure[1] > b->_freg_pressure ) |
|
741 |
b->_freg_pressure = pressure[1]; |
|
742 |
#endif |
|
743 |
} else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) { |
|
744 |
pressure[0] += lrg.reg_pressure(); |
|
745 |
#ifdef EXACT_PRESSURE |
|
746 |
if( pressure[0] > b->_reg_pressure ) |
|
747 |
b->_reg_pressure = pressure[0]; |
|
748 |
#endif |
|
749 |
} |
|
750 |
} |
|
751 |
assert( pressure[0] == count_int_pressure (&liveout), "" ); |
|
752 |
assert( pressure[1] == count_float_pressure(&liveout), "" ); |
|
753 |
} |
|
754 |
assert( lrg._area >= 0, "negative spill area" ); |
|
755 |
} |
|
756 |
} |
|
757 |
} // End of reverse pass over all instructions in block |
|
758 |
||
759 |
// If we run off the top of the block with high pressure and |
|
760 |
// never see a hi-to-low pressure transition, just record that |
|
761 |
// the whole block is high pressure. |
|
762 |
if( pressure[0] > (uint)INTPRESSURE ) { |
|
763 |
hrp_index[0] = 0; |
|
764 |
#ifdef EXACT_PRESSURE |
|
765 |
if( pressure[0] > b->_reg_pressure ) |
|
766 |
b->_reg_pressure = pressure[0]; |
|
767 |
#else |
|
768 |
b->_reg_pressure = (uint)INTPRESSURE+1; |
|
769 |
#endif |
|
770 |
} |
|
771 |
if( pressure[1] > (uint)FLOATPRESSURE ) { |
|
772 |
hrp_index[1] = 0; |
|
773 |
#ifdef EXACT_PRESSURE |
|
774 |
if( pressure[1] > b->_freg_pressure ) |
|
775 |
b->_freg_pressure = pressure[1]; |
|
776 |
#else |
|
777 |
b->_freg_pressure = (uint)FLOATPRESSURE+1; |
|
778 |
#endif |
|
779 |
} |
|
780 |
||
781 |
// Compute high pressure indice; avoid landing in the middle of projnodes |
|
782 |
j = hrp_index[0]; |
|
783 |
if( j < b->_nodes.size() && j < b->end_idx()+1 ) { |
|
784 |
Node *cur = b->_nodes[j]; |
|
785 |
while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) { |
|
786 |
j--; |
|
787 |
cur = b->_nodes[j]; |
|
788 |
} |
|
789 |
} |
|
790 |
b->_ihrp_index = j; |
|
791 |
j = hrp_index[1]; |
|
792 |
if( j < b->_nodes.size() && j < b->end_idx()+1 ) { |
|
793 |
Node *cur = b->_nodes[j]; |
|
794 |
while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) { |
|
795 |
j--; |
|
796 |
cur = b->_nodes[j]; |
|
797 |
} |
|
798 |
} |
|
799 |
b->_fhrp_index = j; |
|
800 |
||
801 |
#ifndef PRODUCT |
|
802 |
// Gather Register Pressure Statistics |
|
803 |
if( PrintOptoStatistics ) { |
|
804 |
if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE ) |
|
805 |
_high_pressure++; |
|
806 |
else |
|
807 |
_low_pressure++; |
|
808 |
} |
|
809 |
#endif |
|
810 |
} // End of for all blocks |
|
811 |
||
812 |
return must_spill; |
|
813 |
} |