author | adlertz |
Wed, 07 Aug 2013 17:56:19 +0200 | |
changeset 19279 | 4be3c2e6663c |
parent 13963 | e5b53c306fb5 |
child 19330 | 49d6711171e6 |
permissions | -rw-r--r-- |
1 | 1 |
/* |
13963
e5b53c306fb5
7197424: update copyright year to match last edit in jdk8 hotspot repository
mikael
parents:
12958
diff
changeset
|
2 |
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3676
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3676
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
3676
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
7397 | 25 |
#include "precompiled.hpp" |
26 |
#include "libadt/vectset.hpp" |
|
27 |
#include "memory/allocation.hpp" |
|
28 |
#include "opto/block.hpp" |
|
29 |
#include "opto/machnode.hpp" |
|
30 |
#include "opto/phaseX.hpp" |
|
31 |
#include "opto/rootnode.hpp" |
|
32 |
||
1 | 33 |
// Portions of code courtesy of Clifford Click |
34 |
||
35 |
// Optimization - Graph Style |
|
36 |
||
37 |
//------------------------------Tarjan----------------------------------------- |
|
38 |
// A data structure that holds all the information needed to find dominators. |
|
39 |
struct Tarjan { |
|
40 |
Block *_block; // Basic block for this info |
|
41 |
||
42 |
uint _semi; // Semi-dominators |
|
43 |
uint _size; // Used for faster LINK and EVAL |
|
44 |
Tarjan *_parent; // Parent in DFS |
|
45 |
Tarjan *_label; // Used for LINK and EVAL |
|
46 |
Tarjan *_ancestor; // Used for LINK and EVAL |
|
47 |
Tarjan *_child; // Used for faster LINK and EVAL |
|
48 |
Tarjan *_dom; // Parent in dominator tree (immediate dom) |
|
49 |
Tarjan *_bucket; // Set of vertices with given semidominator |
|
50 |
||
51 |
Tarjan *_dom_child; // Child in dominator tree |
|
52 |
Tarjan *_dom_next; // Next in dominator tree |
|
53 |
||
54 |
// Fast union-find work |
|
55 |
void COMPRESS(); |
|
56 |
Tarjan *EVAL(void); |
|
57 |
void LINK( Tarjan *w, Tarjan *tarjan0 ); |
|
58 |
||
59 |
void setdepth( uint size ); |
|
60 |
||
61 |
}; |
|
62 |
||
63 |
//------------------------------Dominator-------------------------------------- |
|
64 |
// Compute the dominator tree of the CFG. The CFG must already have been |
|
65 |
// constructed. This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm. |
|
66 |
void PhaseCFG::Dominators( ) { |
|
67 |
// Pre-grow the blocks array, prior to the ResourceMark kicking in |
|
68 |
_blocks.map(_num_blocks,0); |
|
69 |
||
70 |
ResourceMark rm; |
|
71 |
// Setup mappings from my Graph to Tarjan's stuff and back |
|
72 |
// Note: Tarjan uses 1-based arrays |
|
73 |
Tarjan *tarjan = NEW_RESOURCE_ARRAY(Tarjan,_num_blocks+1); |
|
74 |
||
75 |
// Tarjan's algorithm, almost verbatim: |
|
76 |
// Step 1: |
|
77 |
_rpo_ctr = _num_blocks; |
|
78 |
uint dfsnum = DFS( tarjan ); |
|
79 |
if( dfsnum-1 != _num_blocks ) {// Check for unreachable loops! |
|
80 |
// If the returned dfsnum does not match the number of blocks, then we |
|
81 |
// must have some unreachable loops. These can be made at any time by |
|
82 |
// IterGVN. They are cleaned up by CCP or the loop opts, but the last |
|
83 |
// IterGVN can always make more that are not cleaned up. Highly unlikely |
|
84 |
// except in ZKM.jar, where endless irreducible loops cause the loop opts |
|
85 |
// to not get run. |
|
86 |
// |
|
87 |
// Having found unreachable loops, we have made a bad RPO _block layout. |
|
88 |
// We can re-run the above DFS pass with the correct number of blocks, |
|
89 |
// and hack the Tarjan algorithm below to be robust in the presence of |
|
90 |
// such dead loops (as was done for the NTarjan code farther below). |
|
91 |
// Since this situation is so unlikely, instead I've decided to bail out. |
|
92 |
// CNC 7/24/2001 |
|
93 |
C->record_method_not_compilable("unreachable loop"); |
|
94 |
return; |
|
95 |
} |
|
96 |
_blocks._cnt = _num_blocks; |
|
97 |
||
98 |
// Tarjan is using 1-based arrays, so these are some initialize flags |
|
99 |
tarjan[0]._size = tarjan[0]._semi = 0; |
|
100 |
tarjan[0]._label = &tarjan[0]; |
|
101 |
||
102 |
uint i; |
|
103 |
for( i=_num_blocks; i>=2; i-- ) { // For all vertices in DFS order |
|
104 |
Tarjan *w = &tarjan[i]; // Get vertex from DFS |
|
105 |
||
106 |
// Step 2: |
|
107 |
Node *whead = w->_block->head(); |
|
19279
4be3c2e6663c
8022284: Hide internal data structure in PhaseCFG
adlertz
parents:
13963
diff
changeset
|
108 |
for (uint j = 1; j < whead->req(); j++) { |
4be3c2e6663c
8022284: Hide internal data structure in PhaseCFG
adlertz
parents:
13963
diff
changeset
|
109 |
Block* b = get_block_for_node(whead->in(j)); |
1 | 110 |
Tarjan *vx = &tarjan[b->_pre_order]; |
111 |
Tarjan *u = vx->EVAL(); |
|
112 |
if( u->_semi < w->_semi ) |
|
113 |
w->_semi = u->_semi; |
|
114 |
} |
|
115 |
||
116 |
// w is added to a bucket here, and only here. |
|
117 |
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n). |
|
118 |
// Thus bucket can be a linked list. |
|
119 |
// Thus we do not need a small integer name for each Block. |
|
120 |
w->_bucket = tarjan[w->_semi]._bucket; |
|
121 |
tarjan[w->_semi]._bucket = w; |
|
122 |
||
123 |
w->_parent->LINK( w, &tarjan[0] ); |
|
124 |
||
125 |
// Step 3: |
|
126 |
for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) { |
|
127 |
Tarjan *u = vx->EVAL(); |
|
128 |
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent; |
|
129 |
} |
|
130 |
} |
|
131 |
||
132 |
// Step 4: |
|
133 |
for( i=2; i <= _num_blocks; i++ ) { |
|
134 |
Tarjan *w = &tarjan[i]; |
|
135 |
if( w->_dom != &tarjan[w->_semi] ) |
|
136 |
w->_dom = w->_dom->_dom; |
|
137 |
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later |
|
138 |
} |
|
139 |
// No immediate dominator for the root |
|
140 |
Tarjan *w = &tarjan[_broot->_pre_order]; |
|
141 |
w->_dom = NULL; |
|
142 |
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later |
|
143 |
||
144 |
// Convert the dominator tree array into my kind of graph |
|
145 |
for( i=1; i<=_num_blocks;i++){// For all Tarjan vertices |
|
146 |
Tarjan *t = &tarjan[i]; // Handy access |
|
147 |
Tarjan *tdom = t->_dom; // Handy access to immediate dominator |
|
148 |
if( tdom ) { // Root has no immediate dominator |
|
149 |
t->_block->_idom = tdom->_block; // Set immediate dominator |
|
150 |
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child |
|
151 |
tdom->_dom_child = t; // Make me a child of my parent |
|
152 |
} else |
|
153 |
t->_block->_idom = NULL; // Root |
|
154 |
} |
|
155 |
w->setdepth( _num_blocks+1 ); // Set depth in dominator tree |
|
156 |
||
157 |
} |
|
158 |
||
159 |
//----------------------------Block_Stack-------------------------------------- |
|
160 |
class Block_Stack { |
|
161 |
private: |
|
162 |
struct Block_Descr { |
|
163 |
Block *block; // Block |
|
164 |
int index; // Index of block's successor pushed on stack |
|
165 |
int freq_idx; // Index of block's most frequent successor |
|
166 |
}; |
|
167 |
Block_Descr *_stack_top; |
|
168 |
Block_Descr *_stack_max; |
|
169 |
Block_Descr *_stack; |
|
170 |
Tarjan *_tarjan; |
|
171 |
uint most_frequent_successor( Block *b ); |
|
172 |
public: |
|
173 |
Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) { |
|
174 |
_stack = NEW_RESOURCE_ARRAY(Block_Descr, size); |
|
175 |
_stack_max = _stack + size; |
|
176 |
_stack_top = _stack - 1; // stack is empty |
|
177 |
} |
|
178 |
void push(uint pre_order, Block *b) { |
|
179 |
Tarjan *t = &_tarjan[pre_order]; // Fast local access |
|
180 |
b->_pre_order = pre_order; // Flag as visited |
|
181 |
t->_block = b; // Save actual block |
|
182 |
t->_semi = pre_order; // Block to DFS map |
|
183 |
t->_label = t; // DFS to vertex map |
|
184 |
t->_ancestor = NULL; // Fast LINK & EVAL setup |
|
185 |
t->_child = &_tarjan[0]; // Sentenial |
|
186 |
t->_size = 1; |
|
187 |
t->_bucket = NULL; |
|
188 |
if (pre_order == 1) |
|
189 |
t->_parent = NULL; // first block doesn't have parent |
|
190 |
else { |
|
2131 | 191 |
// Save parent (current top block on stack) in DFS |
1 | 192 |
t->_parent = &_tarjan[_stack_top->block->_pre_order]; |
193 |
} |
|
194 |
// Now put this block on stack |
|
195 |
++_stack_top; |
|
196 |
assert(_stack_top < _stack_max, ""); // assert if stack have to grow |
|
197 |
_stack_top->block = b; |
|
198 |
_stack_top->index = -1; |
|
199 |
// Find the index into b->succs[] array of the most frequent successor. |
|
200 |
_stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0 |
|
201 |
} |
|
202 |
Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; } |
|
203 |
bool is_nonempty() { return (_stack_top >= _stack); } |
|
204 |
bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); } |
|
205 |
Block* next_successor() { |
|
206 |
int i = _stack_top->index; |
|
207 |
i++; |
|
208 |
if (i == _stack_top->freq_idx) i++; |
|
209 |
if (i >= (int)(_stack_top->block->_num_succs)) { |
|
210 |
i = _stack_top->freq_idx; // process most frequent successor last |
|
211 |
} |
|
212 |
_stack_top->index = i; |
|
213 |
return _stack_top->block->_succs[ i ]; |
|
214 |
} |
|
215 |
}; |
|
216 |
||
217 |
//-------------------------most_frequent_successor----------------------------- |
|
218 |
// Find the index into the b->succs[] array of the most frequent successor. |
|
219 |
uint Block_Stack::most_frequent_successor( Block *b ) { |
|
220 |
uint freq_idx = 0; |
|
221 |
int eidx = b->end_idx(); |
|
222 |
Node *n = b->_nodes[eidx]; |
|
223 |
int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode(); |
|
224 |
switch( op ) { |
|
225 |
case Op_CountedLoopEnd: |
|
226 |
case Op_If: { // Split frequency amongst children |
|
227 |
float prob = n->as_MachIf()->_prob; |
|
228 |
// Is succ[0] the TRUE branch or the FALSE branch? |
|
229 |
if( b->_nodes[eidx+1]->Opcode() == Op_IfFalse ) |
|
230 |
prob = 1.0f - prob; |
|
231 |
freq_idx = prob < PROB_FAIR; // freq=1 for succ[0] < 0.5 prob |
|
232 |
break; |
|
233 |
} |
|
234 |
case Op_Catch: // Split frequency amongst children |
|
235 |
for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ ) |
|
236 |
if( b->_nodes[eidx+1+freq_idx]->as_CatchProj()->_con == CatchProjNode::fall_through_index ) |
|
237 |
break; |
|
238 |
// Handle case of no fall-thru (e.g., check-cast MUST throw an exception) |
|
239 |
if( freq_idx == b->_num_succs ) freq_idx = 0; |
|
240 |
break; |
|
241 |
// Currently there is no support for finding out the most |
|
242 |
// frequent successor for jumps, so lets just make it the first one |
|
243 |
case Op_Jump: |
|
244 |
case Op_Root: |
|
245 |
case Op_Goto: |
|
246 |
case Op_NeverBranch: |
|
247 |
freq_idx = 0; // fall thru |
|
248 |
break; |
|
249 |
case Op_TailCall: |
|
250 |
case Op_TailJump: |
|
251 |
case Op_Return: |
|
252 |
case Op_Halt: |
|
253 |
case Op_Rethrow: |
|
254 |
break; |
|
255 |
default: |
|
256 |
ShouldNotReachHere(); |
|
257 |
} |
|
258 |
return freq_idx; |
|
259 |
} |
|
260 |
||
261 |
//------------------------------DFS-------------------------------------------- |
|
262 |
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup |
|
263 |
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent. |
|
264 |
uint PhaseCFG::DFS( Tarjan *tarjan ) { |
|
265 |
Block *b = _broot; |
|
266 |
uint pre_order = 1; |
|
267 |
// Allocate stack of size _num_blocks+1 to avoid frequent realloc |
|
268 |
Block_Stack bstack(tarjan, _num_blocks+1); |
|
269 |
||
270 |
// Push on stack the state for the first block |
|
271 |
bstack.push(pre_order, b); |
|
272 |
++pre_order; |
|
273 |
||
274 |
while (bstack.is_nonempty()) { |
|
275 |
if (!bstack.last_successor()) { |
|
276 |
// Walk over all successors in pre-order (DFS). |
|
277 |
Block *s = bstack.next_successor(); |
|
278 |
if (s->_pre_order == 0) { // Check for no-pre-order, not-visited |
|
279 |
// Push on stack the state of successor |
|
280 |
bstack.push(pre_order, s); |
|
281 |
++pre_order; |
|
282 |
} |
|
283 |
} |
|
284 |
else { |
|
285 |
// Build a reverse post-order in the CFG _blocks array |
|
286 |
Block *stack_top = bstack.pop(); |
|
287 |
stack_top->_rpo = --_rpo_ctr; |
|
288 |
_blocks.map(stack_top->_rpo, stack_top); |
|
289 |
} |
|
290 |
} |
|
291 |
return pre_order; |
|
292 |
} |
|
293 |
||
294 |
//------------------------------COMPRESS--------------------------------------- |
|
295 |
void Tarjan::COMPRESS() |
|
296 |
{ |
|
297 |
assert( _ancestor != 0, "" ); |
|
298 |
if( _ancestor->_ancestor != 0 ) { |
|
299 |
_ancestor->COMPRESS( ); |
|
300 |
if( _ancestor->_label->_semi < _label->_semi ) |
|
301 |
_label = _ancestor->_label; |
|
302 |
_ancestor = _ancestor->_ancestor; |
|
303 |
} |
|
304 |
} |
|
305 |
||
306 |
//------------------------------EVAL------------------------------------------- |
|
307 |
Tarjan *Tarjan::EVAL() { |
|
308 |
if( !_ancestor ) return _label; |
|
309 |
COMPRESS(); |
|
310 |
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label; |
|
311 |
} |
|
312 |
||
313 |
//------------------------------LINK------------------------------------------- |
|
314 |
void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) { |
|
315 |
Tarjan *s = w; |
|
316 |
while( w->_label->_semi < s->_child->_label->_semi ) { |
|
317 |
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) { |
|
318 |
s->_child->_ancestor = s; |
|
319 |
s->_child = s->_child->_child; |
|
320 |
} else { |
|
321 |
s->_child->_size = s->_size; |
|
322 |
s = s->_ancestor = s->_child; |
|
323 |
} |
|
324 |
} |
|
325 |
s->_label = w->_label; |
|
326 |
_size += w->_size; |
|
327 |
if( _size < (w->_size << 1) ) { |
|
328 |
Tarjan *tmp = s; s = _child; _child = tmp; |
|
329 |
} |
|
330 |
while( s != tarjan0 ) { |
|
331 |
s->_ancestor = this; |
|
332 |
s = s->_child; |
|
333 |
} |
|
334 |
} |
|
335 |
||
336 |
//------------------------------setdepth--------------------------------------- |
|
337 |
void Tarjan::setdepth( uint stack_size ) { |
|
338 |
Tarjan **top = NEW_RESOURCE_ARRAY(Tarjan*, stack_size); |
|
339 |
Tarjan **next = top; |
|
340 |
Tarjan **last; |
|
341 |
uint depth = 0; |
|
342 |
*top = this; |
|
343 |
++top; |
|
344 |
do { |
|
345 |
// next level |
|
346 |
++depth; |
|
347 |
last = top; |
|
348 |
do { |
|
349 |
// Set current depth for all tarjans on this level |
|
350 |
Tarjan *t = *next; // next tarjan from stack |
|
351 |
++next; |
|
352 |
do { |
|
353 |
t->_block->_dom_depth = depth; // Set depth in dominator tree |
|
354 |
Tarjan *dom_child = t->_dom_child; |
|
355 |
t = t->_dom_next; // next tarjan |
|
356 |
if (dom_child != NULL) { |
|
357 |
*top = dom_child; // save child on stack |
|
358 |
++top; |
|
359 |
} |
|
360 |
} while (t != NULL); |
|
361 |
} while (next < last); |
|
362 |
} while (last < top); |
|
363 |
} |
|
364 |
||
365 |
//*********************** DOMINATORS ON THE SEA OF NODES*********************** |
|
366 |
//------------------------------NTarjan---------------------------------------- |
|
367 |
// A data structure that holds all the information needed to find dominators. |
|
368 |
struct NTarjan { |
|
369 |
Node *_control; // Control node associated with this info |
|
370 |
||
371 |
uint _semi; // Semi-dominators |
|
372 |
uint _size; // Used for faster LINK and EVAL |
|
373 |
NTarjan *_parent; // Parent in DFS |
|
374 |
NTarjan *_label; // Used for LINK and EVAL |
|
375 |
NTarjan *_ancestor; // Used for LINK and EVAL |
|
376 |
NTarjan *_child; // Used for faster LINK and EVAL |
|
377 |
NTarjan *_dom; // Parent in dominator tree (immediate dom) |
|
378 |
NTarjan *_bucket; // Set of vertices with given semidominator |
|
379 |
||
380 |
NTarjan *_dom_child; // Child in dominator tree |
|
381 |
NTarjan *_dom_next; // Next in dominator tree |
|
382 |
||
383 |
// Perform DFS search. |
|
384 |
// Setup 'vertex' as DFS to vertex mapping. |
|
385 |
// Setup 'semi' as vertex to DFS mapping. |
|
386 |
// Set 'parent' to DFS parent. |
|
387 |
static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder ); |
|
388 |
void setdepth( uint size, uint *dom_depth ); |
|
389 |
||
390 |
// Fast union-find work |
|
391 |
void COMPRESS(); |
|
392 |
NTarjan *EVAL(void); |
|
393 |
void LINK( NTarjan *w, NTarjan *ntarjan0 ); |
|
394 |
#ifndef PRODUCT |
|
395 |
void dump(int offset) const; |
|
396 |
#endif |
|
397 |
}; |
|
398 |
||
399 |
//------------------------------Dominator-------------------------------------- |
|
400 |
// Compute the dominator tree of the sea of nodes. This version walks all CFG |
|
401 |
// nodes (using the is_CFG() call) and places them in a dominator tree. Thus, |
|
402 |
// it needs a count of the CFG nodes for the mapping table. This is the |
|
403 |
// Lengauer & Tarjan O(E-alpha(E,V)) algorithm. |
|
3676
3bac3e882cd3
6862956: PhaseIdealLoop should have a CFG verification mode
never
parents:
2131
diff
changeset
|
404 |
void PhaseIdealLoop::Dominators() { |
1 | 405 |
ResourceMark rm; |
406 |
// Setup mappings from my Graph to Tarjan's stuff and back |
|
407 |
// Note: Tarjan uses 1-based arrays |
|
408 |
NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1); |
|
409 |
// Initialize _control field for fast reference |
|
410 |
int i; |
|
411 |
for( i= C->unique()-1; i>=0; i-- ) |
|
412 |
ntarjan[i]._control = NULL; |
|
413 |
||
414 |
// Store the DFS order for the main loop |
|
415 |
uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1); |
|
416 |
memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint)); |
|
417 |
||
418 |
// Tarjan's algorithm, almost verbatim: |
|
419 |
// Step 1: |
|
420 |
VectorSet visited(Thread::current()->resource_area()); |
|
421 |
int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder); |
|
422 |
||
423 |
// Tarjan is using 1-based arrays, so these are some initialize flags |
|
424 |
ntarjan[0]._size = ntarjan[0]._semi = 0; |
|
425 |
ntarjan[0]._label = &ntarjan[0]; |
|
426 |
||
427 |
for( i = dfsnum-1; i>1; i-- ) { // For all nodes in reverse DFS order |
|
428 |
NTarjan *w = &ntarjan[i]; // Get Node from DFS |
|
429 |
assert(w->_control != NULL,"bad DFS walk"); |
|
430 |
||
431 |
// Step 2: |
|
432 |
Node *whead = w->_control; |
|
433 |
for( uint j=0; j < whead->req(); j++ ) { // For each predecessor |
|
434 |
if( whead->in(j) == NULL || !whead->in(j)->is_CFG() ) |
|
435 |
continue; // Only process control nodes |
|
436 |
uint b = dfsorder[whead->in(j)->_idx]; |
|
437 |
if(b == max_uint) continue; |
|
438 |
NTarjan *vx = &ntarjan[b]; |
|
439 |
NTarjan *u = vx->EVAL(); |
|
440 |
if( u->_semi < w->_semi ) |
|
441 |
w->_semi = u->_semi; |
|
442 |
} |
|
443 |
||
444 |
// w is added to a bucket here, and only here. |
|
445 |
// Thus w is in at most one bucket and the sum of all bucket sizes is O(n). |
|
446 |
// Thus bucket can be a linked list. |
|
447 |
w->_bucket = ntarjan[w->_semi]._bucket; |
|
448 |
ntarjan[w->_semi]._bucket = w; |
|
449 |
||
450 |
w->_parent->LINK( w, &ntarjan[0] ); |
|
451 |
||
452 |
// Step 3: |
|
453 |
for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) { |
|
454 |
NTarjan *u = vx->EVAL(); |
|
455 |
vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent; |
|
456 |
} |
|
457 |
||
458 |
// Cleanup any unreachable loops now. Unreachable loops are loops that |
|
459 |
// flow into the main graph (and hence into ROOT) but are not reachable |
|
460 |
// from above. Such code is dead, but requires a global pass to detect |
|
461 |
// it; this global pass was the 'build_loop_tree' pass run just prior. |
|
3676
3bac3e882cd3
6862956: PhaseIdealLoop should have a CFG verification mode
never
parents:
2131
diff
changeset
|
462 |
if( !_verify_only && whead->is_Region() ) { |
1 | 463 |
for( uint i = 1; i < whead->req(); i++ ) { |
464 |
if (!has_node(whead->in(i))) { |
|
465 |
// Kill dead input path |
|
466 |
assert( !visited.test(whead->in(i)->_idx), |
|
467 |
"input with no loop must be dead" ); |
|
12958
009b6c9586d8
7173340: C2: code cleanup: use PhaseIterGVN::replace_edge(Node*, int, Node*) where applicable
kvn
parents:
7397
diff
changeset
|
468 |
_igvn.delete_input_of(whead, i); |
1 | 469 |
for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) { |
470 |
Node* p = whead->fast_out(j); |
|
471 |
if( p->is_Phi() ) { |
|
12958
009b6c9586d8
7173340: C2: code cleanup: use PhaseIterGVN::replace_edge(Node*, int, Node*) where applicable
kvn
parents:
7397
diff
changeset
|
472 |
_igvn.delete_input_of(p, i); |
1 | 473 |
} |
474 |
} |
|
475 |
i--; // Rerun same iteration |
|
476 |
} // End of if dead input path |
|
477 |
} // End of for all input paths |
|
478 |
} // End if if whead is a Region |
|
479 |
} // End of for all Nodes in reverse DFS order |
|
480 |
||
481 |
// Step 4: |
|
482 |
for( i=2; i < dfsnum; i++ ) { // DFS order |
|
483 |
NTarjan *w = &ntarjan[i]; |
|
484 |
assert(w->_control != NULL,"Bad DFS walk"); |
|
485 |
if( w->_dom != &ntarjan[w->_semi] ) |
|
486 |
w->_dom = w->_dom->_dom; |
|
487 |
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later |
|
488 |
} |
|
489 |
// No immediate dominator for the root |
|
490 |
NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]]; |
|
491 |
w->_dom = NULL; |
|
492 |
w->_parent = NULL; |
|
493 |
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later |
|
494 |
||
495 |
// Convert the dominator tree array into my kind of graph |
|
496 |
for( i=1; i<dfsnum; i++ ) { // For all Tarjan vertices |
|
497 |
NTarjan *t = &ntarjan[i]; // Handy access |
|
498 |
assert(t->_control != NULL,"Bad DFS walk"); |
|
499 |
NTarjan *tdom = t->_dom; // Handy access to immediate dominator |
|
500 |
if( tdom ) { // Root has no immediate dominator |
|
501 |
_idom[t->_control->_idx] = tdom->_control; // Set immediate dominator |
|
502 |
t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child |
|
503 |
tdom->_dom_child = t; // Make me a child of my parent |
|
504 |
} else |
|
505 |
_idom[C->root()->_idx] = NULL; // Root |
|
506 |
} |
|
507 |
w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree |
|
508 |
// Pick up the 'top' node as well |
|
509 |
_idom [C->top()->_idx] = C->root(); |
|
510 |
_dom_depth[C->top()->_idx] = 1; |
|
511 |
||
512 |
// Debug Print of Dominator tree |
|
513 |
if( PrintDominators ) { |
|
514 |
#ifndef PRODUCT |
|
515 |
w->dump(0); |
|
516 |
#endif |
|
517 |
} |
|
518 |
} |
|
519 |
||
520 |
//------------------------------DFS-------------------------------------------- |
|
521 |
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup |
|
522 |
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent. |
|
523 |
int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) { |
|
524 |
// Allocate stack of size C->unique()/8 to avoid frequent realloc |
|
525 |
GrowableArray <Node *> dfstack(pil->C->unique() >> 3); |
|
526 |
Node *b = pil->C->root(); |
|
527 |
int dfsnum = 1; |
|
528 |
dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use |
|
529 |
dfstack.push(b); |
|
530 |
||
531 |
while (dfstack.is_nonempty()) { |
|
532 |
b = dfstack.pop(); |
|
533 |
if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited |
|
534 |
NTarjan *w = &ntarjan[dfsnum]; |
|
535 |
// Only fully process control nodes |
|
536 |
w->_control = b; // Save actual node |
|
537 |
// Use parent's cached dfsnum to identify "Parent in DFS" |
|
538 |
w->_parent = &ntarjan[dfsorder[b->_idx]]; |
|
539 |
dfsorder[b->_idx] = dfsnum; // Save DFS order info |
|
540 |
w->_semi = dfsnum; // Node to DFS map |
|
541 |
w->_label = w; // DFS to vertex map |
|
542 |
w->_ancestor = NULL; // Fast LINK & EVAL setup |
|
543 |
w->_child = &ntarjan[0]; // Sentinal |
|
544 |
w->_size = 1; |
|
545 |
w->_bucket = NULL; |
|
546 |
||
547 |
// Need DEF-USE info for this pass |
|
548 |
for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards |
|
549 |
Node* s = b->raw_out(i); // Get a use |
|
550 |
// CFG nodes only and not dead stuff |
|
551 |
if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) { |
|
552 |
dfsorder[s->_idx] = dfsnum; // Cache parent's dfsnum for a later use |
|
553 |
dfstack.push(s); |
|
554 |
} |
|
555 |
} |
|
556 |
dfsnum++; // update after parent's dfsnum has been cached. |
|
557 |
} |
|
558 |
} |
|
559 |
||
560 |
return dfsnum; |
|
561 |
} |
|
562 |
||
563 |
//------------------------------COMPRESS--------------------------------------- |
|
564 |
void NTarjan::COMPRESS() |
|
565 |
{ |
|
566 |
assert( _ancestor != 0, "" ); |
|
567 |
if( _ancestor->_ancestor != 0 ) { |
|
568 |
_ancestor->COMPRESS( ); |
|
569 |
if( _ancestor->_label->_semi < _label->_semi ) |
|
570 |
_label = _ancestor->_label; |
|
571 |
_ancestor = _ancestor->_ancestor; |
|
572 |
} |
|
573 |
} |
|
574 |
||
575 |
//------------------------------EVAL------------------------------------------- |
|
576 |
NTarjan *NTarjan::EVAL() { |
|
577 |
if( !_ancestor ) return _label; |
|
578 |
COMPRESS(); |
|
579 |
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label; |
|
580 |
} |
|
581 |
||
582 |
//------------------------------LINK------------------------------------------- |
|
583 |
void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) { |
|
584 |
NTarjan *s = w; |
|
585 |
while( w->_label->_semi < s->_child->_label->_semi ) { |
|
586 |
if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) { |
|
587 |
s->_child->_ancestor = s; |
|
588 |
s->_child = s->_child->_child; |
|
589 |
} else { |
|
590 |
s->_child->_size = s->_size; |
|
591 |
s = s->_ancestor = s->_child; |
|
592 |
} |
|
593 |
} |
|
594 |
s->_label = w->_label; |
|
595 |
_size += w->_size; |
|
596 |
if( _size < (w->_size << 1) ) { |
|
597 |
NTarjan *tmp = s; s = _child; _child = tmp; |
|
598 |
} |
|
599 |
while( s != ntarjan0 ) { |
|
600 |
s->_ancestor = this; |
|
601 |
s = s->_child; |
|
602 |
} |
|
603 |
} |
|
604 |
||
605 |
//------------------------------setdepth--------------------------------------- |
|
606 |
void NTarjan::setdepth( uint stack_size, uint *dom_depth ) { |
|
607 |
NTarjan **top = NEW_RESOURCE_ARRAY(NTarjan*, stack_size); |
|
608 |
NTarjan **next = top; |
|
609 |
NTarjan **last; |
|
610 |
uint depth = 0; |
|
611 |
*top = this; |
|
612 |
++top; |
|
613 |
do { |
|
614 |
// next level |
|
615 |
++depth; |
|
616 |
last = top; |
|
617 |
do { |
|
618 |
// Set current depth for all tarjans on this level |
|
619 |
NTarjan *t = *next; // next tarjan from stack |
|
620 |
++next; |
|
621 |
do { |
|
622 |
dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree |
|
623 |
NTarjan *dom_child = t->_dom_child; |
|
624 |
t = t->_dom_next; // next tarjan |
|
625 |
if (dom_child != NULL) { |
|
626 |
*top = dom_child; // save child on stack |
|
627 |
++top; |
|
628 |
} |
|
629 |
} while (t != NULL); |
|
630 |
} while (next < last); |
|
631 |
} while (last < top); |
|
632 |
} |
|
633 |
||
634 |
//------------------------------dump------------------------------------------- |
|
635 |
#ifndef PRODUCT |
|
636 |
void NTarjan::dump(int offset) const { |
|
637 |
// Dump the data from this node |
|
638 |
int i; |
|
639 |
for(i = offset; i >0; i--) // Use indenting for tree structure |
|
640 |
tty->print(" "); |
|
641 |
tty->print("Dominator Node: "); |
|
642 |
_control->dump(); // Control node for this dom node |
|
643 |
tty->print("\n"); |
|
644 |
for(i = offset; i >0; i--) // Use indenting for tree structure |
|
645 |
tty->print(" "); |
|
646 |
tty->print("semi:%d, size:%d\n",_semi, _size); |
|
647 |
for(i = offset; i >0; i--) // Use indenting for tree structure |
|
648 |
tty->print(" "); |
|
649 |
tty->print("DFS Parent: "); |
|
650 |
if(_parent != NULL) |
|
651 |
_parent->_control->dump(); // Parent in DFS |
|
652 |
tty->print("\n"); |
|
653 |
for(i = offset; i >0; i--) // Use indenting for tree structure |
|
654 |
tty->print(" "); |
|
655 |
tty->print("Dom Parent: "); |
|
656 |
if(_dom != NULL) |
|
657 |
_dom->_control->dump(); // Parent in Dominator Tree |
|
658 |
tty->print("\n"); |
|
659 |
||
660 |
// Recurse over remaining tree |
|
661 |
if( _dom_child ) _dom_child->dump(offset+2); // Children in dominator tree |
|
662 |
if( _dom_next ) _dom_next ->dump(offset ); // Siblings in dominator tree |
|
663 |
||
664 |
} |
|
665 |
#endif |