1
|
1 |
/*
|
|
2 |
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// Optimization - Graph Style
|
|
26 |
|
|
27 |
class Block;
|
|
28 |
class CFGLoop;
|
|
29 |
class MachCallNode;
|
|
30 |
class Matcher;
|
|
31 |
class RootNode;
|
|
32 |
class VectorSet;
|
|
33 |
struct Tarjan;
|
|
34 |
|
|
35 |
//------------------------------Block_Array------------------------------------
|
|
36 |
// Map dense integer indices to Blocks. Uses classic doubling-array trick.
|
|
37 |
// Abstractly provides an infinite array of Block*'s, initialized to NULL.
|
|
38 |
// Note that the constructor just zeros things, and since I use Arena
|
|
39 |
// allocation I do not need a destructor to reclaim storage.
|
|
40 |
class Block_Array : public ResourceObj {
|
|
41 |
uint _size; // allocated size, as opposed to formal limit
|
|
42 |
debug_only(uint _limit;) // limit to formal domain
|
|
43 |
protected:
|
|
44 |
Block **_blocks;
|
|
45 |
void grow( uint i ); // Grow array node to fit
|
|
46 |
|
|
47 |
public:
|
|
48 |
Arena *_arena; // Arena to allocate in
|
|
49 |
|
|
50 |
Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
|
|
51 |
debug_only(_limit=0);
|
|
52 |
_blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
|
|
53 |
for( int i = 0; i < OptoBlockListSize; i++ ) {
|
|
54 |
_blocks[i] = NULL;
|
|
55 |
}
|
|
56 |
}
|
|
57 |
Block *lookup( uint i ) const // Lookup, or NULL for not mapped
|
|
58 |
{ return (i<Max()) ? _blocks[i] : (Block*)NULL; }
|
|
59 |
Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
|
|
60 |
{ assert( i < Max(), "oob" ); return _blocks[i]; }
|
|
61 |
// Extend the mapping: index i maps to Block *n.
|
|
62 |
void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
|
|
63 |
uint Max() const { debug_only(return _limit); return _size; }
|
|
64 |
};
|
|
65 |
|
|
66 |
|
|
67 |
class Block_List : public Block_Array {
|
|
68 |
public:
|
|
69 |
uint _cnt;
|
|
70 |
Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
|
|
71 |
void push( Block *b ) { map(_cnt++,b); }
|
|
72 |
Block *pop() { return _blocks[--_cnt]; }
|
|
73 |
Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
|
|
74 |
void remove( uint i );
|
|
75 |
void insert( uint i, Block *n );
|
|
76 |
uint size() const { return _cnt; }
|
|
77 |
void reset() { _cnt = 0; }
|
|
78 |
};
|
|
79 |
|
|
80 |
|
|
81 |
class CFGElement : public ResourceObj {
|
|
82 |
public:
|
|
83 |
float _freq; // Execution frequency (estimate)
|
|
84 |
|
|
85 |
CFGElement() : _freq(0.0f) {}
|
|
86 |
virtual bool is_block() { return false; }
|
|
87 |
virtual bool is_loop() { return false; }
|
|
88 |
Block* as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
|
|
89 |
CFGLoop* as_CFGLoop() { assert(is_loop(), "must be loop"); return (CFGLoop*)this; }
|
|
90 |
};
|
|
91 |
|
|
92 |
//------------------------------Block------------------------------------------
|
|
93 |
// This class defines a Basic Block.
|
|
94 |
// Basic blocks are used during the output routines, and are not used during
|
|
95 |
// any optimization pass. They are created late in the game.
|
|
96 |
class Block : public CFGElement {
|
|
97 |
public:
|
|
98 |
// Nodes in this block, in order
|
|
99 |
Node_List _nodes;
|
|
100 |
|
|
101 |
// Basic blocks have a Node which defines Control for all Nodes pinned in
|
|
102 |
// this block. This Node is a RegionNode. Exception-causing Nodes
|
|
103 |
// (division, subroutines) and Phi functions are always pinned. Later,
|
|
104 |
// every Node will get pinned to some block.
|
|
105 |
Node *head() const { return _nodes[0]; }
|
|
106 |
|
|
107 |
// CAUTION: num_preds() is ONE based, so that predecessor numbers match
|
|
108 |
// input edges to Regions and Phis.
|
|
109 |
uint num_preds() const { return head()->req(); }
|
|
110 |
Node *pred(uint i) const { return head()->in(i); }
|
|
111 |
|
|
112 |
// Array of successor blocks, same size as projs array
|
|
113 |
Block_Array _succs;
|
|
114 |
|
|
115 |
// Basic blocks have some number of Nodes which split control to all
|
|
116 |
// following blocks. These Nodes are always Projections. The field in
|
|
117 |
// the Projection and the block-ending Node determine which Block follows.
|
|
118 |
uint _num_succs;
|
|
119 |
|
|
120 |
// Basic blocks also carry all sorts of good old fashioned DFS information
|
|
121 |
// used to find loops, loop nesting depth, dominators, etc.
|
|
122 |
uint _pre_order; // Pre-order DFS number
|
|
123 |
|
|
124 |
// Dominator tree
|
|
125 |
uint _dom_depth; // Depth in dominator tree for fast LCA
|
|
126 |
Block* _idom; // Immediate dominator block
|
|
127 |
|
|
128 |
CFGLoop *_loop; // Loop to which this block belongs
|
|
129 |
uint _rpo; // Number in reverse post order walk
|
|
130 |
|
|
131 |
virtual bool is_block() { return true; }
|
|
132 |
float succ_prob(uint i); // return probability of i'th successor
|
|
133 |
|
|
134 |
Block* dom_lca(Block* that); // Compute LCA in dominator tree.
|
|
135 |
#ifdef ASSERT
|
|
136 |
bool dominates(Block* that) {
|
|
137 |
int dom_diff = this->_dom_depth - that->_dom_depth;
|
|
138 |
if (dom_diff > 0) return false;
|
|
139 |
for (; dom_diff < 0; dom_diff++) that = that->_idom;
|
|
140 |
return this == that;
|
|
141 |
}
|
|
142 |
#endif
|
|
143 |
|
|
144 |
// Report the alignment required by this block. Must be a power of 2.
|
|
145 |
// The previous block will insert nops to get this alignment.
|
|
146 |
uint code_alignment();
|
|
147 |
|
|
148 |
// BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
|
|
149 |
// It is currently also used to scale such frequencies relative to
|
|
150 |
// FreqCountInvocations relative to the old value of 1500.
|
|
151 |
#define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
|
|
152 |
|
|
153 |
// Register Pressure (estimate) for Splitting heuristic
|
|
154 |
uint _reg_pressure;
|
|
155 |
uint _ihrp_index;
|
|
156 |
uint _freg_pressure;
|
|
157 |
uint _fhrp_index;
|
|
158 |
|
|
159 |
// Mark and visited bits for an LCA calculation in insert_anti_dependences.
|
|
160 |
// Since they hold unique node indexes, they do not need reinitialization.
|
|
161 |
node_idx_t _raise_LCA_mark;
|
|
162 |
void set_raise_LCA_mark(node_idx_t x) { _raise_LCA_mark = x; }
|
|
163 |
node_idx_t raise_LCA_mark() const { return _raise_LCA_mark; }
|
|
164 |
node_idx_t _raise_LCA_visited;
|
|
165 |
void set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
|
|
166 |
node_idx_t raise_LCA_visited() const { return _raise_LCA_visited; }
|
|
167 |
|
|
168 |
// Estimated size in bytes of first instructions in a loop.
|
|
169 |
uint _first_inst_size;
|
|
170 |
uint first_inst_size() const { return _first_inst_size; }
|
|
171 |
void set_first_inst_size(uint s) { _first_inst_size = s; }
|
|
172 |
|
|
173 |
// Compute the size of first instructions in this block.
|
|
174 |
uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
|
|
175 |
|
|
176 |
// Compute alignment padding if the block needs it.
|
|
177 |
// Align a loop if loop's padding is less or equal to padding limit
|
|
178 |
// or the size of first instructions in the loop > padding.
|
|
179 |
uint alignment_padding(int current_offset) {
|
|
180 |
int block_alignment = code_alignment();
|
|
181 |
int max_pad = block_alignment-relocInfo::addr_unit();
|
|
182 |
if( max_pad > 0 ) {
|
|
183 |
assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
|
|
184 |
int current_alignment = current_offset & max_pad;
|
|
185 |
if( current_alignment != 0 ) {
|
|
186 |
uint padding = (block_alignment-current_alignment) & max_pad;
|
|
187 |
if( !head()->is_Loop() ||
|
|
188 |
padding <= (uint)MaxLoopPad ||
|
|
189 |
first_inst_size() > padding ) {
|
|
190 |
return padding;
|
|
191 |
}
|
|
192 |
}
|
|
193 |
}
|
|
194 |
return 0;
|
|
195 |
}
|
|
196 |
|
|
197 |
// Connector blocks. Connector blocks are basic blocks devoid of
|
|
198 |
// instructions, but may have relevant non-instruction Nodes, such as
|
|
199 |
// Phis or MergeMems. Such blocks are discovered and marked during the
|
|
200 |
// RemoveEmpty phase, and elided during Output.
|
|
201 |
bool _connector;
|
|
202 |
void set_connector() { _connector = true; }
|
|
203 |
bool is_connector() const { return _connector; };
|
|
204 |
|
|
205 |
// Create a new Block with given head Node.
|
|
206 |
// Creates the (empty) predecessor arrays.
|
|
207 |
Block( Arena *a, Node *headnode )
|
|
208 |
: CFGElement(),
|
|
209 |
_nodes(a),
|
|
210 |
_succs(a),
|
|
211 |
_num_succs(0),
|
|
212 |
_pre_order(0),
|
|
213 |
_idom(0),
|
|
214 |
_loop(NULL),
|
|
215 |
_reg_pressure(0),
|
|
216 |
_ihrp_index(1),
|
|
217 |
_freg_pressure(0),
|
|
218 |
_fhrp_index(1),
|
|
219 |
_raise_LCA_mark(0),
|
|
220 |
_raise_LCA_visited(0),
|
|
221 |
_first_inst_size(999999),
|
|
222 |
_connector(false) {
|
|
223 |
_nodes.push(headnode);
|
|
224 |
}
|
|
225 |
|
|
226 |
// Index of 'end' Node
|
|
227 |
uint end_idx() const {
|
|
228 |
// %%%%% add a proj after every goto
|
|
229 |
// so (last->is_block_proj() != last) always, then simplify this code
|
|
230 |
// This will not give correct end_idx for block 0 when it only contains root.
|
|
231 |
int last_idx = _nodes.size() - 1;
|
|
232 |
Node *last = _nodes[last_idx];
|
|
233 |
assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
|
|
234 |
return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
|
|
235 |
}
|
|
236 |
|
|
237 |
// Basic blocks have a Node which ends them. This Node determines which
|
|
238 |
// basic block follows this one in the program flow. This Node is either an
|
|
239 |
// IfNode, a GotoNode, a JmpNode, or a ReturnNode.
|
|
240 |
Node *end() const { return _nodes[end_idx()]; }
|
|
241 |
|
|
242 |
// Add an instruction to an existing block. It must go after the head
|
|
243 |
// instruction and before the end instruction.
|
|
244 |
void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
|
|
245 |
// Find node in block
|
|
246 |
uint find_node( const Node *n ) const;
|
|
247 |
// Find and remove n from block list
|
|
248 |
void find_remove( const Node *n );
|
|
249 |
|
|
250 |
// Schedule a call next in the block
|
|
251 |
uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call);
|
|
252 |
|
|
253 |
// Perform basic-block local scheduling
|
|
254 |
Node *select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot);
|
|
255 |
void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
|
|
256 |
void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
|
|
257 |
bool schedule_local(PhaseCFG *cfg, Matcher &m, int *ready_cnt, VectorSet &next_call);
|
|
258 |
// Cleanup if any code lands between a Call and his Catch
|
|
259 |
void call_catch_cleanup(Block_Array &bbs);
|
|
260 |
// Detect implicit-null-check opportunities. Basically, find NULL checks
|
|
261 |
// with suitable memory ops nearby. Use the memory op to do the NULL check.
|
|
262 |
// I can generate a memory op if there is not one nearby.
|
|
263 |
void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
|
|
264 |
|
|
265 |
// Return the empty status of a block
|
|
266 |
enum { not_empty, empty_with_goto, completely_empty };
|
|
267 |
int is_Empty() const;
|
|
268 |
|
|
269 |
// Forward through connectors
|
|
270 |
Block* non_connector() {
|
|
271 |
Block* s = this;
|
|
272 |
while (s->is_connector()) {
|
|
273 |
s = s->_succs[0];
|
|
274 |
}
|
|
275 |
return s;
|
|
276 |
}
|
|
277 |
|
|
278 |
// Successor block, after forwarding through connectors
|
|
279 |
Block* non_connector_successor(int i) const {
|
|
280 |
return _succs[i]->non_connector();
|
|
281 |
}
|
|
282 |
|
|
283 |
// Examine block's code shape to predict if it is not commonly executed.
|
|
284 |
bool has_uncommon_code() const;
|
|
285 |
|
|
286 |
// Use frequency calculations and code shape to predict if the block
|
|
287 |
// is uncommon.
|
|
288 |
bool is_uncommon( Block_Array &bbs ) const;
|
|
289 |
|
|
290 |
#ifndef PRODUCT
|
|
291 |
// Debugging print of basic block
|
|
292 |
void dump_bidx(const Block* orig) const;
|
|
293 |
void dump_pred(const Block_Array *bbs, Block* orig) const;
|
|
294 |
void dump_head( const Block_Array *bbs ) const;
|
|
295 |
void dump( ) const;
|
|
296 |
void dump( const Block_Array *bbs ) const;
|
|
297 |
#endif
|
|
298 |
};
|
|
299 |
|
|
300 |
|
|
301 |
//------------------------------PhaseCFG---------------------------------------
|
|
302 |
// Build an array of Basic Block pointers, one per Node.
|
|
303 |
class PhaseCFG : public Phase {
|
|
304 |
private:
|
|
305 |
// Build a proper looking cfg. Return count of basic blocks
|
|
306 |
uint build_cfg();
|
|
307 |
|
|
308 |
// Perform DFS search.
|
|
309 |
// Setup 'vertex' as DFS to vertex mapping.
|
|
310 |
// Setup 'semi' as vertex to DFS mapping.
|
|
311 |
// Set 'parent' to DFS parent.
|
|
312 |
uint DFS( Tarjan *tarjan );
|
|
313 |
|
|
314 |
// Helper function to insert a node into a block
|
|
315 |
void schedule_node_into_block( Node *n, Block *b );
|
|
316 |
|
|
317 |
// Set the basic block for pinned Nodes
|
|
318 |
void schedule_pinned_nodes( VectorSet &visited );
|
|
319 |
|
|
320 |
// I'll need a few machine-specific GotoNodes. Clone from this one.
|
|
321 |
MachNode *_goto;
|
|
322 |
void insert_goto_at(uint block_no, uint succ_no);
|
|
323 |
|
|
324 |
Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
|
|
325 |
void verify_anti_dependences(Block* LCA, Node* load) {
|
|
326 |
assert(LCA == _bbs[load->_idx], "should already be scheduled");
|
|
327 |
insert_anti_dependences(LCA, load, true);
|
|
328 |
}
|
|
329 |
|
|
330 |
public:
|
|
331 |
PhaseCFG( Arena *a, RootNode *r, Matcher &m );
|
|
332 |
|
|
333 |
uint _num_blocks; // Count of basic blocks
|
|
334 |
Block_List _blocks; // List of basic blocks
|
|
335 |
RootNode *_root; // Root of whole program
|
|
336 |
Block_Array _bbs; // Map Nodes to owning Basic Block
|
|
337 |
Block *_broot; // Basic block of root
|
|
338 |
uint _rpo_ctr;
|
|
339 |
CFGLoop* _root_loop;
|
|
340 |
|
|
341 |
// Per node latency estimation, valid only during GCM
|
|
342 |
GrowableArray<uint> _node_latency;
|
|
343 |
|
|
344 |
#ifndef PRODUCT
|
|
345 |
bool _trace_opto_pipelining; // tracing flag
|
|
346 |
#endif
|
|
347 |
|
|
348 |
// Build dominators
|
|
349 |
void Dominators();
|
|
350 |
|
|
351 |
// Estimate block frequencies based on IfNode probabilities
|
|
352 |
void Estimate_Block_Frequency();
|
|
353 |
|
|
354 |
// Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific
|
|
355 |
// basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
|
|
356 |
void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
|
|
357 |
|
|
358 |
// Compute the (backwards) latency of a node from the uses
|
|
359 |
void latency_from_uses(Node *n);
|
|
360 |
|
|
361 |
// Compute the (backwards) latency of a node from a single use
|
|
362 |
int latency_from_use(Node *n, const Node *def, Node *use);
|
|
363 |
|
|
364 |
// Compute the (backwards) latency of a node from the uses of this instruction
|
|
365 |
void partial_latency_of_defs(Node *n);
|
|
366 |
|
|
367 |
// Schedule Nodes early in their basic blocks.
|
|
368 |
bool schedule_early(VectorSet &visited, Node_List &roots);
|
|
369 |
|
|
370 |
// For each node, find the latest block it can be scheduled into
|
|
371 |
// and then select the cheapest block between the latest and earliest
|
|
372 |
// block to place the node.
|
|
373 |
void schedule_late(VectorSet &visited, Node_List &stack);
|
|
374 |
|
|
375 |
// Pick a block between early and late that is a cheaper alternative
|
|
376 |
// to late. Helper for schedule_late.
|
|
377 |
Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
|
|
378 |
|
|
379 |
// Compute the instruction global latency with a backwards walk
|
|
380 |
void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
|
|
381 |
|
|
382 |
// Remove empty basic blocks
|
|
383 |
void RemoveEmpty();
|
|
384 |
bool MoveToNext(Block* bx, uint b_index);
|
|
385 |
void MoveToEnd(Block* bx, uint b_index);
|
|
386 |
|
|
387 |
// Check for NeverBranch at block end. This needs to become a GOTO to the
|
|
388 |
// true target. NeverBranch are treated as a conditional branch that always
|
|
389 |
// goes the same direction for most of the optimizer and are used to give a
|
|
390 |
// fake exit path to infinite loops. At this late stage they need to turn
|
|
391 |
// into Goto's so that when you enter the infinite loop you indeed hang.
|
|
392 |
void convert_NeverBranch_to_Goto(Block *b);
|
|
393 |
|
|
394 |
CFGLoop* create_loop_tree();
|
|
395 |
|
|
396 |
// Insert a node into a block, and update the _bbs
|
|
397 |
void insert( Block *b, uint idx, Node *n ) {
|
|
398 |
b->_nodes.insert( idx, n );
|
|
399 |
_bbs.map( n->_idx, b );
|
|
400 |
}
|
|
401 |
|
|
402 |
#ifndef PRODUCT
|
|
403 |
bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
|
|
404 |
|
|
405 |
// Debugging print of CFG
|
|
406 |
void dump( ) const; // CFG only
|
|
407 |
void _dump_cfg( const Node *end, VectorSet &visited ) const;
|
|
408 |
void verify() const;
|
|
409 |
void dump_headers();
|
|
410 |
#else
|
|
411 |
bool trace_opto_pipelining() const { return false; }
|
|
412 |
#endif
|
|
413 |
};
|
|
414 |
|
|
415 |
|
|
416 |
//------------------------------UnionFindInfo----------------------------------
|
|
417 |
// Map Block indices to a block-index for a cfg-cover.
|
|
418 |
// Array lookup in the optimized case.
|
|
419 |
class UnionFind : public ResourceObj {
|
|
420 |
uint _cnt, _max;
|
|
421 |
uint* _indices;
|
|
422 |
ReallocMark _nesting; // assertion check for reallocations
|
|
423 |
public:
|
|
424 |
UnionFind( uint max );
|
|
425 |
void reset( uint max ); // Reset to identity map for [0..max]
|
|
426 |
|
|
427 |
uint lookup( uint nidx ) const {
|
|
428 |
return _indices[nidx];
|
|
429 |
}
|
|
430 |
uint operator[] (uint nidx) const { return lookup(nidx); }
|
|
431 |
|
|
432 |
void map( uint from_idx, uint to_idx ) {
|
|
433 |
assert( from_idx < _cnt, "oob" );
|
|
434 |
_indices[from_idx] = to_idx;
|
|
435 |
}
|
|
436 |
void extend( uint from_idx, uint to_idx );
|
|
437 |
|
|
438 |
uint Size() const { return _cnt; }
|
|
439 |
|
|
440 |
uint Find( uint idx ) {
|
|
441 |
assert( idx < 65536, "Must fit into uint");
|
|
442 |
uint uf_idx = lookup(idx);
|
|
443 |
return (uf_idx == idx) ? uf_idx : Find_compress(idx);
|
|
444 |
}
|
|
445 |
uint Find_compress( uint idx );
|
|
446 |
uint Find_const( uint idx ) const;
|
|
447 |
void Union( uint idx1, uint idx2 );
|
|
448 |
|
|
449 |
};
|
|
450 |
|
|
451 |
//----------------------------BlockProbPair---------------------------
|
|
452 |
// Ordered pair of Node*.
|
|
453 |
class BlockProbPair VALUE_OBJ_CLASS_SPEC {
|
|
454 |
protected:
|
|
455 |
Block* _target; // block target
|
|
456 |
float _prob; // probability of edge to block
|
|
457 |
public:
|
|
458 |
BlockProbPair() : _target(NULL), _prob(0.0) {}
|
|
459 |
BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
|
|
460 |
|
|
461 |
Block* get_target() const { return _target; }
|
|
462 |
float get_prob() const { return _prob; }
|
|
463 |
};
|
|
464 |
|
|
465 |
//------------------------------CFGLoop-------------------------------------------
|
|
466 |
class CFGLoop : public CFGElement {
|
|
467 |
int _id;
|
|
468 |
int _depth;
|
|
469 |
CFGLoop *_parent; // root of loop tree is the method level "pseudo" loop, it's parent is null
|
|
470 |
CFGLoop *_sibling; // null terminated list
|
|
471 |
CFGLoop *_child; // first child, use child's sibling to visit all immediately nested loops
|
|
472 |
GrowableArray<CFGElement*> _members; // list of members of loop
|
|
473 |
GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
|
|
474 |
float _exit_prob; // probability any loop exit is taken on a single loop iteration
|
|
475 |
void update_succ_freq(Block* b, float freq);
|
|
476 |
|
|
477 |
public:
|
|
478 |
CFGLoop(int id) :
|
|
479 |
CFGElement(),
|
|
480 |
_id(id),
|
|
481 |
_depth(0),
|
|
482 |
_parent(NULL),
|
|
483 |
_sibling(NULL),
|
|
484 |
_child(NULL),
|
|
485 |
_exit_prob(1.0f) {}
|
|
486 |
CFGLoop* parent() { return _parent; }
|
|
487 |
void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
|
|
488 |
void add_member(CFGElement *s) { _members.push(s); }
|
|
489 |
void add_nested_loop(CFGLoop* cl);
|
|
490 |
Block* head() {
|
|
491 |
assert(_members.at(0)->is_block(), "head must be a block");
|
|
492 |
Block* hd = _members.at(0)->as_Block();
|
|
493 |
assert(hd->_loop == this, "just checking");
|
|
494 |
assert(hd->head()->is_Loop(), "must begin with loop head node");
|
|
495 |
return hd;
|
|
496 |
}
|
|
497 |
Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
|
|
498 |
void compute_loop_depth(int depth);
|
|
499 |
void compute_freq(); // compute frequency with loop assuming head freq 1.0f
|
|
500 |
void scale_freq(); // scale frequency by loop trip count (including outer loops)
|
|
501 |
bool in_loop_nest(Block* b);
|
|
502 |
float trip_count() const { return 1.0f / _exit_prob; }
|
|
503 |
virtual bool is_loop() { return true; }
|
|
504 |
int id() { return _id; }
|
|
505 |
|
|
506 |
#ifndef PRODUCT
|
|
507 |
void dump( ) const;
|
|
508 |
void dump_tree() const;
|
|
509 |
#endif
|
|
510 |
};
|