hotspot/src/share/vm/opto/block.hpp
changeset 1 489c9b5090e2
child 1498 346bf226078e
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 // Optimization - Graph Style
       
    26 
       
    27 class Block;
       
    28 class CFGLoop;
       
    29 class MachCallNode;
       
    30 class Matcher;
       
    31 class RootNode;
       
    32 class VectorSet;
       
    33 struct Tarjan;
       
    34 
       
    35 //------------------------------Block_Array------------------------------------
       
    36 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
       
    37 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
       
    38 // Note that the constructor just zeros things, and since I use Arena
       
    39 // allocation I do not need a destructor to reclaim storage.
       
    40 class Block_Array : public ResourceObj {
       
    41   uint _size;                   // allocated size, as opposed to formal limit
       
    42   debug_only(uint _limit;)      // limit to formal domain
       
    43 protected:
       
    44   Block **_blocks;
       
    45   void grow( uint i );          // Grow array node to fit
       
    46 
       
    47 public:
       
    48   Arena *_arena;                // Arena to allocate in
       
    49 
       
    50   Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
       
    51     debug_only(_limit=0);
       
    52     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
       
    53     for( int i = 0; i < OptoBlockListSize; i++ ) {
       
    54       _blocks[i] = NULL;
       
    55     }
       
    56   }
       
    57   Block *lookup( uint i ) const // Lookup, or NULL for not mapped
       
    58   { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
       
    59   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
       
    60   { assert( i < Max(), "oob" ); return _blocks[i]; }
       
    61   // Extend the mapping: index i maps to Block *n.
       
    62   void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
       
    63   uint Max() const { debug_only(return _limit); return _size; }
       
    64 };
       
    65 
       
    66 
       
    67 class Block_List : public Block_Array {
       
    68 public:
       
    69   uint _cnt;
       
    70   Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
       
    71   void push( Block *b ) { map(_cnt++,b); }
       
    72   Block *pop() { return _blocks[--_cnt]; }
       
    73   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
       
    74   void remove( uint i );
       
    75   void insert( uint i, Block *n );
       
    76   uint size() const { return _cnt; }
       
    77   void reset() { _cnt = 0; }
       
    78 };
       
    79 
       
    80 
       
    81 class CFGElement : public ResourceObj {
       
    82  public:
       
    83   float _freq; // Execution frequency (estimate)
       
    84 
       
    85   CFGElement() : _freq(0.0f) {}
       
    86   virtual bool is_block() { return false; }
       
    87   virtual bool is_loop()  { return false; }
       
    88   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
       
    89   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
       
    90 };
       
    91 
       
    92 //------------------------------Block------------------------------------------
       
    93 // This class defines a Basic Block.
       
    94 // Basic blocks are used during the output routines, and are not used during
       
    95 // any optimization pass.  They are created late in the game.
       
    96 class Block : public CFGElement {
       
    97  public:
       
    98   // Nodes in this block, in order
       
    99   Node_List _nodes;
       
   100 
       
   101   // Basic blocks have a Node which defines Control for all Nodes pinned in
       
   102   // this block.  This Node is a RegionNode.  Exception-causing Nodes
       
   103   // (division, subroutines) and Phi functions are always pinned.  Later,
       
   104   // every Node will get pinned to some block.
       
   105   Node *head() const { return _nodes[0]; }
       
   106 
       
   107   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
       
   108   // input edges to Regions and Phis.
       
   109   uint num_preds() const { return head()->req(); }
       
   110   Node *pred(uint i) const { return head()->in(i); }
       
   111 
       
   112   // Array of successor blocks, same size as projs array
       
   113   Block_Array _succs;
       
   114 
       
   115   // Basic blocks have some number of Nodes which split control to all
       
   116   // following blocks.  These Nodes are always Projections.  The field in
       
   117   // the Projection and the block-ending Node determine which Block follows.
       
   118   uint _num_succs;
       
   119 
       
   120   // Basic blocks also carry all sorts of good old fashioned DFS information
       
   121   // used to find loops, loop nesting depth, dominators, etc.
       
   122   uint _pre_order;              // Pre-order DFS number
       
   123 
       
   124   // Dominator tree
       
   125   uint _dom_depth;              // Depth in dominator tree for fast LCA
       
   126   Block* _idom;                 // Immediate dominator block
       
   127 
       
   128   CFGLoop *_loop;               // Loop to which this block belongs
       
   129   uint _rpo;                    // Number in reverse post order walk
       
   130 
       
   131   virtual bool is_block() { return true; }
       
   132   float succ_prob(uint i); // return probability of i'th successor
       
   133 
       
   134   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
       
   135 #ifdef ASSERT
       
   136   bool dominates(Block* that) {
       
   137     int dom_diff = this->_dom_depth - that->_dom_depth;
       
   138     if (dom_diff > 0)  return false;
       
   139     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
       
   140     return this == that;
       
   141   }
       
   142 #endif
       
   143 
       
   144   // Report the alignment required by this block.  Must be a power of 2.
       
   145   // The previous block will insert nops to get this alignment.
       
   146   uint code_alignment();
       
   147 
       
   148   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
       
   149   // It is currently also used to scale such frequencies relative to
       
   150   // FreqCountInvocations relative to the old value of 1500.
       
   151 #define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
       
   152 
       
   153   // Register Pressure (estimate) for Splitting heuristic
       
   154   uint _reg_pressure;
       
   155   uint _ihrp_index;
       
   156   uint _freg_pressure;
       
   157   uint _fhrp_index;
       
   158 
       
   159   // Mark and visited bits for an LCA calculation in insert_anti_dependences.
       
   160   // Since they hold unique node indexes, they do not need reinitialization.
       
   161   node_idx_t _raise_LCA_mark;
       
   162   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
       
   163   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
       
   164   node_idx_t _raise_LCA_visited;
       
   165   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
       
   166   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
       
   167 
       
   168   // Estimated size in bytes of first instructions in a loop.
       
   169   uint _first_inst_size;
       
   170   uint first_inst_size() const     { return _first_inst_size; }
       
   171   void set_first_inst_size(uint s) { _first_inst_size = s; }
       
   172 
       
   173   // Compute the size of first instructions in this block.
       
   174   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
       
   175 
       
   176   // Compute alignment padding if the block needs it.
       
   177   // Align a loop if loop's padding is less or equal to padding limit
       
   178   // or the size of first instructions in the loop > padding.
       
   179   uint alignment_padding(int current_offset) {
       
   180     int block_alignment = code_alignment();
       
   181     int max_pad = block_alignment-relocInfo::addr_unit();
       
   182     if( max_pad > 0 ) {
       
   183       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
       
   184       int current_alignment = current_offset & max_pad;
       
   185       if( current_alignment != 0 ) {
       
   186         uint padding = (block_alignment-current_alignment) & max_pad;
       
   187         if( !head()->is_Loop() ||
       
   188             padding <= (uint)MaxLoopPad ||
       
   189             first_inst_size() > padding ) {
       
   190           return padding;
       
   191         }
       
   192       }
       
   193     }
       
   194     return 0;
       
   195   }
       
   196 
       
   197   // Connector blocks. Connector blocks are basic blocks devoid of
       
   198   // instructions, but may have relevant non-instruction Nodes, such as
       
   199   // Phis or MergeMems. Such blocks are discovered and marked during the
       
   200   // RemoveEmpty phase, and elided during Output.
       
   201   bool _connector;
       
   202   void set_connector() { _connector = true; }
       
   203   bool is_connector() const { return _connector; };
       
   204 
       
   205   // Create a new Block with given head Node.
       
   206   // Creates the (empty) predecessor arrays.
       
   207   Block( Arena *a, Node *headnode )
       
   208     : CFGElement(),
       
   209       _nodes(a),
       
   210       _succs(a),
       
   211       _num_succs(0),
       
   212       _pre_order(0),
       
   213       _idom(0),
       
   214       _loop(NULL),
       
   215       _reg_pressure(0),
       
   216       _ihrp_index(1),
       
   217       _freg_pressure(0),
       
   218       _fhrp_index(1),
       
   219       _raise_LCA_mark(0),
       
   220       _raise_LCA_visited(0),
       
   221       _first_inst_size(999999),
       
   222       _connector(false) {
       
   223     _nodes.push(headnode);
       
   224   }
       
   225 
       
   226   // Index of 'end' Node
       
   227   uint end_idx() const {
       
   228     // %%%%% add a proj after every goto
       
   229     // so (last->is_block_proj() != last) always, then simplify this code
       
   230     // This will not give correct end_idx for block 0 when it only contains root.
       
   231     int last_idx = _nodes.size() - 1;
       
   232     Node *last  = _nodes[last_idx];
       
   233     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
       
   234     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
       
   235   }
       
   236 
       
   237   // Basic blocks have a Node which ends them.  This Node determines which
       
   238   // basic block follows this one in the program flow.  This Node is either an
       
   239   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
       
   240   Node *end() const { return _nodes[end_idx()]; }
       
   241 
       
   242   // Add an instruction to an existing block.  It must go after the head
       
   243   // instruction and before the end instruction.
       
   244   void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
       
   245   // Find node in block
       
   246   uint find_node( const Node *n ) const;
       
   247   // Find and remove n from block list
       
   248   void find_remove( const Node *n );
       
   249 
       
   250   // Schedule a call next in the block
       
   251   uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call);
       
   252 
       
   253   // Perform basic-block local scheduling
       
   254   Node *select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot);
       
   255   void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
       
   256   void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
       
   257   bool schedule_local(PhaseCFG *cfg, Matcher &m, int *ready_cnt, VectorSet &next_call);
       
   258   // Cleanup if any code lands between a Call and his Catch
       
   259   void call_catch_cleanup(Block_Array &bbs);
       
   260   // Detect implicit-null-check opportunities.  Basically, find NULL checks
       
   261   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
       
   262   // I can generate a memory op if there is not one nearby.
       
   263   void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
       
   264 
       
   265   // Return the empty status of a block
       
   266   enum { not_empty, empty_with_goto, completely_empty };
       
   267   int is_Empty() const;
       
   268 
       
   269   // Forward through connectors
       
   270   Block* non_connector() {
       
   271     Block* s = this;
       
   272     while (s->is_connector()) {
       
   273       s = s->_succs[0];
       
   274     }
       
   275     return s;
       
   276   }
       
   277 
       
   278   // Successor block, after forwarding through connectors
       
   279   Block* non_connector_successor(int i) const {
       
   280     return _succs[i]->non_connector();
       
   281   }
       
   282 
       
   283   // Examine block's code shape to predict if it is not commonly executed.
       
   284   bool has_uncommon_code() const;
       
   285 
       
   286   // Use frequency calculations and code shape to predict if the block
       
   287   // is uncommon.
       
   288   bool is_uncommon( Block_Array &bbs ) const;
       
   289 
       
   290 #ifndef PRODUCT
       
   291   // Debugging print of basic block
       
   292   void dump_bidx(const Block* orig) const;
       
   293   void dump_pred(const Block_Array *bbs, Block* orig) const;
       
   294   void dump_head( const Block_Array *bbs ) const;
       
   295   void dump( ) const;
       
   296   void dump( const Block_Array *bbs ) const;
       
   297 #endif
       
   298 };
       
   299 
       
   300 
       
   301 //------------------------------PhaseCFG---------------------------------------
       
   302 // Build an array of Basic Block pointers, one per Node.
       
   303 class PhaseCFG : public Phase {
       
   304  private:
       
   305   // Build a proper looking cfg.  Return count of basic blocks
       
   306   uint build_cfg();
       
   307 
       
   308   // Perform DFS search.
       
   309   // Setup 'vertex' as DFS to vertex mapping.
       
   310   // Setup 'semi' as vertex to DFS mapping.
       
   311   // Set 'parent' to DFS parent.
       
   312   uint DFS( Tarjan *tarjan );
       
   313 
       
   314   // Helper function to insert a node into a block
       
   315   void schedule_node_into_block( Node *n, Block *b );
       
   316 
       
   317   // Set the basic block for pinned Nodes
       
   318   void schedule_pinned_nodes( VectorSet &visited );
       
   319 
       
   320   // I'll need a few machine-specific GotoNodes.  Clone from this one.
       
   321   MachNode *_goto;
       
   322   void insert_goto_at(uint block_no, uint succ_no);
       
   323 
       
   324   Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
       
   325   void verify_anti_dependences(Block* LCA, Node* load) {
       
   326     assert(LCA == _bbs[load->_idx], "should already be scheduled");
       
   327     insert_anti_dependences(LCA, load, true);
       
   328   }
       
   329 
       
   330  public:
       
   331   PhaseCFG( Arena *a, RootNode *r, Matcher &m );
       
   332 
       
   333   uint _num_blocks;             // Count of basic blocks
       
   334   Block_List _blocks;           // List of basic blocks
       
   335   RootNode *_root;              // Root of whole program
       
   336   Block_Array _bbs;             // Map Nodes to owning Basic Block
       
   337   Block *_broot;                // Basic block of root
       
   338   uint _rpo_ctr;
       
   339   CFGLoop* _root_loop;
       
   340 
       
   341   // Per node latency estimation, valid only during GCM
       
   342   GrowableArray<uint> _node_latency;
       
   343 
       
   344 #ifndef PRODUCT
       
   345   bool _trace_opto_pipelining;  // tracing flag
       
   346 #endif
       
   347 
       
   348   // Build dominators
       
   349   void Dominators();
       
   350 
       
   351   // Estimate block frequencies based on IfNode probabilities
       
   352   void Estimate_Block_Frequency();
       
   353 
       
   354   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
       
   355   // basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
       
   356   void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
       
   357 
       
   358   // Compute the (backwards) latency of a node from the uses
       
   359   void latency_from_uses(Node *n);
       
   360 
       
   361   // Compute the (backwards) latency of a node from a single use
       
   362   int latency_from_use(Node *n, const Node *def, Node *use);
       
   363 
       
   364   // Compute the (backwards) latency of a node from the uses of this instruction
       
   365   void partial_latency_of_defs(Node *n);
       
   366 
       
   367   // Schedule Nodes early in their basic blocks.
       
   368   bool schedule_early(VectorSet &visited, Node_List &roots);
       
   369 
       
   370   // For each node, find the latest block it can be scheduled into
       
   371   // and then select the cheapest block between the latest and earliest
       
   372   // block to place the node.
       
   373   void schedule_late(VectorSet &visited, Node_List &stack);
       
   374 
       
   375   // Pick a block between early and late that is a cheaper alternative
       
   376   // to late. Helper for schedule_late.
       
   377   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
       
   378 
       
   379   // Compute the instruction global latency with a backwards walk
       
   380   void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
       
   381 
       
   382   // Remove empty basic blocks
       
   383   void RemoveEmpty();
       
   384   bool MoveToNext(Block* bx, uint b_index);
       
   385   void MoveToEnd(Block* bx, uint b_index);
       
   386 
       
   387   // Check for NeverBranch at block end.  This needs to become a GOTO to the
       
   388   // true target.  NeverBranch are treated as a conditional branch that always
       
   389   // goes the same direction for most of the optimizer and are used to give a
       
   390   // fake exit path to infinite loops.  At this late stage they need to turn
       
   391   // into Goto's so that when you enter the infinite loop you indeed hang.
       
   392   void convert_NeverBranch_to_Goto(Block *b);
       
   393 
       
   394   CFGLoop* create_loop_tree();
       
   395 
       
   396   // Insert a node into a block, and update the _bbs
       
   397   void insert( Block *b, uint idx, Node *n ) {
       
   398     b->_nodes.insert( idx, n );
       
   399     _bbs.map( n->_idx, b );
       
   400   }
       
   401 
       
   402 #ifndef PRODUCT
       
   403   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
       
   404 
       
   405   // Debugging print of CFG
       
   406   void dump( ) const;           // CFG only
       
   407   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
       
   408   void verify() const;
       
   409   void dump_headers();
       
   410 #else
       
   411   bool trace_opto_pipelining() const { return false; }
       
   412 #endif
       
   413 };
       
   414 
       
   415 
       
   416 //------------------------------UnionFindInfo----------------------------------
       
   417 // Map Block indices to a block-index for a cfg-cover.
       
   418 // Array lookup in the optimized case.
       
   419 class UnionFind : public ResourceObj {
       
   420   uint _cnt, _max;
       
   421   uint* _indices;
       
   422   ReallocMark _nesting;  // assertion check for reallocations
       
   423 public:
       
   424   UnionFind( uint max );
       
   425   void reset( uint max );  // Reset to identity map for [0..max]
       
   426 
       
   427   uint lookup( uint nidx ) const {
       
   428     return _indices[nidx];
       
   429   }
       
   430   uint operator[] (uint nidx) const { return lookup(nidx); }
       
   431 
       
   432   void map( uint from_idx, uint to_idx ) {
       
   433     assert( from_idx < _cnt, "oob" );
       
   434     _indices[from_idx] = to_idx;
       
   435   }
       
   436   void extend( uint from_idx, uint to_idx );
       
   437 
       
   438   uint Size() const { return _cnt; }
       
   439 
       
   440   uint Find( uint idx ) {
       
   441     assert( idx < 65536, "Must fit into uint");
       
   442     uint uf_idx = lookup(idx);
       
   443     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
       
   444   }
       
   445   uint Find_compress( uint idx );
       
   446   uint Find_const( uint idx ) const;
       
   447   void Union( uint idx1, uint idx2 );
       
   448 
       
   449 };
       
   450 
       
   451 //----------------------------BlockProbPair---------------------------
       
   452 // Ordered pair of Node*.
       
   453 class BlockProbPair VALUE_OBJ_CLASS_SPEC {
       
   454 protected:
       
   455   Block* _target;      // block target
       
   456   float  _prob;        // probability of edge to block
       
   457 public:
       
   458   BlockProbPair() : _target(NULL), _prob(0.0) {}
       
   459   BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
       
   460 
       
   461   Block* get_target() const { return _target; }
       
   462   float get_prob() const { return _prob; }
       
   463 };
       
   464 
       
   465 //------------------------------CFGLoop-------------------------------------------
       
   466 class CFGLoop : public CFGElement {
       
   467   int _id;
       
   468   int _depth;
       
   469   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
       
   470   CFGLoop *_sibling;     // null terminated list
       
   471   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
       
   472   GrowableArray<CFGElement*> _members; // list of members of loop
       
   473   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
       
   474   float _exit_prob;       // probability any loop exit is taken on a single loop iteration
       
   475   void update_succ_freq(Block* b, float freq);
       
   476 
       
   477  public:
       
   478   CFGLoop(int id) :
       
   479     CFGElement(),
       
   480     _id(id),
       
   481     _depth(0),
       
   482     _parent(NULL),
       
   483     _sibling(NULL),
       
   484     _child(NULL),
       
   485     _exit_prob(1.0f) {}
       
   486   CFGLoop* parent() { return _parent; }
       
   487   void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
       
   488   void add_member(CFGElement *s) { _members.push(s); }
       
   489   void add_nested_loop(CFGLoop* cl);
       
   490   Block* head() {
       
   491     assert(_members.at(0)->is_block(), "head must be a block");
       
   492     Block* hd = _members.at(0)->as_Block();
       
   493     assert(hd->_loop == this, "just checking");
       
   494     assert(hd->head()->is_Loop(), "must begin with loop head node");
       
   495     return hd;
       
   496   }
       
   497   Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
       
   498   void compute_loop_depth(int depth);
       
   499   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
       
   500   void scale_freq();   // scale frequency by loop trip count (including outer loops)
       
   501   bool in_loop_nest(Block* b);
       
   502   float trip_count() const { return 1.0f / _exit_prob; }
       
   503   virtual bool is_loop()  { return true; }
       
   504   int id() { return _id; }
       
   505 
       
   506 #ifndef PRODUCT
       
   507   void dump( ) const;
       
   508   void dump_tree() const;
       
   509 #endif
       
   510 };