1826
|
1 |
/*
|
|
2 |
* Copyright 2003 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*/
|
|
23 |
|
|
24 |
/*
|
|
25 |
* @test
|
|
26 |
* @bug 4851638 4900189 4939441
|
|
27 |
* @summary Tests for {Math, StrictMath}.expm1
|
|
28 |
* @author Joseph D. Darcy
|
|
29 |
*/
|
|
30 |
|
|
31 |
import sun.misc.DoubleConsts;
|
|
32 |
import sun.misc.FpUtils;
|
|
33 |
|
|
34 |
/*
|
|
35 |
* The Taylor expansion of expxm1(x) = exp(x) -1 is
|
|
36 |
*
|
|
37 |
* 1 + x/1! + x^2/2! + x^3/3| + ... -1 =
|
|
38 |
*
|
|
39 |
* x + x^2/2! + x^3/3 + ...
|
|
40 |
*
|
|
41 |
* Therefore, for small values of x, expxm1 ~= x.
|
|
42 |
*
|
|
43 |
* For large values of x, expxm1(x) ~= exp(x)
|
|
44 |
*
|
|
45 |
* For large negative x, expxm1(x) ~= -1.
|
|
46 |
*/
|
|
47 |
|
|
48 |
public class Expm1Tests {
|
|
49 |
|
|
50 |
private Expm1Tests(){}
|
|
51 |
|
|
52 |
static final double infinityD = Double.POSITIVE_INFINITY;
|
|
53 |
static final double NaNd = Double.NaN;
|
|
54 |
|
|
55 |
static int testExpm1() {
|
|
56 |
int failures = 0;
|
|
57 |
|
|
58 |
double [][] testCases = {
|
|
59 |
{Double.NaN, NaNd},
|
|
60 |
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
|
|
61 |
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
|
|
62 |
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
|
|
63 |
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
|
|
64 |
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
|
|
65 |
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
|
|
66 |
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
|
|
67 |
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
|
|
68 |
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
|
|
69 |
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
|
|
70 |
{infinityD, infinityD},
|
|
71 |
{-infinityD, -1.0},
|
|
72 |
{-0.0, -0.0},
|
|
73 |
{+0.0, +0.0},
|
|
74 |
};
|
|
75 |
|
|
76 |
// Test special cases
|
|
77 |
for(int i = 0; i < testCases.length; i++) {
|
|
78 |
failures += testExpm1CaseWithUlpDiff(testCases[i][0],
|
|
79 |
testCases[i][1], 0, null);
|
|
80 |
}
|
|
81 |
|
|
82 |
|
|
83 |
// For |x| < 2^-54 expm1(x) ~= x
|
|
84 |
for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
|
|
85 |
double d = FpUtils.scalb(2, i);
|
|
86 |
failures += testExpm1Case(d, d);
|
|
87 |
failures += testExpm1Case(-d, -d);
|
|
88 |
}
|
|
89 |
|
|
90 |
|
|
91 |
// For values of y where exp(y) > 2^54, expm1(x) ~= exp(x).
|
|
92 |
// The least such y is ln(2^54) ~= 37.42994775023705; exp(x)
|
|
93 |
// overflows for x > ~= 709.8
|
|
94 |
|
|
95 |
// Use a 2-ulp error threshold to account for errors in the
|
|
96 |
// exp implementation; the increments of d in the loop will be
|
|
97 |
// exact.
|
|
98 |
for(double d = 37.5; d <= 709.5; d += 1.0) {
|
|
99 |
failures += testExpm1CaseWithUlpDiff(d, StrictMath.exp(d), 2, null);
|
|
100 |
}
|
|
101 |
|
|
102 |
// For x > 710, expm1(x) should be infinity
|
|
103 |
for(int i = 10; i <= DoubleConsts.MAX_EXPONENT; i++) {
|
|
104 |
double d = FpUtils.scalb(2, i);
|
|
105 |
failures += testExpm1Case(d, infinityD);
|
|
106 |
}
|
|
107 |
|
|
108 |
// By monotonicity, once the limit is reached, the
|
|
109 |
// implemenation should return the limit for all smaller
|
|
110 |
// values.
|
|
111 |
boolean reachedLimit [] = {false, false};
|
|
112 |
|
|
113 |
// Once exp(y) < 0.5 * ulp(1), expm1(y) ~= -1.0;
|
|
114 |
// The greatest such y is ln(2^-53) ~= -36.7368005696771.
|
|
115 |
for(double d = -36.75; d >= -127.75; d -= 1.0) {
|
|
116 |
failures += testExpm1CaseWithUlpDiff(d, -1.0, 1,
|
|
117 |
reachedLimit);
|
|
118 |
}
|
|
119 |
|
|
120 |
for(int i = 7; i <= DoubleConsts.MAX_EXPONENT; i++) {
|
|
121 |
double d = -FpUtils.scalb(2, i);
|
|
122 |
failures += testExpm1CaseWithUlpDiff(d, -1.0, 1, reachedLimit);
|
|
123 |
}
|
|
124 |
|
|
125 |
// Test for monotonicity failures near multiples of log(2).
|
|
126 |
// Test two numbers before and two numbers after each chosen
|
|
127 |
// value; i.e.
|
|
128 |
//
|
|
129 |
// pcNeighbors[] =
|
|
130 |
// {nextDown(nextDown(pc)),
|
|
131 |
// nextDown(pc),
|
|
132 |
// pc,
|
|
133 |
// nextUp(pc),
|
|
134 |
// nextUp(nextUp(pc))}
|
|
135 |
//
|
|
136 |
// and we test that expm1(pcNeighbors[i]) <= expm1(pcNeighbors[i+1])
|
|
137 |
{
|
|
138 |
double pcNeighbors[] = new double[5];
|
|
139 |
double pcNeighborsExpm1[] = new double[5];
|
|
140 |
double pcNeighborsStrictExpm1[] = new double[5];
|
|
141 |
|
|
142 |
for(int i = -50; i <= 50; i++) {
|
|
143 |
double pc = StrictMath.log(2)*i;
|
|
144 |
|
|
145 |
pcNeighbors[2] = pc;
|
|
146 |
pcNeighbors[1] = FpUtils.nextDown(pc);
|
|
147 |
pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
|
|
148 |
pcNeighbors[3] = FpUtils.nextUp(pc);
|
|
149 |
pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
|
|
150 |
|
|
151 |
for(int j = 0; j < pcNeighbors.length; j++) {
|
|
152 |
pcNeighborsExpm1[j] = Math.expm1(pcNeighbors[j]);
|
|
153 |
pcNeighborsStrictExpm1[j] = StrictMath.expm1(pcNeighbors[j]);
|
|
154 |
}
|
|
155 |
|
|
156 |
for(int j = 0; j < pcNeighborsExpm1.length-1; j++) {
|
|
157 |
if(pcNeighborsExpm1[j] > pcNeighborsExpm1[j+1] ) {
|
|
158 |
failures++;
|
|
159 |
System.err.println("Monotonicity failure for Math.expm1 on " +
|
|
160 |
pcNeighbors[j] + " and " +
|
|
161 |
pcNeighbors[j+1] + "\n\treturned " +
|
|
162 |
pcNeighborsExpm1[j] + " and " +
|
|
163 |
pcNeighborsExpm1[j+1] );
|
|
164 |
}
|
|
165 |
|
|
166 |
if(pcNeighborsStrictExpm1[j] > pcNeighborsStrictExpm1[j+1] ) {
|
|
167 |
failures++;
|
|
168 |
System.err.println("Monotonicity failure for StrictMath.expm1 on " +
|
|
169 |
pcNeighbors[j] + " and " +
|
|
170 |
pcNeighbors[j+1] + "\n\treturned " +
|
|
171 |
pcNeighborsStrictExpm1[j] + " and " +
|
|
172 |
pcNeighborsStrictExpm1[j+1] );
|
|
173 |
}
|
|
174 |
|
|
175 |
|
|
176 |
}
|
|
177 |
|
|
178 |
}
|
|
179 |
}
|
|
180 |
|
|
181 |
return failures;
|
|
182 |
}
|
|
183 |
|
|
184 |
public static int testExpm1Case(double input,
|
|
185 |
double expected) {
|
|
186 |
return testExpm1CaseWithUlpDiff(input, expected, 1, null);
|
|
187 |
}
|
|
188 |
|
|
189 |
public static int testExpm1CaseWithUlpDiff(double input,
|
|
190 |
double expected,
|
|
191 |
double ulps,
|
|
192 |
boolean [] reachedLimit) {
|
|
193 |
int failures = 0;
|
|
194 |
double mathUlps = ulps, strictUlps = ulps;
|
|
195 |
double mathOutput;
|
|
196 |
double strictOutput;
|
|
197 |
|
|
198 |
if (reachedLimit != null) {
|
|
199 |
if (reachedLimit[0])
|
|
200 |
mathUlps = 0;
|
|
201 |
|
|
202 |
if (reachedLimit[1])
|
|
203 |
strictUlps = 0;
|
|
204 |
}
|
|
205 |
|
|
206 |
failures += Tests.testUlpDiffWithLowerBound("Math.expm1(double)",
|
|
207 |
input, mathOutput=Math.expm1(input),
|
|
208 |
expected, mathUlps, -1.0);
|
|
209 |
failures += Tests.testUlpDiffWithLowerBound("StrictMath.expm1(double)",
|
|
210 |
input, strictOutput=StrictMath.expm1(input),
|
|
211 |
expected, strictUlps, -1.0);
|
|
212 |
if (reachedLimit != null) {
|
|
213 |
reachedLimit[0] |= (mathOutput == -1.0);
|
|
214 |
reachedLimit[1] |= (strictOutput == -1.0);
|
|
215 |
}
|
|
216 |
|
|
217 |
return failures;
|
|
218 |
}
|
|
219 |
|
|
220 |
public static void main(String argv[]) {
|
|
221 |
int failures = 0;
|
|
222 |
|
|
223 |
failures += testExpm1();
|
|
224 |
|
|
225 |
if (failures > 0) {
|
|
226 |
System.err.println("Testing expm1 incurred "
|
|
227 |
+ failures + " failures.");
|
|
228 |
throw new RuntimeException();
|
|
229 |
}
|
|
230 |
}
|
|
231 |
}
|