1
|
1 |
/*
|
|
2 |
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#include "incls/_precompiled.incl"
|
|
26 |
#include "incls/_compile.cpp.incl"
|
|
27 |
|
|
28 |
/// Support for intrinsics.
|
|
29 |
|
|
30 |
// Return the index at which m must be inserted (or already exists).
|
|
31 |
// The sort order is by the address of the ciMethod, with is_virtual as minor key.
|
|
32 |
int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
|
|
33 |
#ifdef ASSERT
|
|
34 |
for (int i = 1; i < _intrinsics->length(); i++) {
|
|
35 |
CallGenerator* cg1 = _intrinsics->at(i-1);
|
|
36 |
CallGenerator* cg2 = _intrinsics->at(i);
|
|
37 |
assert(cg1->method() != cg2->method()
|
|
38 |
? cg1->method() < cg2->method()
|
|
39 |
: cg1->is_virtual() < cg2->is_virtual(),
|
|
40 |
"compiler intrinsics list must stay sorted");
|
|
41 |
}
|
|
42 |
#endif
|
|
43 |
// Binary search sorted list, in decreasing intervals [lo, hi].
|
|
44 |
int lo = 0, hi = _intrinsics->length()-1;
|
|
45 |
while (lo <= hi) {
|
|
46 |
int mid = (uint)(hi + lo) / 2;
|
|
47 |
ciMethod* mid_m = _intrinsics->at(mid)->method();
|
|
48 |
if (m < mid_m) {
|
|
49 |
hi = mid-1;
|
|
50 |
} else if (m > mid_m) {
|
|
51 |
lo = mid+1;
|
|
52 |
} else {
|
|
53 |
// look at minor sort key
|
|
54 |
bool mid_virt = _intrinsics->at(mid)->is_virtual();
|
|
55 |
if (is_virtual < mid_virt) {
|
|
56 |
hi = mid-1;
|
|
57 |
} else if (is_virtual > mid_virt) {
|
|
58 |
lo = mid+1;
|
|
59 |
} else {
|
|
60 |
return mid; // exact match
|
|
61 |
}
|
|
62 |
}
|
|
63 |
}
|
|
64 |
return lo; // inexact match
|
|
65 |
}
|
|
66 |
|
|
67 |
void Compile::register_intrinsic(CallGenerator* cg) {
|
|
68 |
if (_intrinsics == NULL) {
|
|
69 |
_intrinsics = new GrowableArray<CallGenerator*>(60);
|
|
70 |
}
|
|
71 |
// This code is stolen from ciObjectFactory::insert.
|
|
72 |
// Really, GrowableArray should have methods for
|
|
73 |
// insert_at, remove_at, and binary_search.
|
|
74 |
int len = _intrinsics->length();
|
|
75 |
int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
|
|
76 |
if (index == len) {
|
|
77 |
_intrinsics->append(cg);
|
|
78 |
} else {
|
|
79 |
#ifdef ASSERT
|
|
80 |
CallGenerator* oldcg = _intrinsics->at(index);
|
|
81 |
assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
|
|
82 |
#endif
|
|
83 |
_intrinsics->append(_intrinsics->at(len-1));
|
|
84 |
int pos;
|
|
85 |
for (pos = len-2; pos >= index; pos--) {
|
|
86 |
_intrinsics->at_put(pos+1,_intrinsics->at(pos));
|
|
87 |
}
|
|
88 |
_intrinsics->at_put(index, cg);
|
|
89 |
}
|
|
90 |
assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
|
|
91 |
}
|
|
92 |
|
|
93 |
CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
|
|
94 |
assert(m->is_loaded(), "don't try this on unloaded methods");
|
|
95 |
if (_intrinsics != NULL) {
|
|
96 |
int index = intrinsic_insertion_index(m, is_virtual);
|
|
97 |
if (index < _intrinsics->length()
|
|
98 |
&& _intrinsics->at(index)->method() == m
|
|
99 |
&& _intrinsics->at(index)->is_virtual() == is_virtual) {
|
|
100 |
return _intrinsics->at(index);
|
|
101 |
}
|
|
102 |
}
|
|
103 |
// Lazily create intrinsics for intrinsic IDs well-known in the runtime.
|
|
104 |
if (m->intrinsic_id() != vmIntrinsics::_none) {
|
|
105 |
CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
|
|
106 |
if (cg != NULL) {
|
|
107 |
// Save it for next time:
|
|
108 |
register_intrinsic(cg);
|
|
109 |
return cg;
|
|
110 |
} else {
|
|
111 |
gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
|
|
112 |
}
|
|
113 |
}
|
|
114 |
return NULL;
|
|
115 |
}
|
|
116 |
|
|
117 |
// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
|
|
118 |
// in library_call.cpp.
|
|
119 |
|
|
120 |
|
|
121 |
#ifndef PRODUCT
|
|
122 |
// statistics gathering...
|
|
123 |
|
|
124 |
juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
|
|
125 |
jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
|
|
126 |
|
|
127 |
bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
|
|
128 |
assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
|
|
129 |
int oflags = _intrinsic_hist_flags[id];
|
|
130 |
assert(flags != 0, "what happened?");
|
|
131 |
if (is_virtual) {
|
|
132 |
flags |= _intrinsic_virtual;
|
|
133 |
}
|
|
134 |
bool changed = (flags != oflags);
|
|
135 |
if ((flags & _intrinsic_worked) != 0) {
|
|
136 |
juint count = (_intrinsic_hist_count[id] += 1);
|
|
137 |
if (count == 1) {
|
|
138 |
changed = true; // first time
|
|
139 |
}
|
|
140 |
// increment the overall count also:
|
|
141 |
_intrinsic_hist_count[vmIntrinsics::_none] += 1;
|
|
142 |
}
|
|
143 |
if (changed) {
|
|
144 |
if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
|
|
145 |
// Something changed about the intrinsic's virtuality.
|
|
146 |
if ((flags & _intrinsic_virtual) != 0) {
|
|
147 |
// This is the first use of this intrinsic as a virtual call.
|
|
148 |
if (oflags != 0) {
|
|
149 |
// We already saw it as a non-virtual, so note both cases.
|
|
150 |
flags |= _intrinsic_both;
|
|
151 |
}
|
|
152 |
} else if ((oflags & _intrinsic_both) == 0) {
|
|
153 |
// This is the first use of this intrinsic as a non-virtual
|
|
154 |
flags |= _intrinsic_both;
|
|
155 |
}
|
|
156 |
}
|
|
157 |
_intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
|
|
158 |
}
|
|
159 |
// update the overall flags also:
|
|
160 |
_intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
|
|
161 |
return changed;
|
|
162 |
}
|
|
163 |
|
|
164 |
static char* format_flags(int flags, char* buf) {
|
|
165 |
buf[0] = 0;
|
|
166 |
if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
|
|
167 |
if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
|
|
168 |
if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
|
|
169 |
if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
|
|
170 |
if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
|
|
171 |
if (buf[0] == 0) strcat(buf, ",");
|
|
172 |
assert(buf[0] == ',', "must be");
|
|
173 |
return &buf[1];
|
|
174 |
}
|
|
175 |
|
|
176 |
void Compile::print_intrinsic_statistics() {
|
|
177 |
char flagsbuf[100];
|
|
178 |
ttyLocker ttyl;
|
|
179 |
if (xtty != NULL) xtty->head("statistics type='intrinsic'");
|
|
180 |
tty->print_cr("Compiler intrinsic usage:");
|
|
181 |
juint total = _intrinsic_hist_count[vmIntrinsics::_none];
|
|
182 |
if (total == 0) total = 1; // avoid div0 in case of no successes
|
|
183 |
#define PRINT_STAT_LINE(name, c, f) \
|
|
184 |
tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
|
|
185 |
for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
|
|
186 |
vmIntrinsics::ID id = (vmIntrinsics::ID) index;
|
|
187 |
int flags = _intrinsic_hist_flags[id];
|
|
188 |
juint count = _intrinsic_hist_count[id];
|
|
189 |
if ((flags | count) != 0) {
|
|
190 |
PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
|
|
191 |
}
|
|
192 |
}
|
|
193 |
PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
|
|
194 |
if (xtty != NULL) xtty->tail("statistics");
|
|
195 |
}
|
|
196 |
|
|
197 |
void Compile::print_statistics() {
|
|
198 |
{ ttyLocker ttyl;
|
|
199 |
if (xtty != NULL) xtty->head("statistics type='opto'");
|
|
200 |
Parse::print_statistics();
|
|
201 |
PhaseCCP::print_statistics();
|
|
202 |
PhaseRegAlloc::print_statistics();
|
|
203 |
Scheduling::print_statistics();
|
|
204 |
PhasePeephole::print_statistics();
|
|
205 |
PhaseIdealLoop::print_statistics();
|
|
206 |
if (xtty != NULL) xtty->tail("statistics");
|
|
207 |
}
|
|
208 |
if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
|
|
209 |
// put this under its own <statistics> element.
|
|
210 |
print_intrinsic_statistics();
|
|
211 |
}
|
|
212 |
}
|
|
213 |
#endif //PRODUCT
|
|
214 |
|
|
215 |
// Support for bundling info
|
|
216 |
Bundle* Compile::node_bundling(const Node *n) {
|
|
217 |
assert(valid_bundle_info(n), "oob");
|
|
218 |
return &_node_bundling_base[n->_idx];
|
|
219 |
}
|
|
220 |
|
|
221 |
bool Compile::valid_bundle_info(const Node *n) {
|
|
222 |
return (_node_bundling_limit > n->_idx);
|
|
223 |
}
|
|
224 |
|
|
225 |
|
|
226 |
// Identify all nodes that are reachable from below, useful.
|
|
227 |
// Use breadth-first pass that records state in a Unique_Node_List,
|
|
228 |
// recursive traversal is slower.
|
|
229 |
void Compile::identify_useful_nodes(Unique_Node_List &useful) {
|
|
230 |
int estimated_worklist_size = unique();
|
|
231 |
useful.map( estimated_worklist_size, NULL ); // preallocate space
|
|
232 |
|
|
233 |
// Initialize worklist
|
|
234 |
if (root() != NULL) { useful.push(root()); }
|
|
235 |
// If 'top' is cached, declare it useful to preserve cached node
|
|
236 |
if( cached_top_node() ) { useful.push(cached_top_node()); }
|
|
237 |
|
|
238 |
// Push all useful nodes onto the list, breadthfirst
|
|
239 |
for( uint next = 0; next < useful.size(); ++next ) {
|
|
240 |
assert( next < unique(), "Unique useful nodes < total nodes");
|
|
241 |
Node *n = useful.at(next);
|
|
242 |
uint max = n->len();
|
|
243 |
for( uint i = 0; i < max; ++i ) {
|
|
244 |
Node *m = n->in(i);
|
|
245 |
if( m == NULL ) continue;
|
|
246 |
useful.push(m);
|
|
247 |
}
|
|
248 |
}
|
|
249 |
}
|
|
250 |
|
|
251 |
// Disconnect all useless nodes by disconnecting those at the boundary.
|
|
252 |
void Compile::remove_useless_nodes(Unique_Node_List &useful) {
|
|
253 |
uint next = 0;
|
|
254 |
while( next < useful.size() ) {
|
|
255 |
Node *n = useful.at(next++);
|
|
256 |
// Use raw traversal of out edges since this code removes out edges
|
|
257 |
int max = n->outcnt();
|
|
258 |
for (int j = 0; j < max; ++j ) {
|
|
259 |
Node* child = n->raw_out(j);
|
|
260 |
if( ! useful.member(child) ) {
|
|
261 |
assert( !child->is_top() || child != top(),
|
|
262 |
"If top is cached in Compile object it is in useful list");
|
|
263 |
// Only need to remove this out-edge to the useless node
|
|
264 |
n->raw_del_out(j);
|
|
265 |
--j;
|
|
266 |
--max;
|
|
267 |
}
|
|
268 |
}
|
|
269 |
if (n->outcnt() == 1 && n->has_special_unique_user()) {
|
|
270 |
record_for_igvn( n->unique_out() );
|
|
271 |
}
|
|
272 |
}
|
|
273 |
debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
|
|
274 |
}
|
|
275 |
|
|
276 |
//------------------------------frame_size_in_words-----------------------------
|
|
277 |
// frame_slots in units of words
|
|
278 |
int Compile::frame_size_in_words() const {
|
|
279 |
// shift is 0 in LP32 and 1 in LP64
|
|
280 |
const int shift = (LogBytesPerWord - LogBytesPerInt);
|
|
281 |
int words = _frame_slots >> shift;
|
|
282 |
assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
|
|
283 |
return words;
|
|
284 |
}
|
|
285 |
|
|
286 |
// ============================================================================
|
|
287 |
//------------------------------CompileWrapper---------------------------------
|
|
288 |
class CompileWrapper : public StackObj {
|
|
289 |
Compile *const _compile;
|
|
290 |
public:
|
|
291 |
CompileWrapper(Compile* compile);
|
|
292 |
|
|
293 |
~CompileWrapper();
|
|
294 |
};
|
|
295 |
|
|
296 |
CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
|
|
297 |
// the Compile* pointer is stored in the current ciEnv:
|
|
298 |
ciEnv* env = compile->env();
|
|
299 |
assert(env == ciEnv::current(), "must already be a ciEnv active");
|
|
300 |
assert(env->compiler_data() == NULL, "compile already active?");
|
|
301 |
env->set_compiler_data(compile);
|
|
302 |
assert(compile == Compile::current(), "sanity");
|
|
303 |
|
|
304 |
compile->set_type_dict(NULL);
|
|
305 |
compile->set_type_hwm(NULL);
|
|
306 |
compile->set_type_last_size(0);
|
|
307 |
compile->set_last_tf(NULL, NULL);
|
|
308 |
compile->set_indexSet_arena(NULL);
|
|
309 |
compile->set_indexSet_free_block_list(NULL);
|
|
310 |
compile->init_type_arena();
|
|
311 |
Type::Initialize(compile);
|
|
312 |
_compile->set_scratch_buffer_blob(NULL);
|
|
313 |
_compile->begin_method();
|
|
314 |
}
|
|
315 |
CompileWrapper::~CompileWrapper() {
|
|
316 |
if (_compile->failing()) {
|
|
317 |
_compile->print_method("Failed");
|
|
318 |
}
|
|
319 |
_compile->end_method();
|
|
320 |
if (_compile->scratch_buffer_blob() != NULL)
|
|
321 |
BufferBlob::free(_compile->scratch_buffer_blob());
|
|
322 |
_compile->env()->set_compiler_data(NULL);
|
|
323 |
}
|
|
324 |
|
|
325 |
|
|
326 |
//----------------------------print_compile_messages---------------------------
|
|
327 |
void Compile::print_compile_messages() {
|
|
328 |
#ifndef PRODUCT
|
|
329 |
// Check if recompiling
|
|
330 |
if (_subsume_loads == false && PrintOpto) {
|
|
331 |
// Recompiling without allowing machine instructions to subsume loads
|
|
332 |
tty->print_cr("*********************************************************");
|
|
333 |
tty->print_cr("** Bailout: Recompile without subsuming loads **");
|
|
334 |
tty->print_cr("*********************************************************");
|
|
335 |
}
|
|
336 |
if (env()->break_at_compile()) {
|
|
337 |
// Open the debugger when compiing this method.
|
|
338 |
tty->print("### Breaking when compiling: ");
|
|
339 |
method()->print_short_name();
|
|
340 |
tty->cr();
|
|
341 |
BREAKPOINT;
|
|
342 |
}
|
|
343 |
|
|
344 |
if( PrintOpto ) {
|
|
345 |
if (is_osr_compilation()) {
|
|
346 |
tty->print("[OSR]%3d", _compile_id);
|
|
347 |
} else {
|
|
348 |
tty->print("%3d", _compile_id);
|
|
349 |
}
|
|
350 |
}
|
|
351 |
#endif
|
|
352 |
}
|
|
353 |
|
|
354 |
|
|
355 |
void Compile::init_scratch_buffer_blob() {
|
|
356 |
if( scratch_buffer_blob() != NULL ) return;
|
|
357 |
|
|
358 |
// Construct a temporary CodeBuffer to have it construct a BufferBlob
|
|
359 |
// Cache this BufferBlob for this compile.
|
|
360 |
ResourceMark rm;
|
|
361 |
int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
|
|
362 |
BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
|
|
363 |
// Record the buffer blob for next time.
|
|
364 |
set_scratch_buffer_blob(blob);
|
|
365 |
guarantee(scratch_buffer_blob() != NULL, "Need BufferBlob for code generation");
|
|
366 |
|
|
367 |
// Initialize the relocation buffers
|
|
368 |
relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
|
|
369 |
set_scratch_locs_memory(locs_buf);
|
|
370 |
}
|
|
371 |
|
|
372 |
|
|
373 |
//-----------------------scratch_emit_size-------------------------------------
|
|
374 |
// Helper function that computes size by emitting code
|
|
375 |
uint Compile::scratch_emit_size(const Node* n) {
|
|
376 |
// Emit into a trash buffer and count bytes emitted.
|
|
377 |
// This is a pretty expensive way to compute a size,
|
|
378 |
// but it works well enough if seldom used.
|
|
379 |
// All common fixed-size instructions are given a size
|
|
380 |
// method by the AD file.
|
|
381 |
// Note that the scratch buffer blob and locs memory are
|
|
382 |
// allocated at the beginning of the compile task, and
|
|
383 |
// may be shared by several calls to scratch_emit_size.
|
|
384 |
// The allocation of the scratch buffer blob is particularly
|
|
385 |
// expensive, since it has to grab the code cache lock.
|
|
386 |
BufferBlob* blob = this->scratch_buffer_blob();
|
|
387 |
assert(blob != NULL, "Initialize BufferBlob at start");
|
|
388 |
assert(blob->size() > MAX_inst_size, "sanity");
|
|
389 |
relocInfo* locs_buf = scratch_locs_memory();
|
|
390 |
address blob_begin = blob->instructions_begin();
|
|
391 |
address blob_end = (address)locs_buf;
|
|
392 |
assert(blob->instructions_contains(blob_end), "sanity");
|
|
393 |
CodeBuffer buf(blob_begin, blob_end - blob_begin);
|
|
394 |
buf.initialize_consts_size(MAX_const_size);
|
|
395 |
buf.initialize_stubs_size(MAX_stubs_size);
|
|
396 |
assert(locs_buf != NULL, "sanity");
|
|
397 |
int lsize = MAX_locs_size / 2;
|
|
398 |
buf.insts()->initialize_shared_locs(&locs_buf[0], lsize);
|
|
399 |
buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
|
|
400 |
n->emit(buf, this->regalloc());
|
|
401 |
return buf.code_size();
|
|
402 |
}
|
|
403 |
|
|
404 |
void Compile::record_for_escape_analysis(Node* n) {
|
|
405 |
if (_congraph != NULL)
|
|
406 |
_congraph->record_for_escape_analysis(n);
|
|
407 |
}
|
|
408 |
|
|
409 |
|
|
410 |
// ============================================================================
|
|
411 |
//------------------------------Compile standard-------------------------------
|
|
412 |
debug_only( int Compile::_debug_idx = 100000; )
|
|
413 |
|
|
414 |
// Compile a method. entry_bci is -1 for normal compilations and indicates
|
|
415 |
// the continuation bci for on stack replacement.
|
|
416 |
|
|
417 |
|
|
418 |
Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads )
|
|
419 |
: Phase(Compiler),
|
|
420 |
_env(ci_env),
|
|
421 |
_log(ci_env->log()),
|
|
422 |
_compile_id(ci_env->compile_id()),
|
|
423 |
_save_argument_registers(false),
|
|
424 |
_stub_name(NULL),
|
|
425 |
_stub_function(NULL),
|
|
426 |
_stub_entry_point(NULL),
|
|
427 |
_method(target),
|
|
428 |
_entry_bci(osr_bci),
|
|
429 |
_initial_gvn(NULL),
|
|
430 |
_for_igvn(NULL),
|
|
431 |
_warm_calls(NULL),
|
|
432 |
_subsume_loads(subsume_loads),
|
|
433 |
_failure_reason(NULL),
|
|
434 |
_code_buffer("Compile::Fill_buffer"),
|
|
435 |
_orig_pc_slot(0),
|
|
436 |
_orig_pc_slot_offset_in_bytes(0),
|
|
437 |
_node_bundling_limit(0),
|
|
438 |
_node_bundling_base(NULL),
|
|
439 |
#ifndef PRODUCT
|
|
440 |
_trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
|
|
441 |
_printer(IdealGraphPrinter::printer()),
|
|
442 |
#endif
|
|
443 |
_congraph(NULL) {
|
|
444 |
C = this;
|
|
445 |
|
|
446 |
CompileWrapper cw(this);
|
|
447 |
#ifndef PRODUCT
|
|
448 |
if (TimeCompiler2) {
|
|
449 |
tty->print(" ");
|
|
450 |
target->holder()->name()->print();
|
|
451 |
tty->print(".");
|
|
452 |
target->print_short_name();
|
|
453 |
tty->print(" ");
|
|
454 |
}
|
|
455 |
TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
|
|
456 |
TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
|
|
457 |
set_print_assembly(PrintOptoAssembly || _method->should_print_assembly());
|
|
458 |
#endif
|
|
459 |
|
|
460 |
if (ProfileTraps) {
|
|
461 |
// Make sure the method being compiled gets its own MDO,
|
|
462 |
// so we can at least track the decompile_count().
|
|
463 |
method()->build_method_data();
|
|
464 |
}
|
|
465 |
|
|
466 |
Init(::AliasLevel);
|
|
467 |
|
|
468 |
|
|
469 |
print_compile_messages();
|
|
470 |
|
|
471 |
if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
|
|
472 |
_ilt = InlineTree::build_inline_tree_root();
|
|
473 |
else
|
|
474 |
_ilt = NULL;
|
|
475 |
|
|
476 |
// Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
|
|
477 |
assert(num_alias_types() >= AliasIdxRaw, "");
|
|
478 |
|
|
479 |
#define MINIMUM_NODE_HASH 1023
|
|
480 |
// Node list that Iterative GVN will start with
|
|
481 |
Unique_Node_List for_igvn(comp_arena());
|
|
482 |
set_for_igvn(&for_igvn);
|
|
483 |
|
|
484 |
// GVN that will be run immediately on new nodes
|
|
485 |
uint estimated_size = method()->code_size()*4+64;
|
|
486 |
estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
|
|
487 |
PhaseGVN gvn(node_arena(), estimated_size);
|
|
488 |
set_initial_gvn(&gvn);
|
|
489 |
|
|
490 |
if (DoEscapeAnalysis)
|
|
491 |
_congraph = new ConnectionGraph(this);
|
|
492 |
|
|
493 |
{ // Scope for timing the parser
|
|
494 |
TracePhase t3("parse", &_t_parser, true);
|
|
495 |
|
|
496 |
// Put top into the hash table ASAP.
|
|
497 |
initial_gvn()->transform_no_reclaim(top());
|
|
498 |
|
|
499 |
// Set up tf(), start(), and find a CallGenerator.
|
|
500 |
CallGenerator* cg;
|
|
501 |
if (is_osr_compilation()) {
|
|
502 |
const TypeTuple *domain = StartOSRNode::osr_domain();
|
|
503 |
const TypeTuple *range = TypeTuple::make_range(method()->signature());
|
|
504 |
init_tf(TypeFunc::make(domain, range));
|
|
505 |
StartNode* s = new (this, 2) StartOSRNode(root(), domain);
|
|
506 |
initial_gvn()->set_type_bottom(s);
|
|
507 |
init_start(s);
|
|
508 |
cg = CallGenerator::for_osr(method(), entry_bci());
|
|
509 |
} else {
|
|
510 |
// Normal case.
|
|
511 |
init_tf(TypeFunc::make(method()));
|
|
512 |
StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
|
|
513 |
initial_gvn()->set_type_bottom(s);
|
|
514 |
init_start(s);
|
|
515 |
float past_uses = method()->interpreter_invocation_count();
|
|
516 |
float expected_uses = past_uses;
|
|
517 |
cg = CallGenerator::for_inline(method(), expected_uses);
|
|
518 |
}
|
|
519 |
if (failing()) return;
|
|
520 |
if (cg == NULL) {
|
|
521 |
record_method_not_compilable_all_tiers("cannot parse method");
|
|
522 |
return;
|
|
523 |
}
|
|
524 |
JVMState* jvms = build_start_state(start(), tf());
|
|
525 |
if ((jvms = cg->generate(jvms)) == NULL) {
|
|
526 |
record_method_not_compilable("method parse failed");
|
|
527 |
return;
|
|
528 |
}
|
|
529 |
GraphKit kit(jvms);
|
|
530 |
|
|
531 |
if (!kit.stopped()) {
|
|
532 |
// Accept return values, and transfer control we know not where.
|
|
533 |
// This is done by a special, unique ReturnNode bound to root.
|
|
534 |
return_values(kit.jvms());
|
|
535 |
}
|
|
536 |
|
|
537 |
if (kit.has_exceptions()) {
|
|
538 |
// Any exceptions that escape from this call must be rethrown
|
|
539 |
// to whatever caller is dynamically above us on the stack.
|
|
540 |
// This is done by a special, unique RethrowNode bound to root.
|
|
541 |
rethrow_exceptions(kit.transfer_exceptions_into_jvms());
|
|
542 |
}
|
|
543 |
|
|
544 |
// Remove clutter produced by parsing.
|
|
545 |
if (!failing()) {
|
|
546 |
ResourceMark rm;
|
|
547 |
PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
|
|
548 |
}
|
|
549 |
}
|
|
550 |
|
|
551 |
// Note: Large methods are capped off in do_one_bytecode().
|
|
552 |
if (failing()) return;
|
|
553 |
|
|
554 |
// After parsing, node notes are no longer automagic.
|
|
555 |
// They must be propagated by register_new_node_with_optimizer(),
|
|
556 |
// clone(), or the like.
|
|
557 |
set_default_node_notes(NULL);
|
|
558 |
|
|
559 |
for (;;) {
|
|
560 |
int successes = Inline_Warm();
|
|
561 |
if (failing()) return;
|
|
562 |
if (successes == 0) break;
|
|
563 |
}
|
|
564 |
|
|
565 |
// Drain the list.
|
|
566 |
Finish_Warm();
|
|
567 |
#ifndef PRODUCT
|
|
568 |
if (_printer) {
|
|
569 |
_printer->print_inlining(this);
|
|
570 |
}
|
|
571 |
#endif
|
|
572 |
|
|
573 |
if (failing()) return;
|
|
574 |
NOT_PRODUCT( verify_graph_edges(); )
|
|
575 |
|
|
576 |
// Perform escape analysis
|
|
577 |
if (_congraph != NULL) {
|
|
578 |
NOT_PRODUCT( TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, TimeCompiler); )
|
|
579 |
_congraph->compute_escape();
|
|
580 |
#ifndef PRODUCT
|
|
581 |
if (PrintEscapeAnalysis) {
|
|
582 |
_congraph->dump();
|
|
583 |
}
|
|
584 |
#endif
|
|
585 |
}
|
|
586 |
// Now optimize
|
|
587 |
Optimize();
|
|
588 |
if (failing()) return;
|
|
589 |
NOT_PRODUCT( verify_graph_edges(); )
|
|
590 |
|
|
591 |
#ifndef PRODUCT
|
|
592 |
if (PrintIdeal) {
|
|
593 |
ttyLocker ttyl; // keep the following output all in one block
|
|
594 |
// This output goes directly to the tty, not the compiler log.
|
|
595 |
// To enable tools to match it up with the compilation activity,
|
|
596 |
// be sure to tag this tty output with the compile ID.
|
|
597 |
if (xtty != NULL) {
|
|
598 |
xtty->head("ideal compile_id='%d'%s", compile_id(),
|
|
599 |
is_osr_compilation() ? " compile_kind='osr'" :
|
|
600 |
"");
|
|
601 |
}
|
|
602 |
root()->dump(9999);
|
|
603 |
if (xtty != NULL) {
|
|
604 |
xtty->tail("ideal");
|
|
605 |
}
|
|
606 |
}
|
|
607 |
#endif
|
|
608 |
|
|
609 |
// Now that we know the size of all the monitors we can add a fixed slot
|
|
610 |
// for the original deopt pc.
|
|
611 |
|
|
612 |
_orig_pc_slot = fixed_slots();
|
|
613 |
int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
|
|
614 |
set_fixed_slots(next_slot);
|
|
615 |
|
|
616 |
// Now generate code
|
|
617 |
Code_Gen();
|
|
618 |
if (failing()) return;
|
|
619 |
|
|
620 |
// Check if we want to skip execution of all compiled code.
|
|
621 |
{
|
|
622 |
#ifndef PRODUCT
|
|
623 |
if (OptoNoExecute) {
|
|
624 |
record_method_not_compilable("+OptoNoExecute"); // Flag as failed
|
|
625 |
return;
|
|
626 |
}
|
|
627 |
TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
|
|
628 |
#endif
|
|
629 |
|
|
630 |
if (is_osr_compilation()) {
|
|
631 |
_code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
|
|
632 |
_code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
|
|
633 |
} else {
|
|
634 |
_code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
|
|
635 |
_code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
|
|
636 |
}
|
|
637 |
|
|
638 |
env()->register_method(_method, _entry_bci,
|
|
639 |
&_code_offsets,
|
|
640 |
_orig_pc_slot_offset_in_bytes,
|
|
641 |
code_buffer(),
|
|
642 |
frame_size_in_words(), _oop_map_set,
|
|
643 |
&_handler_table, &_inc_table,
|
|
644 |
compiler,
|
|
645 |
env()->comp_level(),
|
|
646 |
true, /*has_debug_info*/
|
|
647 |
has_unsafe_access()
|
|
648 |
);
|
|
649 |
}
|
|
650 |
}
|
|
651 |
|
|
652 |
//------------------------------Compile----------------------------------------
|
|
653 |
// Compile a runtime stub
|
|
654 |
Compile::Compile( ciEnv* ci_env,
|
|
655 |
TypeFunc_generator generator,
|
|
656 |
address stub_function,
|
|
657 |
const char *stub_name,
|
|
658 |
int is_fancy_jump,
|
|
659 |
bool pass_tls,
|
|
660 |
bool save_arg_registers,
|
|
661 |
bool return_pc )
|
|
662 |
: Phase(Compiler),
|
|
663 |
_env(ci_env),
|
|
664 |
_log(ci_env->log()),
|
|
665 |
_compile_id(-1),
|
|
666 |
_save_argument_registers(save_arg_registers),
|
|
667 |
_method(NULL),
|
|
668 |
_stub_name(stub_name),
|
|
669 |
_stub_function(stub_function),
|
|
670 |
_stub_entry_point(NULL),
|
|
671 |
_entry_bci(InvocationEntryBci),
|
|
672 |
_initial_gvn(NULL),
|
|
673 |
_for_igvn(NULL),
|
|
674 |
_warm_calls(NULL),
|
|
675 |
_orig_pc_slot(0),
|
|
676 |
_orig_pc_slot_offset_in_bytes(0),
|
|
677 |
_subsume_loads(true),
|
|
678 |
_failure_reason(NULL),
|
|
679 |
_code_buffer("Compile::Fill_buffer"),
|
|
680 |
_node_bundling_limit(0),
|
|
681 |
_node_bundling_base(NULL),
|
|
682 |
#ifndef PRODUCT
|
|
683 |
_trace_opto_output(TraceOptoOutput),
|
|
684 |
_printer(NULL),
|
|
685 |
#endif
|
|
686 |
_congraph(NULL) {
|
|
687 |
C = this;
|
|
688 |
|
|
689 |
#ifndef PRODUCT
|
|
690 |
TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
|
|
691 |
TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
|
|
692 |
set_print_assembly(PrintFrameConverterAssembly);
|
|
693 |
#endif
|
|
694 |
CompileWrapper cw(this);
|
|
695 |
Init(/*AliasLevel=*/ 0);
|
|
696 |
init_tf((*generator)());
|
|
697 |
|
|
698 |
{
|
|
699 |
// The following is a dummy for the sake of GraphKit::gen_stub
|
|
700 |
Unique_Node_List for_igvn(comp_arena());
|
|
701 |
set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
|
|
702 |
PhaseGVN gvn(Thread::current()->resource_area(),255);
|
|
703 |
set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
|
|
704 |
gvn.transform_no_reclaim(top());
|
|
705 |
|
|
706 |
GraphKit kit;
|
|
707 |
kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
|
|
708 |
}
|
|
709 |
|
|
710 |
NOT_PRODUCT( verify_graph_edges(); )
|
|
711 |
Code_Gen();
|
|
712 |
if (failing()) return;
|
|
713 |
|
|
714 |
|
|
715 |
// Entry point will be accessed using compile->stub_entry_point();
|
|
716 |
if (code_buffer() == NULL) {
|
|
717 |
Matcher::soft_match_failure();
|
|
718 |
} else {
|
|
719 |
if (PrintAssembly && (WizardMode || Verbose))
|
|
720 |
tty->print_cr("### Stub::%s", stub_name);
|
|
721 |
|
|
722 |
if (!failing()) {
|
|
723 |
assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
|
|
724 |
|
|
725 |
// Make the NMethod
|
|
726 |
// For now we mark the frame as never safe for profile stackwalking
|
|
727 |
RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
|
|
728 |
code_buffer(),
|
|
729 |
CodeOffsets::frame_never_safe,
|
|
730 |
// _code_offsets.value(CodeOffsets::Frame_Complete),
|
|
731 |
frame_size_in_words(),
|
|
732 |
_oop_map_set,
|
|
733 |
save_arg_registers);
|
|
734 |
assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
|
|
735 |
|
|
736 |
_stub_entry_point = rs->entry_point();
|
|
737 |
}
|
|
738 |
}
|
|
739 |
}
|
|
740 |
|
|
741 |
#ifndef PRODUCT
|
|
742 |
void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
|
|
743 |
if(PrintOpto && Verbose) {
|
|
744 |
tty->print("%s ", stub_name); j_sig->print_flattened(); tty->cr();
|
|
745 |
}
|
|
746 |
}
|
|
747 |
#endif
|
|
748 |
|
|
749 |
void Compile::print_codes() {
|
|
750 |
}
|
|
751 |
|
|
752 |
//------------------------------Init-------------------------------------------
|
|
753 |
// Prepare for a single compilation
|
|
754 |
void Compile::Init(int aliaslevel) {
|
|
755 |
_unique = 0;
|
|
756 |
_regalloc = NULL;
|
|
757 |
|
|
758 |
_tf = NULL; // filled in later
|
|
759 |
_top = NULL; // cached later
|
|
760 |
_matcher = NULL; // filled in later
|
|
761 |
_cfg = NULL; // filled in later
|
|
762 |
|
|
763 |
set_24_bit_selection_and_mode(Use24BitFP, false);
|
|
764 |
|
|
765 |
_node_note_array = NULL;
|
|
766 |
_default_node_notes = NULL;
|
|
767 |
|
|
768 |
_immutable_memory = NULL; // filled in at first inquiry
|
|
769 |
|
|
770 |
// Globally visible Nodes
|
|
771 |
// First set TOP to NULL to give safe behavior during creation of RootNode
|
|
772 |
set_cached_top_node(NULL);
|
|
773 |
set_root(new (this, 3) RootNode());
|
|
774 |
// Now that you have a Root to point to, create the real TOP
|
|
775 |
set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
|
|
776 |
set_recent_alloc(NULL, NULL);
|
|
777 |
|
|
778 |
// Create Debug Information Recorder to record scopes, oopmaps, etc.
|
|
779 |
env()->set_oop_recorder(new OopRecorder(comp_arena()));
|
|
780 |
env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
|
|
781 |
env()->set_dependencies(new Dependencies(env()));
|
|
782 |
|
|
783 |
_fixed_slots = 0;
|
|
784 |
set_has_split_ifs(false);
|
|
785 |
set_has_loops(has_method() && method()->has_loops()); // first approximation
|
|
786 |
_deopt_happens = true; // start out assuming the worst
|
|
787 |
_trap_can_recompile = false; // no traps emitted yet
|
|
788 |
_major_progress = true; // start out assuming good things will happen
|
|
789 |
set_has_unsafe_access(false);
|
|
790 |
Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
|
|
791 |
set_decompile_count(0);
|
|
792 |
|
|
793 |
// Compilation level related initialization
|
|
794 |
if (env()->comp_level() == CompLevel_fast_compile) {
|
|
795 |
set_num_loop_opts(Tier1LoopOptsCount);
|
|
796 |
set_do_inlining(Tier1Inline != 0);
|
|
797 |
set_max_inline_size(Tier1MaxInlineSize);
|
|
798 |
set_freq_inline_size(Tier1FreqInlineSize);
|
|
799 |
set_do_scheduling(false);
|
|
800 |
set_do_count_invocations(Tier1CountInvocations);
|
|
801 |
set_do_method_data_update(Tier1UpdateMethodData);
|
|
802 |
} else {
|
|
803 |
assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
|
|
804 |
set_num_loop_opts(LoopOptsCount);
|
|
805 |
set_do_inlining(Inline);
|
|
806 |
set_max_inline_size(MaxInlineSize);
|
|
807 |
set_freq_inline_size(FreqInlineSize);
|
|
808 |
set_do_scheduling(OptoScheduling);
|
|
809 |
set_do_count_invocations(false);
|
|
810 |
set_do_method_data_update(false);
|
|
811 |
}
|
|
812 |
|
|
813 |
if (debug_info()->recording_non_safepoints()) {
|
|
814 |
set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
|
|
815 |
(comp_arena(), 8, 0, NULL));
|
|
816 |
set_default_node_notes(Node_Notes::make(this));
|
|
817 |
}
|
|
818 |
|
|
819 |
// // -- Initialize types before each compile --
|
|
820 |
// // Update cached type information
|
|
821 |
// if( _method && _method->constants() )
|
|
822 |
// Type::update_loaded_types(_method, _method->constants());
|
|
823 |
|
|
824 |
// Init alias_type map.
|
|
825 |
if (!DoEscapeAnalysis && aliaslevel == 3)
|
|
826 |
aliaslevel = 2; // No unique types without escape analysis
|
|
827 |
_AliasLevel = aliaslevel;
|
|
828 |
const int grow_ats = 16;
|
|
829 |
_max_alias_types = grow_ats;
|
|
830 |
_alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
|
|
831 |
AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
|
|
832 |
Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
|
|
833 |
{
|
|
834 |
for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
|
|
835 |
}
|
|
836 |
// Initialize the first few types.
|
|
837 |
_alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
|
|
838 |
_alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
|
|
839 |
_alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
|
|
840 |
_num_alias_types = AliasIdxRaw+1;
|
|
841 |
// Zero out the alias type cache.
|
|
842 |
Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
|
|
843 |
// A NULL adr_type hits in the cache right away. Preload the right answer.
|
|
844 |
probe_alias_cache(NULL)->_index = AliasIdxTop;
|
|
845 |
|
|
846 |
_intrinsics = NULL;
|
|
847 |
_macro_nodes = new GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
|
|
848 |
register_library_intrinsics();
|
|
849 |
}
|
|
850 |
|
|
851 |
//---------------------------init_start----------------------------------------
|
|
852 |
// Install the StartNode on this compile object.
|
|
853 |
void Compile::init_start(StartNode* s) {
|
|
854 |
if (failing())
|
|
855 |
return; // already failing
|
|
856 |
assert(s == start(), "");
|
|
857 |
}
|
|
858 |
|
|
859 |
StartNode* Compile::start() const {
|
|
860 |
assert(!failing(), "");
|
|
861 |
for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
|
|
862 |
Node* start = root()->fast_out(i);
|
|
863 |
if( start->is_Start() )
|
|
864 |
return start->as_Start();
|
|
865 |
}
|
|
866 |
ShouldNotReachHere();
|
|
867 |
return NULL;
|
|
868 |
}
|
|
869 |
|
|
870 |
//-------------------------------immutable_memory-------------------------------------
|
|
871 |
// Access immutable memory
|
|
872 |
Node* Compile::immutable_memory() {
|
|
873 |
if (_immutable_memory != NULL) {
|
|
874 |
return _immutable_memory;
|
|
875 |
}
|
|
876 |
StartNode* s = start();
|
|
877 |
for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
|
|
878 |
Node *p = s->fast_out(i);
|
|
879 |
if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
|
|
880 |
_immutable_memory = p;
|
|
881 |
return _immutable_memory;
|
|
882 |
}
|
|
883 |
}
|
|
884 |
ShouldNotReachHere();
|
|
885 |
return NULL;
|
|
886 |
}
|
|
887 |
|
|
888 |
//----------------------set_cached_top_node------------------------------------
|
|
889 |
// Install the cached top node, and make sure Node::is_top works correctly.
|
|
890 |
void Compile::set_cached_top_node(Node* tn) {
|
|
891 |
if (tn != NULL) verify_top(tn);
|
|
892 |
Node* old_top = _top;
|
|
893 |
_top = tn;
|
|
894 |
// Calling Node::setup_is_top allows the nodes the chance to adjust
|
|
895 |
// their _out arrays.
|
|
896 |
if (_top != NULL) _top->setup_is_top();
|
|
897 |
if (old_top != NULL) old_top->setup_is_top();
|
|
898 |
assert(_top == NULL || top()->is_top(), "");
|
|
899 |
}
|
|
900 |
|
|
901 |
#ifndef PRODUCT
|
|
902 |
void Compile::verify_top(Node* tn) const {
|
|
903 |
if (tn != NULL) {
|
|
904 |
assert(tn->is_Con(), "top node must be a constant");
|
|
905 |
assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
|
|
906 |
assert(tn->in(0) != NULL, "must have live top node");
|
|
907 |
}
|
|
908 |
}
|
|
909 |
#endif
|
|
910 |
|
|
911 |
|
|
912 |
///-------------------Managing Per-Node Debug & Profile Info-------------------
|
|
913 |
|
|
914 |
void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
|
|
915 |
guarantee(arr != NULL, "");
|
|
916 |
int num_blocks = arr->length();
|
|
917 |
if (grow_by < num_blocks) grow_by = num_blocks;
|
|
918 |
int num_notes = grow_by * _node_notes_block_size;
|
|
919 |
Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
|
|
920 |
Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
|
|
921 |
while (num_notes > 0) {
|
|
922 |
arr->append(notes);
|
|
923 |
notes += _node_notes_block_size;
|
|
924 |
num_notes -= _node_notes_block_size;
|
|
925 |
}
|
|
926 |
assert(num_notes == 0, "exact multiple, please");
|
|
927 |
}
|
|
928 |
|
|
929 |
bool Compile::copy_node_notes_to(Node* dest, Node* source) {
|
|
930 |
if (source == NULL || dest == NULL) return false;
|
|
931 |
|
|
932 |
if (dest->is_Con())
|
|
933 |
return false; // Do not push debug info onto constants.
|
|
934 |
|
|
935 |
#ifdef ASSERT
|
|
936 |
// Leave a bread crumb trail pointing to the original node:
|
|
937 |
if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
|
|
938 |
dest->set_debug_orig(source);
|
|
939 |
}
|
|
940 |
#endif
|
|
941 |
|
|
942 |
if (node_note_array() == NULL)
|
|
943 |
return false; // Not collecting any notes now.
|
|
944 |
|
|
945 |
// This is a copy onto a pre-existing node, which may already have notes.
|
|
946 |
// If both nodes have notes, do not overwrite any pre-existing notes.
|
|
947 |
Node_Notes* source_notes = node_notes_at(source->_idx);
|
|
948 |
if (source_notes == NULL || source_notes->is_clear()) return false;
|
|
949 |
Node_Notes* dest_notes = node_notes_at(dest->_idx);
|
|
950 |
if (dest_notes == NULL || dest_notes->is_clear()) {
|
|
951 |
return set_node_notes_at(dest->_idx, source_notes);
|
|
952 |
}
|
|
953 |
|
|
954 |
Node_Notes merged_notes = (*source_notes);
|
|
955 |
// The order of operations here ensures that dest notes will win...
|
|
956 |
merged_notes.update_from(dest_notes);
|
|
957 |
return set_node_notes_at(dest->_idx, &merged_notes);
|
|
958 |
}
|
|
959 |
|
|
960 |
|
|
961 |
//--------------------------allow_range_check_smearing-------------------------
|
|
962 |
// Gating condition for coalescing similar range checks.
|
|
963 |
// Sometimes we try 'speculatively' replacing a series of a range checks by a
|
|
964 |
// single covering check that is at least as strong as any of them.
|
|
965 |
// If the optimization succeeds, the simplified (strengthened) range check
|
|
966 |
// will always succeed. If it fails, we will deopt, and then give up
|
|
967 |
// on the optimization.
|
|
968 |
bool Compile::allow_range_check_smearing() const {
|
|
969 |
// If this method has already thrown a range-check,
|
|
970 |
// assume it was because we already tried range smearing
|
|
971 |
// and it failed.
|
|
972 |
uint already_trapped = trap_count(Deoptimization::Reason_range_check);
|
|
973 |
return !already_trapped;
|
|
974 |
}
|
|
975 |
|
|
976 |
|
|
977 |
//------------------------------flatten_alias_type-----------------------------
|
|
978 |
const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
|
|
979 |
int offset = tj->offset();
|
|
980 |
TypePtr::PTR ptr = tj->ptr();
|
|
981 |
|
|
982 |
// Process weird unsafe references.
|
|
983 |
if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
|
|
984 |
assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
|
|
985 |
tj = TypeOopPtr::BOTTOM;
|
|
986 |
ptr = tj->ptr();
|
|
987 |
offset = tj->offset();
|
|
988 |
}
|
|
989 |
|
|
990 |
// Array pointers need some flattening
|
|
991 |
const TypeAryPtr *ta = tj->isa_aryptr();
|
|
992 |
if( ta && _AliasLevel >= 2 ) {
|
|
993 |
// For arrays indexed by constant indices, we flatten the alias
|
|
994 |
// space to include all of the array body. Only the header, klass
|
|
995 |
// and array length can be accessed un-aliased.
|
|
996 |
if( offset != Type::OffsetBot ) {
|
|
997 |
if( ta->const_oop() ) { // methodDataOop or methodOop
|
|
998 |
offset = Type::OffsetBot; // Flatten constant access into array body
|
|
999 |
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
|
|
1000 |
} else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
|
|
1001 |
// range is OK as-is.
|
|
1002 |
tj = ta = TypeAryPtr::RANGE;
|
|
1003 |
} else if( offset == oopDesc::klass_offset_in_bytes() ) {
|
|
1004 |
tj = TypeInstPtr::KLASS; // all klass loads look alike
|
|
1005 |
ta = TypeAryPtr::RANGE; // generic ignored junk
|
|
1006 |
ptr = TypePtr::BotPTR;
|
|
1007 |
} else if( offset == oopDesc::mark_offset_in_bytes() ) {
|
|
1008 |
tj = TypeInstPtr::MARK;
|
|
1009 |
ta = TypeAryPtr::RANGE; // generic ignored junk
|
|
1010 |
ptr = TypePtr::BotPTR;
|
|
1011 |
} else { // Random constant offset into array body
|
|
1012 |
offset = Type::OffsetBot; // Flatten constant access into array body
|
|
1013 |
tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
|
|
1014 |
}
|
|
1015 |
}
|
|
1016 |
// Arrays of fixed size alias with arrays of unknown size.
|
|
1017 |
if (ta->size() != TypeInt::POS) {
|
|
1018 |
const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
|
|
1019 |
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset, ta->instance_id());
|
|
1020 |
}
|
|
1021 |
// Arrays of known objects become arrays of unknown objects.
|
|
1022 |
if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
|
|
1023 |
const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
|
|
1024 |
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset, ta->instance_id());
|
|
1025 |
}
|
|
1026 |
// Arrays of bytes and of booleans both use 'bastore' and 'baload' so
|
|
1027 |
// cannot be distinguished by bytecode alone.
|
|
1028 |
if (ta->elem() == TypeInt::BOOL) {
|
|
1029 |
const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
|
|
1030 |
ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
|
|
1031 |
tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset, ta->instance_id());
|
|
1032 |
}
|
|
1033 |
// During the 2nd round of IterGVN, NotNull castings are removed.
|
|
1034 |
// Make sure the Bottom and NotNull variants alias the same.
|
|
1035 |
// Also, make sure exact and non-exact variants alias the same.
|
|
1036 |
if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
|
|
1037 |
if (ta->const_oop()) {
|
|
1038 |
tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
|
|
1039 |
} else {
|
|
1040 |
tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
|
|
1041 |
}
|
|
1042 |
}
|
|
1043 |
}
|
|
1044 |
|
|
1045 |
// Oop pointers need some flattening
|
|
1046 |
const TypeInstPtr *to = tj->isa_instptr();
|
|
1047 |
if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
|
|
1048 |
if( ptr == TypePtr::Constant ) {
|
|
1049 |
// No constant oop pointers (such as Strings); they alias with
|
|
1050 |
// unknown strings.
|
|
1051 |
tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
|
|
1052 |
} else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
|
|
1053 |
// During the 2nd round of IterGVN, NotNull castings are removed.
|
|
1054 |
// Make sure the Bottom and NotNull variants alias the same.
|
|
1055 |
// Also, make sure exact and non-exact variants alias the same.
|
|
1056 |
tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset, to->instance_id());
|
|
1057 |
}
|
|
1058 |
// Canonicalize the holder of this field
|
|
1059 |
ciInstanceKlass *k = to->klass()->as_instance_klass();
|
|
1060 |
if (offset >= 0 && offset < oopDesc::header_size() * wordSize) {
|
|
1061 |
// First handle header references such as a LoadKlassNode, even if the
|
|
1062 |
// object's klass is unloaded at compile time (4965979).
|
|
1063 |
tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset, to->instance_id());
|
|
1064 |
} else if (offset < 0 || offset >= k->size_helper() * wordSize) {
|
|
1065 |
to = NULL;
|
|
1066 |
tj = TypeOopPtr::BOTTOM;
|
|
1067 |
offset = tj->offset();
|
|
1068 |
} else {
|
|
1069 |
ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
|
|
1070 |
if (!k->equals(canonical_holder) || tj->offset() != offset) {
|
|
1071 |
tj = to = TypeInstPtr::make(TypePtr::BotPTR, canonical_holder, false, NULL, offset, to->instance_id());
|
|
1072 |
}
|
|
1073 |
}
|
|
1074 |
}
|
|
1075 |
|
|
1076 |
// Klass pointers to object array klasses need some flattening
|
|
1077 |
const TypeKlassPtr *tk = tj->isa_klassptr();
|
|
1078 |
if( tk ) {
|
|
1079 |
// If we are referencing a field within a Klass, we need
|
|
1080 |
// to assume the worst case of an Object. Both exact and
|
|
1081 |
// inexact types must flatten to the same alias class.
|
|
1082 |
// Since the flattened result for a klass is defined to be
|
|
1083 |
// precisely java.lang.Object, use a constant ptr.
|
|
1084 |
if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
|
|
1085 |
|
|
1086 |
tj = tk = TypeKlassPtr::make(TypePtr::Constant,
|
|
1087 |
TypeKlassPtr::OBJECT->klass(),
|
|
1088 |
offset);
|
|
1089 |
}
|
|
1090 |
|
|
1091 |
ciKlass* klass = tk->klass();
|
|
1092 |
if( klass->is_obj_array_klass() ) {
|
|
1093 |
ciKlass* k = TypeAryPtr::OOPS->klass();
|
|
1094 |
if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
|
|
1095 |
k = TypeInstPtr::BOTTOM->klass();
|
|
1096 |
tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
|
|
1097 |
}
|
|
1098 |
|
|
1099 |
// Check for precise loads from the primary supertype array and force them
|
|
1100 |
// to the supertype cache alias index. Check for generic array loads from
|
|
1101 |
// the primary supertype array and also force them to the supertype cache
|
|
1102 |
// alias index. Since the same load can reach both, we need to merge
|
|
1103 |
// these 2 disparate memories into the same alias class. Since the
|
|
1104 |
// primary supertype array is read-only, there's no chance of confusion
|
|
1105 |
// where we bypass an array load and an array store.
|
|
1106 |
uint off2 = offset - Klass::primary_supers_offset_in_bytes();
|
|
1107 |
if( offset == Type::OffsetBot ||
|
|
1108 |
off2 < Klass::primary_super_limit()*wordSize ) {
|
|
1109 |
offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
|
|
1110 |
tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
|
|
1111 |
}
|
|
1112 |
}
|
|
1113 |
|
|
1114 |
// Flatten all Raw pointers together.
|
|
1115 |
if (tj->base() == Type::RawPtr)
|
|
1116 |
tj = TypeRawPtr::BOTTOM;
|
|
1117 |
|
|
1118 |
if (tj->base() == Type::AnyPtr)
|
|
1119 |
tj = TypePtr::BOTTOM; // An error, which the caller must check for.
|
|
1120 |
|
|
1121 |
// Flatten all to bottom for now
|
|
1122 |
switch( _AliasLevel ) {
|
|
1123 |
case 0:
|
|
1124 |
tj = TypePtr::BOTTOM;
|
|
1125 |
break;
|
|
1126 |
case 1: // Flatten to: oop, static, field or array
|
|
1127 |
switch (tj->base()) {
|
|
1128 |
//case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
|
|
1129 |
case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
|
|
1130 |
case Type::AryPtr: // do not distinguish arrays at all
|
|
1131 |
case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
|
|
1132 |
case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
|
|
1133 |
case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
|
|
1134 |
default: ShouldNotReachHere();
|
|
1135 |
}
|
|
1136 |
break;
|
|
1137 |
case 2: // No collasping at level 2; keep all splits
|
|
1138 |
case 3: // No collasping at level 3; keep all splits
|
|
1139 |
break;
|
|
1140 |
default:
|
|
1141 |
Unimplemented();
|
|
1142 |
}
|
|
1143 |
|
|
1144 |
offset = tj->offset();
|
|
1145 |
assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
|
|
1146 |
|
|
1147 |
assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
|
|
1148 |
(offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
|
|
1149 |
(offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
|
|
1150 |
(offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
|
|
1151 |
(offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
|
|
1152 |
(offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
|
|
1153 |
(offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
|
|
1154 |
"For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
|
|
1155 |
assert( tj->ptr() != TypePtr::TopPTR &&
|
|
1156 |
tj->ptr() != TypePtr::AnyNull &&
|
|
1157 |
tj->ptr() != TypePtr::Null, "No imprecise addresses" );
|
|
1158 |
// assert( tj->ptr() != TypePtr::Constant ||
|
|
1159 |
// tj->base() == Type::RawPtr ||
|
|
1160 |
// tj->base() == Type::KlassPtr, "No constant oop addresses" );
|
|
1161 |
|
|
1162 |
return tj;
|
|
1163 |
}
|
|
1164 |
|
|
1165 |
void Compile::AliasType::Init(int i, const TypePtr* at) {
|
|
1166 |
_index = i;
|
|
1167 |
_adr_type = at;
|
|
1168 |
_field = NULL;
|
|
1169 |
_is_rewritable = true; // default
|
|
1170 |
const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
|
|
1171 |
if (atoop != NULL && atoop->is_instance()) {
|
|
1172 |
const TypeOopPtr *gt = atoop->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
|
|
1173 |
_general_index = Compile::current()->get_alias_index(gt);
|
|
1174 |
} else {
|
|
1175 |
_general_index = 0;
|
|
1176 |
}
|
|
1177 |
}
|
|
1178 |
|
|
1179 |
//---------------------------------print_on------------------------------------
|
|
1180 |
#ifndef PRODUCT
|
|
1181 |
void Compile::AliasType::print_on(outputStream* st) {
|
|
1182 |
if (index() < 10)
|
|
1183 |
st->print("@ <%d> ", index());
|
|
1184 |
else st->print("@ <%d>", index());
|
|
1185 |
st->print(is_rewritable() ? " " : " RO");
|
|
1186 |
int offset = adr_type()->offset();
|
|
1187 |
if (offset == Type::OffsetBot)
|
|
1188 |
st->print(" +any");
|
|
1189 |
else st->print(" +%-3d", offset);
|
|
1190 |
st->print(" in ");
|
|
1191 |
adr_type()->dump_on(st);
|
|
1192 |
const TypeOopPtr* tjp = adr_type()->isa_oopptr();
|
|
1193 |
if (field() != NULL && tjp) {
|
|
1194 |
if (tjp->klass() != field()->holder() ||
|
|
1195 |
tjp->offset() != field()->offset_in_bytes()) {
|
|
1196 |
st->print(" != ");
|
|
1197 |
field()->print();
|
|
1198 |
st->print(" ***");
|
|
1199 |
}
|
|
1200 |
}
|
|
1201 |
}
|
|
1202 |
|
|
1203 |
void print_alias_types() {
|
|
1204 |
Compile* C = Compile::current();
|
|
1205 |
tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
|
|
1206 |
for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
|
|
1207 |
C->alias_type(idx)->print_on(tty);
|
|
1208 |
tty->cr();
|
|
1209 |
}
|
|
1210 |
}
|
|
1211 |
#endif
|
|
1212 |
|
|
1213 |
|
|
1214 |
//----------------------------probe_alias_cache--------------------------------
|
|
1215 |
Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
|
|
1216 |
intptr_t key = (intptr_t) adr_type;
|
|
1217 |
key ^= key >> logAliasCacheSize;
|
|
1218 |
return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
|
|
1219 |
}
|
|
1220 |
|
|
1221 |
|
|
1222 |
//-----------------------------grow_alias_types--------------------------------
|
|
1223 |
void Compile::grow_alias_types() {
|
|
1224 |
const int old_ats = _max_alias_types; // how many before?
|
|
1225 |
const int new_ats = old_ats; // how many more?
|
|
1226 |
const int grow_ats = old_ats+new_ats; // how many now?
|
|
1227 |
_max_alias_types = grow_ats;
|
|
1228 |
_alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
|
|
1229 |
AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
|
|
1230 |
Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
|
|
1231 |
for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
|
|
1232 |
}
|
|
1233 |
|
|
1234 |
|
|
1235 |
//--------------------------------find_alias_type------------------------------
|
|
1236 |
Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
|
|
1237 |
if (_AliasLevel == 0)
|
|
1238 |
return alias_type(AliasIdxBot);
|
|
1239 |
|
|
1240 |
AliasCacheEntry* ace = probe_alias_cache(adr_type);
|
|
1241 |
if (ace->_adr_type == adr_type) {
|
|
1242 |
return alias_type(ace->_index);
|
|
1243 |
}
|
|
1244 |
|
|
1245 |
// Handle special cases.
|
|
1246 |
if (adr_type == NULL) return alias_type(AliasIdxTop);
|
|
1247 |
if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
|
|
1248 |
|
|
1249 |
// Do it the slow way.
|
|
1250 |
const TypePtr* flat = flatten_alias_type(adr_type);
|
|
1251 |
|
|
1252 |
#ifdef ASSERT
|
|
1253 |
assert(flat == flatten_alias_type(flat), "idempotent");
|
|
1254 |
assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
|
|
1255 |
if (flat->isa_oopptr() && !flat->isa_klassptr()) {
|
|
1256 |
const TypeOopPtr* foop = flat->is_oopptr();
|
|
1257 |
const TypePtr* xoop = foop->cast_to_exactness(!foop->klass_is_exact())->is_ptr();
|
|
1258 |
assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
|
|
1259 |
}
|
|
1260 |
assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
|
|
1261 |
#endif
|
|
1262 |
|
|
1263 |
int idx = AliasIdxTop;
|
|
1264 |
for (int i = 0; i < num_alias_types(); i++) {
|
|
1265 |
if (alias_type(i)->adr_type() == flat) {
|
|
1266 |
idx = i;
|
|
1267 |
break;
|
|
1268 |
}
|
|
1269 |
}
|
|
1270 |
|
|
1271 |
if (idx == AliasIdxTop) {
|
|
1272 |
if (no_create) return NULL;
|
|
1273 |
// Grow the array if necessary.
|
|
1274 |
if (_num_alias_types == _max_alias_types) grow_alias_types();
|
|
1275 |
// Add a new alias type.
|
|
1276 |
idx = _num_alias_types++;
|
|
1277 |
_alias_types[idx]->Init(idx, flat);
|
|
1278 |
if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
|
|
1279 |
if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
|
|
1280 |
if (flat->isa_instptr()) {
|
|
1281 |
if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
|
|
1282 |
&& flat->is_instptr()->klass() == env()->Class_klass())
|
|
1283 |
alias_type(idx)->set_rewritable(false);
|
|
1284 |
}
|
|
1285 |
if (flat->isa_klassptr()) {
|
|
1286 |
if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
|
|
1287 |
alias_type(idx)->set_rewritable(false);
|
|
1288 |
if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
|
|
1289 |
alias_type(idx)->set_rewritable(false);
|
|
1290 |
if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
|
|
1291 |
alias_type(idx)->set_rewritable(false);
|
|
1292 |
if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
|
|
1293 |
alias_type(idx)->set_rewritable(false);
|
|
1294 |
}
|
|
1295 |
// %%% (We would like to finalize JavaThread::threadObj_offset(),
|
|
1296 |
// but the base pointer type is not distinctive enough to identify
|
|
1297 |
// references into JavaThread.)
|
|
1298 |
|
|
1299 |
// Check for final instance fields.
|
|
1300 |
const TypeInstPtr* tinst = flat->isa_instptr();
|
|
1301 |
if (tinst && tinst->offset() >= oopDesc::header_size() * wordSize) {
|
|
1302 |
ciInstanceKlass *k = tinst->klass()->as_instance_klass();
|
|
1303 |
ciField* field = k->get_field_by_offset(tinst->offset(), false);
|
|
1304 |
// Set field() and is_rewritable() attributes.
|
|
1305 |
if (field != NULL) alias_type(idx)->set_field(field);
|
|
1306 |
}
|
|
1307 |
const TypeKlassPtr* tklass = flat->isa_klassptr();
|
|
1308 |
// Check for final static fields.
|
|
1309 |
if (tklass && tklass->klass()->is_instance_klass()) {
|
|
1310 |
ciInstanceKlass *k = tklass->klass()->as_instance_klass();
|
|
1311 |
ciField* field = k->get_field_by_offset(tklass->offset(), true);
|
|
1312 |
// Set field() and is_rewritable() attributes.
|
|
1313 |
if (field != NULL) alias_type(idx)->set_field(field);
|
|
1314 |
}
|
|
1315 |
}
|
|
1316 |
|
|
1317 |
// Fill the cache for next time.
|
|
1318 |
ace->_adr_type = adr_type;
|
|
1319 |
ace->_index = idx;
|
|
1320 |
assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
|
|
1321 |
|
|
1322 |
// Might as well try to fill the cache for the flattened version, too.
|
|
1323 |
AliasCacheEntry* face = probe_alias_cache(flat);
|
|
1324 |
if (face->_adr_type == NULL) {
|
|
1325 |
face->_adr_type = flat;
|
|
1326 |
face->_index = idx;
|
|
1327 |
assert(alias_type(flat) == alias_type(idx), "flat type must work too");
|
|
1328 |
}
|
|
1329 |
|
|
1330 |
return alias_type(idx);
|
|
1331 |
}
|
|
1332 |
|
|
1333 |
|
|
1334 |
Compile::AliasType* Compile::alias_type(ciField* field) {
|
|
1335 |
const TypeOopPtr* t;
|
|
1336 |
if (field->is_static())
|
|
1337 |
t = TypeKlassPtr::make(field->holder());
|
|
1338 |
else
|
|
1339 |
t = TypeOopPtr::make_from_klass_raw(field->holder());
|
|
1340 |
AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
|
|
1341 |
assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
|
|
1342 |
return atp;
|
|
1343 |
}
|
|
1344 |
|
|
1345 |
|
|
1346 |
//------------------------------have_alias_type--------------------------------
|
|
1347 |
bool Compile::have_alias_type(const TypePtr* adr_type) {
|
|
1348 |
AliasCacheEntry* ace = probe_alias_cache(adr_type);
|
|
1349 |
if (ace->_adr_type == adr_type) {
|
|
1350 |
return true;
|
|
1351 |
}
|
|
1352 |
|
|
1353 |
// Handle special cases.
|
|
1354 |
if (adr_type == NULL) return true;
|
|
1355 |
if (adr_type == TypePtr::BOTTOM) return true;
|
|
1356 |
|
|
1357 |
return find_alias_type(adr_type, true) != NULL;
|
|
1358 |
}
|
|
1359 |
|
|
1360 |
//-----------------------------must_alias--------------------------------------
|
|
1361 |
// True if all values of the given address type are in the given alias category.
|
|
1362 |
bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
|
|
1363 |
if (alias_idx == AliasIdxBot) return true; // the universal category
|
|
1364 |
if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
|
|
1365 |
if (alias_idx == AliasIdxTop) return false; // the empty category
|
|
1366 |
if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
|
|
1367 |
|
|
1368 |
// the only remaining possible overlap is identity
|
|
1369 |
int adr_idx = get_alias_index(adr_type);
|
|
1370 |
assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
|
|
1371 |
assert(adr_idx == alias_idx ||
|
|
1372 |
(alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
|
|
1373 |
&& adr_type != TypeOopPtr::BOTTOM),
|
|
1374 |
"should not be testing for overlap with an unsafe pointer");
|
|
1375 |
return adr_idx == alias_idx;
|
|
1376 |
}
|
|
1377 |
|
|
1378 |
//------------------------------can_alias--------------------------------------
|
|
1379 |
// True if any values of the given address type are in the given alias category.
|
|
1380 |
bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
|
|
1381 |
if (alias_idx == AliasIdxTop) return false; // the empty category
|
|
1382 |
if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
|
|
1383 |
if (alias_idx == AliasIdxBot) return true; // the universal category
|
|
1384 |
if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
|
|
1385 |
|
|
1386 |
// the only remaining possible overlap is identity
|
|
1387 |
int adr_idx = get_alias_index(adr_type);
|
|
1388 |
assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
|
|
1389 |
return adr_idx == alias_idx;
|
|
1390 |
}
|
|
1391 |
|
|
1392 |
|
|
1393 |
|
|
1394 |
//---------------------------pop_warm_call-------------------------------------
|
|
1395 |
WarmCallInfo* Compile::pop_warm_call() {
|
|
1396 |
WarmCallInfo* wci = _warm_calls;
|
|
1397 |
if (wci != NULL) _warm_calls = wci->remove_from(wci);
|
|
1398 |
return wci;
|
|
1399 |
}
|
|
1400 |
|
|
1401 |
//----------------------------Inline_Warm--------------------------------------
|
|
1402 |
int Compile::Inline_Warm() {
|
|
1403 |
// If there is room, try to inline some more warm call sites.
|
|
1404 |
// %%% Do a graph index compaction pass when we think we're out of space?
|
|
1405 |
if (!InlineWarmCalls) return 0;
|
|
1406 |
|
|
1407 |
int calls_made_hot = 0;
|
|
1408 |
int room_to_grow = NodeCountInliningCutoff - unique();
|
|
1409 |
int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
|
|
1410 |
int amount_grown = 0;
|
|
1411 |
WarmCallInfo* call;
|
|
1412 |
while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
|
|
1413 |
int est_size = (int)call->size();
|
|
1414 |
if (est_size > (room_to_grow - amount_grown)) {
|
|
1415 |
// This one won't fit anyway. Get rid of it.
|
|
1416 |
call->make_cold();
|
|
1417 |
continue;
|
|
1418 |
}
|
|
1419 |
call->make_hot();
|
|
1420 |
calls_made_hot++;
|
|
1421 |
amount_grown += est_size;
|
|
1422 |
amount_to_grow -= est_size;
|
|
1423 |
}
|
|
1424 |
|
|
1425 |
if (calls_made_hot > 0) set_major_progress();
|
|
1426 |
return calls_made_hot;
|
|
1427 |
}
|
|
1428 |
|
|
1429 |
|
|
1430 |
//----------------------------Finish_Warm--------------------------------------
|
|
1431 |
void Compile::Finish_Warm() {
|
|
1432 |
if (!InlineWarmCalls) return;
|
|
1433 |
if (failing()) return;
|
|
1434 |
if (warm_calls() == NULL) return;
|
|
1435 |
|
|
1436 |
// Clean up loose ends, if we are out of space for inlining.
|
|
1437 |
WarmCallInfo* call;
|
|
1438 |
while ((call = pop_warm_call()) != NULL) {
|
|
1439 |
call->make_cold();
|
|
1440 |
}
|
|
1441 |
}
|
|
1442 |
|
|
1443 |
|
|
1444 |
//------------------------------Optimize---------------------------------------
|
|
1445 |
// Given a graph, optimize it.
|
|
1446 |
void Compile::Optimize() {
|
|
1447 |
TracePhase t1("optimizer", &_t_optimizer, true);
|
|
1448 |
|
|
1449 |
#ifndef PRODUCT
|
|
1450 |
if (env()->break_at_compile()) {
|
|
1451 |
BREAKPOINT;
|
|
1452 |
}
|
|
1453 |
|
|
1454 |
#endif
|
|
1455 |
|
|
1456 |
ResourceMark rm;
|
|
1457 |
int loop_opts_cnt;
|
|
1458 |
|
|
1459 |
NOT_PRODUCT( verify_graph_edges(); )
|
|
1460 |
|
|
1461 |
print_method("Start");
|
|
1462 |
|
|
1463 |
{
|
|
1464 |
// Iterative Global Value Numbering, including ideal transforms
|
|
1465 |
// Initialize IterGVN with types and values from parse-time GVN
|
|
1466 |
PhaseIterGVN igvn(initial_gvn());
|
|
1467 |
{
|
|
1468 |
NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
|
|
1469 |
igvn.optimize();
|
|
1470 |
}
|
|
1471 |
|
|
1472 |
print_method("Iter GVN 1", 2);
|
|
1473 |
|
|
1474 |
if (failing()) return;
|
|
1475 |
|
|
1476 |
// get rid of the connection graph since it's information is not
|
|
1477 |
// updated by optimizations
|
|
1478 |
_congraph = NULL;
|
|
1479 |
|
|
1480 |
|
|
1481 |
// Loop transforms on the ideal graph. Range Check Elimination,
|
|
1482 |
// peeling, unrolling, etc.
|
|
1483 |
|
|
1484 |
// Set loop opts counter
|
|
1485 |
loop_opts_cnt = num_loop_opts();
|
|
1486 |
if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
|
|
1487 |
{
|
|
1488 |
TracePhase t2("idealLoop", &_t_idealLoop, true);
|
|
1489 |
PhaseIdealLoop ideal_loop( igvn, NULL, true );
|
|
1490 |
loop_opts_cnt--;
|
|
1491 |
if (major_progress()) print_method("PhaseIdealLoop 1", 2);
|
|
1492 |
if (failing()) return;
|
|
1493 |
}
|
|
1494 |
// Loop opts pass if partial peeling occurred in previous pass
|
|
1495 |
if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
|
|
1496 |
TracePhase t3("idealLoop", &_t_idealLoop, true);
|
|
1497 |
PhaseIdealLoop ideal_loop( igvn, NULL, false );
|
|
1498 |
loop_opts_cnt--;
|
|
1499 |
if (major_progress()) print_method("PhaseIdealLoop 2", 2);
|
|
1500 |
if (failing()) return;
|
|
1501 |
}
|
|
1502 |
// Loop opts pass for loop-unrolling before CCP
|
|
1503 |
if(major_progress() && (loop_opts_cnt > 0)) {
|
|
1504 |
TracePhase t4("idealLoop", &_t_idealLoop, true);
|
|
1505 |
PhaseIdealLoop ideal_loop( igvn, NULL, false );
|
|
1506 |
loop_opts_cnt--;
|
|
1507 |
if (major_progress()) print_method("PhaseIdealLoop 3", 2);
|
|
1508 |
}
|
|
1509 |
}
|
|
1510 |
if (failing()) return;
|
|
1511 |
|
|
1512 |
// Conditional Constant Propagation;
|
|
1513 |
PhaseCCP ccp( &igvn );
|
|
1514 |
assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
|
|
1515 |
{
|
|
1516 |
TracePhase t2("ccp", &_t_ccp, true);
|
|
1517 |
ccp.do_transform();
|
|
1518 |
}
|
|
1519 |
print_method("PhaseCPP 1", 2);
|
|
1520 |
|
|
1521 |
assert( true, "Break here to ccp.dump_old2new_map()");
|
|
1522 |
|
|
1523 |
// Iterative Global Value Numbering, including ideal transforms
|
|
1524 |
{
|
|
1525 |
NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
|
|
1526 |
igvn = ccp;
|
|
1527 |
igvn.optimize();
|
|
1528 |
}
|
|
1529 |
|
|
1530 |
print_method("Iter GVN 2", 2);
|
|
1531 |
|
|
1532 |
if (failing()) return;
|
|
1533 |
|
|
1534 |
// Loop transforms on the ideal graph. Range Check Elimination,
|
|
1535 |
// peeling, unrolling, etc.
|
|
1536 |
if(loop_opts_cnt > 0) {
|
|
1537 |
debug_only( int cnt = 0; );
|
|
1538 |
while(major_progress() && (loop_opts_cnt > 0)) {
|
|
1539 |
TracePhase t2("idealLoop", &_t_idealLoop, true);
|
|
1540 |
assert( cnt++ < 40, "infinite cycle in loop optimization" );
|
|
1541 |
PhaseIdealLoop ideal_loop( igvn, NULL, true );
|
|
1542 |
loop_opts_cnt--;
|
|
1543 |
if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
|
|
1544 |
if (failing()) return;
|
|
1545 |
}
|
|
1546 |
}
|
|
1547 |
{
|
|
1548 |
NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
|
|
1549 |
PhaseMacroExpand mex(igvn);
|
|
1550 |
if (mex.expand_macro_nodes()) {
|
|
1551 |
assert(failing(), "must bail out w/ explicit message");
|
|
1552 |
return;
|
|
1553 |
}
|
|
1554 |
}
|
|
1555 |
|
|
1556 |
} // (End scope of igvn; run destructor if necessary for asserts.)
|
|
1557 |
|
|
1558 |
// A method with only infinite loops has no edges entering loops from root
|
|
1559 |
{
|
|
1560 |
NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
|
|
1561 |
if (final_graph_reshaping()) {
|
|
1562 |
assert(failing(), "must bail out w/ explicit message");
|
|
1563 |
return;
|
|
1564 |
}
|
|
1565 |
}
|
|
1566 |
|
|
1567 |
print_method("Optimize finished", 2);
|
|
1568 |
}
|
|
1569 |
|
|
1570 |
|
|
1571 |
//------------------------------Code_Gen---------------------------------------
|
|
1572 |
// Given a graph, generate code for it
|
|
1573 |
void Compile::Code_Gen() {
|
|
1574 |
if (failing()) return;
|
|
1575 |
|
|
1576 |
// Perform instruction selection. You might think we could reclaim Matcher
|
|
1577 |
// memory PDQ, but actually the Matcher is used in generating spill code.
|
|
1578 |
// Internals of the Matcher (including some VectorSets) must remain live
|
|
1579 |
// for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
|
|
1580 |
// set a bit in reclaimed memory.
|
|
1581 |
|
|
1582 |
// In debug mode can dump m._nodes.dump() for mapping of ideal to machine
|
|
1583 |
// nodes. Mapping is only valid at the root of each matched subtree.
|
|
1584 |
NOT_PRODUCT( verify_graph_edges(); )
|
|
1585 |
|
|
1586 |
Node_List proj_list;
|
|
1587 |
Matcher m(proj_list);
|
|
1588 |
_matcher = &m;
|
|
1589 |
{
|
|
1590 |
TracePhase t2("matcher", &_t_matcher, true);
|
|
1591 |
m.match();
|
|
1592 |
}
|
|
1593 |
// In debug mode can dump m._nodes.dump() for mapping of ideal to machine
|
|
1594 |
// nodes. Mapping is only valid at the root of each matched subtree.
|
|
1595 |
NOT_PRODUCT( verify_graph_edges(); )
|
|
1596 |
|
|
1597 |
// If you have too many nodes, or if matching has failed, bail out
|
|
1598 |
check_node_count(0, "out of nodes matching instructions");
|
|
1599 |
if (failing()) return;
|
|
1600 |
|
|
1601 |
// Build a proper-looking CFG
|
|
1602 |
PhaseCFG cfg(node_arena(), root(), m);
|
|
1603 |
_cfg = &cfg;
|
|
1604 |
{
|
|
1605 |
NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
|
|
1606 |
cfg.Dominators();
|
|
1607 |
if (failing()) return;
|
|
1608 |
|
|
1609 |
NOT_PRODUCT( verify_graph_edges(); )
|
|
1610 |
|
|
1611 |
cfg.Estimate_Block_Frequency();
|
|
1612 |
cfg.GlobalCodeMotion(m,unique(),proj_list);
|
|
1613 |
|
|
1614 |
print_method("Global code motion", 2);
|
|
1615 |
|
|
1616 |
if (failing()) return;
|
|
1617 |
NOT_PRODUCT( verify_graph_edges(); )
|
|
1618 |
|
|
1619 |
debug_only( cfg.verify(); )
|
|
1620 |
}
|
|
1621 |
NOT_PRODUCT( verify_graph_edges(); )
|
|
1622 |
|
|
1623 |
PhaseChaitin regalloc(unique(),cfg,m);
|
|
1624 |
_regalloc = ®alloc;
|
|
1625 |
{
|
|
1626 |
TracePhase t2("regalloc", &_t_registerAllocation, true);
|
|
1627 |
// Perform any platform dependent preallocation actions. This is used,
|
|
1628 |
// for example, to avoid taking an implicit null pointer exception
|
|
1629 |
// using the frame pointer on win95.
|
|
1630 |
_regalloc->pd_preallocate_hook();
|
|
1631 |
|
|
1632 |
// Perform register allocation. After Chaitin, use-def chains are
|
|
1633 |
// no longer accurate (at spill code) and so must be ignored.
|
|
1634 |
// Node->LRG->reg mappings are still accurate.
|
|
1635 |
_regalloc->Register_Allocate();
|
|
1636 |
|
|
1637 |
// Bail out if the allocator builds too many nodes
|
|
1638 |
if (failing()) return;
|
|
1639 |
}
|
|
1640 |
|
|
1641 |
// Prior to register allocation we kept empty basic blocks in case the
|
|
1642 |
// the allocator needed a place to spill. After register allocation we
|
|
1643 |
// are not adding any new instructions. If any basic block is empty, we
|
|
1644 |
// can now safely remove it.
|
|
1645 |
{
|
|
1646 |
NOT_PRODUCT( TracePhase t2("removeEmpty", &_t_removeEmptyBlocks, TimeCompiler); )
|
|
1647 |
cfg.RemoveEmpty();
|
|
1648 |
}
|
|
1649 |
|
|
1650 |
// Perform any platform dependent postallocation verifications.
|
|
1651 |
debug_only( _regalloc->pd_postallocate_verify_hook(); )
|
|
1652 |
|
|
1653 |
// Apply peephole optimizations
|
|
1654 |
if( OptoPeephole ) {
|
|
1655 |
NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
|
|
1656 |
PhasePeephole peep( _regalloc, cfg);
|
|
1657 |
peep.do_transform();
|
|
1658 |
}
|
|
1659 |
|
|
1660 |
// Convert Nodes to instruction bits in a buffer
|
|
1661 |
{
|
|
1662 |
// %%%% workspace merge brought two timers together for one job
|
|
1663 |
TracePhase t2a("output", &_t_output, true);
|
|
1664 |
NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
|
|
1665 |
Output();
|
|
1666 |
}
|
|
1667 |
|
|
1668 |
print_method("End");
|
|
1669 |
|
|
1670 |
// He's dead, Jim.
|
|
1671 |
_cfg = (PhaseCFG*)0xdeadbeef;
|
|
1672 |
_regalloc = (PhaseChaitin*)0xdeadbeef;
|
|
1673 |
}
|
|
1674 |
|
|
1675 |
|
|
1676 |
//------------------------------dump_asm---------------------------------------
|
|
1677 |
// Dump formatted assembly
|
|
1678 |
#ifndef PRODUCT
|
|
1679 |
void Compile::dump_asm(int *pcs, uint pc_limit) {
|
|
1680 |
bool cut_short = false;
|
|
1681 |
tty->print_cr("#");
|
|
1682 |
tty->print("# "); _tf->dump(); tty->cr();
|
|
1683 |
tty->print_cr("#");
|
|
1684 |
|
|
1685 |
// For all blocks
|
|
1686 |
int pc = 0x0; // Program counter
|
|
1687 |
char starts_bundle = ' ';
|
|
1688 |
_regalloc->dump_frame();
|
|
1689 |
|
|
1690 |
Node *n = NULL;
|
|
1691 |
for( uint i=0; i<_cfg->_num_blocks; i++ ) {
|
|
1692 |
if (VMThread::should_terminate()) { cut_short = true; break; }
|
|
1693 |
Block *b = _cfg->_blocks[i];
|
|
1694 |
if (b->is_connector() && !Verbose) continue;
|
|
1695 |
n = b->_nodes[0];
|
|
1696 |
if (pcs && n->_idx < pc_limit)
|
|
1697 |
tty->print("%3.3x ", pcs[n->_idx]);
|
|
1698 |
else
|
|
1699 |
tty->print(" ");
|
|
1700 |
b->dump_head( &_cfg->_bbs );
|
|
1701 |
if (b->is_connector()) {
|
|
1702 |
tty->print_cr(" # Empty connector block");
|
|
1703 |
} else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
|
|
1704 |
tty->print_cr(" # Block is sole successor of call");
|
|
1705 |
}
|
|
1706 |
|
|
1707 |
// For all instructions
|
|
1708 |
Node *delay = NULL;
|
|
1709 |
for( uint j = 0; j<b->_nodes.size(); j++ ) {
|
|
1710 |
if (VMThread::should_terminate()) { cut_short = true; break; }
|
|
1711 |
n = b->_nodes[j];
|
|
1712 |
if (valid_bundle_info(n)) {
|
|
1713 |
Bundle *bundle = node_bundling(n);
|
|
1714 |
if (bundle->used_in_unconditional_delay()) {
|
|
1715 |
delay = n;
|
|
1716 |
continue;
|
|
1717 |
}
|
|
1718 |
if (bundle->starts_bundle())
|
|
1719 |
starts_bundle = '+';
|
|
1720 |
}
|
|
1721 |
|
|
1722 |
if( !n->is_Region() && // Dont print in the Assembly
|
|
1723 |
!n->is_Phi() && // a few noisely useless nodes
|
|
1724 |
!n->is_Proj() &&
|
|
1725 |
!n->is_MachTemp() &&
|
|
1726 |
!n->is_Catch() && // Would be nice to print exception table targets
|
|
1727 |
!n->is_MergeMem() && // Not very interesting
|
|
1728 |
!n->is_top() && // Debug info table constants
|
|
1729 |
!(n->is_Con() && !n->is_Mach())// Debug info table constants
|
|
1730 |
) {
|
|
1731 |
if (pcs && n->_idx < pc_limit)
|
|
1732 |
tty->print("%3.3x", pcs[n->_idx]);
|
|
1733 |
else
|
|
1734 |
tty->print(" ");
|
|
1735 |
tty->print(" %c ", starts_bundle);
|
|
1736 |
starts_bundle = ' ';
|
|
1737 |
tty->print("\t");
|
|
1738 |
n->format(_regalloc, tty);
|
|
1739 |
tty->cr();
|
|
1740 |
}
|
|
1741 |
|
|
1742 |
// If we have an instruction with a delay slot, and have seen a delay,
|
|
1743 |
// then back up and print it
|
|
1744 |
if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
|
|
1745 |
assert(delay != NULL, "no unconditional delay instruction");
|
|
1746 |
if (node_bundling(delay)->starts_bundle())
|
|
1747 |
starts_bundle = '+';
|
|
1748 |
if (pcs && n->_idx < pc_limit)
|
|
1749 |
tty->print("%3.3x", pcs[n->_idx]);
|
|
1750 |
else
|
|
1751 |
tty->print(" ");
|
|
1752 |
tty->print(" %c ", starts_bundle);
|
|
1753 |
starts_bundle = ' ';
|
|
1754 |
tty->print("\t");
|
|
1755 |
delay->format(_regalloc, tty);
|
|
1756 |
tty->print_cr("");
|
|
1757 |
delay = NULL;
|
|
1758 |
}
|
|
1759 |
|
|
1760 |
// Dump the exception table as well
|
|
1761 |
if( n->is_Catch() && (Verbose || WizardMode) ) {
|
|
1762 |
// Print the exception table for this offset
|
|
1763 |
_handler_table.print_subtable_for(pc);
|
|
1764 |
}
|
|
1765 |
}
|
|
1766 |
|
|
1767 |
if (pcs && n->_idx < pc_limit)
|
|
1768 |
tty->print_cr("%3.3x", pcs[n->_idx]);
|
|
1769 |
else
|
|
1770 |
tty->print_cr("");
|
|
1771 |
|
|
1772 |
assert(cut_short || delay == NULL, "no unconditional delay branch");
|
|
1773 |
|
|
1774 |
} // End of per-block dump
|
|
1775 |
tty->print_cr("");
|
|
1776 |
|
|
1777 |
if (cut_short) tty->print_cr("*** disassembly is cut short ***");
|
|
1778 |
}
|
|
1779 |
#endif
|
|
1780 |
|
|
1781 |
//------------------------------Final_Reshape_Counts---------------------------
|
|
1782 |
// This class defines counters to help identify when a method
|
|
1783 |
// may/must be executed using hardware with only 24-bit precision.
|
|
1784 |
struct Final_Reshape_Counts : public StackObj {
|
|
1785 |
int _call_count; // count non-inlined 'common' calls
|
|
1786 |
int _float_count; // count float ops requiring 24-bit precision
|
|
1787 |
int _double_count; // count double ops requiring more precision
|
|
1788 |
int _java_call_count; // count non-inlined 'java' calls
|
|
1789 |
VectorSet _visited; // Visitation flags
|
|
1790 |
Node_List _tests; // Set of IfNodes & PCTableNodes
|
|
1791 |
|
|
1792 |
Final_Reshape_Counts() :
|
|
1793 |
_call_count(0), _float_count(0), _double_count(0), _java_call_count(0),
|
|
1794 |
_visited( Thread::current()->resource_area() ) { }
|
|
1795 |
|
|
1796 |
void inc_call_count () { _call_count ++; }
|
|
1797 |
void inc_float_count () { _float_count ++; }
|
|
1798 |
void inc_double_count() { _double_count++; }
|
|
1799 |
void inc_java_call_count() { _java_call_count++; }
|
|
1800 |
|
|
1801 |
int get_call_count () const { return _call_count ; }
|
|
1802 |
int get_float_count () const { return _float_count ; }
|
|
1803 |
int get_double_count() const { return _double_count; }
|
|
1804 |
int get_java_call_count() const { return _java_call_count; }
|
|
1805 |
};
|
|
1806 |
|
|
1807 |
static bool oop_offset_is_sane(const TypeInstPtr* tp) {
|
|
1808 |
ciInstanceKlass *k = tp->klass()->as_instance_klass();
|
|
1809 |
// Make sure the offset goes inside the instance layout.
|
|
1810 |
return (uint)tp->offset() < (uint)(oopDesc::header_size() + k->nonstatic_field_size())*wordSize;
|
|
1811 |
// Note that OffsetBot and OffsetTop are very negative.
|
|
1812 |
}
|
|
1813 |
|
|
1814 |
//------------------------------final_graph_reshaping_impl----------------------
|
|
1815 |
// Implement items 1-5 from final_graph_reshaping below.
|
|
1816 |
static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &fpu ) {
|
|
1817 |
|
|
1818 |
uint nop = n->Opcode();
|
|
1819 |
|
|
1820 |
// Check for 2-input instruction with "last use" on right input.
|
|
1821 |
// Swap to left input. Implements item (2).
|
|
1822 |
if( n->req() == 3 && // two-input instruction
|
|
1823 |
n->in(1)->outcnt() > 1 && // left use is NOT a last use
|
|
1824 |
(!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
|
|
1825 |
n->in(2)->outcnt() == 1 &&// right use IS a last use
|
|
1826 |
!n->in(2)->is_Con() ) { // right use is not a constant
|
|
1827 |
// Check for commutative opcode
|
|
1828 |
switch( nop ) {
|
|
1829 |
case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
|
|
1830 |
case Op_MaxI: case Op_MinI:
|
|
1831 |
case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
|
|
1832 |
case Op_AndL: case Op_XorL: case Op_OrL:
|
|
1833 |
case Op_AndI: case Op_XorI: case Op_OrI: {
|
|
1834 |
// Move "last use" input to left by swapping inputs
|
|
1835 |
n->swap_edges(1, 2);
|
|
1836 |
break;
|
|
1837 |
}
|
|
1838 |
default:
|
|
1839 |
break;
|
|
1840 |
}
|
|
1841 |
}
|
|
1842 |
|
|
1843 |
// Count FPU ops and common calls, implements item (3)
|
|
1844 |
switch( nop ) {
|
|
1845 |
// Count all float operations that may use FPU
|
|
1846 |
case Op_AddF:
|
|
1847 |
case Op_SubF:
|
|
1848 |
case Op_MulF:
|
|
1849 |
case Op_DivF:
|
|
1850 |
case Op_NegF:
|
|
1851 |
case Op_ModF:
|
|
1852 |
case Op_ConvI2F:
|
|
1853 |
case Op_ConF:
|
|
1854 |
case Op_CmpF:
|
|
1855 |
case Op_CmpF3:
|
|
1856 |
// case Op_ConvL2F: // longs are split into 32-bit halves
|
|
1857 |
fpu.inc_float_count();
|
|
1858 |
break;
|
|
1859 |
|
|
1860 |
case Op_ConvF2D:
|
|
1861 |
case Op_ConvD2F:
|
|
1862 |
fpu.inc_float_count();
|
|
1863 |
fpu.inc_double_count();
|
|
1864 |
break;
|
|
1865 |
|
|
1866 |
// Count all double operations that may use FPU
|
|
1867 |
case Op_AddD:
|
|
1868 |
case Op_SubD:
|
|
1869 |
case Op_MulD:
|
|
1870 |
case Op_DivD:
|
|
1871 |
case Op_NegD:
|
|
1872 |
case Op_ModD:
|
|
1873 |
case Op_ConvI2D:
|
|
1874 |
case Op_ConvD2I:
|
|
1875 |
// case Op_ConvL2D: // handled by leaf call
|
|
1876 |
// case Op_ConvD2L: // handled by leaf call
|
|
1877 |
case Op_ConD:
|
|
1878 |
case Op_CmpD:
|
|
1879 |
case Op_CmpD3:
|
|
1880 |
fpu.inc_double_count();
|
|
1881 |
break;
|
|
1882 |
case Op_Opaque1: // Remove Opaque Nodes before matching
|
|
1883 |
case Op_Opaque2: // Remove Opaque Nodes before matching
|
|
1884 |
n->replace_by(n->in(1));
|
|
1885 |
break;
|
|
1886 |
case Op_CallStaticJava:
|
|
1887 |
case Op_CallJava:
|
|
1888 |
case Op_CallDynamicJava:
|
|
1889 |
fpu.inc_java_call_count(); // Count java call site;
|
|
1890 |
case Op_CallRuntime:
|
|
1891 |
case Op_CallLeaf:
|
|
1892 |
case Op_CallLeafNoFP: {
|
|
1893 |
assert( n->is_Call(), "" );
|
|
1894 |
CallNode *call = n->as_Call();
|
|
1895 |
// Count call sites where the FP mode bit would have to be flipped.
|
|
1896 |
// Do not count uncommon runtime calls:
|
|
1897 |
// uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
|
|
1898 |
// _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
|
|
1899 |
if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
|
|
1900 |
fpu.inc_call_count(); // Count the call site
|
|
1901 |
} else { // See if uncommon argument is shared
|
|
1902 |
Node *n = call->in(TypeFunc::Parms);
|
|
1903 |
int nop = n->Opcode();
|
|
1904 |
// Clone shared simple arguments to uncommon calls, item (1).
|
|
1905 |
if( n->outcnt() > 1 &&
|
|
1906 |
!n->is_Proj() &&
|
|
1907 |
nop != Op_CreateEx &&
|
|
1908 |
nop != Op_CheckCastPP &&
|
|
1909 |
!n->is_Mem() ) {
|
|
1910 |
Node *x = n->clone();
|
|
1911 |
call->set_req( TypeFunc::Parms, x );
|
|
1912 |
}
|
|
1913 |
}
|
|
1914 |
break;
|
|
1915 |
}
|
|
1916 |
|
|
1917 |
case Op_StoreD:
|
|
1918 |
case Op_LoadD:
|
|
1919 |
case Op_LoadD_unaligned:
|
|
1920 |
fpu.inc_double_count();
|
|
1921 |
goto handle_mem;
|
|
1922 |
case Op_StoreF:
|
|
1923 |
case Op_LoadF:
|
|
1924 |
fpu.inc_float_count();
|
|
1925 |
goto handle_mem;
|
|
1926 |
|
|
1927 |
case Op_StoreB:
|
|
1928 |
case Op_StoreC:
|
|
1929 |
case Op_StoreCM:
|
|
1930 |
case Op_StorePConditional:
|
|
1931 |
case Op_StoreI:
|
|
1932 |
case Op_StoreL:
|
|
1933 |
case Op_StoreLConditional:
|
|
1934 |
case Op_CompareAndSwapI:
|
|
1935 |
case Op_CompareAndSwapL:
|
|
1936 |
case Op_CompareAndSwapP:
|
|
1937 |
case Op_StoreP:
|
|
1938 |
case Op_LoadB:
|
|
1939 |
case Op_LoadC:
|
|
1940 |
case Op_LoadI:
|
|
1941 |
case Op_LoadKlass:
|
|
1942 |
case Op_LoadL:
|
|
1943 |
case Op_LoadL_unaligned:
|
|
1944 |
case Op_LoadPLocked:
|
|
1945 |
case Op_LoadLLocked:
|
|
1946 |
case Op_LoadP:
|
|
1947 |
case Op_LoadRange:
|
|
1948 |
case Op_LoadS: {
|
|
1949 |
handle_mem:
|
|
1950 |
#ifdef ASSERT
|
|
1951 |
if( VerifyOptoOopOffsets ) {
|
|
1952 |
assert( n->is_Mem(), "" );
|
|
1953 |
MemNode *mem = (MemNode*)n;
|
|
1954 |
// Check to see if address types have grounded out somehow.
|
|
1955 |
const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
|
|
1956 |
assert( !tp || oop_offset_is_sane(tp), "" );
|
|
1957 |
}
|
|
1958 |
#endif
|
|
1959 |
break;
|
|
1960 |
}
|
|
1961 |
case Op_If:
|
|
1962 |
case Op_CountedLoopEnd:
|
|
1963 |
fpu._tests.push(n); // Collect CFG split points
|
|
1964 |
break;
|
|
1965 |
|
|
1966 |
case Op_AddP: { // Assert sane base pointers
|
|
1967 |
const Node *addp = n->in(AddPNode::Address);
|
|
1968 |
assert( !addp->is_AddP() ||
|
|
1969 |
addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
|
|
1970 |
addp->in(AddPNode::Base) == n->in(AddPNode::Base),
|
|
1971 |
"Base pointers must match" );
|
|
1972 |
break;
|
|
1973 |
}
|
|
1974 |
|
|
1975 |
case Op_ModI:
|
|
1976 |
if (UseDivMod) {
|
|
1977 |
// Check if a%b and a/b both exist
|
|
1978 |
Node* d = n->find_similar(Op_DivI);
|
|
1979 |
if (d) {
|
|
1980 |
// Replace them with a fused divmod if supported
|
|
1981 |
Compile* C = Compile::current();
|
|
1982 |
if (Matcher::has_match_rule(Op_DivModI)) {
|
|
1983 |
DivModINode* divmod = DivModINode::make(C, n);
|
|
1984 |
d->replace_by(divmod->div_proj());
|
|
1985 |
n->replace_by(divmod->mod_proj());
|
|
1986 |
} else {
|
|
1987 |
// replace a%b with a-((a/b)*b)
|
|
1988 |
Node* mult = new (C, 3) MulINode(d, d->in(2));
|
|
1989 |
Node* sub = new (C, 3) SubINode(d->in(1), mult);
|
|
1990 |
n->replace_by( sub );
|
|
1991 |
}
|
|
1992 |
}
|
|
1993 |
}
|
|
1994 |
break;
|
|
1995 |
|
|
1996 |
case Op_ModL:
|
|
1997 |
if (UseDivMod) {
|
|
1998 |
// Check if a%b and a/b both exist
|
|
1999 |
Node* d = n->find_similar(Op_DivL);
|
|
2000 |
if (d) {
|
|
2001 |
// Replace them with a fused divmod if supported
|
|
2002 |
Compile* C = Compile::current();
|
|
2003 |
if (Matcher::has_match_rule(Op_DivModL)) {
|
|
2004 |
DivModLNode* divmod = DivModLNode::make(C, n);
|
|
2005 |
d->replace_by(divmod->div_proj());
|
|
2006 |
n->replace_by(divmod->mod_proj());
|
|
2007 |
} else {
|
|
2008 |
// replace a%b with a-((a/b)*b)
|
|
2009 |
Node* mult = new (C, 3) MulLNode(d, d->in(2));
|
|
2010 |
Node* sub = new (C, 3) SubLNode(d->in(1), mult);
|
|
2011 |
n->replace_by( sub );
|
|
2012 |
}
|
|
2013 |
}
|
|
2014 |
}
|
|
2015 |
break;
|
|
2016 |
|
|
2017 |
case Op_Load16B:
|
|
2018 |
case Op_Load8B:
|
|
2019 |
case Op_Load4B:
|
|
2020 |
case Op_Load8S:
|
|
2021 |
case Op_Load4S:
|
|
2022 |
case Op_Load2S:
|
|
2023 |
case Op_Load8C:
|
|
2024 |
case Op_Load4C:
|
|
2025 |
case Op_Load2C:
|
|
2026 |
case Op_Load4I:
|
|
2027 |
case Op_Load2I:
|
|
2028 |
case Op_Load2L:
|
|
2029 |
case Op_Load4F:
|
|
2030 |
case Op_Load2F:
|
|
2031 |
case Op_Load2D:
|
|
2032 |
case Op_Store16B:
|
|
2033 |
case Op_Store8B:
|
|
2034 |
case Op_Store4B:
|
|
2035 |
case Op_Store8C:
|
|
2036 |
case Op_Store4C:
|
|
2037 |
case Op_Store2C:
|
|
2038 |
case Op_Store4I:
|
|
2039 |
case Op_Store2I:
|
|
2040 |
case Op_Store2L:
|
|
2041 |
case Op_Store4F:
|
|
2042 |
case Op_Store2F:
|
|
2043 |
case Op_Store2D:
|
|
2044 |
break;
|
|
2045 |
|
|
2046 |
case Op_PackB:
|
|
2047 |
case Op_PackS:
|
|
2048 |
case Op_PackC:
|
|
2049 |
case Op_PackI:
|
|
2050 |
case Op_PackF:
|
|
2051 |
case Op_PackL:
|
|
2052 |
case Op_PackD:
|
|
2053 |
if (n->req()-1 > 2) {
|
|
2054 |
// Replace many operand PackNodes with a binary tree for matching
|
|
2055 |
PackNode* p = (PackNode*) n;
|
|
2056 |
Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
|
|
2057 |
n->replace_by(btp);
|
|
2058 |
}
|
|
2059 |
break;
|
|
2060 |
default:
|
|
2061 |
assert( !n->is_Call(), "" );
|
|
2062 |
assert( !n->is_Mem(), "" );
|
|
2063 |
if( n->is_If() || n->is_PCTable() )
|
|
2064 |
fpu._tests.push(n); // Collect CFG split points
|
|
2065 |
break;
|
|
2066 |
}
|
|
2067 |
}
|
|
2068 |
|
|
2069 |
//------------------------------final_graph_reshaping_walk---------------------
|
|
2070 |
// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
|
|
2071 |
// requires that the walk visits a node's inputs before visiting the node.
|
|
2072 |
static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &fpu ) {
|
|
2073 |
fpu._visited.set(root->_idx); // first, mark node as visited
|
|
2074 |
uint cnt = root->req();
|
|
2075 |
Node *n = root;
|
|
2076 |
uint i = 0;
|
|
2077 |
while (true) {
|
|
2078 |
if (i < cnt) {
|
|
2079 |
// Place all non-visited non-null inputs onto stack
|
|
2080 |
Node* m = n->in(i);
|
|
2081 |
++i;
|
|
2082 |
if (m != NULL && !fpu._visited.test_set(m->_idx)) {
|
|
2083 |
cnt = m->req();
|
|
2084 |
nstack.push(n, i); // put on stack parent and next input's index
|
|
2085 |
n = m;
|
|
2086 |
i = 0;
|
|
2087 |
}
|
|
2088 |
} else {
|
|
2089 |
// Now do post-visit work
|
|
2090 |
final_graph_reshaping_impl( n, fpu );
|
|
2091 |
if (nstack.is_empty())
|
|
2092 |
break; // finished
|
|
2093 |
n = nstack.node(); // Get node from stack
|
|
2094 |
cnt = n->req();
|
|
2095 |
i = nstack.index();
|
|
2096 |
nstack.pop(); // Shift to the next node on stack
|
|
2097 |
}
|
|
2098 |
}
|
|
2099 |
}
|
|
2100 |
|
|
2101 |
//------------------------------final_graph_reshaping--------------------------
|
|
2102 |
// Final Graph Reshaping.
|
|
2103 |
//
|
|
2104 |
// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
|
|
2105 |
// and not commoned up and forced early. Must come after regular
|
|
2106 |
// optimizations to avoid GVN undoing the cloning. Clone constant
|
|
2107 |
// inputs to Loop Phis; these will be split by the allocator anyways.
|
|
2108 |
// Remove Opaque nodes.
|
|
2109 |
// (2) Move last-uses by commutative operations to the left input to encourage
|
|
2110 |
// Intel update-in-place two-address operations and better register usage
|
|
2111 |
// on RISCs. Must come after regular optimizations to avoid GVN Ideal
|
|
2112 |
// calls canonicalizing them back.
|
|
2113 |
// (3) Count the number of double-precision FP ops, single-precision FP ops
|
|
2114 |
// and call sites. On Intel, we can get correct rounding either by
|
|
2115 |
// forcing singles to memory (requires extra stores and loads after each
|
|
2116 |
// FP bytecode) or we can set a rounding mode bit (requires setting and
|
|
2117 |
// clearing the mode bit around call sites). The mode bit is only used
|
|
2118 |
// if the relative frequency of single FP ops to calls is low enough.
|
|
2119 |
// This is a key transform for SPEC mpeg_audio.
|
|
2120 |
// (4) Detect infinite loops; blobs of code reachable from above but not
|
|
2121 |
// below. Several of the Code_Gen algorithms fail on such code shapes,
|
|
2122 |
// so we simply bail out. Happens a lot in ZKM.jar, but also happens
|
|
2123 |
// from time to time in other codes (such as -Xcomp finalizer loops, etc).
|
|
2124 |
// Detection is by looking for IfNodes where only 1 projection is
|
|
2125 |
// reachable from below or CatchNodes missing some targets.
|
|
2126 |
// (5) Assert for insane oop offsets in debug mode.
|
|
2127 |
|
|
2128 |
bool Compile::final_graph_reshaping() {
|
|
2129 |
// an infinite loop may have been eliminated by the optimizer,
|
|
2130 |
// in which case the graph will be empty.
|
|
2131 |
if (root()->req() == 1) {
|
|
2132 |
record_method_not_compilable("trivial infinite loop");
|
|
2133 |
return true;
|
|
2134 |
}
|
|
2135 |
|
|
2136 |
Final_Reshape_Counts fpu;
|
|
2137 |
|
|
2138 |
// Visit everybody reachable!
|
|
2139 |
// Allocate stack of size C->unique()/2 to avoid frequent realloc
|
|
2140 |
Node_Stack nstack(unique() >> 1);
|
|
2141 |
final_graph_reshaping_walk(nstack, root(), fpu);
|
|
2142 |
|
|
2143 |
// Check for unreachable (from below) code (i.e., infinite loops).
|
|
2144 |
for( uint i = 0; i < fpu._tests.size(); i++ ) {
|
|
2145 |
Node *n = fpu._tests[i];
|
|
2146 |
assert( n->is_PCTable() || n->is_If(), "either PCTables or IfNodes" );
|
|
2147 |
// Get number of CFG targets; 2 for IfNodes or _size for PCTables.
|
|
2148 |
// Note that PCTables include exception targets after calls.
|
|
2149 |
uint expected_kids = n->is_PCTable() ? n->as_PCTable()->_size : 2;
|
|
2150 |
if (n->outcnt() != expected_kids) {
|
|
2151 |
// Check for a few special cases. Rethrow Nodes never take the
|
|
2152 |
// 'fall-thru' path, so expected kids is 1 less.
|
|
2153 |
if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
|
|
2154 |
if (n->in(0)->in(0)->is_Call()) {
|
|
2155 |
CallNode *call = n->in(0)->in(0)->as_Call();
|
|
2156 |
if (call->entry_point() == OptoRuntime::rethrow_stub()) {
|
|
2157 |
expected_kids--; // Rethrow always has 1 less kid
|
|
2158 |
} else if (call->req() > TypeFunc::Parms &&
|
|
2159 |
call->is_CallDynamicJava()) {
|
|
2160 |
// Check for null receiver. In such case, the optimizer has
|
|
2161 |
// detected that the virtual call will always result in a null
|
|
2162 |
// pointer exception. The fall-through projection of this CatchNode
|
|
2163 |
// will not be populated.
|
|
2164 |
Node *arg0 = call->in(TypeFunc::Parms);
|
|
2165 |
if (arg0->is_Type() &&
|
|
2166 |
arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
|
|
2167 |
expected_kids--;
|
|
2168 |
}
|
|
2169 |
} else if (call->entry_point() == OptoRuntime::new_array_Java() &&
|
|
2170 |
call->req() > TypeFunc::Parms+1 &&
|
|
2171 |
call->is_CallStaticJava()) {
|
|
2172 |
// Check for negative array length. In such case, the optimizer has
|
|
2173 |
// detected that the allocation attempt will always result in an
|
|
2174 |
// exception. There is no fall-through projection of this CatchNode .
|
|
2175 |
Node *arg1 = call->in(TypeFunc::Parms+1);
|
|
2176 |
if (arg1->is_Type() &&
|
|
2177 |
arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
|
|
2178 |
expected_kids--;
|
|
2179 |
}
|
|
2180 |
}
|
|
2181 |
}
|
|
2182 |
}
|
|
2183 |
// Recheck with a better notion of 'expected_kids'
|
|
2184 |
if (n->outcnt() != expected_kids) {
|
|
2185 |
record_method_not_compilable("malformed control flow");
|
|
2186 |
return true; // Not all targets reachable!
|
|
2187 |
}
|
|
2188 |
}
|
|
2189 |
// Check that I actually visited all kids. Unreached kids
|
|
2190 |
// must be infinite loops.
|
|
2191 |
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
|
|
2192 |
if (!fpu._visited.test(n->fast_out(j)->_idx)) {
|
|
2193 |
record_method_not_compilable("infinite loop");
|
|
2194 |
return true; // Found unvisited kid; must be unreach
|
|
2195 |
}
|
|
2196 |
}
|
|
2197 |
|
|
2198 |
// If original bytecodes contained a mixture of floats and doubles
|
|
2199 |
// check if the optimizer has made it homogenous, item (3).
|
|
2200 |
if( Use24BitFPMode && Use24BitFP &&
|
|
2201 |
fpu.get_float_count() > 32 &&
|
|
2202 |
fpu.get_double_count() == 0 &&
|
|
2203 |
(10 * fpu.get_call_count() < fpu.get_float_count()) ) {
|
|
2204 |
set_24_bit_selection_and_mode( false, true );
|
|
2205 |
}
|
|
2206 |
|
|
2207 |
set_has_java_calls(fpu.get_java_call_count() > 0);
|
|
2208 |
|
|
2209 |
// No infinite loops, no reason to bail out.
|
|
2210 |
return false;
|
|
2211 |
}
|
|
2212 |
|
|
2213 |
//-----------------------------too_many_traps----------------------------------
|
|
2214 |
// Report if there are too many traps at the current method and bci.
|
|
2215 |
// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
|
|
2216 |
bool Compile::too_many_traps(ciMethod* method,
|
|
2217 |
int bci,
|
|
2218 |
Deoptimization::DeoptReason reason) {
|
|
2219 |
ciMethodData* md = method->method_data();
|
|
2220 |
if (md->is_empty()) {
|
|
2221 |
// Assume the trap has not occurred, or that it occurred only
|
|
2222 |
// because of a transient condition during start-up in the interpreter.
|
|
2223 |
return false;
|
|
2224 |
}
|
|
2225 |
if (md->has_trap_at(bci, reason) != 0) {
|
|
2226 |
// Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
|
|
2227 |
// Also, if there are multiple reasons, or if there is no per-BCI record,
|
|
2228 |
// assume the worst.
|
|
2229 |
if (log())
|
|
2230 |
log()->elem("observe trap='%s' count='%d'",
|
|
2231 |
Deoptimization::trap_reason_name(reason),
|
|
2232 |
md->trap_count(reason));
|
|
2233 |
return true;
|
|
2234 |
} else {
|
|
2235 |
// Ignore method/bci and see if there have been too many globally.
|
|
2236 |
return too_many_traps(reason, md);
|
|
2237 |
}
|
|
2238 |
}
|
|
2239 |
|
|
2240 |
// Less-accurate variant which does not require a method and bci.
|
|
2241 |
bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
|
|
2242 |
ciMethodData* logmd) {
|
|
2243 |
if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
|
|
2244 |
// Too many traps globally.
|
|
2245 |
// Note that we use cumulative trap_count, not just md->trap_count.
|
|
2246 |
if (log()) {
|
|
2247 |
int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
|
|
2248 |
log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
|
|
2249 |
Deoptimization::trap_reason_name(reason),
|
|
2250 |
mcount, trap_count(reason));
|
|
2251 |
}
|
|
2252 |
return true;
|
|
2253 |
} else {
|
|
2254 |
// The coast is clear.
|
|
2255 |
return false;
|
|
2256 |
}
|
|
2257 |
}
|
|
2258 |
|
|
2259 |
//--------------------------too_many_recompiles--------------------------------
|
|
2260 |
// Report if there are too many recompiles at the current method and bci.
|
|
2261 |
// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
|
|
2262 |
// Is not eager to return true, since this will cause the compiler to use
|
|
2263 |
// Action_none for a trap point, to avoid too many recompilations.
|
|
2264 |
bool Compile::too_many_recompiles(ciMethod* method,
|
|
2265 |
int bci,
|
|
2266 |
Deoptimization::DeoptReason reason) {
|
|
2267 |
ciMethodData* md = method->method_data();
|
|
2268 |
if (md->is_empty()) {
|
|
2269 |
// Assume the trap has not occurred, or that it occurred only
|
|
2270 |
// because of a transient condition during start-up in the interpreter.
|
|
2271 |
return false;
|
|
2272 |
}
|
|
2273 |
// Pick a cutoff point well within PerBytecodeRecompilationCutoff.
|
|
2274 |
uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
|
|
2275 |
uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
|
|
2276 |
Deoptimization::DeoptReason per_bc_reason
|
|
2277 |
= Deoptimization::reason_recorded_per_bytecode_if_any(reason);
|
|
2278 |
if ((per_bc_reason == Deoptimization::Reason_none
|
|
2279 |
|| md->has_trap_at(bci, reason) != 0)
|
|
2280 |
// The trap frequency measure we care about is the recompile count:
|
|
2281 |
&& md->trap_recompiled_at(bci)
|
|
2282 |
&& md->overflow_recompile_count() >= bc_cutoff) {
|
|
2283 |
// Do not emit a trap here if it has already caused recompilations.
|
|
2284 |
// Also, if there are multiple reasons, or if there is no per-BCI record,
|
|
2285 |
// assume the worst.
|
|
2286 |
if (log())
|
|
2287 |
log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
|
|
2288 |
Deoptimization::trap_reason_name(reason),
|
|
2289 |
md->trap_count(reason),
|
|
2290 |
md->overflow_recompile_count());
|
|
2291 |
return true;
|
|
2292 |
} else if (trap_count(reason) != 0
|
|
2293 |
&& decompile_count() >= m_cutoff) {
|
|
2294 |
// Too many recompiles globally, and we have seen this sort of trap.
|
|
2295 |
// Use cumulative decompile_count, not just md->decompile_count.
|
|
2296 |
if (log())
|
|
2297 |
log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
|
|
2298 |
Deoptimization::trap_reason_name(reason),
|
|
2299 |
md->trap_count(reason), trap_count(reason),
|
|
2300 |
md->decompile_count(), decompile_count());
|
|
2301 |
return true;
|
|
2302 |
} else {
|
|
2303 |
// The coast is clear.
|
|
2304 |
return false;
|
|
2305 |
}
|
|
2306 |
}
|
|
2307 |
|
|
2308 |
|
|
2309 |
#ifndef PRODUCT
|
|
2310 |
//------------------------------verify_graph_edges---------------------------
|
|
2311 |
// Walk the Graph and verify that there is a one-to-one correspondence
|
|
2312 |
// between Use-Def edges and Def-Use edges in the graph.
|
|
2313 |
void Compile::verify_graph_edges(bool no_dead_code) {
|
|
2314 |
if (VerifyGraphEdges) {
|
|
2315 |
ResourceArea *area = Thread::current()->resource_area();
|
|
2316 |
Unique_Node_List visited(area);
|
|
2317 |
// Call recursive graph walk to check edges
|
|
2318 |
_root->verify_edges(visited);
|
|
2319 |
if (no_dead_code) {
|
|
2320 |
// Now make sure that no visited node is used by an unvisited node.
|
|
2321 |
bool dead_nodes = 0;
|
|
2322 |
Unique_Node_List checked(area);
|
|
2323 |
while (visited.size() > 0) {
|
|
2324 |
Node* n = visited.pop();
|
|
2325 |
checked.push(n);
|
|
2326 |
for (uint i = 0; i < n->outcnt(); i++) {
|
|
2327 |
Node* use = n->raw_out(i);
|
|
2328 |
if (checked.member(use)) continue; // already checked
|
|
2329 |
if (visited.member(use)) continue; // already in the graph
|
|
2330 |
if (use->is_Con()) continue; // a dead ConNode is OK
|
|
2331 |
// At this point, we have found a dead node which is DU-reachable.
|
|
2332 |
if (dead_nodes++ == 0)
|
|
2333 |
tty->print_cr("*** Dead nodes reachable via DU edges:");
|
|
2334 |
use->dump(2);
|
|
2335 |
tty->print_cr("---");
|
|
2336 |
checked.push(use); // No repeats; pretend it is now checked.
|
|
2337 |
}
|
|
2338 |
}
|
|
2339 |
assert(dead_nodes == 0, "using nodes must be reachable from root");
|
|
2340 |
}
|
|
2341 |
}
|
|
2342 |
}
|
|
2343 |
#endif
|
|
2344 |
|
|
2345 |
// The Compile object keeps track of failure reasons separately from the ciEnv.
|
|
2346 |
// This is required because there is not quite a 1-1 relation between the
|
|
2347 |
// ciEnv and its compilation task and the Compile object. Note that one
|
|
2348 |
// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
|
|
2349 |
// to backtrack and retry without subsuming loads. Other than this backtracking
|
|
2350 |
// behavior, the Compile's failure reason is quietly copied up to the ciEnv
|
|
2351 |
// by the logic in C2Compiler.
|
|
2352 |
void Compile::record_failure(const char* reason) {
|
|
2353 |
if (log() != NULL) {
|
|
2354 |
log()->elem("failure reason='%s' phase='compile'", reason);
|
|
2355 |
}
|
|
2356 |
if (_failure_reason == NULL) {
|
|
2357 |
// Record the first failure reason.
|
|
2358 |
_failure_reason = reason;
|
|
2359 |
}
|
|
2360 |
_root = NULL; // flush the graph, too
|
|
2361 |
}
|
|
2362 |
|
|
2363 |
Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
|
|
2364 |
: TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
|
|
2365 |
{
|
|
2366 |
if (dolog) {
|
|
2367 |
C = Compile::current();
|
|
2368 |
_log = C->log();
|
|
2369 |
} else {
|
|
2370 |
C = NULL;
|
|
2371 |
_log = NULL;
|
|
2372 |
}
|
|
2373 |
if (_log != NULL) {
|
|
2374 |
_log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
|
|
2375 |
_log->stamp();
|
|
2376 |
_log->end_head();
|
|
2377 |
}
|
|
2378 |
}
|
|
2379 |
|
|
2380 |
Compile::TracePhase::~TracePhase() {
|
|
2381 |
if (_log != NULL) {
|
|
2382 |
_log->done("phase nodes='%d'", C->unique());
|
|
2383 |
}
|
|
2384 |
}
|