hotspot/src/share/vm/opto/compile.cpp
changeset 1 489c9b5090e2
child 211 e2b60448c234
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/compile.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,2384 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_compile.cpp.incl"
+
+/// Support for intrinsics.
+
+// Return the index at which m must be inserted (or already exists).
+// The sort order is by the address of the ciMethod, with is_virtual as minor key.
+int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
+#ifdef ASSERT
+  for (int i = 1; i < _intrinsics->length(); i++) {
+    CallGenerator* cg1 = _intrinsics->at(i-1);
+    CallGenerator* cg2 = _intrinsics->at(i);
+    assert(cg1->method() != cg2->method()
+           ? cg1->method()     < cg2->method()
+           : cg1->is_virtual() < cg2->is_virtual(),
+           "compiler intrinsics list must stay sorted");
+  }
+#endif
+  // Binary search sorted list, in decreasing intervals [lo, hi].
+  int lo = 0, hi = _intrinsics->length()-1;
+  while (lo <= hi) {
+    int mid = (uint)(hi + lo) / 2;
+    ciMethod* mid_m = _intrinsics->at(mid)->method();
+    if (m < mid_m) {
+      hi = mid-1;
+    } else if (m > mid_m) {
+      lo = mid+1;
+    } else {
+      // look at minor sort key
+      bool mid_virt = _intrinsics->at(mid)->is_virtual();
+      if (is_virtual < mid_virt) {
+        hi = mid-1;
+      } else if (is_virtual > mid_virt) {
+        lo = mid+1;
+      } else {
+        return mid;  // exact match
+      }
+    }
+  }
+  return lo;  // inexact match
+}
+
+void Compile::register_intrinsic(CallGenerator* cg) {
+  if (_intrinsics == NULL) {
+    _intrinsics = new GrowableArray<CallGenerator*>(60);
+  }
+  // This code is stolen from ciObjectFactory::insert.
+  // Really, GrowableArray should have methods for
+  // insert_at, remove_at, and binary_search.
+  int len = _intrinsics->length();
+  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
+  if (index == len) {
+    _intrinsics->append(cg);
+  } else {
+#ifdef ASSERT
+    CallGenerator* oldcg = _intrinsics->at(index);
+    assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
+#endif
+    _intrinsics->append(_intrinsics->at(len-1));
+    int pos;
+    for (pos = len-2; pos >= index; pos--) {
+      _intrinsics->at_put(pos+1,_intrinsics->at(pos));
+    }
+    _intrinsics->at_put(index, cg);
+  }
+  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
+}
+
+CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
+  assert(m->is_loaded(), "don't try this on unloaded methods");
+  if (_intrinsics != NULL) {
+    int index = intrinsic_insertion_index(m, is_virtual);
+    if (index < _intrinsics->length()
+        && _intrinsics->at(index)->method() == m
+        && _intrinsics->at(index)->is_virtual() == is_virtual) {
+      return _intrinsics->at(index);
+    }
+  }
+  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
+  if (m->intrinsic_id() != vmIntrinsics::_none) {
+    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
+    if (cg != NULL) {
+      // Save it for next time:
+      register_intrinsic(cg);
+      return cg;
+    } else {
+      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
+    }
+  }
+  return NULL;
+}
+
+// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
+// in library_call.cpp.
+
+
+#ifndef PRODUCT
+// statistics gathering...
+
+juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
+jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
+
+bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
+  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
+  int oflags = _intrinsic_hist_flags[id];
+  assert(flags != 0, "what happened?");
+  if (is_virtual) {
+    flags |= _intrinsic_virtual;
+  }
+  bool changed = (flags != oflags);
+  if ((flags & _intrinsic_worked) != 0) {
+    juint count = (_intrinsic_hist_count[id] += 1);
+    if (count == 1) {
+      changed = true;           // first time
+    }
+    // increment the overall count also:
+    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
+  }
+  if (changed) {
+    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
+      // Something changed about the intrinsic's virtuality.
+      if ((flags & _intrinsic_virtual) != 0) {
+        // This is the first use of this intrinsic as a virtual call.
+        if (oflags != 0) {
+          // We already saw it as a non-virtual, so note both cases.
+          flags |= _intrinsic_both;
+        }
+      } else if ((oflags & _intrinsic_both) == 0) {
+        // This is the first use of this intrinsic as a non-virtual
+        flags |= _intrinsic_both;
+      }
+    }
+    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
+  }
+  // update the overall flags also:
+  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
+  return changed;
+}
+
+static char* format_flags(int flags, char* buf) {
+  buf[0] = 0;
+  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
+  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
+  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
+  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
+  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
+  if (buf[0] == 0)  strcat(buf, ",");
+  assert(buf[0] == ',', "must be");
+  return &buf[1];
+}
+
+void Compile::print_intrinsic_statistics() {
+  char flagsbuf[100];
+  ttyLocker ttyl;
+  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
+  tty->print_cr("Compiler intrinsic usage:");
+  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
+  if (total == 0)  total = 1;  // avoid div0 in case of no successes
+  #define PRINT_STAT_LINE(name, c, f) \
+    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
+  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
+    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
+    int   flags = _intrinsic_hist_flags[id];
+    juint count = _intrinsic_hist_count[id];
+    if ((flags | count) != 0) {
+      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
+    }
+  }
+  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
+  if (xtty != NULL)  xtty->tail("statistics");
+}
+
+void Compile::print_statistics() {
+  { ttyLocker ttyl;
+    if (xtty != NULL)  xtty->head("statistics type='opto'");
+    Parse::print_statistics();
+    PhaseCCP::print_statistics();
+    PhaseRegAlloc::print_statistics();
+    Scheduling::print_statistics();
+    PhasePeephole::print_statistics();
+    PhaseIdealLoop::print_statistics();
+    if (xtty != NULL)  xtty->tail("statistics");
+  }
+  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
+    // put this under its own <statistics> element.
+    print_intrinsic_statistics();
+  }
+}
+#endif //PRODUCT
+
+// Support for bundling info
+Bundle* Compile::node_bundling(const Node *n) {
+  assert(valid_bundle_info(n), "oob");
+  return &_node_bundling_base[n->_idx];
+}
+
+bool Compile::valid_bundle_info(const Node *n) {
+  return (_node_bundling_limit > n->_idx);
+}
+
+
+// Identify all nodes that are reachable from below, useful.
+// Use breadth-first pass that records state in a Unique_Node_List,
+// recursive traversal is slower.
+void Compile::identify_useful_nodes(Unique_Node_List &useful) {
+  int estimated_worklist_size = unique();
+  useful.map( estimated_worklist_size, NULL );  // preallocate space
+
+  // Initialize worklist
+  if (root() != NULL)     { useful.push(root()); }
+  // If 'top' is cached, declare it useful to preserve cached node
+  if( cached_top_node() ) { useful.push(cached_top_node()); }
+
+  // Push all useful nodes onto the list, breadthfirst
+  for( uint next = 0; next < useful.size(); ++next ) {
+    assert( next < unique(), "Unique useful nodes < total nodes");
+    Node *n  = useful.at(next);
+    uint max = n->len();
+    for( uint i = 0; i < max; ++i ) {
+      Node *m = n->in(i);
+      if( m == NULL ) continue;
+      useful.push(m);
+    }
+  }
+}
+
+// Disconnect all useless nodes by disconnecting those at the boundary.
+void Compile::remove_useless_nodes(Unique_Node_List &useful) {
+  uint next = 0;
+  while( next < useful.size() ) {
+    Node *n = useful.at(next++);
+    // Use raw traversal of out edges since this code removes out edges
+    int max = n->outcnt();
+    for (int j = 0; j < max; ++j ) {
+      Node* child = n->raw_out(j);
+      if( ! useful.member(child) ) {
+        assert( !child->is_top() || child != top(),
+                "If top is cached in Compile object it is in useful list");
+        // Only need to remove this out-edge to the useless node
+        n->raw_del_out(j);
+        --j;
+        --max;
+      }
+    }
+    if (n->outcnt() == 1 && n->has_special_unique_user()) {
+      record_for_igvn( n->unique_out() );
+    }
+  }
+  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
+}
+
+//------------------------------frame_size_in_words-----------------------------
+// frame_slots in units of words
+int Compile::frame_size_in_words() const {
+  // shift is 0 in LP32 and 1 in LP64
+  const int shift = (LogBytesPerWord - LogBytesPerInt);
+  int words = _frame_slots >> shift;
+  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
+  return words;
+}
+
+// ============================================================================
+//------------------------------CompileWrapper---------------------------------
+class CompileWrapper : public StackObj {
+  Compile *const _compile;
+ public:
+  CompileWrapper(Compile* compile);
+
+  ~CompileWrapper();
+};
+
+CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
+  // the Compile* pointer is stored in the current ciEnv:
+  ciEnv* env = compile->env();
+  assert(env == ciEnv::current(), "must already be a ciEnv active");
+  assert(env->compiler_data() == NULL, "compile already active?");
+  env->set_compiler_data(compile);
+  assert(compile == Compile::current(), "sanity");
+
+  compile->set_type_dict(NULL);
+  compile->set_type_hwm(NULL);
+  compile->set_type_last_size(0);
+  compile->set_last_tf(NULL, NULL);
+  compile->set_indexSet_arena(NULL);
+  compile->set_indexSet_free_block_list(NULL);
+  compile->init_type_arena();
+  Type::Initialize(compile);
+  _compile->set_scratch_buffer_blob(NULL);
+  _compile->begin_method();
+}
+CompileWrapper::~CompileWrapper() {
+  if (_compile->failing()) {
+    _compile->print_method("Failed");
+  }
+  _compile->end_method();
+  if (_compile->scratch_buffer_blob() != NULL)
+    BufferBlob::free(_compile->scratch_buffer_blob());
+  _compile->env()->set_compiler_data(NULL);
+}
+
+
+//----------------------------print_compile_messages---------------------------
+void Compile::print_compile_messages() {
+#ifndef PRODUCT
+  // Check if recompiling
+  if (_subsume_loads == false && PrintOpto) {
+    // Recompiling without allowing machine instructions to subsume loads
+    tty->print_cr("*********************************************************");
+    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
+    tty->print_cr("*********************************************************");
+  }
+  if (env()->break_at_compile()) {
+    // Open the debugger when compiing this method.
+    tty->print("### Breaking when compiling: ");
+    method()->print_short_name();
+    tty->cr();
+    BREAKPOINT;
+  }
+
+  if( PrintOpto ) {
+    if (is_osr_compilation()) {
+      tty->print("[OSR]%3d", _compile_id);
+    } else {
+      tty->print("%3d", _compile_id);
+    }
+  }
+#endif
+}
+
+
+void Compile::init_scratch_buffer_blob() {
+  if( scratch_buffer_blob() != NULL )  return;
+
+  // Construct a temporary CodeBuffer to have it construct a BufferBlob
+  // Cache this BufferBlob for this compile.
+  ResourceMark rm;
+  int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
+  BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
+  // Record the buffer blob for next time.
+  set_scratch_buffer_blob(blob);
+  guarantee(scratch_buffer_blob() != NULL, "Need BufferBlob for code generation");
+
+  // Initialize the relocation buffers
+  relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
+  set_scratch_locs_memory(locs_buf);
+}
+
+
+//-----------------------scratch_emit_size-------------------------------------
+// Helper function that computes size by emitting code
+uint Compile::scratch_emit_size(const Node* n) {
+  // Emit into a trash buffer and count bytes emitted.
+  // This is a pretty expensive way to compute a size,
+  // but it works well enough if seldom used.
+  // All common fixed-size instructions are given a size
+  // method by the AD file.
+  // Note that the scratch buffer blob and locs memory are
+  // allocated at the beginning of the compile task, and
+  // may be shared by several calls to scratch_emit_size.
+  // The allocation of the scratch buffer blob is particularly
+  // expensive, since it has to grab the code cache lock.
+  BufferBlob* blob = this->scratch_buffer_blob();
+  assert(blob != NULL, "Initialize BufferBlob at start");
+  assert(blob->size() > MAX_inst_size, "sanity");
+  relocInfo* locs_buf = scratch_locs_memory();
+  address blob_begin = blob->instructions_begin();
+  address blob_end   = (address)locs_buf;
+  assert(blob->instructions_contains(blob_end), "sanity");
+  CodeBuffer buf(blob_begin, blob_end - blob_begin);
+  buf.initialize_consts_size(MAX_const_size);
+  buf.initialize_stubs_size(MAX_stubs_size);
+  assert(locs_buf != NULL, "sanity");
+  int lsize = MAX_locs_size / 2;
+  buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
+  buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
+  n->emit(buf, this->regalloc());
+  return buf.code_size();
+}
+
+void  Compile::record_for_escape_analysis(Node* n) {
+  if (_congraph != NULL)
+    _congraph->record_for_escape_analysis(n);
+}
+
+
+// ============================================================================
+//------------------------------Compile standard-------------------------------
+debug_only( int Compile::_debug_idx = 100000; )
+
+// Compile a method.  entry_bci is -1 for normal compilations and indicates
+// the continuation bci for on stack replacement.
+
+
+Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads )
+                : Phase(Compiler),
+                  _env(ci_env),
+                  _log(ci_env->log()),
+                  _compile_id(ci_env->compile_id()),
+                  _save_argument_registers(false),
+                  _stub_name(NULL),
+                  _stub_function(NULL),
+                  _stub_entry_point(NULL),
+                  _method(target),
+                  _entry_bci(osr_bci),
+                  _initial_gvn(NULL),
+                  _for_igvn(NULL),
+                  _warm_calls(NULL),
+                  _subsume_loads(subsume_loads),
+                  _failure_reason(NULL),
+                  _code_buffer("Compile::Fill_buffer"),
+                  _orig_pc_slot(0),
+                  _orig_pc_slot_offset_in_bytes(0),
+                  _node_bundling_limit(0),
+                  _node_bundling_base(NULL),
+#ifndef PRODUCT
+                  _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
+                  _printer(IdealGraphPrinter::printer()),
+#endif
+                  _congraph(NULL) {
+  C = this;
+
+  CompileWrapper cw(this);
+#ifndef PRODUCT
+  if (TimeCompiler2) {
+    tty->print(" ");
+    target->holder()->name()->print();
+    tty->print(".");
+    target->print_short_name();
+    tty->print("  ");
+  }
+  TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
+  TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
+  set_print_assembly(PrintOptoAssembly || _method->should_print_assembly());
+#endif
+
+  if (ProfileTraps) {
+    // Make sure the method being compiled gets its own MDO,
+    // so we can at least track the decompile_count().
+    method()->build_method_data();
+  }
+
+  Init(::AliasLevel);
+
+
+  print_compile_messages();
+
+  if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
+    _ilt = InlineTree::build_inline_tree_root();
+  else
+    _ilt = NULL;
+
+  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
+  assert(num_alias_types() >= AliasIdxRaw, "");
+
+#define MINIMUM_NODE_HASH  1023
+  // Node list that Iterative GVN will start with
+  Unique_Node_List for_igvn(comp_arena());
+  set_for_igvn(&for_igvn);
+
+  // GVN that will be run immediately on new nodes
+  uint estimated_size = method()->code_size()*4+64;
+  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
+  PhaseGVN gvn(node_arena(), estimated_size);
+  set_initial_gvn(&gvn);
+
+  if (DoEscapeAnalysis)
+    _congraph = new ConnectionGraph(this);
+
+  { // Scope for timing the parser
+    TracePhase t3("parse", &_t_parser, true);
+
+    // Put top into the hash table ASAP.
+    initial_gvn()->transform_no_reclaim(top());
+
+    // Set up tf(), start(), and find a CallGenerator.
+    CallGenerator* cg;
+    if (is_osr_compilation()) {
+      const TypeTuple *domain = StartOSRNode::osr_domain();
+      const TypeTuple *range = TypeTuple::make_range(method()->signature());
+      init_tf(TypeFunc::make(domain, range));
+      StartNode* s = new (this, 2) StartOSRNode(root(), domain);
+      initial_gvn()->set_type_bottom(s);
+      init_start(s);
+      cg = CallGenerator::for_osr(method(), entry_bci());
+    } else {
+      // Normal case.
+      init_tf(TypeFunc::make(method()));
+      StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
+      initial_gvn()->set_type_bottom(s);
+      init_start(s);
+      float past_uses = method()->interpreter_invocation_count();
+      float expected_uses = past_uses;
+      cg = CallGenerator::for_inline(method(), expected_uses);
+    }
+    if (failing())  return;
+    if (cg == NULL) {
+      record_method_not_compilable_all_tiers("cannot parse method");
+      return;
+    }
+    JVMState* jvms = build_start_state(start(), tf());
+    if ((jvms = cg->generate(jvms)) == NULL) {
+      record_method_not_compilable("method parse failed");
+      return;
+    }
+    GraphKit kit(jvms);
+
+    if (!kit.stopped()) {
+      // Accept return values, and transfer control we know not where.
+      // This is done by a special, unique ReturnNode bound to root.
+      return_values(kit.jvms());
+    }
+
+    if (kit.has_exceptions()) {
+      // Any exceptions that escape from this call must be rethrown
+      // to whatever caller is dynamically above us on the stack.
+      // This is done by a special, unique RethrowNode bound to root.
+      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
+    }
+
+    // Remove clutter produced by parsing.
+    if (!failing()) {
+      ResourceMark rm;
+      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
+    }
+  }
+
+  // Note:  Large methods are capped off in do_one_bytecode().
+  if (failing())  return;
+
+  // After parsing, node notes are no longer automagic.
+  // They must be propagated by register_new_node_with_optimizer(),
+  // clone(), or the like.
+  set_default_node_notes(NULL);
+
+  for (;;) {
+    int successes = Inline_Warm();
+    if (failing())  return;
+    if (successes == 0)  break;
+  }
+
+  // Drain the list.
+  Finish_Warm();
+#ifndef PRODUCT
+  if (_printer) {
+    _printer->print_inlining(this);
+  }
+#endif
+
+  if (failing())  return;
+  NOT_PRODUCT( verify_graph_edges(); )
+
+  // Perform escape analysis
+  if (_congraph != NULL) {
+    NOT_PRODUCT( TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, TimeCompiler); )
+    _congraph->compute_escape();
+#ifndef PRODUCT
+    if (PrintEscapeAnalysis) {
+      _congraph->dump();
+    }
+#endif
+  }
+  // Now optimize
+  Optimize();
+  if (failing())  return;
+  NOT_PRODUCT( verify_graph_edges(); )
+
+#ifndef PRODUCT
+  if (PrintIdeal) {
+    ttyLocker ttyl;  // keep the following output all in one block
+    // This output goes directly to the tty, not the compiler log.
+    // To enable tools to match it up with the compilation activity,
+    // be sure to tag this tty output with the compile ID.
+    if (xtty != NULL) {
+      xtty->head("ideal compile_id='%d'%s", compile_id(),
+                 is_osr_compilation()    ? " compile_kind='osr'" :
+                 "");
+    }
+    root()->dump(9999);
+    if (xtty != NULL) {
+      xtty->tail("ideal");
+    }
+  }
+#endif
+
+  // Now that we know the size of all the monitors we can add a fixed slot
+  // for the original deopt pc.
+
+  _orig_pc_slot =  fixed_slots();
+  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
+  set_fixed_slots(next_slot);
+
+  // Now generate code
+  Code_Gen();
+  if (failing())  return;
+
+  // Check if we want to skip execution of all compiled code.
+  {
+#ifndef PRODUCT
+    if (OptoNoExecute) {
+      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
+      return;
+    }
+    TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
+#endif
+
+    if (is_osr_compilation()) {
+      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
+      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
+    } else {
+      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
+      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
+    }
+
+    env()->register_method(_method, _entry_bci,
+                           &_code_offsets,
+                           _orig_pc_slot_offset_in_bytes,
+                           code_buffer(),
+                           frame_size_in_words(), _oop_map_set,
+                           &_handler_table, &_inc_table,
+                           compiler,
+                           env()->comp_level(),
+                           true, /*has_debug_info*/
+                           has_unsafe_access()
+                           );
+  }
+}
+
+//------------------------------Compile----------------------------------------
+// Compile a runtime stub
+Compile::Compile( ciEnv* ci_env,
+                  TypeFunc_generator generator,
+                  address stub_function,
+                  const char *stub_name,
+                  int is_fancy_jump,
+                  bool pass_tls,
+                  bool save_arg_registers,
+                  bool return_pc )
+  : Phase(Compiler),
+    _env(ci_env),
+    _log(ci_env->log()),
+    _compile_id(-1),
+    _save_argument_registers(save_arg_registers),
+    _method(NULL),
+    _stub_name(stub_name),
+    _stub_function(stub_function),
+    _stub_entry_point(NULL),
+    _entry_bci(InvocationEntryBci),
+    _initial_gvn(NULL),
+    _for_igvn(NULL),
+    _warm_calls(NULL),
+    _orig_pc_slot(0),
+    _orig_pc_slot_offset_in_bytes(0),
+    _subsume_loads(true),
+    _failure_reason(NULL),
+    _code_buffer("Compile::Fill_buffer"),
+    _node_bundling_limit(0),
+    _node_bundling_base(NULL),
+#ifndef PRODUCT
+    _trace_opto_output(TraceOptoOutput),
+    _printer(NULL),
+#endif
+    _congraph(NULL) {
+  C = this;
+
+#ifndef PRODUCT
+  TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
+  TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
+  set_print_assembly(PrintFrameConverterAssembly);
+#endif
+  CompileWrapper cw(this);
+  Init(/*AliasLevel=*/ 0);
+  init_tf((*generator)());
+
+  {
+    // The following is a dummy for the sake of GraphKit::gen_stub
+    Unique_Node_List for_igvn(comp_arena());
+    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
+    PhaseGVN gvn(Thread::current()->resource_area(),255);
+    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
+    gvn.transform_no_reclaim(top());
+
+    GraphKit kit;
+    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
+  }
+
+  NOT_PRODUCT( verify_graph_edges(); )
+  Code_Gen();
+  if (failing())  return;
+
+
+  // Entry point will be accessed using compile->stub_entry_point();
+  if (code_buffer() == NULL) {
+    Matcher::soft_match_failure();
+  } else {
+    if (PrintAssembly && (WizardMode || Verbose))
+      tty->print_cr("### Stub::%s", stub_name);
+
+    if (!failing()) {
+      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
+
+      // Make the NMethod
+      // For now we mark the frame as never safe for profile stackwalking
+      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
+                                                      code_buffer(),
+                                                      CodeOffsets::frame_never_safe,
+                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
+                                                      frame_size_in_words(),
+                                                      _oop_map_set,
+                                                      save_arg_registers);
+      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
+
+      _stub_entry_point = rs->entry_point();
+    }
+  }
+}
+
+#ifndef PRODUCT
+void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
+  if(PrintOpto && Verbose) {
+    tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
+  }
+}
+#endif
+
+void Compile::print_codes() {
+}
+
+//------------------------------Init-------------------------------------------
+// Prepare for a single compilation
+void Compile::Init(int aliaslevel) {
+  _unique  = 0;
+  _regalloc = NULL;
+
+  _tf      = NULL;  // filled in later
+  _top     = NULL;  // cached later
+  _matcher = NULL;  // filled in later
+  _cfg     = NULL;  // filled in later
+
+  set_24_bit_selection_and_mode(Use24BitFP, false);
+
+  _node_note_array = NULL;
+  _default_node_notes = NULL;
+
+  _immutable_memory = NULL; // filled in at first inquiry
+
+  // Globally visible Nodes
+  // First set TOP to NULL to give safe behavior during creation of RootNode
+  set_cached_top_node(NULL);
+  set_root(new (this, 3) RootNode());
+  // Now that you have a Root to point to, create the real TOP
+  set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
+  set_recent_alloc(NULL, NULL);
+
+  // Create Debug Information Recorder to record scopes, oopmaps, etc.
+  env()->set_oop_recorder(new OopRecorder(comp_arena()));
+  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
+  env()->set_dependencies(new Dependencies(env()));
+
+  _fixed_slots = 0;
+  set_has_split_ifs(false);
+  set_has_loops(has_method() && method()->has_loops()); // first approximation
+  _deopt_happens = true;  // start out assuming the worst
+  _trap_can_recompile = false;  // no traps emitted yet
+  _major_progress = true; // start out assuming good things will happen
+  set_has_unsafe_access(false);
+  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
+  set_decompile_count(0);
+
+  // Compilation level related initialization
+  if (env()->comp_level() == CompLevel_fast_compile) {
+    set_num_loop_opts(Tier1LoopOptsCount);
+    set_do_inlining(Tier1Inline != 0);
+    set_max_inline_size(Tier1MaxInlineSize);
+    set_freq_inline_size(Tier1FreqInlineSize);
+    set_do_scheduling(false);
+    set_do_count_invocations(Tier1CountInvocations);
+    set_do_method_data_update(Tier1UpdateMethodData);
+  } else {
+    assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
+    set_num_loop_opts(LoopOptsCount);
+    set_do_inlining(Inline);
+    set_max_inline_size(MaxInlineSize);
+    set_freq_inline_size(FreqInlineSize);
+    set_do_scheduling(OptoScheduling);
+    set_do_count_invocations(false);
+    set_do_method_data_update(false);
+  }
+
+  if (debug_info()->recording_non_safepoints()) {
+    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
+                        (comp_arena(), 8, 0, NULL));
+    set_default_node_notes(Node_Notes::make(this));
+  }
+
+  // // -- Initialize types before each compile --
+  // // Update cached type information
+  // if( _method && _method->constants() )
+  //   Type::update_loaded_types(_method, _method->constants());
+
+  // Init alias_type map.
+  if (!DoEscapeAnalysis && aliaslevel == 3)
+    aliaslevel = 2;  // No unique types without escape analysis
+  _AliasLevel = aliaslevel;
+  const int grow_ats = 16;
+  _max_alias_types = grow_ats;
+  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
+  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
+  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
+  {
+    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
+  }
+  // Initialize the first few types.
+  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
+  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
+  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
+  _num_alias_types = AliasIdxRaw+1;
+  // Zero out the alias type cache.
+  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
+  // A NULL adr_type hits in the cache right away.  Preload the right answer.
+  probe_alias_cache(NULL)->_index = AliasIdxTop;
+
+  _intrinsics = NULL;
+  _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
+  register_library_intrinsics();
+}
+
+//---------------------------init_start----------------------------------------
+// Install the StartNode on this compile object.
+void Compile::init_start(StartNode* s) {
+  if (failing())
+    return; // already failing
+  assert(s == start(), "");
+}
+
+StartNode* Compile::start() const {
+  assert(!failing(), "");
+  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
+    Node* start = root()->fast_out(i);
+    if( start->is_Start() )
+      return start->as_Start();
+  }
+  ShouldNotReachHere();
+  return NULL;
+}
+
+//-------------------------------immutable_memory-------------------------------------
+// Access immutable memory
+Node* Compile::immutable_memory() {
+  if (_immutable_memory != NULL) {
+    return _immutable_memory;
+  }
+  StartNode* s = start();
+  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
+    Node *p = s->fast_out(i);
+    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
+      _immutable_memory = p;
+      return _immutable_memory;
+    }
+  }
+  ShouldNotReachHere();
+  return NULL;
+}
+
+//----------------------set_cached_top_node------------------------------------
+// Install the cached top node, and make sure Node::is_top works correctly.
+void Compile::set_cached_top_node(Node* tn) {
+  if (tn != NULL)  verify_top(tn);
+  Node* old_top = _top;
+  _top = tn;
+  // Calling Node::setup_is_top allows the nodes the chance to adjust
+  // their _out arrays.
+  if (_top != NULL)     _top->setup_is_top();
+  if (old_top != NULL)  old_top->setup_is_top();
+  assert(_top == NULL || top()->is_top(), "");
+}
+
+#ifndef PRODUCT
+void Compile::verify_top(Node* tn) const {
+  if (tn != NULL) {
+    assert(tn->is_Con(), "top node must be a constant");
+    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
+    assert(tn->in(0) != NULL, "must have live top node");
+  }
+}
+#endif
+
+
+///-------------------Managing Per-Node Debug & Profile Info-------------------
+
+void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
+  guarantee(arr != NULL, "");
+  int num_blocks = arr->length();
+  if (grow_by < num_blocks)  grow_by = num_blocks;
+  int num_notes = grow_by * _node_notes_block_size;
+  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
+  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
+  while (num_notes > 0) {
+    arr->append(notes);
+    notes     += _node_notes_block_size;
+    num_notes -= _node_notes_block_size;
+  }
+  assert(num_notes == 0, "exact multiple, please");
+}
+
+bool Compile::copy_node_notes_to(Node* dest, Node* source) {
+  if (source == NULL || dest == NULL)  return false;
+
+  if (dest->is_Con())
+    return false;               // Do not push debug info onto constants.
+
+#ifdef ASSERT
+  // Leave a bread crumb trail pointing to the original node:
+  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
+    dest->set_debug_orig(source);
+  }
+#endif
+
+  if (node_note_array() == NULL)
+    return false;               // Not collecting any notes now.
+
+  // This is a copy onto a pre-existing node, which may already have notes.
+  // If both nodes have notes, do not overwrite any pre-existing notes.
+  Node_Notes* source_notes = node_notes_at(source->_idx);
+  if (source_notes == NULL || source_notes->is_clear())  return false;
+  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
+  if (dest_notes == NULL || dest_notes->is_clear()) {
+    return set_node_notes_at(dest->_idx, source_notes);
+  }
+
+  Node_Notes merged_notes = (*source_notes);
+  // The order of operations here ensures that dest notes will win...
+  merged_notes.update_from(dest_notes);
+  return set_node_notes_at(dest->_idx, &merged_notes);
+}
+
+
+//--------------------------allow_range_check_smearing-------------------------
+// Gating condition for coalescing similar range checks.
+// Sometimes we try 'speculatively' replacing a series of a range checks by a
+// single covering check that is at least as strong as any of them.
+// If the optimization succeeds, the simplified (strengthened) range check
+// will always succeed.  If it fails, we will deopt, and then give up
+// on the optimization.
+bool Compile::allow_range_check_smearing() const {
+  // If this method has already thrown a range-check,
+  // assume it was because we already tried range smearing
+  // and it failed.
+  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
+  return !already_trapped;
+}
+
+
+//------------------------------flatten_alias_type-----------------------------
+const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
+  int offset = tj->offset();
+  TypePtr::PTR ptr = tj->ptr();
+
+  // Process weird unsafe references.
+  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
+    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
+    tj = TypeOopPtr::BOTTOM;
+    ptr = tj->ptr();
+    offset = tj->offset();
+  }
+
+  // Array pointers need some flattening
+  const TypeAryPtr *ta = tj->isa_aryptr();
+  if( ta && _AliasLevel >= 2 ) {
+    // For arrays indexed by constant indices, we flatten the alias
+    // space to include all of the array body.  Only the header, klass
+    // and array length can be accessed un-aliased.
+    if( offset != Type::OffsetBot ) {
+      if( ta->const_oop() ) { // methodDataOop or methodOop
+        offset = Type::OffsetBot;   // Flatten constant access into array body
+        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
+      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
+        // range is OK as-is.
+        tj = ta = TypeAryPtr::RANGE;
+      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
+        tj = TypeInstPtr::KLASS; // all klass loads look alike
+        ta = TypeAryPtr::RANGE; // generic ignored junk
+        ptr = TypePtr::BotPTR;
+      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
+        tj = TypeInstPtr::MARK;
+        ta = TypeAryPtr::RANGE; // generic ignored junk
+        ptr = TypePtr::BotPTR;
+      } else {                  // Random constant offset into array body
+        offset = Type::OffsetBot;   // Flatten constant access into array body
+        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
+      }
+    }
+    // Arrays of fixed size alias with arrays of unknown size.
+    if (ta->size() != TypeInt::POS) {
+      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
+      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset, ta->instance_id());
+    }
+    // Arrays of known objects become arrays of unknown objects.
+    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
+      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
+      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset, ta->instance_id());
+    }
+    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
+    // cannot be distinguished by bytecode alone.
+    if (ta->elem() == TypeInt::BOOL) {
+      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
+      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
+      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset, ta->instance_id());
+    }
+    // During the 2nd round of IterGVN, NotNull castings are removed.
+    // Make sure the Bottom and NotNull variants alias the same.
+    // Also, make sure exact and non-exact variants alias the same.
+    if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
+      if (ta->const_oop()) {
+        tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
+      } else {
+        tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
+      }
+    }
+  }
+
+  // Oop pointers need some flattening
+  const TypeInstPtr *to = tj->isa_instptr();
+  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
+    if( ptr == TypePtr::Constant ) {
+      // No constant oop pointers (such as Strings); they alias with
+      // unknown strings.
+      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
+    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
+      // During the 2nd round of IterGVN, NotNull castings are removed.
+      // Make sure the Bottom and NotNull variants alias the same.
+      // Also, make sure exact and non-exact variants alias the same.
+      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset, to->instance_id());
+    }
+    // Canonicalize the holder of this field
+    ciInstanceKlass *k = to->klass()->as_instance_klass();
+    if (offset >= 0 && offset < oopDesc::header_size() * wordSize) {
+      // First handle header references such as a LoadKlassNode, even if the
+      // object's klass is unloaded at compile time (4965979).
+      tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset, to->instance_id());
+    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
+      to = NULL;
+      tj = TypeOopPtr::BOTTOM;
+      offset = tj->offset();
+    } else {
+      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
+      if (!k->equals(canonical_holder) || tj->offset() != offset) {
+        tj = to = TypeInstPtr::make(TypePtr::BotPTR, canonical_holder, false, NULL, offset, to->instance_id());
+      }
+    }
+  }
+
+  // Klass pointers to object array klasses need some flattening
+  const TypeKlassPtr *tk = tj->isa_klassptr();
+  if( tk ) {
+    // If we are referencing a field within a Klass, we need
+    // to assume the worst case of an Object.  Both exact and
+    // inexact types must flatten to the same alias class.
+    // Since the flattened result for a klass is defined to be
+    // precisely java.lang.Object, use a constant ptr.
+    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
+
+      tj = tk = TypeKlassPtr::make(TypePtr::Constant,
+                                   TypeKlassPtr::OBJECT->klass(),
+                                   offset);
+    }
+
+    ciKlass* klass = tk->klass();
+    if( klass->is_obj_array_klass() ) {
+      ciKlass* k = TypeAryPtr::OOPS->klass();
+      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
+        k = TypeInstPtr::BOTTOM->klass();
+      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
+    }
+
+    // Check for precise loads from the primary supertype array and force them
+    // to the supertype cache alias index.  Check for generic array loads from
+    // the primary supertype array and also force them to the supertype cache
+    // alias index.  Since the same load can reach both, we need to merge
+    // these 2 disparate memories into the same alias class.  Since the
+    // primary supertype array is read-only, there's no chance of confusion
+    // where we bypass an array load and an array store.
+    uint off2 = offset - Klass::primary_supers_offset_in_bytes();
+    if( offset == Type::OffsetBot ||
+        off2 < Klass::primary_super_limit()*wordSize ) {
+      offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
+      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
+    }
+  }
+
+  // Flatten all Raw pointers together.
+  if (tj->base() == Type::RawPtr)
+    tj = TypeRawPtr::BOTTOM;
+
+  if (tj->base() == Type::AnyPtr)
+    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
+
+  // Flatten all to bottom for now
+  switch( _AliasLevel ) {
+  case 0:
+    tj = TypePtr::BOTTOM;
+    break;
+  case 1:                       // Flatten to: oop, static, field or array
+    switch (tj->base()) {
+    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
+    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
+    case Type::AryPtr:   // do not distinguish arrays at all
+    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
+    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
+    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
+    default: ShouldNotReachHere();
+    }
+    break;
+  case 2:                       // No collasping at level 2; keep all splits
+  case 3:                       // No collasping at level 3; keep all splits
+    break;
+  default:
+    Unimplemented();
+  }
+
+  offset = tj->offset();
+  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
+
+  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
+          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
+          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
+          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
+          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
+          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
+          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
+          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
+  assert( tj->ptr() != TypePtr::TopPTR &&
+          tj->ptr() != TypePtr::AnyNull &&
+          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
+//    assert( tj->ptr() != TypePtr::Constant ||
+//            tj->base() == Type::RawPtr ||
+//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
+
+  return tj;
+}
+
+void Compile::AliasType::Init(int i, const TypePtr* at) {
+  _index = i;
+  _adr_type = at;
+  _field = NULL;
+  _is_rewritable = true; // default
+  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
+  if (atoop != NULL && atoop->is_instance()) {
+    const TypeOopPtr *gt = atoop->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
+    _general_index = Compile::current()->get_alias_index(gt);
+  } else {
+    _general_index = 0;
+  }
+}
+
+//---------------------------------print_on------------------------------------
+#ifndef PRODUCT
+void Compile::AliasType::print_on(outputStream* st) {
+  if (index() < 10)
+        st->print("@ <%d> ", index());
+  else  st->print("@ <%d>",  index());
+  st->print(is_rewritable() ? "   " : " RO");
+  int offset = adr_type()->offset();
+  if (offset == Type::OffsetBot)
+        st->print(" +any");
+  else  st->print(" +%-3d", offset);
+  st->print(" in ");
+  adr_type()->dump_on(st);
+  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
+  if (field() != NULL && tjp) {
+    if (tjp->klass()  != field()->holder() ||
+        tjp->offset() != field()->offset_in_bytes()) {
+      st->print(" != ");
+      field()->print();
+      st->print(" ***");
+    }
+  }
+}
+
+void print_alias_types() {
+  Compile* C = Compile::current();
+  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
+  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
+    C->alias_type(idx)->print_on(tty);
+    tty->cr();
+  }
+}
+#endif
+
+
+//----------------------------probe_alias_cache--------------------------------
+Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
+  intptr_t key = (intptr_t) adr_type;
+  key ^= key >> logAliasCacheSize;
+  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
+}
+
+
+//-----------------------------grow_alias_types--------------------------------
+void Compile::grow_alias_types() {
+  const int old_ats  = _max_alias_types; // how many before?
+  const int new_ats  = old_ats;          // how many more?
+  const int grow_ats = old_ats+new_ats;  // how many now?
+  _max_alias_types = grow_ats;
+  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
+  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
+  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
+  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
+}
+
+
+//--------------------------------find_alias_type------------------------------
+Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
+  if (_AliasLevel == 0)
+    return alias_type(AliasIdxBot);
+
+  AliasCacheEntry* ace = probe_alias_cache(adr_type);
+  if (ace->_adr_type == adr_type) {
+    return alias_type(ace->_index);
+  }
+
+  // Handle special cases.
+  if (adr_type == NULL)             return alias_type(AliasIdxTop);
+  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
+
+  // Do it the slow way.
+  const TypePtr* flat = flatten_alias_type(adr_type);
+
+#ifdef ASSERT
+  assert(flat == flatten_alias_type(flat), "idempotent");
+  assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
+  if (flat->isa_oopptr() && !flat->isa_klassptr()) {
+    const TypeOopPtr* foop = flat->is_oopptr();
+    const TypePtr* xoop = foop->cast_to_exactness(!foop->klass_is_exact())->is_ptr();
+    assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
+  }
+  assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
+#endif
+
+  int idx = AliasIdxTop;
+  for (int i = 0; i < num_alias_types(); i++) {
+    if (alias_type(i)->adr_type() == flat) {
+      idx = i;
+      break;
+    }
+  }
+
+  if (idx == AliasIdxTop) {
+    if (no_create)  return NULL;
+    // Grow the array if necessary.
+    if (_num_alias_types == _max_alias_types)  grow_alias_types();
+    // Add a new alias type.
+    idx = _num_alias_types++;
+    _alias_types[idx]->Init(idx, flat);
+    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
+    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
+    if (flat->isa_instptr()) {
+      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
+          && flat->is_instptr()->klass() == env()->Class_klass())
+        alias_type(idx)->set_rewritable(false);
+    }
+    if (flat->isa_klassptr()) {
+      if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
+        alias_type(idx)->set_rewritable(false);
+      if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
+        alias_type(idx)->set_rewritable(false);
+      if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
+        alias_type(idx)->set_rewritable(false);
+      if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
+        alias_type(idx)->set_rewritable(false);
+    }
+    // %%% (We would like to finalize JavaThread::threadObj_offset(),
+    // but the base pointer type is not distinctive enough to identify
+    // references into JavaThread.)
+
+    // Check for final instance fields.
+    const TypeInstPtr* tinst = flat->isa_instptr();
+    if (tinst && tinst->offset() >= oopDesc::header_size() * wordSize) {
+      ciInstanceKlass *k = tinst->klass()->as_instance_klass();
+      ciField* field = k->get_field_by_offset(tinst->offset(), false);
+      // Set field() and is_rewritable() attributes.
+      if (field != NULL)  alias_type(idx)->set_field(field);
+    }
+    const TypeKlassPtr* tklass = flat->isa_klassptr();
+    // Check for final static fields.
+    if (tklass && tklass->klass()->is_instance_klass()) {
+      ciInstanceKlass *k = tklass->klass()->as_instance_klass();
+      ciField* field = k->get_field_by_offset(tklass->offset(), true);
+      // Set field() and is_rewritable() attributes.
+      if (field != NULL)   alias_type(idx)->set_field(field);
+    }
+  }
+
+  // Fill the cache for next time.
+  ace->_adr_type = adr_type;
+  ace->_index    = idx;
+  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
+
+  // Might as well try to fill the cache for the flattened version, too.
+  AliasCacheEntry* face = probe_alias_cache(flat);
+  if (face->_adr_type == NULL) {
+    face->_adr_type = flat;
+    face->_index    = idx;
+    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
+  }
+
+  return alias_type(idx);
+}
+
+
+Compile::AliasType* Compile::alias_type(ciField* field) {
+  const TypeOopPtr* t;
+  if (field->is_static())
+    t = TypeKlassPtr::make(field->holder());
+  else
+    t = TypeOopPtr::make_from_klass_raw(field->holder());
+  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
+  assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
+  return atp;
+}
+
+
+//------------------------------have_alias_type--------------------------------
+bool Compile::have_alias_type(const TypePtr* adr_type) {
+  AliasCacheEntry* ace = probe_alias_cache(adr_type);
+  if (ace->_adr_type == adr_type) {
+    return true;
+  }
+
+  // Handle special cases.
+  if (adr_type == NULL)             return true;
+  if (adr_type == TypePtr::BOTTOM)  return true;
+
+  return find_alias_type(adr_type, true) != NULL;
+}
+
+//-----------------------------must_alias--------------------------------------
+// True if all values of the given address type are in the given alias category.
+bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
+  if (alias_idx == AliasIdxBot)         return true;  // the universal category
+  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
+  if (alias_idx == AliasIdxTop)         return false; // the empty category
+  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
+
+  // the only remaining possible overlap is identity
+  int adr_idx = get_alias_index(adr_type);
+  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
+  assert(adr_idx == alias_idx ||
+         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
+          && adr_type                       != TypeOopPtr::BOTTOM),
+         "should not be testing for overlap with an unsafe pointer");
+  return adr_idx == alias_idx;
+}
+
+//------------------------------can_alias--------------------------------------
+// True if any values of the given address type are in the given alias category.
+bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
+  if (alias_idx == AliasIdxTop)         return false; // the empty category
+  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
+  if (alias_idx == AliasIdxBot)         return true;  // the universal category
+  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
+
+  // the only remaining possible overlap is identity
+  int adr_idx = get_alias_index(adr_type);
+  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
+  return adr_idx == alias_idx;
+}
+
+
+
+//---------------------------pop_warm_call-------------------------------------
+WarmCallInfo* Compile::pop_warm_call() {
+  WarmCallInfo* wci = _warm_calls;
+  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
+  return wci;
+}
+
+//----------------------------Inline_Warm--------------------------------------
+int Compile::Inline_Warm() {
+  // If there is room, try to inline some more warm call sites.
+  // %%% Do a graph index compaction pass when we think we're out of space?
+  if (!InlineWarmCalls)  return 0;
+
+  int calls_made_hot = 0;
+  int room_to_grow   = NodeCountInliningCutoff - unique();
+  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
+  int amount_grown   = 0;
+  WarmCallInfo* call;
+  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
+    int est_size = (int)call->size();
+    if (est_size > (room_to_grow - amount_grown)) {
+      // This one won't fit anyway.  Get rid of it.
+      call->make_cold();
+      continue;
+    }
+    call->make_hot();
+    calls_made_hot++;
+    amount_grown   += est_size;
+    amount_to_grow -= est_size;
+  }
+
+  if (calls_made_hot > 0)  set_major_progress();
+  return calls_made_hot;
+}
+
+
+//----------------------------Finish_Warm--------------------------------------
+void Compile::Finish_Warm() {
+  if (!InlineWarmCalls)  return;
+  if (failing())  return;
+  if (warm_calls() == NULL)  return;
+
+  // Clean up loose ends, if we are out of space for inlining.
+  WarmCallInfo* call;
+  while ((call = pop_warm_call()) != NULL) {
+    call->make_cold();
+  }
+}
+
+
+//------------------------------Optimize---------------------------------------
+// Given a graph, optimize it.
+void Compile::Optimize() {
+  TracePhase t1("optimizer", &_t_optimizer, true);
+
+#ifndef PRODUCT
+  if (env()->break_at_compile()) {
+    BREAKPOINT;
+  }
+
+#endif
+
+  ResourceMark rm;
+  int          loop_opts_cnt;
+
+  NOT_PRODUCT( verify_graph_edges(); )
+
+  print_method("Start");
+
+ {
+  // Iterative Global Value Numbering, including ideal transforms
+  // Initialize IterGVN with types and values from parse-time GVN
+  PhaseIterGVN igvn(initial_gvn());
+  {
+    NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
+    igvn.optimize();
+  }
+
+  print_method("Iter GVN 1", 2);
+
+  if (failing())  return;
+
+  // get rid of the connection graph since it's information is not
+  // updated by optimizations
+  _congraph = NULL;
+
+
+  // Loop transforms on the ideal graph.  Range Check Elimination,
+  // peeling, unrolling, etc.
+
+  // Set loop opts counter
+  loop_opts_cnt = num_loop_opts();
+  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
+    {
+      TracePhase t2("idealLoop", &_t_idealLoop, true);
+      PhaseIdealLoop ideal_loop( igvn, NULL, true );
+      loop_opts_cnt--;
+      if (major_progress()) print_method("PhaseIdealLoop 1", 2);
+      if (failing())  return;
+    }
+    // Loop opts pass if partial peeling occurred in previous pass
+    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
+      TracePhase t3("idealLoop", &_t_idealLoop, true);
+      PhaseIdealLoop ideal_loop( igvn, NULL, false );
+      loop_opts_cnt--;
+      if (major_progress()) print_method("PhaseIdealLoop 2", 2);
+      if (failing())  return;
+    }
+    // Loop opts pass for loop-unrolling before CCP
+    if(major_progress() && (loop_opts_cnt > 0)) {
+      TracePhase t4("idealLoop", &_t_idealLoop, true);
+      PhaseIdealLoop ideal_loop( igvn, NULL, false );
+      loop_opts_cnt--;
+      if (major_progress()) print_method("PhaseIdealLoop 3", 2);
+    }
+  }
+  if (failing())  return;
+
+  // Conditional Constant Propagation;
+  PhaseCCP ccp( &igvn );
+  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
+  {
+    TracePhase t2("ccp", &_t_ccp, true);
+    ccp.do_transform();
+  }
+  print_method("PhaseCPP 1", 2);
+
+  assert( true, "Break here to ccp.dump_old2new_map()");
+
+  // Iterative Global Value Numbering, including ideal transforms
+  {
+    NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
+    igvn = ccp;
+    igvn.optimize();
+  }
+
+  print_method("Iter GVN 2", 2);
+
+  if (failing())  return;
+
+  // Loop transforms on the ideal graph.  Range Check Elimination,
+  // peeling, unrolling, etc.
+  if(loop_opts_cnt > 0) {
+    debug_only( int cnt = 0; );
+    while(major_progress() && (loop_opts_cnt > 0)) {
+      TracePhase t2("idealLoop", &_t_idealLoop, true);
+      assert( cnt++ < 40, "infinite cycle in loop optimization" );
+      PhaseIdealLoop ideal_loop( igvn, NULL, true );
+      loop_opts_cnt--;
+      if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
+      if (failing())  return;
+    }
+  }
+  {
+    NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
+    PhaseMacroExpand  mex(igvn);
+    if (mex.expand_macro_nodes()) {
+      assert(failing(), "must bail out w/ explicit message");
+      return;
+    }
+  }
+
+ } // (End scope of igvn; run destructor if necessary for asserts.)
+
+  // A method with only infinite loops has no edges entering loops from root
+  {
+    NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
+    if (final_graph_reshaping()) {
+      assert(failing(), "must bail out w/ explicit message");
+      return;
+    }
+  }
+
+  print_method("Optimize finished", 2);
+}
+
+
+//------------------------------Code_Gen---------------------------------------
+// Given a graph, generate code for it
+void Compile::Code_Gen() {
+  if (failing())  return;
+
+  // Perform instruction selection.  You might think we could reclaim Matcher
+  // memory PDQ, but actually the Matcher is used in generating spill code.
+  // Internals of the Matcher (including some VectorSets) must remain live
+  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
+  // set a bit in reclaimed memory.
+
+  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
+  // nodes.  Mapping is only valid at the root of each matched subtree.
+  NOT_PRODUCT( verify_graph_edges(); )
+
+  Node_List proj_list;
+  Matcher m(proj_list);
+  _matcher = &m;
+  {
+    TracePhase t2("matcher", &_t_matcher, true);
+    m.match();
+  }
+  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
+  // nodes.  Mapping is only valid at the root of each matched subtree.
+  NOT_PRODUCT( verify_graph_edges(); )
+
+  // If you have too many nodes, or if matching has failed, bail out
+  check_node_count(0, "out of nodes matching instructions");
+  if (failing())  return;
+
+  // Build a proper-looking CFG
+  PhaseCFG cfg(node_arena(), root(), m);
+  _cfg = &cfg;
+  {
+    NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
+    cfg.Dominators();
+    if (failing())  return;
+
+    NOT_PRODUCT( verify_graph_edges(); )
+
+    cfg.Estimate_Block_Frequency();
+    cfg.GlobalCodeMotion(m,unique(),proj_list);
+
+    print_method("Global code motion", 2);
+
+    if (failing())  return;
+    NOT_PRODUCT( verify_graph_edges(); )
+
+    debug_only( cfg.verify(); )
+  }
+  NOT_PRODUCT( verify_graph_edges(); )
+
+  PhaseChaitin regalloc(unique(),cfg,m);
+  _regalloc = &regalloc;
+  {
+    TracePhase t2("regalloc", &_t_registerAllocation, true);
+    // Perform any platform dependent preallocation actions.  This is used,
+    // for example, to avoid taking an implicit null pointer exception
+    // using the frame pointer on win95.
+    _regalloc->pd_preallocate_hook();
+
+    // Perform register allocation.  After Chaitin, use-def chains are
+    // no longer accurate (at spill code) and so must be ignored.
+    // Node->LRG->reg mappings are still accurate.
+    _regalloc->Register_Allocate();
+
+    // Bail out if the allocator builds too many nodes
+    if (failing())  return;
+  }
+
+  // Prior to register allocation we kept empty basic blocks in case the
+  // the allocator needed a place to spill.  After register allocation we
+  // are not adding any new instructions.  If any basic block is empty, we
+  // can now safely remove it.
+  {
+    NOT_PRODUCT( TracePhase t2("removeEmpty", &_t_removeEmptyBlocks, TimeCompiler); )
+    cfg.RemoveEmpty();
+  }
+
+  // Perform any platform dependent postallocation verifications.
+  debug_only( _regalloc->pd_postallocate_verify_hook(); )
+
+  // Apply peephole optimizations
+  if( OptoPeephole ) {
+    NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
+    PhasePeephole peep( _regalloc, cfg);
+    peep.do_transform();
+  }
+
+  // Convert Nodes to instruction bits in a buffer
+  {
+    // %%%% workspace merge brought two timers together for one job
+    TracePhase t2a("output", &_t_output, true);
+    NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
+    Output();
+  }
+
+  print_method("End");
+
+  // He's dead, Jim.
+  _cfg     = (PhaseCFG*)0xdeadbeef;
+  _regalloc = (PhaseChaitin*)0xdeadbeef;
+}
+
+
+//------------------------------dump_asm---------------------------------------
+// Dump formatted assembly
+#ifndef PRODUCT
+void Compile::dump_asm(int *pcs, uint pc_limit) {
+  bool cut_short = false;
+  tty->print_cr("#");
+  tty->print("#  ");  _tf->dump();  tty->cr();
+  tty->print_cr("#");
+
+  // For all blocks
+  int pc = 0x0;                 // Program counter
+  char starts_bundle = ' ';
+  _regalloc->dump_frame();
+
+  Node *n = NULL;
+  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
+    if (VMThread::should_terminate()) { cut_short = true; break; }
+    Block *b = _cfg->_blocks[i];
+    if (b->is_connector() && !Verbose) continue;
+    n = b->_nodes[0];
+    if (pcs && n->_idx < pc_limit)
+      tty->print("%3.3x   ", pcs[n->_idx]);
+    else
+      tty->print("      ");
+    b->dump_head( &_cfg->_bbs );
+    if (b->is_connector()) {
+      tty->print_cr("        # Empty connector block");
+    } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
+      tty->print_cr("        # Block is sole successor of call");
+    }
+
+    // For all instructions
+    Node *delay = NULL;
+    for( uint j = 0; j<b->_nodes.size(); j++ ) {
+      if (VMThread::should_terminate()) { cut_short = true; break; }
+      n = b->_nodes[j];
+      if (valid_bundle_info(n)) {
+        Bundle *bundle = node_bundling(n);
+        if (bundle->used_in_unconditional_delay()) {
+          delay = n;
+          continue;
+        }
+        if (bundle->starts_bundle())
+          starts_bundle = '+';
+      }
+
+      if( !n->is_Region() &&    // Dont print in the Assembly
+          !n->is_Phi() &&       // a few noisely useless nodes
+          !n->is_Proj() &&
+          !n->is_MachTemp() &&
+          !n->is_Catch() &&     // Would be nice to print exception table targets
+          !n->is_MergeMem() &&  // Not very interesting
+          !n->is_top() &&       // Debug info table constants
+          !(n->is_Con() && !n->is_Mach())// Debug info table constants
+          ) {
+        if (pcs && n->_idx < pc_limit)
+          tty->print("%3.3x", pcs[n->_idx]);
+        else
+          tty->print("   ");
+        tty->print(" %c ", starts_bundle);
+        starts_bundle = ' ';
+        tty->print("\t");
+        n->format(_regalloc, tty);
+        tty->cr();
+      }
+
+      // If we have an instruction with a delay slot, and have seen a delay,
+      // then back up and print it
+      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
+        assert(delay != NULL, "no unconditional delay instruction");
+        if (node_bundling(delay)->starts_bundle())
+          starts_bundle = '+';
+        if (pcs && n->_idx < pc_limit)
+          tty->print("%3.3x", pcs[n->_idx]);
+        else
+          tty->print("   ");
+        tty->print(" %c ", starts_bundle);
+        starts_bundle = ' ';
+        tty->print("\t");
+        delay->format(_regalloc, tty);
+        tty->print_cr("");
+        delay = NULL;
+      }
+
+      // Dump the exception table as well
+      if( n->is_Catch() && (Verbose || WizardMode) ) {
+        // Print the exception table for this offset
+        _handler_table.print_subtable_for(pc);
+      }
+    }
+
+    if (pcs && n->_idx < pc_limit)
+      tty->print_cr("%3.3x", pcs[n->_idx]);
+    else
+      tty->print_cr("");
+
+    assert(cut_short || delay == NULL, "no unconditional delay branch");
+
+  } // End of per-block dump
+  tty->print_cr("");
+
+  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
+}
+#endif
+
+//------------------------------Final_Reshape_Counts---------------------------
+// This class defines counters to help identify when a method
+// may/must be executed using hardware with only 24-bit precision.
+struct Final_Reshape_Counts : public StackObj {
+  int  _call_count;             // count non-inlined 'common' calls
+  int  _float_count;            // count float ops requiring 24-bit precision
+  int  _double_count;           // count double ops requiring more precision
+  int  _java_call_count;        // count non-inlined 'java' calls
+  VectorSet _visited;           // Visitation flags
+  Node_List _tests;             // Set of IfNodes & PCTableNodes
+
+  Final_Reshape_Counts() :
+    _call_count(0), _float_count(0), _double_count(0), _java_call_count(0),
+    _visited( Thread::current()->resource_area() ) { }
+
+  void inc_call_count  () { _call_count  ++; }
+  void inc_float_count () { _float_count ++; }
+  void inc_double_count() { _double_count++; }
+  void inc_java_call_count() { _java_call_count++; }
+
+  int  get_call_count  () const { return _call_count  ; }
+  int  get_float_count () const { return _float_count ; }
+  int  get_double_count() const { return _double_count; }
+  int  get_java_call_count() const { return _java_call_count; }
+};
+
+static bool oop_offset_is_sane(const TypeInstPtr* tp) {
+  ciInstanceKlass *k = tp->klass()->as_instance_klass();
+  // Make sure the offset goes inside the instance layout.
+  return (uint)tp->offset() < (uint)(oopDesc::header_size() + k->nonstatic_field_size())*wordSize;
+  // Note that OffsetBot and OffsetTop are very negative.
+}
+
+//------------------------------final_graph_reshaping_impl----------------------
+// Implement items 1-5 from final_graph_reshaping below.
+static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &fpu ) {
+
+  uint nop = n->Opcode();
+
+  // Check for 2-input instruction with "last use" on right input.
+  // Swap to left input.  Implements item (2).
+  if( n->req() == 3 &&          // two-input instruction
+      n->in(1)->outcnt() > 1 && // left use is NOT a last use
+      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
+      n->in(2)->outcnt() == 1 &&// right use IS a last use
+      !n->in(2)->is_Con() ) {   // right use is not a constant
+    // Check for commutative opcode
+    switch( nop ) {
+    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
+    case Op_MaxI:  case Op_MinI:
+    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
+    case Op_AndL:  case Op_XorL:  case Op_OrL:
+    case Op_AndI:  case Op_XorI:  case Op_OrI: {
+      // Move "last use" input to left by swapping inputs
+      n->swap_edges(1, 2);
+      break;
+    }
+    default:
+      break;
+    }
+  }
+
+  // Count FPU ops and common calls, implements item (3)
+  switch( nop ) {
+  // Count all float operations that may use FPU
+  case Op_AddF:
+  case Op_SubF:
+  case Op_MulF:
+  case Op_DivF:
+  case Op_NegF:
+  case Op_ModF:
+  case Op_ConvI2F:
+  case Op_ConF:
+  case Op_CmpF:
+  case Op_CmpF3:
+  // case Op_ConvL2F: // longs are split into 32-bit halves
+    fpu.inc_float_count();
+    break;
+
+  case Op_ConvF2D:
+  case Op_ConvD2F:
+    fpu.inc_float_count();
+    fpu.inc_double_count();
+    break;
+
+  // Count all double operations that may use FPU
+  case Op_AddD:
+  case Op_SubD:
+  case Op_MulD:
+  case Op_DivD:
+  case Op_NegD:
+  case Op_ModD:
+  case Op_ConvI2D:
+  case Op_ConvD2I:
+  // case Op_ConvL2D: // handled by leaf call
+  // case Op_ConvD2L: // handled by leaf call
+  case Op_ConD:
+  case Op_CmpD:
+  case Op_CmpD3:
+    fpu.inc_double_count();
+    break;
+  case Op_Opaque1:              // Remove Opaque Nodes before matching
+  case Op_Opaque2:              // Remove Opaque Nodes before matching
+    n->replace_by(n->in(1));
+    break;
+  case Op_CallStaticJava:
+  case Op_CallJava:
+  case Op_CallDynamicJava:
+    fpu.inc_java_call_count(); // Count java call site;
+  case Op_CallRuntime:
+  case Op_CallLeaf:
+  case Op_CallLeafNoFP: {
+    assert( n->is_Call(), "" );
+    CallNode *call = n->as_Call();
+    // Count call sites where the FP mode bit would have to be flipped.
+    // Do not count uncommon runtime calls:
+    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
+    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
+    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
+      fpu.inc_call_count();   // Count the call site
+    } else {                  // See if uncommon argument is shared
+      Node *n = call->in(TypeFunc::Parms);
+      int nop = n->Opcode();
+      // Clone shared simple arguments to uncommon calls, item (1).
+      if( n->outcnt() > 1 &&
+          !n->is_Proj() &&
+          nop != Op_CreateEx &&
+          nop != Op_CheckCastPP &&
+          !n->is_Mem() ) {
+        Node *x = n->clone();
+        call->set_req( TypeFunc::Parms, x );
+      }
+    }
+    break;
+  }
+
+  case Op_StoreD:
+  case Op_LoadD:
+  case Op_LoadD_unaligned:
+    fpu.inc_double_count();
+    goto handle_mem;
+  case Op_StoreF:
+  case Op_LoadF:
+    fpu.inc_float_count();
+    goto handle_mem;
+
+  case Op_StoreB:
+  case Op_StoreC:
+  case Op_StoreCM:
+  case Op_StorePConditional:
+  case Op_StoreI:
+  case Op_StoreL:
+  case Op_StoreLConditional:
+  case Op_CompareAndSwapI:
+  case Op_CompareAndSwapL:
+  case Op_CompareAndSwapP:
+  case Op_StoreP:
+  case Op_LoadB:
+  case Op_LoadC:
+  case Op_LoadI:
+  case Op_LoadKlass:
+  case Op_LoadL:
+  case Op_LoadL_unaligned:
+  case Op_LoadPLocked:
+  case Op_LoadLLocked:
+  case Op_LoadP:
+  case Op_LoadRange:
+  case Op_LoadS: {
+  handle_mem:
+#ifdef ASSERT
+    if( VerifyOptoOopOffsets ) {
+      assert( n->is_Mem(), "" );
+      MemNode *mem  = (MemNode*)n;
+      // Check to see if address types have grounded out somehow.
+      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
+      assert( !tp || oop_offset_is_sane(tp), "" );
+    }
+#endif
+    break;
+  }
+  case Op_If:
+  case Op_CountedLoopEnd:
+    fpu._tests.push(n);         // Collect CFG split points
+    break;
+
+  case Op_AddP: {               // Assert sane base pointers
+    const Node *addp = n->in(AddPNode::Address);
+    assert( !addp->is_AddP() ||
+            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
+            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
+            "Base pointers must match" );
+    break;
+  }
+
+  case Op_ModI:
+    if (UseDivMod) {
+      // Check if a%b and a/b both exist
+      Node* d = n->find_similar(Op_DivI);
+      if (d) {
+        // Replace them with a fused divmod if supported
+        Compile* C = Compile::current();
+        if (Matcher::has_match_rule(Op_DivModI)) {
+          DivModINode* divmod = DivModINode::make(C, n);
+          d->replace_by(divmod->div_proj());
+          n->replace_by(divmod->mod_proj());
+        } else {
+          // replace a%b with a-((a/b)*b)
+          Node* mult = new (C, 3) MulINode(d, d->in(2));
+          Node* sub  = new (C, 3) SubINode(d->in(1), mult);
+          n->replace_by( sub );
+        }
+      }
+    }
+    break;
+
+  case Op_ModL:
+    if (UseDivMod) {
+      // Check if a%b and a/b both exist
+      Node* d = n->find_similar(Op_DivL);
+      if (d) {
+        // Replace them with a fused divmod if supported
+        Compile* C = Compile::current();
+        if (Matcher::has_match_rule(Op_DivModL)) {
+          DivModLNode* divmod = DivModLNode::make(C, n);
+          d->replace_by(divmod->div_proj());
+          n->replace_by(divmod->mod_proj());
+        } else {
+          // replace a%b with a-((a/b)*b)
+          Node* mult = new (C, 3) MulLNode(d, d->in(2));
+          Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
+          n->replace_by( sub );
+        }
+      }
+    }
+    break;
+
+  case Op_Load16B:
+  case Op_Load8B:
+  case Op_Load4B:
+  case Op_Load8S:
+  case Op_Load4S:
+  case Op_Load2S:
+  case Op_Load8C:
+  case Op_Load4C:
+  case Op_Load2C:
+  case Op_Load4I:
+  case Op_Load2I:
+  case Op_Load2L:
+  case Op_Load4F:
+  case Op_Load2F:
+  case Op_Load2D:
+  case Op_Store16B:
+  case Op_Store8B:
+  case Op_Store4B:
+  case Op_Store8C:
+  case Op_Store4C:
+  case Op_Store2C:
+  case Op_Store4I:
+  case Op_Store2I:
+  case Op_Store2L:
+  case Op_Store4F:
+  case Op_Store2F:
+  case Op_Store2D:
+    break;
+
+  case Op_PackB:
+  case Op_PackS:
+  case Op_PackC:
+  case Op_PackI:
+  case Op_PackF:
+  case Op_PackL:
+  case Op_PackD:
+    if (n->req()-1 > 2) {
+      // Replace many operand PackNodes with a binary tree for matching
+      PackNode* p = (PackNode*) n;
+      Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
+      n->replace_by(btp);
+    }
+    break;
+  default:
+    assert( !n->is_Call(), "" );
+    assert( !n->is_Mem(), "" );
+    if( n->is_If() || n->is_PCTable() )
+      fpu._tests.push(n);       // Collect CFG split points
+    break;
+  }
+}
+
+//------------------------------final_graph_reshaping_walk---------------------
+// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
+// requires that the walk visits a node's inputs before visiting the node.
+static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &fpu ) {
+  fpu._visited.set(root->_idx); // first, mark node as visited
+  uint cnt = root->req();
+  Node *n = root;
+  uint  i = 0;
+  while (true) {
+    if (i < cnt) {
+      // Place all non-visited non-null inputs onto stack
+      Node* m = n->in(i);
+      ++i;
+      if (m != NULL && !fpu._visited.test_set(m->_idx)) {
+        cnt = m->req();
+        nstack.push(n, i); // put on stack parent and next input's index
+        n = m;
+        i = 0;
+      }
+    } else {
+      // Now do post-visit work
+      final_graph_reshaping_impl( n, fpu );
+      if (nstack.is_empty())
+        break;             // finished
+      n = nstack.node();   // Get node from stack
+      cnt = n->req();
+      i = nstack.index();
+      nstack.pop();        // Shift to the next node on stack
+    }
+  }
+}
+
+//------------------------------final_graph_reshaping--------------------------
+// Final Graph Reshaping.
+//
+// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
+//     and not commoned up and forced early.  Must come after regular
+//     optimizations to avoid GVN undoing the cloning.  Clone constant
+//     inputs to Loop Phis; these will be split by the allocator anyways.
+//     Remove Opaque nodes.
+// (2) Move last-uses by commutative operations to the left input to encourage
+//     Intel update-in-place two-address operations and better register usage
+//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
+//     calls canonicalizing them back.
+// (3) Count the number of double-precision FP ops, single-precision FP ops
+//     and call sites.  On Intel, we can get correct rounding either by
+//     forcing singles to memory (requires extra stores and loads after each
+//     FP bytecode) or we can set a rounding mode bit (requires setting and
+//     clearing the mode bit around call sites).  The mode bit is only used
+//     if the relative frequency of single FP ops to calls is low enough.
+//     This is a key transform for SPEC mpeg_audio.
+// (4) Detect infinite loops; blobs of code reachable from above but not
+//     below.  Several of the Code_Gen algorithms fail on such code shapes,
+//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
+//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
+//     Detection is by looking for IfNodes where only 1 projection is
+//     reachable from below or CatchNodes missing some targets.
+// (5) Assert for insane oop offsets in debug mode.
+
+bool Compile::final_graph_reshaping() {
+  // an infinite loop may have been eliminated by the optimizer,
+  // in which case the graph will be empty.
+  if (root()->req() == 1) {
+    record_method_not_compilable("trivial infinite loop");
+    return true;
+  }
+
+  Final_Reshape_Counts fpu;
+
+  // Visit everybody reachable!
+  // Allocate stack of size C->unique()/2 to avoid frequent realloc
+  Node_Stack nstack(unique() >> 1);
+  final_graph_reshaping_walk(nstack, root(), fpu);
+
+  // Check for unreachable (from below) code (i.e., infinite loops).
+  for( uint i = 0; i < fpu._tests.size(); i++ ) {
+    Node *n = fpu._tests[i];
+    assert( n->is_PCTable() || n->is_If(), "either PCTables or IfNodes" );
+    // Get number of CFG targets; 2 for IfNodes or _size for PCTables.
+    // Note that PCTables include exception targets after calls.
+    uint expected_kids = n->is_PCTable() ? n->as_PCTable()->_size : 2;
+    if (n->outcnt() != expected_kids) {
+      // Check for a few special cases.  Rethrow Nodes never take the
+      // 'fall-thru' path, so expected kids is 1 less.
+      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
+        if (n->in(0)->in(0)->is_Call()) {
+          CallNode *call = n->in(0)->in(0)->as_Call();
+          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
+            expected_kids--;      // Rethrow always has 1 less kid
+          } else if (call->req() > TypeFunc::Parms &&
+                     call->is_CallDynamicJava()) {
+            // Check for null receiver. In such case, the optimizer has
+            // detected that the virtual call will always result in a null
+            // pointer exception. The fall-through projection of this CatchNode
+            // will not be populated.
+            Node *arg0 = call->in(TypeFunc::Parms);
+            if (arg0->is_Type() &&
+                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
+              expected_kids--;
+            }
+          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
+                     call->req() > TypeFunc::Parms+1 &&
+                     call->is_CallStaticJava()) {
+            // Check for negative array length. In such case, the optimizer has
+            // detected that the allocation attempt will always result in an
+            // exception. There is no fall-through projection of this CatchNode .
+            Node *arg1 = call->in(TypeFunc::Parms+1);
+            if (arg1->is_Type() &&
+                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
+              expected_kids--;
+            }
+          }
+        }
+      }
+      // Recheck with a better notion of 'expected_kids'
+      if (n->outcnt() != expected_kids) {
+        record_method_not_compilable("malformed control flow");
+        return true;            // Not all targets reachable!
+      }
+    }
+    // Check that I actually visited all kids.  Unreached kids
+    // must be infinite loops.
+    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
+      if (!fpu._visited.test(n->fast_out(j)->_idx)) {
+        record_method_not_compilable("infinite loop");
+        return true;            // Found unvisited kid; must be unreach
+      }
+  }
+
+  // If original bytecodes contained a mixture of floats and doubles
+  // check if the optimizer has made it homogenous, item (3).
+  if( Use24BitFPMode && Use24BitFP &&
+      fpu.get_float_count() > 32 &&
+      fpu.get_double_count() == 0 &&
+      (10 * fpu.get_call_count() < fpu.get_float_count()) ) {
+    set_24_bit_selection_and_mode( false,  true );
+  }
+
+  set_has_java_calls(fpu.get_java_call_count() > 0);
+
+  // No infinite loops, no reason to bail out.
+  return false;
+}
+
+//-----------------------------too_many_traps----------------------------------
+// Report if there are too many traps at the current method and bci.
+// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
+bool Compile::too_many_traps(ciMethod* method,
+                             int bci,
+                             Deoptimization::DeoptReason reason) {
+  ciMethodData* md = method->method_data();
+  if (md->is_empty()) {
+    // Assume the trap has not occurred, or that it occurred only
+    // because of a transient condition during start-up in the interpreter.
+    return false;
+  }
+  if (md->has_trap_at(bci, reason) != 0) {
+    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
+    // Also, if there are multiple reasons, or if there is no per-BCI record,
+    // assume the worst.
+    if (log())
+      log()->elem("observe trap='%s' count='%d'",
+                  Deoptimization::trap_reason_name(reason),
+                  md->trap_count(reason));
+    return true;
+  } else {
+    // Ignore method/bci and see if there have been too many globally.
+    return too_many_traps(reason, md);
+  }
+}
+
+// Less-accurate variant which does not require a method and bci.
+bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
+                             ciMethodData* logmd) {
+ if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
+    // Too many traps globally.
+    // Note that we use cumulative trap_count, not just md->trap_count.
+    if (log()) {
+      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
+      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
+                  Deoptimization::trap_reason_name(reason),
+                  mcount, trap_count(reason));
+    }
+    return true;
+  } else {
+    // The coast is clear.
+    return false;
+  }
+}
+
+//--------------------------too_many_recompiles--------------------------------
+// Report if there are too many recompiles at the current method and bci.
+// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
+// Is not eager to return true, since this will cause the compiler to use
+// Action_none for a trap point, to avoid too many recompilations.
+bool Compile::too_many_recompiles(ciMethod* method,
+                                  int bci,
+                                  Deoptimization::DeoptReason reason) {
+  ciMethodData* md = method->method_data();
+  if (md->is_empty()) {
+    // Assume the trap has not occurred, or that it occurred only
+    // because of a transient condition during start-up in the interpreter.
+    return false;
+  }
+  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
+  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
+  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
+  Deoptimization::DeoptReason per_bc_reason
+    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
+  if ((per_bc_reason == Deoptimization::Reason_none
+       || md->has_trap_at(bci, reason) != 0)
+      // The trap frequency measure we care about is the recompile count:
+      && md->trap_recompiled_at(bci)
+      && md->overflow_recompile_count() >= bc_cutoff) {
+    // Do not emit a trap here if it has already caused recompilations.
+    // Also, if there are multiple reasons, or if there is no per-BCI record,
+    // assume the worst.
+    if (log())
+      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
+                  Deoptimization::trap_reason_name(reason),
+                  md->trap_count(reason),
+                  md->overflow_recompile_count());
+    return true;
+  } else if (trap_count(reason) != 0
+             && decompile_count() >= m_cutoff) {
+    // Too many recompiles globally, and we have seen this sort of trap.
+    // Use cumulative decompile_count, not just md->decompile_count.
+    if (log())
+      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
+                  Deoptimization::trap_reason_name(reason),
+                  md->trap_count(reason), trap_count(reason),
+                  md->decompile_count(), decompile_count());
+    return true;
+  } else {
+    // The coast is clear.
+    return false;
+  }
+}
+
+
+#ifndef PRODUCT
+//------------------------------verify_graph_edges---------------------------
+// Walk the Graph and verify that there is a one-to-one correspondence
+// between Use-Def edges and Def-Use edges in the graph.
+void Compile::verify_graph_edges(bool no_dead_code) {
+  if (VerifyGraphEdges) {
+    ResourceArea *area = Thread::current()->resource_area();
+    Unique_Node_List visited(area);
+    // Call recursive graph walk to check edges
+    _root->verify_edges(visited);
+    if (no_dead_code) {
+      // Now make sure that no visited node is used by an unvisited node.
+      bool dead_nodes = 0;
+      Unique_Node_List checked(area);
+      while (visited.size() > 0) {
+        Node* n = visited.pop();
+        checked.push(n);
+        for (uint i = 0; i < n->outcnt(); i++) {
+          Node* use = n->raw_out(i);
+          if (checked.member(use))  continue;  // already checked
+          if (visited.member(use))  continue;  // already in the graph
+          if (use->is_Con())        continue;  // a dead ConNode is OK
+          // At this point, we have found a dead node which is DU-reachable.
+          if (dead_nodes++ == 0)
+            tty->print_cr("*** Dead nodes reachable via DU edges:");
+          use->dump(2);
+          tty->print_cr("---");
+          checked.push(use);  // No repeats; pretend it is now checked.
+        }
+      }
+      assert(dead_nodes == 0, "using nodes must be reachable from root");
+    }
+  }
+}
+#endif
+
+// The Compile object keeps track of failure reasons separately from the ciEnv.
+// This is required because there is not quite a 1-1 relation between the
+// ciEnv and its compilation task and the Compile object.  Note that one
+// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
+// to backtrack and retry without subsuming loads.  Other than this backtracking
+// behavior, the Compile's failure reason is quietly copied up to the ciEnv
+// by the logic in C2Compiler.
+void Compile::record_failure(const char* reason) {
+  if (log() != NULL) {
+    log()->elem("failure reason='%s' phase='compile'", reason);
+  }
+  if (_failure_reason == NULL) {
+    // Record the first failure reason.
+    _failure_reason = reason;
+  }
+  _root = NULL;  // flush the graph, too
+}
+
+Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
+  : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
+{
+  if (dolog) {
+    C = Compile::current();
+    _log = C->log();
+  } else {
+    C = NULL;
+    _log = NULL;
+  }
+  if (_log != NULL) {
+    _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
+    _log->stamp();
+    _log->end_head();
+  }
+}
+
+Compile::TracePhase::~TracePhase() {
+  if (_log != NULL) {
+    _log->done("phase nodes='%d'", C->unique());
+  }
+}