42664
|
1 |
/*
|
|
2 |
* Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
#ifndef CPU_ARM_VM_ASSEMBLER_ARM_32_HPP
|
|
26 |
#define CPU_ARM_VM_ASSEMBLER_ARM_32_HPP
|
|
27 |
|
|
28 |
// ARM Addressing Mode 1 - Data processing operands
|
|
29 |
class AsmOperand VALUE_OBJ_CLASS_SPEC {
|
|
30 |
private:
|
|
31 |
int _encoding;
|
|
32 |
|
|
33 |
void initialize_rotated_imm(unsigned int imm);
|
|
34 |
|
|
35 |
void encode(int imm_8) {
|
|
36 |
if ((imm_8 >> 8) == 0) {
|
|
37 |
_encoding = 1 << 25 | imm_8; // the most common case
|
|
38 |
} else {
|
|
39 |
initialize_rotated_imm((unsigned int)imm_8); // slow case
|
|
40 |
}
|
|
41 |
}
|
|
42 |
|
|
43 |
void encode(Register rm, AsmShift shift, int shift_imm) {
|
|
44 |
assert((shift_imm >> 5) == 0, "encoding constraint");
|
|
45 |
_encoding = shift_imm << 7 | shift << 5 | rm->encoding();
|
|
46 |
}
|
|
47 |
|
|
48 |
public:
|
|
49 |
|
|
50 |
AsmOperand(Register reg) {
|
|
51 |
_encoding = reg->encoding();
|
|
52 |
}
|
|
53 |
|
|
54 |
AsmOperand(int imm_8) {
|
|
55 |
encode(imm_8);
|
|
56 |
}
|
|
57 |
|
|
58 |
#ifdef ASSERT
|
|
59 |
AsmOperand(ByteSize bytesize_8) {
|
|
60 |
const int imm_8 = in_bytes(bytesize_8);
|
|
61 |
encode(imm_8);
|
|
62 |
}
|
|
63 |
#endif // ASSERT
|
|
64 |
|
|
65 |
AsmOperand(Register rm, AsmShift shift, int shift_imm) {
|
|
66 |
encode(rm,shift,shift_imm);
|
|
67 |
}
|
|
68 |
|
|
69 |
AsmOperand(Register rm, AsmShift shift, Register rs) {
|
|
70 |
assert(rm != PC && rs != PC, "unpredictable instruction");
|
|
71 |
_encoding = rs->encoding() << 8 | shift << 5 | 1 << 4 | rm->encoding();
|
|
72 |
}
|
|
73 |
|
|
74 |
AsmOperand(RegisterOrConstant offset, AsmShift shift = lsl, int shift_imm = 0) {
|
|
75 |
if (offset.is_register()) {
|
|
76 |
encode(offset.as_register(), shift, shift_imm);
|
|
77 |
} else {
|
|
78 |
assert(shift == lsl,"shift type not yet encoded");
|
|
79 |
int imm_8 = ((int)offset.as_constant()) << shift_imm;
|
|
80 |
encode(imm_8);
|
|
81 |
}
|
|
82 |
}
|
|
83 |
|
|
84 |
int encoding() const {
|
|
85 |
return _encoding;
|
|
86 |
}
|
|
87 |
|
|
88 |
bool is_immediate() const {
|
|
89 |
return _encoding & (1 << 25) ? true : false;
|
|
90 |
}
|
|
91 |
|
|
92 |
Register base_register() const {
|
|
93 |
assert(!is_immediate(), "is_immediate, no base reg");
|
|
94 |
return as_Register(_encoding & 15);
|
|
95 |
}
|
|
96 |
|
|
97 |
static bool is_rotated_imm(unsigned int imm);
|
|
98 |
};
|
|
99 |
|
|
100 |
|
|
101 |
// ARM Addressing Mode 4 - Load and store multiple
|
|
102 |
class RegisterSet VALUE_OBJ_CLASS_SPEC {
|
|
103 |
private:
|
|
104 |
int _encoding;
|
|
105 |
|
|
106 |
RegisterSet(int encoding) {
|
|
107 |
_encoding = encoding;
|
|
108 |
}
|
|
109 |
|
|
110 |
public:
|
|
111 |
|
|
112 |
RegisterSet(Register reg) {
|
|
113 |
_encoding = 1 << reg->encoding();
|
|
114 |
}
|
|
115 |
|
|
116 |
RegisterSet() {
|
|
117 |
_encoding = 0;
|
|
118 |
}
|
|
119 |
|
|
120 |
RegisterSet(Register first, Register last) {
|
|
121 |
assert(first < last, "encoding constraint");
|
|
122 |
_encoding = (1 << (last->encoding() + 1)) - (1 << first->encoding());
|
|
123 |
}
|
|
124 |
|
|
125 |
friend RegisterSet operator | (const RegisterSet set1, const RegisterSet set2) {
|
|
126 |
assert((set1._encoding & set2._encoding) == 0,
|
|
127 |
"encoding constraint");
|
|
128 |
return RegisterSet(set1._encoding | set2._encoding);
|
|
129 |
}
|
|
130 |
|
|
131 |
int encoding() const {
|
|
132 |
return _encoding;
|
|
133 |
}
|
|
134 |
|
|
135 |
bool contains(Register reg) const {
|
|
136 |
return (_encoding & (1 << reg->encoding())) != 0;
|
|
137 |
}
|
|
138 |
|
|
139 |
// number of registers in the set
|
|
140 |
int size() const {
|
|
141 |
int count = 0;
|
|
142 |
unsigned int remaining = (unsigned int) _encoding;
|
|
143 |
while (remaining != 0) {
|
|
144 |
if ((remaining & 1) != 0) count++;
|
|
145 |
remaining >>= 1;
|
|
146 |
}
|
|
147 |
return count;
|
|
148 |
}
|
|
149 |
};
|
|
150 |
|
|
151 |
#if R9_IS_SCRATCHED
|
|
152 |
#define R9ifScratched RegisterSet(R9)
|
|
153 |
#else
|
|
154 |
#define R9ifScratched RegisterSet()
|
|
155 |
#endif
|
|
156 |
|
|
157 |
// ARM Addressing Mode 5 - Load and store multiple VFP registers
|
|
158 |
class FloatRegisterSet VALUE_OBJ_CLASS_SPEC {
|
|
159 |
private:
|
|
160 |
int _encoding;
|
|
161 |
|
|
162 |
public:
|
|
163 |
|
|
164 |
FloatRegisterSet(FloatRegister reg) {
|
|
165 |
if (reg->hi_bit() == 0) {
|
|
166 |
_encoding = reg->hi_bits() << 12 | reg->lo_bit() << 22 | 1;
|
|
167 |
} else {
|
|
168 |
assert (reg->lo_bit() == 0, "impossible encoding");
|
|
169 |
_encoding = reg->hi_bits() << 12 | reg->hi_bit() << 22 | 1;
|
|
170 |
}
|
|
171 |
}
|
|
172 |
|
|
173 |
FloatRegisterSet(FloatRegister first, int count) {
|
|
174 |
assert(count >= 1, "encoding constraint");
|
|
175 |
if (first->hi_bit() == 0) {
|
|
176 |
_encoding = first->hi_bits() << 12 | first->lo_bit() << 22 | count;
|
|
177 |
} else {
|
|
178 |
assert (first->lo_bit() == 0, "impossible encoding");
|
|
179 |
_encoding = first->hi_bits() << 12 | first->hi_bit() << 22 | count;
|
|
180 |
}
|
|
181 |
}
|
|
182 |
|
|
183 |
int encoding_s() const {
|
|
184 |
return _encoding;
|
|
185 |
}
|
|
186 |
|
|
187 |
int encoding_d() const {
|
|
188 |
assert((_encoding & 0xFF) <= 16, "no more than 16 double registers" );
|
|
189 |
return (_encoding & 0xFFFFFF00) | ((_encoding & 0xFF) << 1);
|
|
190 |
}
|
|
191 |
|
|
192 |
};
|
|
193 |
|
|
194 |
|
|
195 |
class Assembler : public AbstractAssembler {
|
|
196 |
|
|
197 |
public:
|
|
198 |
|
|
199 |
static const int LogInstructionSize = 2;
|
|
200 |
static const int InstructionSize = 1 << LogInstructionSize;
|
|
201 |
|
|
202 |
static inline AsmCondition inverse(AsmCondition cond) {
|
|
203 |
assert ((cond != al) && (cond != nv), "AL and NV conditions cannot be inversed");
|
|
204 |
return (AsmCondition)((int)cond ^ 1);
|
|
205 |
}
|
|
206 |
|
|
207 |
// Returns true if given value can be used as immediate in arithmetic (add/sub/cmp/cmn) instructions.
|
|
208 |
static inline bool is_arith_imm_in_range(intx value) {
|
|
209 |
return AsmOperand::is_rotated_imm(value);
|
|
210 |
}
|
|
211 |
|
|
212 |
// Arithmetic instructions
|
|
213 |
|
|
214 |
#define F(mnemonic, opcode) \
|
|
215 |
void mnemonic(Register rd, Register rn, AsmOperand operand, AsmCondition cond = al) { \
|
|
216 |
emit_int32(cond << 28 | opcode << 21 | rn->encoding() << 16 | \
|
|
217 |
rd->encoding() << 12 | operand.encoding()); \
|
|
218 |
} \
|
|
219 |
void mnemonic##s(Register rd, Register rn, AsmOperand operand, AsmCondition cond = al) { \
|
|
220 |
emit_int32(cond << 28 | opcode << 21 | 1 << 20 | rn->encoding() << 16 | \
|
|
221 |
rd->encoding() << 12 | operand.encoding()); \
|
|
222 |
}
|
|
223 |
|
|
224 |
F(andr, 0)
|
|
225 |
F(eor, 1)
|
|
226 |
F(sub, 2)
|
|
227 |
F(rsb, 3)
|
|
228 |
F(add, 4)
|
|
229 |
F(adc, 5)
|
|
230 |
F(sbc, 6)
|
|
231 |
F(rsc, 7)
|
|
232 |
F(orr, 12)
|
|
233 |
F(bic, 14)
|
|
234 |
#undef F
|
|
235 |
|
|
236 |
#define F(mnemonic, opcode) \
|
|
237 |
void mnemonic(Register rn, AsmOperand operand, AsmCondition cond = al) { \
|
|
238 |
emit_int32(cond << 28 | opcode << 21 | 1 << 20 | rn->encoding() << 16 | \
|
|
239 |
operand.encoding()); \
|
|
240 |
}
|
|
241 |
|
|
242 |
F(tst, 8)
|
|
243 |
F(teq, 9)
|
|
244 |
F(cmp, 10)
|
|
245 |
F(cmn, 11)
|
|
246 |
#undef F
|
|
247 |
|
|
248 |
#define F(mnemonic, opcode) \
|
|
249 |
void mnemonic(Register rd, AsmOperand operand, AsmCondition cond = al) { \
|
|
250 |
emit_int32(cond << 28 | opcode << 21 | rd->encoding() << 12 | \
|
|
251 |
operand.encoding()); \
|
|
252 |
} \
|
|
253 |
void mnemonic##s(Register rd, AsmOperand operand, AsmCondition cond = al) { \
|
|
254 |
emit_int32(cond << 28 | opcode << 21 | 1 << 20 | rd->encoding() << 12 | \
|
|
255 |
operand.encoding()); \
|
|
256 |
}
|
|
257 |
|
|
258 |
F(mov, 13)
|
|
259 |
F(mvn, 15)
|
|
260 |
#undef F
|
|
261 |
|
|
262 |
void msr(uint fields, AsmOperand operand, AsmCondition cond = al) {
|
|
263 |
assert((operand.encoding() & (1<<25)) || ((operand.encoding() & 0xff0) == 0), "invalid addressing mode");
|
|
264 |
emit_int32(cond << 28 | 1 << 24 | 1 << 21 | fields << 16 | 0xf << 12 | operand.encoding());
|
|
265 |
}
|
|
266 |
|
|
267 |
void mrs(uint fields, Register Rd, AsmCondition cond = al) {
|
|
268 |
emit_int32(cond << 28 | 1 << 24 | (fields|0xf) << 16 | (Rd->encoding() << 12));
|
|
269 |
}
|
|
270 |
|
|
271 |
|
|
272 |
enum {
|
|
273 |
CPSR = 0x00, CPSR_c = 0x01, CPSR_x = 0x02, CPSR_xc = 0x03,
|
|
274 |
CPSR_s = 0x004, CPSR_sc = 0x05, CPSR_sx = 0x06, CPSR_sxc = 0x07,
|
|
275 |
CPSR_f = 0x08, CPSR_fc = 0x09, CPSR_fx = 0x0a, CPSR_fxc = 0x0b,
|
|
276 |
CPSR_fs = 0x0c, CPSR_fsc = 0x0d, CPSR_fsx = 0x0e, CPSR_fsxc = 0x0f,
|
|
277 |
SPSR = 0x40, SPSR_c = 0x41, SPSR_x = 0x42, SPSR_xc = 0x43,
|
|
278 |
SPSR_s = 0x44, SPSR_sc = 0x45, SPSR_sx = 0x46, SPSR_sxc = 0x47,
|
|
279 |
SPSR_f = 0x48, SPSR_fc = 0x49, SPSR_fx = 0x4a, SPSR_fxc = 0x4b,
|
|
280 |
SPSR_fs = 0x4c, SPSR_fsc = 0x4d, SPSR_fsx = 0x4e, SPSR_fsxc = 0x4f
|
|
281 |
};
|
|
282 |
|
|
283 |
#define F(mnemonic, opcode) \
|
|
284 |
void mnemonic(Register rdlo, Register rdhi, Register rm, Register rs, \
|
|
285 |
AsmCondition cond = al) { \
|
|
286 |
emit_int32(cond << 28 | opcode << 21 | rdhi->encoding() << 16 | \
|
|
287 |
rdlo->encoding() << 12 | rs->encoding() << 8 | 0x9 << 4 | rm->encoding()); \
|
|
288 |
} \
|
|
289 |
void mnemonic##s(Register rdlo, Register rdhi, Register rm, Register rs, \
|
|
290 |
AsmCondition cond = al) { \
|
|
291 |
emit_int32(cond << 28 | opcode << 21 | 1 << 20 | rdhi->encoding() << 16 | \
|
|
292 |
rdlo->encoding() << 12 | rs->encoding() << 8 | 0x9 << 4 | rm->encoding()); \
|
|
293 |
}
|
|
294 |
|
|
295 |
F(umull, 4)
|
|
296 |
F(umlal, 5)
|
|
297 |
F(smull, 6)
|
|
298 |
F(smlal, 7)
|
|
299 |
#undef F
|
|
300 |
|
|
301 |
void mul(Register rd, Register rm, Register rs, AsmCondition cond = al) {
|
|
302 |
emit_int32(cond << 28 | rd->encoding() << 16 |
|
|
303 |
rs->encoding() << 8 | 0x9 << 4 | rm->encoding());
|
|
304 |
}
|
|
305 |
|
|
306 |
void muls(Register rd, Register rm, Register rs, AsmCondition cond = al) {
|
|
307 |
emit_int32(cond << 28 | 1 << 20 | rd->encoding() << 16 |
|
|
308 |
rs->encoding() << 8 | 0x9 << 4 | rm->encoding());
|
|
309 |
}
|
|
310 |
|
|
311 |
void mla(Register rd, Register rm, Register rs, Register rn, AsmCondition cond = al) {
|
|
312 |
emit_int32(cond << 28 | 1 << 21 | rd->encoding() << 16 |
|
|
313 |
rn->encoding() << 12 | rs->encoding() << 8 | 0x9 << 4 | rm->encoding());
|
|
314 |
}
|
|
315 |
|
|
316 |
void mlas(Register rd, Register rm, Register rs, Register rn, AsmCondition cond = al) {
|
|
317 |
emit_int32(cond << 28 | 1 << 21 | 1 << 20 | rd->encoding() << 16 |
|
|
318 |
rn->encoding() << 12 | rs->encoding() << 8 | 0x9 << 4 | rm->encoding());
|
|
319 |
}
|
|
320 |
|
|
321 |
// Loads and stores
|
|
322 |
|
|
323 |
#define F(mnemonic, l, b) \
|
|
324 |
void mnemonic(Register rd, Address addr, AsmCondition cond = al) { \
|
|
325 |
emit_int32(cond << 28 | 1 << 26 | b << 22 | l << 20 | \
|
|
326 |
rd->encoding() << 12 | addr.encoding2()); \
|
|
327 |
}
|
|
328 |
|
|
329 |
F(ldr, 1, 0)
|
|
330 |
F(ldrb, 1, 1)
|
|
331 |
F(str, 0, 0)
|
|
332 |
F(strb, 0, 1)
|
|
333 |
#undef F
|
|
334 |
|
|
335 |
#undef F
|
|
336 |
|
|
337 |
#define F(mnemonic, l, sh, even) \
|
|
338 |
void mnemonic(Register rd, Address addr, AsmCondition cond = al) { \
|
|
339 |
assert(!even || (rd->encoding() & 1) == 0, "must be even"); \
|
|
340 |
emit_int32(cond << 28 | l << 20 | rd->encoding() << 12 | \
|
|
341 |
1 << 7 | sh << 5 | 1 << 4 | addr.encoding3()); \
|
|
342 |
}
|
|
343 |
|
|
344 |
F(strh, 0, 1, false)
|
|
345 |
F(ldrh, 1, 1, false)
|
|
346 |
F(ldrsb, 1, 2, false)
|
|
347 |
F(ldrsh, 1, 3, false)
|
|
348 |
F(strd, 0, 3, true)
|
|
349 |
|
|
350 |
#undef F
|
|
351 |
|
|
352 |
void ldrd(Register rd, Address addr, AsmCondition cond = al) {
|
|
353 |
assert((rd->encoding() & 1) == 0, "must be even");
|
|
354 |
assert(!addr.index()->is_valid() ||
|
|
355 |
(addr.index()->encoding() != rd->encoding() &&
|
|
356 |
addr.index()->encoding() != (rd->encoding()+1)), "encoding constraint");
|
|
357 |
emit_int32(cond << 28 | rd->encoding() << 12 | 0xD /* 0b1101 */ << 4 | addr.encoding3());
|
|
358 |
}
|
|
359 |
|
|
360 |
#define F(mnemonic, l, pu) \
|
|
361 |
void mnemonic(Register rn, RegisterSet reg_set, \
|
|
362 |
AsmWriteback w = no_writeback, AsmCondition cond = al) { \
|
|
363 |
assert(reg_set.encoding() != 0 && (w == no_writeback || \
|
|
364 |
(reg_set.encoding() & (1 << rn->encoding())) == 0), \
|
|
365 |
"unpredictable instruction"); \
|
|
366 |
emit_int32(cond << 28 | 4 << 25 | pu << 23 | w << 21 | l << 20 | \
|
|
367 |
rn->encoding() << 16 | reg_set.encoding()); \
|
|
368 |
}
|
|
369 |
|
|
370 |
F(ldmda, 1, 0) F(ldmfa, 1, 0)
|
|
371 |
F(ldmia, 1, 1) F(ldmfd, 1, 1)
|
|
372 |
F(ldmdb, 1, 2) F(ldmea, 1, 2)
|
|
373 |
F(ldmib, 1, 3) F(ldmed, 1, 3)
|
|
374 |
F(stmda, 0, 0) F(stmed, 0, 0)
|
|
375 |
F(stmia, 0, 1) F(stmea, 0, 1)
|
|
376 |
F(stmdb, 0, 2) F(stmfd, 0, 2)
|
|
377 |
F(stmib, 0, 3) F(stmfa, 0, 3)
|
|
378 |
#undef F
|
|
379 |
|
|
380 |
void ldrex(Register rd, Address addr, AsmCondition cond = al) {
|
|
381 |
assert(rd != PC, "unpredictable instruction");
|
|
382 |
emit_int32(cond << 28 | 0x19 << 20 | addr.encoding_ex() |
|
|
383 |
rd->encoding() << 12 | 0xf9f);
|
|
384 |
}
|
|
385 |
|
|
386 |
void strex(Register rs, Register rd, Address addr, AsmCondition cond = al) {
|
|
387 |
assert(rd != PC && rs != PC &&
|
|
388 |
rs != rd && rs != addr.base(), "unpredictable instruction");
|
|
389 |
emit_int32(cond << 28 | 0x18 << 20 | addr.encoding_ex() |
|
|
390 |
rs->encoding() << 12 | 0xf90 | rd->encoding());
|
|
391 |
}
|
|
392 |
|
|
393 |
void ldrexd(Register rd, Address addr, AsmCondition cond = al) {
|
|
394 |
assert(rd != PC, "unpredictable instruction");
|
|
395 |
emit_int32(cond << 28 | 0x1B << 20 | addr.encoding_ex() |
|
|
396 |
rd->encoding() << 12 | 0xf9f);
|
|
397 |
}
|
|
398 |
|
|
399 |
void strexd(Register rs, Register rd, Address addr, AsmCondition cond = al) {
|
|
400 |
assert(rd != PC && rs != PC &&
|
|
401 |
rs != rd && rs != addr.base(), "unpredictable instruction");
|
|
402 |
emit_int32(cond << 28 | 0x1A << 20 | addr.encoding_ex() |
|
|
403 |
rs->encoding() << 12 | 0xf90 | rd->encoding());
|
|
404 |
}
|
|
405 |
|
|
406 |
void clrex() {
|
|
407 |
emit_int32(0xF << 28 | 0x57 << 20 | 0xFF << 12 | 0x01f);
|
|
408 |
}
|
|
409 |
|
|
410 |
// Miscellaneous instructions
|
|
411 |
|
|
412 |
void clz(Register rd, Register rm, AsmCondition cond = al) {
|
|
413 |
emit_int32(cond << 28 | 0x016f0f10 | rd->encoding() << 12 | rm->encoding());
|
|
414 |
}
|
|
415 |
|
|
416 |
void rev(Register rd, Register rm, AsmCondition cond = al) {
|
|
417 |
emit_int32(cond << 28 | 0x06bf0f30 | rd->encoding() << 12 | rm->encoding());
|
|
418 |
}
|
|
419 |
|
|
420 |
void rev16(Register rd, Register rm, AsmCondition cond = al) {
|
|
421 |
emit_int32(cond << 28 | 0x6bf0fb0 | rd->encoding() << 12 | rm->encoding());
|
|
422 |
}
|
|
423 |
|
|
424 |
void revsh(Register rd, Register rm, AsmCondition cond = al) {
|
|
425 |
emit_int32(cond << 28 | 0x6ff0fb0 | rd->encoding() << 12 | rm->encoding());
|
|
426 |
}
|
|
427 |
|
|
428 |
void rbit(Register rd, Register rm, AsmCondition cond = al) {
|
|
429 |
emit_int32(cond << 28 | 0x6ff0f30 | rd->encoding() << 12 | rm->encoding());
|
|
430 |
}
|
|
431 |
|
|
432 |
void pld(Address addr) {
|
|
433 |
emit_int32(0xf550f000 | addr.encoding2());
|
|
434 |
}
|
|
435 |
|
|
436 |
void pldw(Address addr) {
|
|
437 |
assert(VM_Version::arm_arch() >= 7 && os::is_MP(), "no pldw on this processor");
|
|
438 |
emit_int32(0xf510f000 | addr.encoding2());
|
|
439 |
}
|
|
440 |
|
|
441 |
void svc(int imm_24, AsmCondition cond = al) {
|
|
442 |
assert((imm_24 >> 24) == 0, "encoding constraint");
|
|
443 |
emit_int32(cond << 28 | 0xf << 24 | imm_24);
|
|
444 |
}
|
|
445 |
|
|
446 |
void ubfx(Register rd, Register rn, unsigned int lsb, unsigned int width, AsmCondition cond = al) {
|
|
447 |
assert(VM_Version::arm_arch() >= 7, "no ubfx on this processor");
|
|
448 |
assert(width > 0, "must be");
|
|
449 |
assert(lsb < 32, "must be");
|
|
450 |
emit_int32(cond << 28 | 0x3f << 21 | (width - 1) << 16 | rd->encoding() << 12 |
|
|
451 |
lsb << 7 | 0x5 << 4 | rn->encoding());
|
|
452 |
}
|
|
453 |
|
|
454 |
void uxtb(Register rd, Register rm, unsigned int rotation = 0, AsmCondition cond = al) {
|
|
455 |
assert(VM_Version::arm_arch() >= 7, "no uxtb on this processor");
|
|
456 |
assert((rotation % 8) == 0 && (rotation <= 24), "encoding constraint");
|
|
457 |
emit_int32(cond << 28 | 0x6e << 20 | 0xf << 16 | rd->encoding() << 12 |
|
|
458 |
(rotation >> 3) << 10 | 0x7 << 4 | rm->encoding());
|
|
459 |
}
|
|
460 |
|
|
461 |
// ARM Memory Barriers
|
|
462 |
//
|
|
463 |
// There are two types of memory barriers defined for the ARM processor
|
|
464 |
// DataSynchronizationBarrier and DataMemoryBarrier
|
|
465 |
//
|
|
466 |
// The Linux kernel uses the DataMemoryBarrier for all of it's
|
|
467 |
// memory barrier operations (smp_mb, smp_rmb, smp_wmb)
|
|
468 |
//
|
|
469 |
// There are two forms of each barrier instruction.
|
|
470 |
// The mcr forms are supported on armv5 and newer architectures
|
|
471 |
//
|
|
472 |
// The dmb, dsb instructions were added in armv7
|
|
473 |
// architectures and are compatible with their mcr
|
|
474 |
// predecessors.
|
|
475 |
//
|
|
476 |
// Here are the encodings for future reference:
|
|
477 |
//
|
|
478 |
// DataSynchronizationBarrier (dsb)
|
|
479 |
// on ARMv7 - emit_int32(0xF57FF04F)
|
|
480 |
//
|
|
481 |
// on ARMv5+ - mcr p15, 0, Rtmp, c7, c10, 4 on earlier processors
|
|
482 |
// emit_int32(0xe << 28 | 0xe << 24 | 0x7 << 16 | Rtmp->encoding() << 12 |
|
|
483 |
// 0xf << 8 | 0x9 << 4 | 0xa);
|
|
484 |
//
|
|
485 |
// DataMemoryBarrier (dmb)
|
|
486 |
// on ARMv7 - emit_int32(0xF57FF05F)
|
|
487 |
//
|
|
488 |
// on ARMv5+ - mcr p15, 0, Rtmp, c7, c10, 5 on earlier processors
|
|
489 |
// emit_int32(0xe << 28 | 0xe << 24 | 0x7 << 16 | Rtmp->encoding() << 12 |
|
|
490 |
// 0xf << 8 | 0xb << 4 | 0xa);
|
|
491 |
//
|
|
492 |
|
|
493 |
enum DMB_Opt {
|
|
494 |
DMB_all = 0xf,
|
|
495 |
DMB_st = 0xe,
|
|
496 |
};
|
|
497 |
|
|
498 |
void dmb(DMB_Opt opt, Register reg) {
|
|
499 |
if (VM_Version::arm_arch() >= 7) {
|
|
500 |
emit_int32(0xF57FF050 | opt);
|
|
501 |
} else {
|
|
502 |
bool preserve_tmp = (reg == noreg);
|
|
503 |
if(preserve_tmp) {
|
|
504 |
reg = Rtemp;
|
|
505 |
str(reg, Address(SP, -wordSize, pre_indexed));
|
|
506 |
}
|
|
507 |
mov(reg, 0);
|
|
508 |
// DataMemoryBarrier
|
|
509 |
emit_int32(0xe << 28 |
|
|
510 |
0xe << 24 |
|
|
511 |
0x7 << 16 |
|
|
512 |
reg->encoding() << 12 |
|
|
513 |
0xf << 8 |
|
|
514 |
0xb << 4 |
|
|
515 |
0xa);
|
|
516 |
if(preserve_tmp) {
|
|
517 |
ldr(reg, Address(SP, wordSize, post_indexed));
|
|
518 |
}
|
|
519 |
}
|
|
520 |
}
|
|
521 |
|
|
522 |
void dsb(Register reg) {
|
|
523 |
if (VM_Version::arm_arch() >= 7) {
|
|
524 |
emit_int32(0xF57FF04F);
|
|
525 |
} else {
|
|
526 |
bool preserve_tmp = (reg == noreg);
|
|
527 |
if(preserve_tmp) {
|
|
528 |
reg = Rtemp;
|
|
529 |
str(reg, Address(SP, -wordSize, pre_indexed));
|
|
530 |
}
|
|
531 |
mov(reg, 0);
|
|
532 |
// DataSynchronizationBarrier
|
|
533 |
emit_int32(0xe << 28 |
|
|
534 |
0xe << 24 |
|
|
535 |
0x7 << 16 |
|
|
536 |
reg->encoding() << 12 |
|
|
537 |
0xf << 8 |
|
|
538 |
0x9 << 4 |
|
|
539 |
0xa);
|
|
540 |
if(preserve_tmp) {
|
|
541 |
ldr(reg, Address(SP, wordSize, post_indexed));
|
|
542 |
}
|
|
543 |
}
|
|
544 |
}
|
|
545 |
|
|
546 |
|
|
547 |
#define F(mnemonic, b) \
|
|
548 |
void mnemonic(Register rd, Register rm, Register rn, AsmCondition cond = al) { \
|
|
549 |
assert(rn != rm && rn != rd, "unpredictable instruction"); \
|
|
550 |
emit_int32(cond << 28 | 0x2 << 23 | b << 22 | rn->encoding() << 16 | \
|
|
551 |
rd->encoding() << 12 | 9 << 4 | rm->encoding()); \
|
|
552 |
}
|
|
553 |
|
|
554 |
F(swp, 0)
|
|
555 |
F(swpb, 1)
|
|
556 |
#undef F
|
|
557 |
|
|
558 |
// Branches
|
|
559 |
|
|
560 |
#define F(mnemonic, l) \
|
|
561 |
void mnemonic(Register rm, AsmCondition cond = al) { \
|
|
562 |
emit_int32(cond << 28 | 0x012fff10 | l << 5 | rm->encoding()); \
|
|
563 |
}
|
|
564 |
|
|
565 |
F(bx, 0)
|
|
566 |
F(blx, 1)
|
|
567 |
#undef F
|
|
568 |
|
|
569 |
#define F(mnemonic, l) \
|
|
570 |
void mnemonic(address target, AsmCondition cond = al) { \
|
|
571 |
unsigned int offset = (unsigned int)(target - pc() - 8); \
|
|
572 |
assert((offset & 3) == 0, "bad alignment"); \
|
|
573 |
assert((offset >> 25) == 0 || ((int)offset >> 25) == -1, "offset is too large"); \
|
|
574 |
emit_int32(cond << 28 | l << 24 | offset << 6 >> 8); \
|
|
575 |
}
|
|
576 |
|
|
577 |
F(b, 0xa)
|
|
578 |
F(bl, 0xb)
|
|
579 |
#undef F
|
|
580 |
|
|
581 |
// ARMv7 instructions
|
|
582 |
|
|
583 |
#define F(mnemonic, wt) \
|
|
584 |
void mnemonic(Register rd, int imm_16, AsmCondition cond = al) { \
|
|
585 |
assert((imm_16 >> 16) == 0, "encoding constraint"); \
|
|
586 |
emit_int32(cond << 28 | wt << 20 | rd->encoding() << 12 | \
|
|
587 |
(imm_16 & 0xf000) << 4 | (imm_16 & 0xfff)); \
|
|
588 |
}
|
|
589 |
|
|
590 |
F(movw, 0x30)
|
|
591 |
F(movt, 0x34)
|
|
592 |
#undef F
|
|
593 |
|
|
594 |
// VFP Support
|
|
595 |
|
|
596 |
// Checks that VFP instructions are not used in SOFTFP mode.
|
|
597 |
#ifdef __SOFTFP__
|
|
598 |
#define CHECK_VFP_PRESENT ShouldNotReachHere()
|
|
599 |
#else
|
|
600 |
#define CHECK_VFP_PRESENT
|
|
601 |
#endif // __SOFTFP__
|
|
602 |
|
|
603 |
static const int single_cp_num = 0xa00;
|
|
604 |
static const int double_cp_num = 0xb00;
|
|
605 |
|
|
606 |
// Bits P, Q, R, S collectively form the opcode
|
|
607 |
#define F(mnemonic, P, Q, R, S) \
|
|
608 |
void mnemonic##d(FloatRegister fd, FloatRegister fn, FloatRegister fm, \
|
|
609 |
AsmCondition cond = al) { \
|
|
610 |
CHECK_VFP_PRESENT; \
|
|
611 |
assert(fn->lo_bit() == 0 && fd->lo_bit() == 0 && fm->lo_bit() == 0, "single precision register?"); \
|
|
612 |
emit_int32(cond << 28 | 0x7 << 25 | double_cp_num | \
|
|
613 |
P << 23 | Q << 21 | R << 20 | S << 6 | \
|
|
614 |
fn->hi_bits() << 16 | fn->hi_bit() << 7 | \
|
|
615 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
|
|
616 |
fm->hi_bits() | fm->hi_bit() << 5); \
|
|
617 |
} \
|
|
618 |
void mnemonic##s(FloatRegister fd, FloatRegister fn, FloatRegister fm, \
|
|
619 |
AsmCondition cond = al) { \
|
|
620 |
assert(fn->hi_bit() == 0 && fd->hi_bit() == 0 && fm->hi_bit() == 0, "double precision register?"); \
|
|
621 |
CHECK_VFP_PRESENT; \
|
|
622 |
emit_int32(cond << 28 | 0x7 << 25 | single_cp_num | \
|
|
623 |
P << 23 | Q << 21 | R << 20 | S << 6 | \
|
|
624 |
fn->hi_bits() << 16 | fn->lo_bit() << 7 | \
|
|
625 |
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
|
|
626 |
fm->hi_bits() | fm->lo_bit() << 5); \
|
|
627 |
}
|
|
628 |
|
|
629 |
F(fmac, 0, 0, 0, 0) // Fd = Fd + (Fn * Fm)
|
|
630 |
F(fnmac, 0, 0, 0, 1) // Fd = Fd - (Fn * Fm)
|
|
631 |
F(fmsc, 0, 0, 1, 0) // Fd = -Fd + (Fn * Fm)
|
|
632 |
F(fnmsc, 0, 0, 1, 1) // Fd = -Fd - (Fn * Fm)
|
|
633 |
|
|
634 |
F(fmul, 0, 1, 0, 0) // Fd = Fn * Fm
|
|
635 |
F(fnmul, 0, 1, 0, 1) // Fd = -(Fn * Fm)
|
|
636 |
F(fadd, 0, 1, 1, 0) // Fd = Fn + Fm
|
|
637 |
F(fsub, 0, 1, 1, 1) // Fd = Fn - Fm
|
|
638 |
F(fdiv, 1, 0, 0, 0) // Fd = Fn / Fm
|
|
639 |
#undef F
|
|
640 |
|
|
641 |
enum VElem_Size {
|
|
642 |
VELEM_SIZE_8 = 0x00,
|
|
643 |
VELEM_SIZE_16 = 0x01,
|
|
644 |
VELEM_SIZE_32 = 0x02,
|
|
645 |
VELEM_SIZE_64 = 0x03
|
|
646 |
};
|
|
647 |
|
|
648 |
enum VLD_Type {
|
|
649 |
VLD1_TYPE_1_REG = 0x7 /* 0b0111 */,
|
|
650 |
VLD1_TYPE_2_REGS = 0xA /* 0b1010 */,
|
|
651 |
VLD1_TYPE_3_REGS = 0x6 /* 0b0110 */,
|
|
652 |
VLD1_TYPE_4_REGS = 0x2 /* 0b0010 */
|
|
653 |
};
|
|
654 |
|
|
655 |
enum VFloat_Arith_Size {
|
|
656 |
VFA_SIZE_F32 = 0x0 /* 0b0 */,
|
|
657 |
};
|
|
658 |
|
|
659 |
// Bits P, Q, R, S collectively form the opcode
|
|
660 |
#define F(mnemonic, P, Q, R, S) \
|
|
661 |
void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \
|
|
662 |
int size, int quad) { \
|
|
663 |
CHECK_VFP_PRESENT; \
|
|
664 |
assert(VM_Version::has_simd(), "simd instruction"); \
|
|
665 |
assert(fn->lo_bit() == 0 && fd->lo_bit() == 0 && fm->lo_bit() == 0, \
|
|
666 |
"single precision register?"); \
|
|
667 |
assert(!quad || ((fn->hi_bits() | fd->hi_bits() | fm->hi_bits()) & 1) == 0, \
|
|
668 |
"quad precision register?"); \
|
|
669 |
emit_int32(0xf << 28 | P << 23 | Q << 8 | R << 4 | \
|
|
670 |
S << 21 | size << 20 | quad << 6 | \
|
|
671 |
fn->hi_bits() << 16 | fn->hi_bit() << 7 | \
|
|
672 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
|
|
673 |
fm->hi_bits() | fm->hi_bit() << 5); \
|
|
674 |
}
|
|
675 |
|
|
676 |
F(vmulI, 0x4 /* 0b0100 */, 0x9 /* 0b1001 */, 1, 0) // Vd = Vn * Vm (int)
|
|
677 |
F(vaddI, 0x4 /* 0b0100 */, 0x8 /* 0b1000 */, 0, 0) // Vd = Vn + Vm (int)
|
|
678 |
F(vsubI, 0x6 /* 0b0110 */, 0x8 /* 0b1000 */, 0, 0) // Vd = Vn - Vm (int)
|
|
679 |
F(vaddF, 0x4 /* 0b0100 */, 0xD /* 0b1101 */, 0, 0) // Vd = Vn + Vm (float)
|
|
680 |
F(vsubF, 0x4 /* 0b0100 */, 0xD /* 0b1101 */, 0, 1) // Vd = Vn - Vm (float)
|
|
681 |
F(vmulF, 0x6 /* 0b0110 */, 0xD /* 0b1101 */, 1, 0) // Vd = Vn * Vm (float)
|
|
682 |
F(vshlSI, 0x4 /* 0b0100 */, 0x4 /* 0b0100 */, 0, 0) // Vd = ashift(Vm,Vn) (int)
|
|
683 |
F(vshlUI, 0x6 /* 0b0110 */, 0x4 /* 0b0100 */, 0, 0) // Vd = lshift(Vm,Vn) (int)
|
|
684 |
F(_vandI, 0x4 /* 0b0100 */, 0x1 /* 0b0001 */, 1, 0) // Vd = Vn & Vm (int)
|
|
685 |
F(_vorI, 0x4 /* 0b0100 */, 0x1 /* 0b0001 */, 1, 1) // Vd = Vn | Vm (int)
|
|
686 |
F(_vxorI, 0x6 /* 0b0110 */, 0x1 /* 0b0001 */, 1, 0) // Vd = Vn ^ Vm (int)
|
|
687 |
#undef F
|
|
688 |
|
|
689 |
void vandI(FloatRegister fd, FloatRegister fn, FloatRegister fm, int quad) {
|
|
690 |
_vandI(fd, fn, fm, 0, quad);
|
|
691 |
}
|
|
692 |
void vorI(FloatRegister fd, FloatRegister fn, FloatRegister fm, int quad) {
|
|
693 |
_vorI(fd, fn, fm, 0, quad);
|
|
694 |
}
|
|
695 |
void vxorI(FloatRegister fd, FloatRegister fn, FloatRegister fm, int quad) {
|
|
696 |
_vxorI(fd, fn, fm, 0, quad);
|
|
697 |
}
|
|
698 |
|
|
699 |
void vneg(FloatRegister fd, FloatRegister fm, int size, int flt, int quad) {
|
|
700 |
CHECK_VFP_PRESENT;
|
|
701 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
702 |
assert(fd->lo_bit() == 0 && fm->lo_bit() == 0,
|
|
703 |
"single precision register?");
|
|
704 |
assert(!quad || ((fd->hi_bits() | fm->hi_bits()) & 1) == 0,
|
|
705 |
"quad precision register?");
|
|
706 |
emit_int32(0xf << 28 | 0x3B /* 0b00111011 */ << 20 | 0x1 /* 0b01 */ << 16 | 0x7 /* 0b111 */ << 7 |
|
|
707 |
size << 18 | quad << 6 | flt << 10 |
|
|
708 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 |
|
|
709 |
fm->hi_bits() << 0 | fm->hi_bit() << 5);
|
|
710 |
}
|
|
711 |
|
|
712 |
void vnegI(FloatRegister fd, FloatRegister fm, int size, int quad) {
|
|
713 |
int flt = 0;
|
|
714 |
vneg(fd, fm, size, flt, quad);
|
|
715 |
}
|
|
716 |
|
|
717 |
void vshli(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) {
|
|
718 |
CHECK_VFP_PRESENT;
|
|
719 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
720 |
assert(fd->lo_bit() == 0 && fm->lo_bit() == 0,
|
|
721 |
"single precision register?");
|
|
722 |
assert(!quad || ((fd->hi_bits() | fm->hi_bits()) & 1) == 0,
|
|
723 |
"quad precision register?");
|
|
724 |
|
|
725 |
if (imm >= size) {
|
|
726 |
// maximum shift gives all zeroes, direction doesn't matter,
|
|
727 |
// but only available for shift right
|
|
728 |
vshri(fd, fm, size, size, true /* unsigned */, quad);
|
|
729 |
return;
|
|
730 |
}
|
|
731 |
assert(imm >= 0 && imm < size, "out of range");
|
|
732 |
|
|
733 |
int imm6 = 0;
|
|
734 |
int L = 0;
|
|
735 |
switch (size) {
|
|
736 |
case 8:
|
|
737 |
case 16:
|
|
738 |
case 32:
|
|
739 |
imm6 = size + imm ;
|
|
740 |
break;
|
|
741 |
case 64:
|
|
742 |
L = 1;
|
|
743 |
imm6 = imm ;
|
|
744 |
break;
|
|
745 |
default:
|
|
746 |
ShouldNotReachHere();
|
|
747 |
}
|
|
748 |
emit_int32(0xf << 28 | 0x5 /* 0b00101 */ << 23 | 0x51 /* 0b01010001 */ << 4 |
|
|
749 |
imm6 << 16 | L << 7 | quad << 6 |
|
|
750 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 |
|
|
751 |
fm->hi_bits() << 0 | fm->hi_bit() << 5);
|
|
752 |
}
|
|
753 |
|
|
754 |
void vshri(FloatRegister fd, FloatRegister fm, int size, int imm,
|
|
755 |
bool U /* unsigned */, int quad) {
|
|
756 |
CHECK_VFP_PRESENT;
|
|
757 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
758 |
assert(fd->lo_bit() == 0 && fm->lo_bit() == 0,
|
|
759 |
"single precision register?");
|
|
760 |
assert(!quad || ((fd->hi_bits() | fm->hi_bits()) & 1) == 0,
|
|
761 |
"quad precision register?");
|
|
762 |
assert(imm > 0, "out of range");
|
|
763 |
if (imm >= size) {
|
|
764 |
// maximum shift (all zeroes)
|
|
765 |
imm = size;
|
|
766 |
}
|
|
767 |
int imm6 = 0;
|
|
768 |
int L = 0;
|
|
769 |
switch (size) {
|
|
770 |
case 8:
|
|
771 |
case 16:
|
|
772 |
case 32:
|
|
773 |
imm6 = 2 * size - imm ;
|
|
774 |
break;
|
|
775 |
case 64:
|
|
776 |
L = 1;
|
|
777 |
imm6 = 64 - imm ;
|
|
778 |
break;
|
|
779 |
default:
|
|
780 |
ShouldNotReachHere();
|
|
781 |
}
|
|
782 |
emit_int32(0xf << 28 | 0x5 /* 0b00101 */ << 23 | 0x1 /* 0b00000001 */ << 4 |
|
|
783 |
imm6 << 16 | L << 7 | quad << 6 | U << 24 |
|
|
784 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 |
|
|
785 |
fm->hi_bits() << 0 | fm->hi_bit() << 5);
|
|
786 |
}
|
|
787 |
void vshrUI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) {
|
|
788 |
vshri(fd, fm, size, imm, true /* unsigned */, quad);
|
|
789 |
}
|
|
790 |
void vshrSI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) {
|
|
791 |
vshri(fd, fm, size, imm, false /* signed */, quad);
|
|
792 |
}
|
|
793 |
|
|
794 |
// Extension opcodes where P,Q,R,S = 1 opcode is in Fn
|
|
795 |
#define F(mnemonic, N, opcode) \
|
|
796 |
void mnemonic##d(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
|
|
797 |
CHECK_VFP_PRESENT; \
|
|
798 |
assert(fd->lo_bit() == 0 && fm->hi_bit() == 0, "incorrect register?"); \
|
|
799 |
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
|
|
800 |
double_cp_num | \
|
|
801 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
|
|
802 |
fm->hi_bits() | fm->lo_bit() << 5); \
|
|
803 |
} \
|
|
804 |
void mnemonic##s(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
|
|
805 |
CHECK_VFP_PRESENT; \
|
|
806 |
assert(fd->hi_bit() == 0 && fm->hi_bit() == 0, "double precision register?"); \
|
|
807 |
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
|
|
808 |
single_cp_num | \
|
|
809 |
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
|
|
810 |
fm->hi_bits() | fm->lo_bit() << 5); \
|
|
811 |
}
|
|
812 |
|
|
813 |
F(fuito, 0, 0x8) // Unsigned integer to floating point conversion
|
|
814 |
F(fsito, 1, 0x8) // Signed integer to floating point conversion
|
|
815 |
#undef F
|
|
816 |
|
|
817 |
#define F(mnemonic, N, opcode) \
|
|
818 |
void mnemonic##d(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
|
|
819 |
CHECK_VFP_PRESENT; \
|
|
820 |
assert(fd->hi_bit() == 0 && fm->lo_bit() == 0, "incorrect register?"); \
|
|
821 |
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
|
|
822 |
double_cp_num | \
|
|
823 |
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
|
|
824 |
fm->hi_bits() | fm->hi_bit() << 5); \
|
|
825 |
} \
|
|
826 |
void mnemonic##s(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
|
|
827 |
CHECK_VFP_PRESENT; \
|
|
828 |
assert(fd->hi_bit() == 0 && fm->hi_bit() == 0, "double precision register?"); \
|
|
829 |
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
|
|
830 |
single_cp_num | \
|
|
831 |
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
|
|
832 |
fm->hi_bits() | fm->lo_bit() << 5); \
|
|
833 |
}
|
|
834 |
|
|
835 |
F(ftoui, 0, 0xc) // Float to unsigned int conversion
|
|
836 |
F(ftouiz, 1, 0xc) // Float to unsigned int conversion, RZ mode
|
|
837 |
F(ftosi, 0, 0xd) // Float to signed int conversion
|
|
838 |
F(ftosiz, 1, 0xd) // Float to signed int conversion, RZ mode
|
|
839 |
#undef F
|
|
840 |
|
|
841 |
#define F(mnemonic, N, opcode) \
|
|
842 |
void mnemonic##d(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
|
|
843 |
CHECK_VFP_PRESENT; \
|
|
844 |
assert(fd->hi_bit() == 0 && fm->lo_bit() == 0, "incorrect register?"); \
|
|
845 |
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
|
|
846 |
double_cp_num | \
|
|
847 |
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
|
|
848 |
fm->hi_bits() | fm->hi_bit() << 5); \
|
|
849 |
} \
|
|
850 |
void mnemonic##s(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
|
|
851 |
CHECK_VFP_PRESENT; \
|
|
852 |
assert(fd->lo_bit() == 0 && fm->hi_bit() == 0, "incorrect register?"); \
|
|
853 |
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
|
|
854 |
single_cp_num | \
|
|
855 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
|
|
856 |
fm->hi_bits() | fm->lo_bit() << 5); \
|
|
857 |
}
|
|
858 |
|
|
859 |
F(fcvtd, 1, 0x7) // Single->Double conversion
|
|
860 |
F(fcvts, 1, 0x7) // Double->Single conversion
|
|
861 |
#undef F
|
|
862 |
|
|
863 |
#define F(mnemonic, N, opcode) \
|
|
864 |
void mnemonic##d(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
|
|
865 |
CHECK_VFP_PRESENT; \
|
|
866 |
assert(fd->lo_bit() == 0 && fm->lo_bit() == 0, "single precision register?"); \
|
|
867 |
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
|
|
868 |
double_cp_num | \
|
|
869 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
|
|
870 |
fm->hi_bits() | fm->hi_bit() << 5); \
|
|
871 |
} \
|
|
872 |
void mnemonic##s(FloatRegister fd, FloatRegister fm, AsmCondition cond = al) { \
|
|
873 |
CHECK_VFP_PRESENT; \
|
|
874 |
assert(fd->hi_bit() == 0 && fm->hi_bit() == 0, "double precision register?"); \
|
|
875 |
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
|
|
876 |
single_cp_num | \
|
|
877 |
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
|
|
878 |
fm->hi_bits() | fm->lo_bit() << 5); \
|
|
879 |
}
|
|
880 |
|
|
881 |
F(fcpy, 0, 0x0) // Fd = Fm
|
|
882 |
F(fabs, 1, 0x0) // Fd = abs(Fm)
|
|
883 |
F(fneg, 0, 0x1) // Fd = -Fm
|
|
884 |
F(fsqrt, 1, 0x1) // Fd = sqrt(Fm)
|
|
885 |
F(fcmp, 0, 0x4) // Compare Fd with Fm no exceptions on quiet NANs
|
|
886 |
F(fcmpe, 1, 0x4) // Compare Fd with Fm with exceptions on quiet NANs
|
|
887 |
#undef F
|
|
888 |
|
|
889 |
// Opcodes with one operand only
|
|
890 |
#define F(mnemonic, N, opcode) \
|
|
891 |
void mnemonic##d(FloatRegister fd, AsmCondition cond = al) { \
|
|
892 |
CHECK_VFP_PRESENT; \
|
|
893 |
assert(fd->lo_bit() == 0, "single precision register?"); \
|
|
894 |
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
|
|
895 |
double_cp_num | fd->hi_bits() << 12 | fd->hi_bit() << 22); \
|
|
896 |
} \
|
|
897 |
void mnemonic##s(FloatRegister fd, AsmCondition cond = al) { \
|
|
898 |
CHECK_VFP_PRESENT; \
|
|
899 |
assert(fd->hi_bit() == 0, "double precision register?"); \
|
|
900 |
emit_int32(cond << 28 | 0xeb << 20 | opcode << 16 | N << 7 | 1 << 6 | \
|
|
901 |
single_cp_num | fd->hi_bits() << 12 | fd->lo_bit() << 22); \
|
|
902 |
}
|
|
903 |
|
|
904 |
F(fcmpz, 0, 0x5) // Compare Fd with 0, no exceptions quiet NANs
|
|
905 |
F(fcmpez, 1, 0x5) // Compare Fd with 0, with exceptions quiet NANs
|
|
906 |
#undef F
|
|
907 |
|
|
908 |
// Float loads (L==1) and stores (L==0)
|
|
909 |
#define F(mnemonic, L) \
|
|
910 |
void mnemonic##d(FloatRegister fd, Address addr, AsmCondition cond = al) { \
|
|
911 |
CHECK_VFP_PRESENT; \
|
|
912 |
assert(fd->lo_bit() == 0, "single precision register?"); \
|
|
913 |
emit_int32(cond << 28 | 0xd << 24 | L << 20 | \
|
|
914 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 | \
|
|
915 |
double_cp_num | addr.encoding_vfp()); \
|
|
916 |
} \
|
|
917 |
void mnemonic##s(FloatRegister fd, Address addr, AsmCondition cond = al) { \
|
|
918 |
CHECK_VFP_PRESENT; \
|
|
919 |
assert(fd->hi_bit() == 0, "double precision register?"); \
|
|
920 |
emit_int32(cond << 28 | 0xd << 24 | L << 20 | \
|
|
921 |
fd->hi_bits() << 12 | fd->lo_bit() << 22 | \
|
|
922 |
single_cp_num | addr.encoding_vfp()); \
|
|
923 |
}
|
|
924 |
|
|
925 |
F(fst, 0) // Store 1 register
|
|
926 |
F(fld, 1) // Load 1 register
|
|
927 |
#undef F
|
|
928 |
|
|
929 |
// Float load and store multiple
|
|
930 |
#define F(mnemonic, l, pu) \
|
|
931 |
void mnemonic##d(Register rn, FloatRegisterSet reg_set, \
|
|
932 |
AsmWriteback w = no_writeback, AsmCondition cond = al) { \
|
|
933 |
CHECK_VFP_PRESENT; \
|
|
934 |
assert(w == no_writeback || rn != PC, "unpredictable instruction"); \
|
|
935 |
assert(!(w == no_writeback && pu == 2), "encoding constraint"); \
|
|
936 |
assert((reg_set.encoding_d() & 1) == 0, "encoding constraint"); \
|
|
937 |
emit_int32(cond << 28 | 6 << 25 | pu << 23 | w << 21 | l << 20 | \
|
|
938 |
rn->encoding() << 16 | reg_set.encoding_d() | double_cp_num); \
|
|
939 |
} \
|
|
940 |
void mnemonic##s(Register rn, FloatRegisterSet reg_set, \
|
|
941 |
AsmWriteback w = no_writeback, AsmCondition cond = al) { \
|
|
942 |
CHECK_VFP_PRESENT; \
|
|
943 |
assert(w == no_writeback || rn != PC, "unpredictable instruction"); \
|
|
944 |
assert(!(w == no_writeback && pu == 2), "encoding constraint"); \
|
|
945 |
emit_int32(cond << 28 | 6 << 25 | pu << 23 | w << 21 | l << 20 | \
|
|
946 |
rn->encoding() << 16 | reg_set.encoding_s() | single_cp_num); \
|
|
947 |
}
|
|
948 |
|
|
949 |
F(fldmia, 1, 1) F(fldmfd, 1, 1)
|
|
950 |
F(fldmdb, 1, 2) F(fldmea, 1, 2)
|
|
951 |
F(fstmia, 0, 1) F(fstmfd, 0, 1)
|
|
952 |
F(fstmdb, 0, 2) F(fstmea, 0, 2)
|
|
953 |
#undef F
|
|
954 |
|
|
955 |
// fconst{s,d} encoding:
|
|
956 |
// 31 28 27 23 22 21 20 19 16 15 12 10 9 8 7 4 3 0
|
|
957 |
// | cond | 11101 | D | 11 | imm4H | Vd | 101 | sz | 0000 | imm4L |
|
|
958 |
// sz = 0 for single precision, 1 otherwise
|
|
959 |
// Register number is Vd:D for single precision, D:Vd otherwise
|
|
960 |
// immediate value is imm4H:imm4L
|
|
961 |
|
|
962 |
void fconsts(FloatRegister fd, unsigned char imm_8, AsmCondition cond = al) {
|
|
963 |
CHECK_VFP_PRESENT;
|
|
964 |
assert(fd->hi_bit() == 0, "double precision register?");
|
|
965 |
emit_int32(cond << 28 | 0xeb << 20 | single_cp_num |
|
|
966 |
fd->hi_bits() << 12 | fd->lo_bit() << 22 | (imm_8 & 0xf) | (imm_8 >> 4) << 16);
|
|
967 |
}
|
|
968 |
|
|
969 |
void fconstd(FloatRegister fd, unsigned char imm_8, AsmCondition cond = al) {
|
|
970 |
CHECK_VFP_PRESENT;
|
|
971 |
assert(fd->lo_bit() == 0, "double precision register?");
|
|
972 |
emit_int32(cond << 28 | 0xeb << 20 | double_cp_num |
|
|
973 |
fd->hi_bits() << 12 | fd->hi_bit() << 22 | (imm_8 & 0xf) | (imm_8 >> 4) << 16);
|
|
974 |
}
|
|
975 |
|
|
976 |
// GPR <-> FPR transfers
|
|
977 |
void fmsr(FloatRegister fd, Register rd, AsmCondition cond = al) {
|
|
978 |
CHECK_VFP_PRESENT;
|
|
979 |
assert(fd->hi_bit() == 0, "double precision register?");
|
|
980 |
emit_int32(cond << 28 | 0xe0 << 20 | single_cp_num | 1 << 4 |
|
|
981 |
fd->hi_bits() << 16 | fd->lo_bit() << 7 | rd->encoding() << 12);
|
|
982 |
}
|
|
983 |
|
|
984 |
void fmrs(Register rd, FloatRegister fd, AsmCondition cond = al) {
|
|
985 |
CHECK_VFP_PRESENT;
|
|
986 |
assert(fd->hi_bit() == 0, "double precision register?");
|
|
987 |
emit_int32(cond << 28 | 0xe1 << 20 | single_cp_num | 1 << 4 |
|
|
988 |
fd->hi_bits() << 16 | fd->lo_bit() << 7 | rd->encoding() << 12);
|
|
989 |
}
|
|
990 |
|
|
991 |
void fmdrr(FloatRegister fd, Register rd, Register rn, AsmCondition cond = al) {
|
|
992 |
CHECK_VFP_PRESENT;
|
|
993 |
assert(fd->lo_bit() == 0, "single precision register?");
|
|
994 |
emit_int32(cond << 28 | 0xc4 << 20 | double_cp_num | 1 << 4 |
|
|
995 |
fd->hi_bits() | fd->hi_bit() << 5 |
|
|
996 |
rn->encoding() << 16 | rd->encoding() << 12);
|
|
997 |
}
|
|
998 |
|
|
999 |
void fmrrd(Register rd, Register rn, FloatRegister fd, AsmCondition cond = al) {
|
|
1000 |
CHECK_VFP_PRESENT;
|
|
1001 |
assert(fd->lo_bit() == 0, "single precision register?");
|
|
1002 |
emit_int32(cond << 28 | 0xc5 << 20 | double_cp_num | 1 << 4 |
|
|
1003 |
fd->hi_bits() | fd->hi_bit() << 5 |
|
|
1004 |
rn->encoding() << 16 | rd->encoding() << 12);
|
|
1005 |
}
|
|
1006 |
|
|
1007 |
void fmstat(AsmCondition cond = al) {
|
|
1008 |
CHECK_VFP_PRESENT;
|
|
1009 |
emit_int32(cond << 28 | 0xef1fa10);
|
|
1010 |
}
|
|
1011 |
|
|
1012 |
void vmrs(Register rt, VFPSystemRegister sr, AsmCondition cond = al) {
|
|
1013 |
assert((sr->encoding() & (~0xf)) == 0, "what system register is that?");
|
|
1014 |
emit_int32(cond << 28 | rt->encoding() << 12 | sr->encoding() << 16 | 0xef00a10);
|
|
1015 |
}
|
|
1016 |
|
|
1017 |
void vmsr(VFPSystemRegister sr, Register rt, AsmCondition cond = al) {
|
|
1018 |
assert((sr->encoding() & (~0xf)) == 0, "what system register is that?");
|
|
1019 |
emit_int32(cond << 28 | rt->encoding() << 12 | sr->encoding() << 16 | 0xee00a10);
|
|
1020 |
}
|
|
1021 |
|
|
1022 |
void vcnt(FloatRegister Dd, FloatRegister Dm) {
|
|
1023 |
CHECK_VFP_PRESENT;
|
|
1024 |
// emitted at VM startup to detect whether the instruction is available
|
|
1025 |
assert(!VM_Version::is_initialized() || VM_Version::has_simd(), "simd instruction");
|
|
1026 |
assert(Dd->lo_bit() == 0 && Dm->lo_bit() == 0, "single precision registers?");
|
|
1027 |
emit_int32(0xf3b00500 | Dd->hi_bit() << 22 | Dd->hi_bits() << 12 | Dm->hi_bit() << 5 | Dm->hi_bits());
|
|
1028 |
}
|
|
1029 |
|
|
1030 |
void vpaddl(FloatRegister Dd, FloatRegister Dm, int size, bool s) {
|
|
1031 |
CHECK_VFP_PRESENT;
|
|
1032 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
1033 |
assert(Dd->lo_bit() == 0 && Dm->lo_bit() == 0, "single precision registers?");
|
|
1034 |
assert(size == 8 || size == 16 || size == 32, "unexpected size");
|
|
1035 |
emit_int32(0xf3b00200 | Dd->hi_bit() << 22 | (size >> 4) << 18 | Dd->hi_bits() << 12 | (s ? 0 : 1) << 7 | Dm->hi_bit() << 5 | Dm->hi_bits());
|
|
1036 |
}
|
|
1037 |
|
|
1038 |
void vld1(FloatRegister Dd, Address addr, VElem_Size size, int bits) {
|
|
1039 |
CHECK_VFP_PRESENT;
|
|
1040 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
1041 |
assert(Dd->lo_bit() == 0, "single precision registers?");
|
|
1042 |
int align = 0;
|
|
1043 |
assert(bits == 128, "code assumption");
|
|
1044 |
VLD_Type type = VLD1_TYPE_2_REGS; // 2x64
|
|
1045 |
emit_int32(0xf4200000 | Dd->hi_bit() << 22 | Dd->hi_bits() << 12 | type << 8 | size << 6 | align << 4 | addr.encoding_simd());
|
|
1046 |
}
|
|
1047 |
|
|
1048 |
void vst1(FloatRegister Dd, Address addr, VElem_Size size, int bits) {
|
|
1049 |
CHECK_VFP_PRESENT;
|
|
1050 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
1051 |
assert(Dd->lo_bit() == 0, "single precision registers?");
|
|
1052 |
int align = 0;
|
|
1053 |
assert(bits == 128, "code assumption");
|
|
1054 |
VLD_Type type = VLD1_TYPE_2_REGS; // 2x64
|
|
1055 |
emit_int32(0xf4000000 | Dd->hi_bit() << 22 | Dd->hi_bits() << 12 | type << 8 | size << 6 | align << 4 | addr.encoding_simd());
|
|
1056 |
}
|
|
1057 |
|
|
1058 |
void vmovI(FloatRegister Dd, int imm8, VElem_Size size, int quad) {
|
|
1059 |
CHECK_VFP_PRESENT;
|
|
1060 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
1061 |
assert(Dd->lo_bit() == 0, "single precision register?");
|
|
1062 |
assert(!quad || (Dd->hi_bits() & 1) == 0, "quad precision register?");
|
|
1063 |
assert(imm8 >= 0 && imm8 < 256, "out of range");
|
|
1064 |
int op;
|
|
1065 |
int cmode;
|
|
1066 |
switch (size) {
|
|
1067 |
case VELEM_SIZE_8:
|
|
1068 |
op = 0;
|
|
1069 |
cmode = 0xE /* 0b1110 */;
|
|
1070 |
break;
|
|
1071 |
case VELEM_SIZE_16:
|
|
1072 |
op = 0;
|
|
1073 |
cmode = 0x8 /* 0b1000 */;
|
|
1074 |
break;
|
|
1075 |
case VELEM_SIZE_32:
|
|
1076 |
op = 0;
|
|
1077 |
cmode = 0x0 /* 0b0000 */;
|
|
1078 |
break;
|
|
1079 |
default:
|
|
1080 |
ShouldNotReachHere();
|
|
1081 |
}
|
|
1082 |
emit_int32(0xf << 28 | 0x1 << 25 | 0x1 << 23 | 0x1 << 4 |
|
|
1083 |
(imm8 >> 7) << 24 | ((imm8 & 0x70) >> 4) << 16 | (imm8 & 0xf) |
|
|
1084 |
quad << 6 | op << 5 | cmode << 8 |
|
|
1085 |
Dd->hi_bits() << 12 | Dd->hi_bit() << 22);
|
|
1086 |
}
|
|
1087 |
|
|
1088 |
void vdupI(FloatRegister Dd, Register Rs, VElem_Size size, int quad,
|
|
1089 |
AsmCondition cond = al) {
|
|
1090 |
CHECK_VFP_PRESENT;
|
|
1091 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
1092 |
assert(Dd->lo_bit() == 0, "single precision register?");
|
|
1093 |
assert(!quad || (Dd->hi_bits() & 1) == 0, "quad precision register?");
|
|
1094 |
int b;
|
|
1095 |
int e;
|
|
1096 |
switch (size) {
|
|
1097 |
case VELEM_SIZE_8:
|
|
1098 |
b = 1;
|
|
1099 |
e = 0;
|
|
1100 |
break;
|
|
1101 |
case VELEM_SIZE_16:
|
|
1102 |
b = 0;
|
|
1103 |
e = 1;
|
|
1104 |
break;
|
|
1105 |
case VELEM_SIZE_32:
|
|
1106 |
b = 0;
|
|
1107 |
e = 0;
|
|
1108 |
break;
|
|
1109 |
default:
|
|
1110 |
ShouldNotReachHere();
|
|
1111 |
}
|
|
1112 |
emit_int32(cond << 28 | 0x1D /* 0b11101 */ << 23 | 0xB /* 0b1011 */ << 8 | 0x1 << 4 |
|
|
1113 |
quad << 21 | b << 22 | e << 5 | Rs->encoding() << 12 |
|
|
1114 |
Dd->hi_bits() << 16 | Dd->hi_bit() << 7);
|
|
1115 |
}
|
|
1116 |
|
|
1117 |
void vdup(FloatRegister Dd, FloatRegister Ds, int index, int size, int quad) {
|
|
1118 |
CHECK_VFP_PRESENT;
|
|
1119 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
1120 |
assert(Dd->lo_bit() == 0, "single precision register?");
|
|
1121 |
assert(Ds->lo_bit() == 0, "single precision register?");
|
|
1122 |
assert(!quad || (Dd->hi_bits() & 1) == 0, "quad precision register?");
|
|
1123 |
int range = 64 / size;
|
|
1124 |
assert(index < range, "overflow");
|
|
1125 |
int imm4;
|
|
1126 |
switch (size) {
|
|
1127 |
case 8:
|
|
1128 |
assert((index & 0x7 /* 0b111 */) == index, "overflow");
|
|
1129 |
imm4 = index << 1 | 0x1 /* 0b0001 */;
|
|
1130 |
break;
|
|
1131 |
case 16:
|
|
1132 |
assert((index & 0x3 /* 0b11 */) == index, "overflow");
|
|
1133 |
imm4 = index << 2 | 0x2 /* 0b0010 */;
|
|
1134 |
break;
|
|
1135 |
case 32:
|
|
1136 |
assert((index & 0x1 /* 0b1 */) == index, "overflow");
|
|
1137 |
imm4 = index << 3 | 0x4 /* 0b0100 */;
|
|
1138 |
break;
|
|
1139 |
default:
|
|
1140 |
ShouldNotReachHere();
|
|
1141 |
}
|
|
1142 |
emit_int32(0xF /* 0b1111 */ << 28 | 0x3B /* 0b00111011 */ << 20 | 0x6 /* 0b110 */ << 9 |
|
|
1143 |
quad << 6 | imm4 << 16 |
|
|
1144 |
Dd->hi_bits() << 12 | Dd->hi_bit() << 22 |
|
|
1145 |
Ds->hi_bits() << 00 | Ds->hi_bit() << 5);
|
|
1146 |
}
|
|
1147 |
|
|
1148 |
void vdupF(FloatRegister Dd, FloatRegister Ss, int quad) {
|
|
1149 |
int index = 0;
|
|
1150 |
FloatRegister Ds = as_FloatRegister(Ss->encoding() & ~1);
|
|
1151 |
if (Ss->lo_bit() != 0) {
|
|
1152 |
/* odd S register */
|
|
1153 |
assert(Ds->successor() == Ss, "bad reg");
|
|
1154 |
index = 1;
|
|
1155 |
} else {
|
|
1156 |
/* even S register */
|
|
1157 |
assert(Ds == Ss, "bad reg");
|
|
1158 |
}
|
|
1159 |
vdup(Dd, Ds, index, 32, quad);
|
|
1160 |
}
|
|
1161 |
|
|
1162 |
void vrev(FloatRegister Dd, FloatRegister Dm, int quad, int region_size, VElem_Size size) {
|
|
1163 |
CHECK_VFP_PRESENT;
|
|
1164 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
1165 |
assert(Dd->lo_bit() == 0, "single precision register?");
|
|
1166 |
assert(Dm->lo_bit() == 0, "single precision register?");
|
|
1167 |
assert(!quad || ((Dd->hi_bits() | Dm->hi_bits()) & 1) == 0,
|
|
1168 |
"quad precision register?");
|
|
1169 |
unsigned int op = 0;
|
|
1170 |
switch (region_size) {
|
|
1171 |
case 16: op = 0x2; /*0b10*/ break;
|
|
1172 |
case 32: op = 0x1; /*0b01*/ break;
|
|
1173 |
case 64: op = 0x0; /*0b00*/ break;
|
|
1174 |
default: assert(false, "encoding constraint");
|
|
1175 |
}
|
|
1176 |
emit_int32(0xf << 28 | 0x7 << 23 | Dd->hi_bit() << 22 | 0x3 << 20 |
|
|
1177 |
size << 18 | Dd->hi_bits() << 12 | op << 7 | quad << 6 | Dm->hi_bit() << 5 |
|
|
1178 |
Dm->hi_bits());
|
|
1179 |
}
|
|
1180 |
|
|
1181 |
void veor(FloatRegister Dd, FloatRegister Dn, FloatRegister Dm, int quad) {
|
|
1182 |
CHECK_VFP_PRESENT;
|
|
1183 |
assert(VM_Version::has_simd(), "simd instruction");
|
|
1184 |
assert(Dd->lo_bit() == 0, "single precision register?");
|
|
1185 |
assert(Dm->lo_bit() == 0, "single precision register?");
|
|
1186 |
assert(Dn->lo_bit() == 0, "single precision register?");
|
|
1187 |
assert(!quad || ((Dd->hi_bits() | Dm->hi_bits() | Dn->hi_bits()) & 1) == 0,
|
|
1188 |
"quad precision register?");
|
|
1189 |
|
|
1190 |
emit_int32(0xf << 28 | 0x3 << 24 | Dd->hi_bit() << 22 | Dn->hi_bits() << 16 |
|
|
1191 |
Dd->hi_bits() << 12 | 0x1 << 8 | Dn->hi_bit() << 7 | quad << 6 |
|
|
1192 |
Dm->hi_bit() << 5 | 0x1 << 4 | Dm->hi_bits());
|
|
1193 |
}
|
|
1194 |
|
|
1195 |
|
|
1196 |
Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
|
|
1197 |
|
|
1198 |
#ifdef COMPILER2
|
|
1199 |
typedef VFP::double_num double_num;
|
|
1200 |
typedef VFP::float_num float_num;
|
|
1201 |
#endif
|
|
1202 |
};
|
|
1203 |
|
|
1204 |
#ifdef __SOFTFP__
|
|
1205 |
// Soft float function declarations
|
|
1206 |
extern "C" {
|
|
1207 |
extern float __aeabi_fadd(float, float);
|
|
1208 |
extern float __aeabi_fmul(float, float);
|
|
1209 |
extern float __aeabi_fsub(float, float);
|
|
1210 |
extern float __aeabi_fdiv(float, float);
|
|
1211 |
|
|
1212 |
extern double __aeabi_dadd(double, double);
|
|
1213 |
extern double __aeabi_dmul(double, double);
|
|
1214 |
extern double __aeabi_dsub(double, double);
|
|
1215 |
extern double __aeabi_ddiv(double, double);
|
|
1216 |
|
|
1217 |
extern double __aeabi_f2d(float);
|
|
1218 |
extern float __aeabi_d2f(double);
|
|
1219 |
extern float __aeabi_i2f(int);
|
|
1220 |
extern double __aeabi_i2d(int);
|
|
1221 |
extern int __aeabi_f2iz(float);
|
|
1222 |
|
|
1223 |
extern int __aeabi_fcmpeq(float, float);
|
|
1224 |
extern int __aeabi_fcmplt(float, float);
|
|
1225 |
extern int __aeabi_fcmple(float, float);
|
|
1226 |
extern int __aeabi_fcmpge(float, float);
|
|
1227 |
extern int __aeabi_fcmpgt(float, float);
|
|
1228 |
|
|
1229 |
extern int __aeabi_dcmpeq(double, double);
|
|
1230 |
extern int __aeabi_dcmplt(double, double);
|
|
1231 |
extern int __aeabi_dcmple(double, double);
|
|
1232 |
extern int __aeabi_dcmpge(double, double);
|
|
1233 |
extern int __aeabi_dcmpgt(double, double);
|
|
1234 |
|
|
1235 |
// Imported code from glibc soft-fp bundle for
|
|
1236 |
// calculation accuracy improvement. See CR 6757269.
|
|
1237 |
extern double __aeabi_fadd_glibc(float, float);
|
|
1238 |
extern double __aeabi_fsub_glibc(float, float);
|
|
1239 |
extern double __aeabi_dadd_glibc(double, double);
|
|
1240 |
extern double __aeabi_dsub_glibc(double, double);
|
|
1241 |
};
|
|
1242 |
#endif // __SOFTFP__
|
|
1243 |
|
|
1244 |
|
|
1245 |
#endif // CPU_ARM_VM_ASSEMBLER_ARM_32_HPP
|