author | coleenp |
Thu, 01 Dec 2016 14:21:31 -0500 | |
changeset 44738 | 11431bbc9549 |
parent 43420 | a056d6465ef9 |
child 46427 | 54713555867e |
permissions | -rw-r--r-- |
42065 | 1 |
/* |
2 |
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved. |
|
3 |
* Copyright (c) 2016 SAP SE. All rights reserved. |
|
4 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
5 |
* |
|
6 |
* This code is free software; you can redistribute it and/or modify it |
|
7 |
* under the terms of the GNU General Public License version 2 only, as |
|
8 |
* published by the Free Software Foundation. |
|
9 |
* |
|
10 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
11 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
14 |
* accompanied this code). |
|
15 |
* |
|
16 |
* You should have received a copy of the GNU General Public License version |
|
17 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
18 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
19 |
* |
|
20 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
21 |
* or visit www.oracle.com if you need additional information or have any |
|
22 |
* questions. |
|
23 |
* |
|
24 |
*/ |
|
25 |
||
26 |
// Major contributions by AHa, AS, JL, ML. |
|
27 |
||
28 |
#include "precompiled.hpp" |
|
29 |
#include "asm/macroAssembler.inline.hpp" |
|
30 |
#include "interp_masm_s390.hpp" |
|
31 |
#include "interpreter/interpreter.hpp" |
|
32 |
#include "interpreter/interpreterRuntime.hpp" |
|
33 |
#include "oops/arrayOop.hpp" |
|
34 |
#include "oops/markOop.hpp" |
|
35 |
#include "prims/jvmtiExport.hpp" |
|
36 |
#include "prims/jvmtiThreadState.hpp" |
|
37 |
#include "runtime/basicLock.hpp" |
|
38 |
#include "runtime/biasedLocking.hpp" |
|
39 |
#include "runtime/sharedRuntime.hpp" |
|
40 |
#include "runtime/thread.inline.hpp" |
|
41 |
||
42 |
// Implementation of InterpreterMacroAssembler. |
|
43 |
// This file specializes the assember with interpreter-specific macros. |
|
44 |
||
45 |
#ifdef PRODUCT |
|
46 |
#define BLOCK_COMMENT(str) |
|
47 |
#define BIND(label) bind(label); |
|
48 |
#else |
|
49 |
#define BLOCK_COMMENT(str) block_comment(str) |
|
50 |
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":") |
|
51 |
#endif |
|
52 |
||
53 |
void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { |
|
54 |
assert(entry != NULL, "Entry must have been generated by now"); |
|
55 |
assert(Rscratch != Z_R0, "Can't use R0 for addressing"); |
|
56 |
branch_optimized(Assembler::bcondAlways, entry); |
|
57 |
} |
|
58 |
||
59 |
void InterpreterMacroAssembler::empty_expression_stack(void) { |
|
60 |
get_monitors(Z_R1_scratch); |
|
61 |
add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch); |
|
62 |
} |
|
63 |
||
64 |
// Dispatch code executed in the prolog of a bytecode which does not do it's |
|
65 |
// own dispatch. |
|
66 |
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { |
|
67 |
// On z/Architecture we are short on registers, therefore we do not preload the |
|
68 |
// dispatch address of the next bytecode. |
|
69 |
} |
|
70 |
||
71 |
// Dispatch code executed in the epilog of a bytecode which does not do it's |
|
72 |
// own dispatch. |
|
73 |
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { |
|
74 |
dispatch_next(state, step); |
|
75 |
} |
|
76 |
||
77 |
void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) { |
|
78 |
z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp); // Load next bytecode. |
|
79 |
add2reg(Z_bcp, bcp_incr); // Advance bcp. Add2reg produces optimal code. |
|
80 |
dispatch_base(state, Interpreter::dispatch_table(state)); |
|
81 |
} |
|
82 |
||
83 |
// Common code to dispatch and dispatch_only. |
|
84 |
// Dispatch value in Lbyte_code and increment Lbcp. |
|
85 |
||
86 |
void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) { |
|
87 |
verify_FPU(1, state); |
|
88 |
||
89 |
#ifdef ASSERT |
|
90 |
address reentry = NULL; |
|
91 |
{ Label OK; |
|
92 |
// Check if the frame pointer in Z_fp is correct. |
|
93 |
z_cg(Z_fp, 0, Z_SP); |
|
94 |
z_bre(OK); |
|
95 |
reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE); |
|
96 |
bind(OK); |
|
97 |
} |
|
98 |
{ Label OK; |
|
99 |
// check if the locals pointer in Z_locals is correct |
|
100 |
z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp); |
|
101 |
z_bre(OK); |
|
102 |
reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE); |
|
103 |
bind(OK); |
|
104 |
} |
|
105 |
#endif |
|
106 |
||
107 |
// TODO: Maybe implement +VerifyActivationFrameSize here. |
|
108 |
// verify_thread(); // Too slow. We will just verify on method entry & exit. |
|
109 |
verify_oop(Z_tos, state); |
|
110 |
#ifdef FAST_DISPATCH |
|
111 |
if (table == Interpreter::dispatch_table(state)) { |
|
112 |
// Use IdispatchTables. |
|
113 |
add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code); |
|
114 |
// Add offset to correct dispatch table. |
|
115 |
sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // Multiply by wordSize. |
|
116 |
ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // Get entry addr. |
|
117 |
} else |
|
118 |
#endif |
|
119 |
{ |
|
120 |
// Dispatch table to use. |
|
121 |
load_absolute_address(Z_tmp_1, (address) table); // Z_tmp_1 = table; |
|
122 |
||
123 |
// 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg. |
|
124 |
// Z_bytecode must have been loaded zero-extended for this approach to be correct. |
|
125 |
z_sll(Z_bytecode, LogBytesPerWord, Z_R0); // Multiply by wordSize. |
|
126 |
z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1); // Get entry addr. |
|
127 |
} |
|
128 |
z_br(Z_tmp_1); |
|
129 |
} |
|
130 |
||
131 |
void InterpreterMacroAssembler::dispatch_only(TosState state) { |
|
132 |
dispatch_base(state, Interpreter::dispatch_table(state)); |
|
133 |
} |
|
134 |
||
135 |
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { |
|
136 |
dispatch_base(state, Interpreter::normal_table(state)); |
|
137 |
} |
|
138 |
||
139 |
void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) { |
|
140 |
// Load current bytecode. |
|
141 |
z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0)); |
|
142 |
dispatch_base(state, table); |
|
143 |
} |
|
144 |
||
145 |
// The following call_VM*_base() methods overload and mask the respective |
|
146 |
// declarations/definitions in class MacroAssembler. They are meant as a "detour" |
|
147 |
// to perform additional, template interpreter specific tasks before actually |
|
148 |
// calling their MacroAssembler counterparts. |
|
149 |
||
150 |
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) { |
|
151 |
bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. |
|
152 |
// interpreter specific |
|
153 |
// Note: No need to save/restore bcp (Z_R13) pointer since these are callee |
|
154 |
// saved registers and no blocking/ GC can happen in leaf calls. |
|
155 |
||
156 |
// super call |
|
157 |
MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); |
|
158 |
} |
|
159 |
||
160 |
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) { |
|
161 |
// interpreter specific |
|
162 |
// Note: No need to save/restore bcp (Z_R13) pointer since these are callee |
|
163 |
// saved registers and no blocking/ GC can happen in leaf calls. |
|
164 |
||
165 |
// super call |
|
166 |
MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); |
|
167 |
} |
|
168 |
||
169 |
void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, |
|
170 |
address entry_point, bool check_exceptions) { |
|
171 |
bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. |
|
172 |
// interpreter specific |
|
173 |
||
174 |
save_bcp(); |
|
175 |
save_esp(); |
|
176 |
// super call |
|
177 |
MacroAssembler::call_VM_base(oop_result, last_java_sp, |
|
178 |
entry_point, allow_relocation, check_exceptions); |
|
179 |
restore_bcp(); |
|
180 |
} |
|
181 |
||
182 |
void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, |
|
183 |
address entry_point, bool allow_relocation, |
|
184 |
bool check_exceptions) { |
|
185 |
// interpreter specific |
|
186 |
||
187 |
save_bcp(); |
|
188 |
save_esp(); |
|
189 |
// super call |
|
190 |
MacroAssembler::call_VM_base(oop_result, last_java_sp, |
|
191 |
entry_point, allow_relocation, check_exceptions); |
|
192 |
restore_bcp(); |
|
193 |
} |
|
194 |
||
195 |
void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { |
|
196 |
if (JvmtiExport::can_pop_frame()) { |
|
197 |
BLOCK_COMMENT("check_and_handle_popframe {"); |
|
198 |
Label L; |
|
199 |
// Initiate popframe handling only if it is not already being |
|
200 |
// processed. If the flag has the popframe_processing bit set, it |
|
201 |
// means that this code is called *during* popframe handling - we |
|
202 |
// don't want to reenter. |
|
203 |
// TODO: Check if all four state combinations could be visible. |
|
204 |
// If (processing and !pending) is an invisible/impossible state, |
|
205 |
// there is optimization potential by testing both bits at once. |
|
206 |
// Then, All_Zeroes and All_Ones means skip, Mixed means doit. |
|
207 |
testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), |
|
208 |
exact_log2(JavaThread::popframe_pending_bit)); |
|
209 |
z_bfalse(L); |
|
210 |
testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), |
|
211 |
exact_log2(JavaThread::popframe_processing_bit)); |
|
212 |
z_btrue(L); |
|
213 |
||
214 |
// Call Interpreter::remove_activation_preserving_args_entry() to get the |
|
215 |
// address of the same-named entrypoint in the generated interpreter code. |
|
216 |
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); |
|
217 |
// The above call should (as its only effect) return the contents of the field |
|
218 |
// _remove_activation_preserving_args_entry in Z_RET. |
|
219 |
// We just jump there to have the work done. |
|
220 |
z_br(Z_RET); |
|
221 |
// There is no way for control to fall thru here. |
|
222 |
||
223 |
bind(L); |
|
224 |
BLOCK_COMMENT("} check_and_handle_popframe"); |
|
225 |
} |
|
226 |
} |
|
227 |
||
228 |
||
229 |
void InterpreterMacroAssembler::load_earlyret_value(TosState state) { |
|
230 |
Register RjvmtiState = Z_R1_scratch; |
|
231 |
int tos_off = in_bytes(JvmtiThreadState::earlyret_tos_offset()); |
|
232 |
int oop_off = in_bytes(JvmtiThreadState::earlyret_oop_offset()); |
|
233 |
int val_off = in_bytes(JvmtiThreadState::earlyret_value_offset()); |
|
234 |
int state_off = in_bytes(JavaThread::jvmti_thread_state_offset()); |
|
235 |
||
236 |
z_lg(RjvmtiState, state_off, Z_thread); |
|
237 |
||
238 |
switch (state) { |
|
239 |
case atos: z_lg(Z_tos, oop_off, RjvmtiState); |
|
240 |
store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch); |
|
241 |
break; |
|
242 |
case ltos: z_lg(Z_tos, val_off, RjvmtiState); break; |
|
243 |
case btos: // fall through |
|
244 |
case ztos: // fall through |
|
245 |
case ctos: // fall through |
|
246 |
case stos: // fall through |
|
247 |
case itos: z_llgf(Z_tos, val_off, RjvmtiState); break; |
|
248 |
case ftos: z_le(Z_ftos, val_off, RjvmtiState); break; |
|
249 |
case dtos: z_ld(Z_ftos, val_off, RjvmtiState); break; |
|
250 |
case vtos: /* nothing to do */ break; |
|
251 |
default : ShouldNotReachHere(); |
|
252 |
} |
|
253 |
||
254 |
// Clean up tos value in the jvmti thread state. |
|
255 |
store_const(Address(RjvmtiState, val_off), 0L, 8, 8, Z_R0_scratch); |
|
256 |
// Set tos state field to illegal value. |
|
257 |
store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch); |
|
258 |
} |
|
259 |
||
260 |
void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { |
|
261 |
if (JvmtiExport::can_force_early_return()) { |
|
262 |
BLOCK_COMMENT("check_and_handle_earlyret {"); |
|
263 |
Label L; |
|
264 |
// arg regs are save, because we are just behind the call in call_VM_base |
|
265 |
Register jvmti_thread_state = Z_ARG2; |
|
266 |
Register tmp = Z_ARG3; |
|
267 |
load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset())); |
|
268 |
z_bre(L); // if (thread->jvmti_thread_state() == NULL) exit; |
|
269 |
||
270 |
// Initiate earlyret handling only if it is not already being processed. |
|
271 |
// If the flag has the earlyret_processing bit set, it means that this code |
|
272 |
// is called *during* earlyret handling - we don't want to reenter. |
|
273 |
||
274 |
assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0), |
|
275 |
"must fix this check, when changing the values of the earlyret enum"); |
|
276 |
assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum"); |
|
277 |
||
278 |
load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset())); |
|
279 |
z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit; |
|
280 |
||
281 |
// Call Interpreter::remove_activation_early_entry() to get the address of the |
|
282 |
// same-named entrypoint in the generated interpreter code. |
|
283 |
assert(sizeof(TosState) == 4, "unexpected size"); |
|
284 |
z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset())); |
|
285 |
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1); |
|
286 |
// The above call should (as its only effect) return the contents of the field |
|
287 |
// _remove_activation_preserving_args_entry in Z_RET. |
|
288 |
// We just jump there to have the work done. |
|
289 |
z_br(Z_RET); |
|
290 |
// There is no way for control to fall thru here. |
|
291 |
||
292 |
bind(L); |
|
293 |
BLOCK_COMMENT("} check_and_handle_earlyret"); |
|
294 |
} |
|
295 |
} |
|
296 |
||
297 |
void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { |
|
298 |
lgr_if_needed(Z_ARG1, arg_1); |
|
299 |
assert(arg_2 != Z_ARG1, "smashed argument"); |
|
300 |
lgr_if_needed(Z_ARG2, arg_2); |
|
301 |
MacroAssembler::call_VM_leaf_base(entry_point, true); |
|
302 |
} |
|
303 |
||
304 |
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) { |
|
305 |
Address param(Z_bcp, bcp_offset); |
|
306 |
||
307 |
BLOCK_COMMENT("get_cache_index_at_bcp {"); |
|
308 |
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); |
|
309 |
if (index_size == sizeof(u2)) { |
|
310 |
load_sized_value(index, param, 2, false /*signed*/); |
|
311 |
} else if (index_size == sizeof(u4)) { |
|
312 |
||
313 |
load_sized_value(index, param, 4, false); |
|
314 |
||
315 |
// Check if the secondary index definition is still ~x, otherwise |
|
316 |
// we have to change the following assembler code to calculate the |
|
317 |
// plain index. |
|
318 |
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); |
|
319 |
not_(index); // Convert to plain index. |
|
320 |
} else if (index_size == sizeof(u1)) { |
|
321 |
z_llgc(index, param); |
|
322 |
} else { |
|
323 |
ShouldNotReachHere(); |
|
324 |
} |
|
325 |
BLOCK_COMMENT("}"); |
|
326 |
} |
|
327 |
||
328 |
||
329 |
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register cpe_offset, |
|
330 |
int bcp_offset, size_t index_size) { |
|
331 |
BLOCK_COMMENT("get_cache_and_index_at_bcp {"); |
|
332 |
assert_different_registers(cache, cpe_offset); |
|
333 |
get_cache_index_at_bcp(cpe_offset, bcp_offset, index_size); |
|
334 |
z_lg(cache, Address(Z_fp, _z_ijava_state_neg(cpoolCache))); |
|
335 |
// Convert from field index to ConstantPoolCache offset in bytes. |
|
336 |
z_sllg(cpe_offset, cpe_offset, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord)); |
|
337 |
BLOCK_COMMENT("}"); |
|
338 |
} |
|
339 |
||
340 |
// Kills Z_R0_scratch. |
|
341 |
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, |
|
342 |
Register cpe_offset, |
|
343 |
Register bytecode, |
|
344 |
int byte_no, |
|
345 |
int bcp_offset, |
|
346 |
size_t index_size) { |
|
347 |
BLOCK_COMMENT("get_cache_and_index_and_bytecode_at_bcp {"); |
|
348 |
get_cache_and_index_at_bcp(cache, cpe_offset, bcp_offset, index_size); |
|
349 |
||
350 |
// We want to load (from CP cache) the bytecode that corresponds to the passed-in byte_no. |
|
351 |
// It is located at (cache + cpe_offset + base_offset + indices_offset + (8-1) (last byte in DW) - (byte_no+1). |
|
352 |
// Instead of loading, shifting and masking a DW, we just load that one byte of interest with z_llgc (unsigned). |
|
353 |
const int base_ix_off = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()); |
|
354 |
const int off_in_DW = (8-1) - (1+byte_no); |
|
355 |
assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); |
|
356 |
assert(ConstantPoolCacheEntry::bytecode_1_mask == 0xff, ""); |
|
357 |
load_sized_value(bytecode, Address(cache, cpe_offset, base_ix_off+off_in_DW), 1, false /*signed*/); |
|
358 |
||
359 |
BLOCK_COMMENT("}"); |
|
360 |
} |
|
361 |
||
362 |
// Load object from cpool->resolved_references(index). |
|
363 |
void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) { |
|
364 |
assert_different_registers(result, index); |
|
365 |
get_constant_pool(result); |
|
366 |
||
367 |
// Convert |
|
368 |
// - from field index to resolved_references() index and |
|
369 |
// - from word index to byte offset. |
|
370 |
// Since this is a java object, it is potentially compressed. |
|
371 |
Register tmp = index; // reuse |
|
372 |
z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array. |
|
373 |
// Load pointer for resolved_references[] objArray. |
|
374 |
z_lg(result, ConstantPool::resolved_references_offset_in_bytes(), result); |
|
375 |
// JNIHandles::resolve(result) |
|
376 |
z_lg(result, 0, result); // Load resolved references array itself. |
|
377 |
#ifdef ASSERT |
|
378 |
NearLabel index_ok; |
|
379 |
z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes())); |
|
380 |
z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop); |
|
381 |
compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok); |
|
382 |
stop("resolved reference index out of bounds", 0x09256); |
|
383 |
bind(index_ok); |
|
384 |
#endif |
|
385 |
z_agr(result, index); // Address of indexed array element. |
|
386 |
load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result); |
|
387 |
} |
|
388 |
||
389 |
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, |
|
390 |
Register tmp, |
|
391 |
int bcp_offset, |
|
392 |
size_t index_size) { |
|
393 |
BLOCK_COMMENT("get_cache_entry_pointer_at_bcp {"); |
|
394 |
get_cache_and_index_at_bcp(cache, tmp, bcp_offset, index_size); |
|
395 |
add2reg_with_index(cache, in_bytes(ConstantPoolCache::base_offset()), tmp, cache); |
|
396 |
BLOCK_COMMENT("}"); |
|
397 |
} |
|
398 |
||
399 |
// Generate a subtype check: branch to ok_is_subtype if sub_klass is |
|
400 |
// a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2. |
|
401 |
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, |
|
402 |
Register Rsuper_klass, |
|
403 |
Register Rtmp1, |
|
404 |
Register Rtmp2, |
|
405 |
Label &ok_is_subtype) { |
|
406 |
// Profile the not-null value's klass. |
|
407 |
profile_typecheck(Rtmp1, Rsub_klass, Rtmp2); |
|
408 |
||
409 |
// Do the check. |
|
410 |
check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); |
|
411 |
||
412 |
// Profile the failure of the check. |
|
413 |
profile_typecheck_failed(Rtmp1, Rtmp2); |
|
414 |
} |
|
415 |
||
416 |
// Pop topmost element from stack. It just disappears. |
|
417 |
// Useful if consumed previously by access via stackTop(). |
|
418 |
void InterpreterMacroAssembler::popx(int len) { |
|
419 |
add2reg(Z_esp, len*Interpreter::stackElementSize); |
|
420 |
debug_only(verify_esp(Z_esp, Z_R1_scratch)); |
|
421 |
} |
|
422 |
||
423 |
// Get Address object of stack top. No checks. No pop. |
|
424 |
// Purpose: - Provide address of stack operand to exploit reg-mem operations. |
|
425 |
// - Avoid RISC-like mem2reg - reg-reg-op sequence. |
|
426 |
Address InterpreterMacroAssembler::stackTop() { |
|
427 |
return Address(Z_esp, Interpreter::expr_offset_in_bytes(0)); |
|
428 |
} |
|
429 |
||
430 |
void InterpreterMacroAssembler::pop_i(Register r) { |
|
431 |
z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp); |
|
432 |
add2reg(Z_esp, Interpreter::stackElementSize); |
|
433 |
assert_different_registers(r, Z_R1_scratch); |
|
434 |
debug_only(verify_esp(Z_esp, Z_R1_scratch)); |
|
435 |
} |
|
436 |
||
437 |
void InterpreterMacroAssembler::pop_ptr(Register r) { |
|
438 |
z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); |
|
439 |
add2reg(Z_esp, Interpreter::stackElementSize); |
|
440 |
assert_different_registers(r, Z_R1_scratch); |
|
441 |
debug_only(verify_esp(Z_esp, Z_R1_scratch)); |
|
442 |
} |
|
443 |
||
444 |
void InterpreterMacroAssembler::pop_l(Register r) { |
|
445 |
z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); |
|
446 |
add2reg(Z_esp, 2*Interpreter::stackElementSize); |
|
447 |
assert_different_registers(r, Z_R1_scratch); |
|
448 |
debug_only(verify_esp(Z_esp, Z_R1_scratch)); |
|
449 |
} |
|
450 |
||
451 |
void InterpreterMacroAssembler::pop_f(FloatRegister f) { |
|
452 |
mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false); |
|
453 |
add2reg(Z_esp, Interpreter::stackElementSize); |
|
454 |
debug_only(verify_esp(Z_esp, Z_R1_scratch)); |
|
455 |
} |
|
456 |
||
457 |
void InterpreterMacroAssembler::pop_d(FloatRegister f) { |
|
458 |
mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true); |
|
459 |
add2reg(Z_esp, 2*Interpreter::stackElementSize); |
|
460 |
debug_only(verify_esp(Z_esp, Z_R1_scratch)); |
|
461 |
} |
|
462 |
||
463 |
void InterpreterMacroAssembler::push_i(Register r) { |
|
464 |
assert_different_registers(r, Z_R1_scratch); |
|
465 |
debug_only(verify_esp(Z_esp, Z_R1_scratch)); |
|
466 |
z_st(r, Address(Z_esp)); |
|
467 |
add2reg(Z_esp, -Interpreter::stackElementSize); |
|
468 |
} |
|
469 |
||
470 |
void InterpreterMacroAssembler::push_ptr(Register r) { |
|
471 |
z_stg(r, Address(Z_esp)); |
|
472 |
add2reg(Z_esp, -Interpreter::stackElementSize); |
|
473 |
} |
|
474 |
||
475 |
void InterpreterMacroAssembler::push_l(Register r) { |
|
476 |
assert_different_registers(r, Z_R1_scratch); |
|
477 |
debug_only(verify_esp(Z_esp, Z_R1_scratch)); |
|
478 |
int offset = -Interpreter::stackElementSize; |
|
479 |
z_stg(r, Address(Z_esp, offset)); |
|
480 |
clear_mem(Address(Z_esp), Interpreter::stackElementSize); |
|
481 |
add2reg(Z_esp, 2 * offset); |
|
482 |
} |
|
483 |
||
484 |
void InterpreterMacroAssembler::push_f(FloatRegister f) { |
|
485 |
debug_only(verify_esp(Z_esp, Z_R1_scratch)); |
|
486 |
freg2mem_opt(f, Address(Z_esp), false); |
|
487 |
add2reg(Z_esp, -Interpreter::stackElementSize); |
|
488 |
} |
|
489 |
||
490 |
void InterpreterMacroAssembler::push_d(FloatRegister d) { |
|
491 |
debug_only(verify_esp(Z_esp, Z_R1_scratch)); |
|
492 |
int offset = -Interpreter::stackElementSize; |
|
493 |
freg2mem_opt(d, Address(Z_esp, offset)); |
|
494 |
add2reg(Z_esp, 2 * offset); |
|
495 |
} |
|
496 |
||
497 |
void InterpreterMacroAssembler::push(TosState state) { |
|
498 |
verify_oop(Z_tos, state); |
|
499 |
switch (state) { |
|
500 |
case atos: push_ptr(); break; |
|
501 |
case btos: push_i(); break; |
|
502 |
case ztos: |
|
503 |
case ctos: |
|
504 |
case stos: push_i(); break; |
|
505 |
case itos: push_i(); break; |
|
506 |
case ltos: push_l(); break; |
|
507 |
case ftos: push_f(); break; |
|
508 |
case dtos: push_d(); break; |
|
509 |
case vtos: /* nothing to do */ break; |
|
510 |
default : ShouldNotReachHere(); |
|
511 |
} |
|
512 |
} |
|
513 |
||
514 |
void InterpreterMacroAssembler::pop(TosState state) { |
|
515 |
switch (state) { |
|
516 |
case atos: pop_ptr(Z_tos); break; |
|
517 |
case btos: pop_i(Z_tos); break; |
|
518 |
case ztos: |
|
519 |
case ctos: |
|
520 |
case stos: pop_i(Z_tos); break; |
|
521 |
case itos: pop_i(Z_tos); break; |
|
522 |
case ltos: pop_l(Z_tos); break; |
|
523 |
case ftos: pop_f(Z_ftos); break; |
|
524 |
case dtos: pop_d(Z_ftos); break; |
|
525 |
case vtos: /* nothing to do */ break; |
|
526 |
default : ShouldNotReachHere(); |
|
527 |
} |
|
528 |
verify_oop(Z_tos, state); |
|
529 |
} |
|
530 |
||
531 |
// Helpers for swap and dup. |
|
532 |
void InterpreterMacroAssembler::load_ptr(int n, Register val) { |
|
533 |
z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); |
|
534 |
} |
|
535 |
||
536 |
void InterpreterMacroAssembler::store_ptr(int n, Register val) { |
|
537 |
z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); |
|
538 |
} |
|
539 |
||
540 |
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) { |
|
541 |
// Satisfy interpreter calling convention (see generate_normal_entry()). |
|
542 |
z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp). |
|
543 |
// Record top_frame_sp, because the callee might modify it, if it's compiled. |
|
544 |
z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp); |
|
545 |
save_bcp(); |
|
546 |
save_esp(); |
|
547 |
z_lgr(Z_method, method); // Set Z_method (kills Z_fp!). |
|
548 |
} |
|
549 |
||
550 |
// Jump to from_interpreted entry of a call unless single stepping is possible |
|
551 |
// in this thread in which case we must call the i2i entry. |
|
552 |
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { |
|
553 |
assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp); |
|
554 |
prepare_to_jump_from_interpreted(method); |
|
555 |
||
556 |
if (JvmtiExport::can_post_interpreter_events()) { |
|
557 |
// JVMTI events, such as single-stepping, are implemented partly by avoiding running |
|
558 |
// compiled code in threads for which the event is enabled. Check here for |
|
559 |
// interp_only_mode if these events CAN be enabled. |
|
560 |
z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); |
|
561 |
MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); |
|
562 |
z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero. |
|
563 |
// Run interpreted. |
|
564 |
z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset())); |
|
565 |
z_br(Z_R1_scratch); |
|
566 |
} else { |
|
567 |
// Run compiled code. |
|
568 |
z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); |
|
569 |
z_br(Z_R1_scratch); |
|
570 |
} |
|
571 |
} |
|
572 |
||
573 |
#ifdef ASSERT |
|
574 |
void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) { |
|
575 |
// About to read or write Resp[0]. |
|
576 |
// Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI. |
|
577 |
address reentry = NULL; |
|
578 |
||
579 |
{ |
|
580 |
// Check if the frame pointer in Z_fp is correct. |
|
581 |
NearLabel OK; |
|
582 |
z_cg(Z_fp, 0, Z_SP); |
|
583 |
z_bre(OK); |
|
584 |
reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp"); |
|
585 |
bind(OK); |
|
586 |
} |
|
587 |
{ |
|
588 |
// Resp must not point into or below the operand stack, |
|
589 |
// i.e. IJAVA_STATE.monitors > Resp. |
|
590 |
NearLabel OK; |
|
591 |
Register Rmonitors = Rtemp; |
|
592 |
z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp); |
|
593 |
compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK); |
|
594 |
reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area"); |
|
595 |
bind(OK); |
|
596 |
} |
|
597 |
{ |
|
598 |
// Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below |
|
599 |
// i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp). |
|
600 |
NearLabel OK; |
|
601 |
Register Rabi_bottom = Rtemp; |
|
602 |
add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP); |
|
603 |
compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK); |
|
604 |
reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI"); |
|
605 |
bind(OK); |
|
606 |
} |
|
607 |
} |
|
608 |
||
609 |
void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) { |
|
610 |
Label magic_ok; |
|
611 |
load_const_optimized(tmp, frame::z_istate_magic_number); |
|
612 |
z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic))); |
|
613 |
z_bre(magic_ok); |
|
614 |
stop_static("error: wrong magic number in ijava_state access"); |
|
615 |
bind(magic_ok); |
|
616 |
} |
|
617 |
#endif // ASSERT |
|
618 |
||
619 |
void InterpreterMacroAssembler::save_bcp() { |
|
620 |
z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); |
|
621 |
asm_assert_ijava_state_magic(Z_bcp); |
|
622 |
NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)))); |
|
623 |
} |
|
624 |
||
625 |
void InterpreterMacroAssembler::restore_bcp() { |
|
626 |
asm_assert_ijava_state_magic(Z_bcp); |
|
627 |
z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); |
|
628 |
} |
|
629 |
||
630 |
void InterpreterMacroAssembler::save_esp() { |
|
631 |
z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); |
|
632 |
} |
|
633 |
||
634 |
void InterpreterMacroAssembler::restore_esp() { |
|
635 |
asm_assert_ijava_state_magic(Z_esp); |
|
636 |
z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); |
|
637 |
} |
|
638 |
||
639 |
void InterpreterMacroAssembler::get_monitors(Register reg) { |
|
640 |
asm_assert_ijava_state_magic(reg); |
|
641 |
mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); |
|
642 |
} |
|
643 |
||
644 |
void InterpreterMacroAssembler::save_monitors(Register reg) { |
|
645 |
reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); |
|
646 |
} |
|
647 |
||
648 |
void InterpreterMacroAssembler::get_mdp(Register mdp) { |
|
649 |
z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp); |
|
650 |
} |
|
651 |
||
652 |
void InterpreterMacroAssembler::save_mdp(Register mdp) { |
|
653 |
z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); |
|
654 |
} |
|
655 |
||
656 |
// Values that are only read (besides initialization). |
|
657 |
void InterpreterMacroAssembler::restore_locals() { |
|
658 |
asm_assert_ijava_state_magic(Z_locals); |
|
659 |
z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals))); |
|
660 |
} |
|
661 |
||
662 |
void InterpreterMacroAssembler::get_method(Register reg) { |
|
663 |
asm_assert_ijava_state_magic(reg); |
|
664 |
z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method))); |
|
665 |
} |
|
666 |
||
667 |
void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset, |
|
668 |
signedOrNot is_signed) { |
|
669 |
// Rdst is an 8-byte return value!!! |
|
670 |
||
671 |
// Unaligned loads incur only a small penalty on z/Architecture. The penalty |
|
672 |
// is a few (2..3) ticks, even when the load crosses a cache line |
|
673 |
// boundary. In case of a cache miss, the stall could, of course, be |
|
674 |
// much longer. |
|
675 |
||
676 |
switch (is_signed) { |
|
677 |
case Signed: |
|
678 |
z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp); |
|
679 |
break; |
|
680 |
case Unsigned: |
|
681 |
z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp); |
|
682 |
break; |
|
683 |
default: |
|
684 |
ShouldNotReachHere(); |
|
685 |
} |
|
686 |
} |
|
687 |
||
688 |
||
689 |
void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset, |
|
690 |
setCCOrNot set_cc) { |
|
691 |
// Rdst is an 8-byte return value!!! |
|
692 |
||
693 |
// Unaligned loads incur only a small penalty on z/Architecture. The penalty |
|
694 |
// is a few (2..3) ticks, even when the load crosses a cache line |
|
695 |
// boundary. In case of a cache miss, the stall could, of course, be |
|
696 |
// much longer. |
|
697 |
||
698 |
// Both variants implement a sign-extending int2long load. |
|
699 |
if (set_cc == set_CC) { |
|
700 |
load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); |
|
701 |
} else { |
|
702 |
mem2reg_signed_opt( Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); |
|
703 |
} |
|
704 |
} |
|
705 |
||
706 |
void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { |
|
707 |
get_method(Rdst); |
|
708 |
mem2reg_opt(Rdst, Address(Rdst, Method::const_offset())); |
|
709 |
mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset())); |
|
710 |
} |
|
711 |
||
712 |
void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { |
|
713 |
get_constant_pool(Rcpool); |
|
714 |
mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset_in_bytes())); |
|
715 |
} |
|
716 |
||
717 |
// Unlock if synchronized method. |
|
718 |
// |
|
719 |
// Unlock the receiver if this is a synchronized method. |
|
720 |
// Unlock any Java monitors from syncronized blocks. |
|
721 |
// |
|
722 |
// If there are locked Java monitors |
|
723 |
// If throw_monitor_exception |
|
724 |
// throws IllegalMonitorStateException |
|
725 |
// Else if install_monitor_exception |
|
726 |
// installs IllegalMonitorStateException |
|
727 |
// Else |
|
728 |
// no error processing |
|
729 |
void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, |
|
730 |
bool throw_monitor_exception, |
|
731 |
bool install_monitor_exception) { |
|
732 |
NearLabel unlocked, unlock, no_unlock; |
|
733 |
||
734 |
{ |
|
735 |
Register R_method = Z_ARG2; |
|
736 |
Register R_do_not_unlock_if_synchronized = Z_ARG3; |
|
737 |
||
738 |
// Get the value of _do_not_unlock_if_synchronized into G1_scratch. |
|
739 |
const Address do_not_unlock_if_synchronized(Z_thread, |
|
740 |
JavaThread::do_not_unlock_if_synchronized_offset()); |
|
741 |
load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/); |
|
742 |
z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag. |
|
743 |
||
744 |
// Check if synchronized method. |
|
745 |
get_method(R_method); |
|
746 |
verify_oop(Z_tos, state); |
|
747 |
push(state); // Save tos/result. |
|
748 |
testbit(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); |
|
749 |
z_bfalse(unlocked); |
|
750 |
||
751 |
// Don't unlock anything if the _do_not_unlock_if_synchronized flag |
|
752 |
// is set. |
|
753 |
compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock); |
|
754 |
} |
|
755 |
||
756 |
// unlock monitor |
|
757 |
||
758 |
// BasicObjectLock will be first in list, since this is a |
|
759 |
// synchronized method. However, need to check that the object has |
|
760 |
// not been unlocked by an explicit monitorexit bytecode. |
|
761 |
const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock))); |
|
762 |
// We use Z_ARG2 so that if we go slow path it will be the correct |
|
763 |
// register for unlock_object to pass to VM directly. |
|
764 |
load_address(Z_ARG2, monitor); // Address of first monitor. |
|
765 |
z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset_in_bytes())); |
|
766 |
compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock); |
|
767 |
||
768 |
if (throw_monitor_exception) { |
|
769 |
// Entry already unlocked need to throw an exception. |
|
770 |
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); |
|
771 |
should_not_reach_here(); |
|
772 |
} else { |
|
773 |
// Monitor already unlocked during a stack unroll. |
|
774 |
// If requested, install an illegal_monitor_state_exception. |
|
775 |
// Continue with stack unrolling. |
|
776 |
if (install_monitor_exception) { |
|
777 |
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); |
|
778 |
} |
|
779 |
z_bru(unlocked); |
|
780 |
} |
|
781 |
||
782 |
bind(unlock); |
|
783 |
||
784 |
unlock_object(Z_ARG2); |
|
785 |
||
786 |
bind(unlocked); |
|
787 |
||
788 |
// I0, I1: Might contain return value |
|
789 |
||
790 |
// Check that all monitors are unlocked. |
|
791 |
{ |
|
792 |
NearLabel loop, exception, entry, restart; |
|
793 |
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; |
|
794 |
// We use Z_ARG2 so that if we go slow path it will be the correct |
|
795 |
// register for unlock_object to pass to VM directly. |
|
796 |
Register R_current_monitor = Z_ARG2; |
|
797 |
Register R_monitor_block_bot = Z_ARG1; |
|
798 |
const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors)); |
|
799 |
const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size); |
|
800 |
||
801 |
bind(restart); |
|
802 |
// Starting with top-most entry. |
|
803 |
z_lg(R_current_monitor, monitor_block_top); |
|
804 |
// Points to word before bottom of monitor block. |
|
805 |
load_address(R_monitor_block_bot, monitor_block_bot); |
|
806 |
z_bru(entry); |
|
807 |
||
808 |
// Entry already locked, need to throw exception. |
|
809 |
bind(exception); |
|
810 |
||
811 |
if (throw_monitor_exception) { |
|
812 |
// Throw exception. |
|
813 |
MacroAssembler::call_VM(noreg, |
|
814 |
CAST_FROM_FN_PTR(address, InterpreterRuntime:: |
|
815 |
throw_illegal_monitor_state_exception)); |
|
816 |
should_not_reach_here(); |
|
817 |
} else { |
|
818 |
// Stack unrolling. Unlock object and install illegal_monitor_exception. |
|
819 |
// Unlock does not block, so don't have to worry about the frame. |
|
820 |
// We don't have to preserve c_rarg1 since we are going to throw an exception. |
|
821 |
unlock_object(R_current_monitor); |
|
822 |
if (install_monitor_exception) { |
|
823 |
call_VM(noreg, CAST_FROM_FN_PTR(address, |
|
824 |
InterpreterRuntime:: |
|
825 |
new_illegal_monitor_state_exception)); |
|
826 |
} |
|
827 |
z_bru(restart); |
|
828 |
} |
|
829 |
||
830 |
bind(loop); |
|
831 |
// Check if current entry is used. |
|
832 |
load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset_in_bytes())); |
|
833 |
z_brne(exception); |
|
834 |
||
835 |
add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry. |
|
836 |
bind(entry); |
|
837 |
compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop); |
|
838 |
} |
|
839 |
||
840 |
bind(no_unlock); |
|
841 |
pop(state); |
|
842 |
verify_oop(Z_tos, state); |
|
843 |
} |
|
844 |
||
845 |
// remove activation |
|
846 |
// |
|
847 |
// Unlock the receiver if this is a synchronized method. |
|
848 |
// Unlock any Java monitors from syncronized blocks. |
|
849 |
// Remove the activation from the stack. |
|
850 |
// |
|
851 |
// If there are locked Java monitors |
|
852 |
// If throw_monitor_exception |
|
853 |
// throws IllegalMonitorStateException |
|
854 |
// Else if install_monitor_exception |
|
855 |
// installs IllegalMonitorStateException |
|
856 |
// Else |
|
857 |
// no error processing |
|
858 |
void InterpreterMacroAssembler::remove_activation(TosState state, |
|
859 |
Register return_pc, |
|
860 |
bool throw_monitor_exception, |
|
861 |
bool install_monitor_exception, |
|
862 |
bool notify_jvmti) { |
|
43420
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
863 |
BLOCK_COMMENT("remove_activation {"); |
42065 | 864 |
unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); |
865 |
||
866 |
// Save result (push state before jvmti call and pop it afterwards) and notify jvmti. |
|
867 |
notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI); |
|
868 |
||
43420
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
869 |
if (StackReservedPages > 0) { |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
870 |
BLOCK_COMMENT("reserved_stack_check:"); |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
871 |
// Test if reserved zone needs to be enabled. |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
872 |
Label no_reserved_zone_enabling; |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
873 |
|
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
874 |
// Compare frame pointers. There is no good stack pointer, as with stack |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
875 |
// frame compression we can get different SPs when we do calls. A subsequent |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
876 |
// call could have a smaller SP, so that this compare succeeds for an |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
877 |
// inner call of the method annotated with ReservedStack. |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
878 |
z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp))); |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
879 |
z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory. |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
880 |
z_brl(no_reserved_zone_enabling); |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
881 |
|
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
882 |
// Enable reserved zone again, throw stack overflow exception. |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
883 |
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread); |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
884 |
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
885 |
|
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
886 |
should_not_reach_here(); |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
887 |
|
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
888 |
bind(no_reserved_zone_enabling); |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
889 |
} |
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
890 |
|
42065 | 891 |
verify_oop(Z_tos, state); |
892 |
verify_thread(); |
|
893 |
||
894 |
pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3); |
|
43420
a056d6465ef9
8172049: [s390] Implement "JEP 270: Reserved Stack Areas for Critical Sections".
goetz
parents:
42065
diff
changeset
|
895 |
BLOCK_COMMENT("} remove_activation"); |
42065 | 896 |
} |
897 |
||
898 |
// lock object |
|
899 |
// |
|
900 |
// Registers alive |
|
901 |
// monitor - Address of the BasicObjectLock to be used for locking, |
|
902 |
// which must be initialized with the object to lock. |
|
903 |
// object - Address of the object to be locked. |
|
904 |
void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { |
|
905 |
||
906 |
if (UseHeavyMonitors) { |
|
907 |
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), |
|
908 |
monitor, /*check_for_exceptions=*/false); |
|
909 |
return; |
|
910 |
} |
|
911 |
||
912 |
// template code: |
|
913 |
// |
|
914 |
// markOop displaced_header = obj->mark().set_unlocked(); |
|
915 |
// monitor->lock()->set_displaced_header(displaced_header); |
|
916 |
// if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) { |
|
917 |
// // We stored the monitor address into the object's mark word. |
|
918 |
// } else if (THREAD->is_lock_owned((address)displaced_header)) |
|
919 |
// // Simple recursive case. |
|
920 |
// monitor->lock()->set_displaced_header(NULL); |
|
921 |
// } else { |
|
922 |
// // Slow path. |
|
923 |
// InterpreterRuntime::monitorenter(THREAD, monitor); |
|
924 |
// } |
|
925 |
||
926 |
const Register displaced_header = Z_ARG5; |
|
927 |
const Register object_mark_addr = Z_ARG4; |
|
928 |
const Register current_header = Z_ARG5; |
|
929 |
||
930 |
NearLabel done; |
|
931 |
NearLabel slow_case; |
|
932 |
||
933 |
// markOop displaced_header = obj->mark().set_unlocked(); |
|
934 |
||
935 |
// Load markOop from object into displaced_header. |
|
936 |
z_lg(displaced_header, oopDesc::mark_offset_in_bytes(), object); |
|
937 |
||
938 |
if (UseBiasedLocking) { |
|
939 |
biased_locking_enter(object, displaced_header, Z_R1, Z_R0, done, &slow_case); |
|
940 |
} |
|
941 |
||
942 |
// Set displaced_header to be (markOop of object | UNLOCK_VALUE). |
|
943 |
z_oill(displaced_header, markOopDesc::unlocked_value); |
|
944 |
||
945 |
// monitor->lock()->set_displaced_header(displaced_header); |
|
946 |
||
947 |
// Initialize the box (Must happen before we update the object mark!). |
|
948 |
z_stg(displaced_header, BasicObjectLock::lock_offset_in_bytes() + |
|
949 |
BasicLock::displaced_header_offset_in_bytes(), monitor); |
|
950 |
||
951 |
// if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) { |
|
952 |
||
953 |
// Store stack address of the BasicObjectLock (this is monitor) into object. |
|
954 |
add2reg(object_mark_addr, oopDesc::mark_offset_in_bytes(), object); |
|
955 |
||
956 |
z_csg(displaced_header, monitor, 0, object_mark_addr); |
|
957 |
assert(current_header==displaced_header, "must be same register"); // Identified two registers from z/Architecture. |
|
958 |
||
959 |
z_bre(done); |
|
960 |
||
961 |
// } else if (THREAD->is_lock_owned((address)displaced_header)) |
|
962 |
// // Simple recursive case. |
|
963 |
// monitor->lock()->set_displaced_header(NULL); |
|
964 |
||
965 |
// We did not see an unlocked object so try the fast recursive case. |
|
966 |
||
967 |
// Check if owner is self by comparing the value in the markOop of object |
|
968 |
// (current_header) with the stack pointer. |
|
969 |
z_sgr(current_header, Z_SP); |
|
970 |
||
971 |
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); |
|
972 |
||
973 |
// The prior sequence "LGR, NGR, LTGR" can be done better |
|
974 |
// (Z_R1 is temp and not used after here). |
|
975 |
load_const_optimized(Z_R0, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place)); |
|
976 |
z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0) |
|
977 |
||
978 |
// If condition is true we are done and hence we can store 0 in the displaced |
|
979 |
// header indicating it is a recursive lock and be done. |
|
980 |
z_brne(slow_case); |
|
981 |
z_release(); // Membar unnecessary on zarch AND because the above csg does a sync before and after. |
|
982 |
z_stg(Z_R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() + |
|
983 |
BasicLock::displaced_header_offset_in_bytes(), monitor); |
|
984 |
z_bru(done); |
|
985 |
||
986 |
// } else { |
|
987 |
// // Slow path. |
|
988 |
// InterpreterRuntime::monitorenter(THREAD, monitor); |
|
989 |
||
990 |
// None of the above fast optimizations worked so we have to get into the |
|
991 |
// slow case of monitor enter. |
|
992 |
bind(slow_case); |
|
993 |
||
994 |
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), |
|
995 |
monitor, /*check_for_exceptions=*/false); |
|
996 |
||
997 |
// } |
|
998 |
||
999 |
bind(done); |
|
1000 |
} |
|
1001 |
||
1002 |
// Unlocks an object. Used in monitorexit bytecode and remove_activation. |
|
1003 |
// |
|
1004 |
// Registers alive |
|
1005 |
// monitor - address of the BasicObjectLock to be used for locking, |
|
1006 |
// which must be initialized with the object to lock. |
|
1007 |
// |
|
1008 |
// Throw IllegalMonitorException if object is not locked by current thread. |
|
1009 |
void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) { |
|
1010 |
||
1011 |
if (UseHeavyMonitors) { |
|
1012 |
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), |
|
1013 |
monitor, /*check_for_exceptions=*/ true); |
|
1014 |
return; |
|
1015 |
} |
|
1016 |
||
1017 |
// else { |
|
1018 |
// template code: |
|
1019 |
// |
|
1020 |
// if ((displaced_header = monitor->displaced_header()) == NULL) { |
|
1021 |
// // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL. |
|
1022 |
// monitor->set_obj(NULL); |
|
1023 |
// } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) { |
|
1024 |
// // We swapped the unlocked mark in displaced_header into the object's mark word. |
|
1025 |
// monitor->set_obj(NULL); |
|
1026 |
// } else { |
|
1027 |
// // Slow path. |
|
1028 |
// InterpreterRuntime::monitorexit(THREAD, monitor); |
|
1029 |
// } |
|
1030 |
||
1031 |
const Register displaced_header = Z_ARG4; |
|
1032 |
const Register current_header = Z_R1; |
|
1033 |
Address obj_entry(monitor, BasicObjectLock::obj_offset_in_bytes()); |
|
1034 |
Label done; |
|
1035 |
||
1036 |
if (object == noreg) { |
|
1037 |
// In the template interpreter, we must assure that the object |
|
1038 |
// entry in the monitor is cleared on all paths. Thus we move |
|
1039 |
// loading up to here, and clear the entry afterwards. |
|
1040 |
object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object. |
|
1041 |
z_lg(object, obj_entry); |
|
1042 |
} |
|
1043 |
||
1044 |
assert_different_registers(monitor, object, displaced_header, current_header); |
|
1045 |
||
1046 |
// if ((displaced_header = monitor->displaced_header()) == NULL) { |
|
1047 |
// // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL. |
|
1048 |
// monitor->set_obj(NULL); |
|
1049 |
||
1050 |
clear_mem(obj_entry, sizeof(oop)); |
|
1051 |
||
1052 |
if (UseBiasedLocking) { |
|
1053 |
// The object address from the monitor is in object. |
|
1054 |
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); |
|
1055 |
biased_locking_exit(object, displaced_header, done); |
|
1056 |
} |
|
1057 |
||
1058 |
// Test first if we are in the fast recursive case. |
|
1059 |
MacroAssembler::load_and_test_long(displaced_header, |
|
1060 |
Address(monitor, BasicObjectLock::lock_offset_in_bytes() + |
|
1061 |
BasicLock::displaced_header_offset_in_bytes())); |
|
1062 |
z_bre(done); // displaced_header == 0 -> goto done |
|
1063 |
||
1064 |
// } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) { |
|
1065 |
// // We swapped the unlocked mark in displaced_header into the object's mark word. |
|
1066 |
// monitor->set_obj(NULL); |
|
1067 |
||
1068 |
// If we still have a lightweight lock, unlock the object and be done. |
|
1069 |
||
1070 |
// The markword is expected to be at offset 0. |
|
1071 |
assert(oopDesc::mark_offset_in_bytes() == 0, "unlock_object: review code below"); |
|
1072 |
||
1073 |
// We have the displaced header in displaced_header. If the lock is still |
|
1074 |
// lightweight, it will contain the monitor address and we'll store the |
|
1075 |
// displaced header back into the object's mark word. |
|
1076 |
z_lgr(current_header, monitor); |
|
1077 |
z_csg(current_header, displaced_header, 0, object); |
|
1078 |
z_bre(done); |
|
1079 |
||
1080 |
// } else { |
|
1081 |
// // Slow path. |
|
1082 |
// InterpreterRuntime::monitorexit(THREAD, monitor); |
|
1083 |
||
1084 |
// The lock has been converted into a heavy lock and hence |
|
1085 |
// we need to get into the slow case. |
|
1086 |
z_stg(object, obj_entry); // Restore object entry, has been cleared above. |
|
1087 |
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), |
|
1088 |
monitor, /*check_for_exceptions=*/false); |
|
1089 |
||
1090 |
// } |
|
1091 |
||
1092 |
bind(done); |
|
1093 |
} |
|
1094 |
||
1095 |
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { |
|
1096 |
assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1097 |
load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx))); |
|
1098 |
z_brz(zero_continue); |
|
1099 |
} |
|
1100 |
||
1101 |
// Set the method data pointer for the current bcp. |
|
1102 |
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { |
|
1103 |
assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1104 |
Label set_mdp; |
|
1105 |
Register mdp = Z_ARG4; |
|
1106 |
Register method = Z_ARG5; |
|
1107 |
||
1108 |
get_method(method); |
|
1109 |
// Test MDO to avoid the call if it is NULL. |
|
1110 |
load_and_test_long(mdp, method2_(method, method_data)); |
|
1111 |
z_brz(set_mdp); |
|
1112 |
||
1113 |
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp); |
|
1114 |
// Z_RET: mdi |
|
1115 |
// Mdo is guaranteed to be non-zero here, we checked for it before the call. |
|
1116 |
assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame"); |
|
1117 |
z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg. |
|
1118 |
add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp); |
|
1119 |
||
1120 |
bind(set_mdp); |
|
1121 |
save_mdp(mdp); |
|
1122 |
} |
|
1123 |
||
1124 |
void InterpreterMacroAssembler::verify_method_data_pointer() { |
|
1125 |
assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1126 |
#ifdef ASSERT |
|
1127 |
NearLabel verify_continue; |
|
1128 |
Register bcp_expected = Z_ARG3; |
|
1129 |
Register mdp = Z_ARG4; |
|
1130 |
Register method = Z_ARG5; |
|
1131 |
||
1132 |
test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue |
|
1133 |
get_method(method); |
|
1134 |
||
1135 |
// If the mdp is valid, it will point to a DataLayout header which is |
|
1136 |
// consistent with the bcp. The converse is highly probable also. |
|
1137 |
load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/); |
|
1138 |
z_ag(bcp_expected, Address(method, Method::const_offset())); |
|
1139 |
load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset())); |
|
1140 |
compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue); |
|
1141 |
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp); |
|
1142 |
bind(verify_continue); |
|
1143 |
#endif // ASSERT |
|
1144 |
} |
|
1145 |
||
1146 |
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { |
|
1147 |
assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1148 |
z_stg(value, constant, mdp_in); |
|
1149 |
} |
|
1150 |
||
1151 |
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, |
|
1152 |
int constant, |
|
1153 |
Register tmp, |
|
1154 |
bool decrement) { |
|
1155 |
assert_different_registers(mdp_in, tmp); |
|
1156 |
// counter address |
|
1157 |
Address data(mdp_in, constant); |
|
1158 |
const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment; |
|
1159 |
add2mem_64(Address(mdp_in, constant), delta, tmp); |
|
1160 |
} |
|
1161 |
||
1162 |
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, |
|
1163 |
int flag_byte_constant) { |
|
1164 |
assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1165 |
// Set the flag. |
|
1166 |
z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant); |
|
1167 |
} |
|
1168 |
||
1169 |
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, |
|
1170 |
int offset, |
|
1171 |
Register value, |
|
1172 |
Register test_value_out, |
|
1173 |
Label& not_equal_continue) { |
|
1174 |
assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1175 |
if (test_value_out == noreg) { |
|
1176 |
z_cg(value, Address(mdp_in, offset)); |
|
1177 |
z_brne(not_equal_continue); |
|
1178 |
} else { |
|
1179 |
// Put the test value into a register, so caller can use it: |
|
1180 |
z_lg(test_value_out, Address(mdp_in, offset)); |
|
1181 |
compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue); |
|
1182 |
} |
|
1183 |
} |
|
1184 |
||
1185 |
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { |
|
1186 |
update_mdp_by_offset(mdp_in, noreg, offset_of_disp); |
|
1187 |
} |
|
1188 |
||
1189 |
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, |
|
1190 |
Register dataidx, |
|
1191 |
int offset_of_disp) { |
|
1192 |
assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1193 |
Address disp_address(mdp_in, dataidx, offset_of_disp); |
|
1194 |
Assembler::z_ag(mdp_in, disp_address); |
|
1195 |
save_mdp(mdp_in); |
|
1196 |
} |
|
1197 |
||
1198 |
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { |
|
1199 |
assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1200 |
add2reg(mdp_in, constant); |
|
1201 |
save_mdp(mdp_in); |
|
1202 |
} |
|
1203 |
||
1204 |
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { |
|
1205 |
assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1206 |
assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore"); |
|
1207 |
call_VM(noreg, |
|
1208 |
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), |
|
1209 |
return_bci); |
|
1210 |
} |
|
1211 |
||
1212 |
void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { |
|
1213 |
if (ProfileInterpreter) { |
|
1214 |
Label profile_continue; |
|
1215 |
||
1216 |
// If no method data exists, go to profile_continue. |
|
1217 |
// Otherwise, assign to mdp. |
|
1218 |
test_method_data_pointer(mdp, profile_continue); |
|
1219 |
||
1220 |
// We are taking a branch. Increment the taken count. |
|
1221 |
// We inline increment_mdp_data_at to return bumped_count in a register |
|
1222 |
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); |
|
1223 |
Address data(mdp, JumpData::taken_offset()); |
|
1224 |
z_lg(bumped_count, data); |
|
1225 |
// 64-bit overflow is very unlikely. Saturation to 32-bit values is |
|
1226 |
// performed when reading the counts. |
|
1227 |
add2reg(bumped_count, DataLayout::counter_increment); |
|
1228 |
z_stg(bumped_count, data); // Store back out |
|
1229 |
||
1230 |
// The method data pointer needs to be updated to reflect the new target. |
|
1231 |
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); |
|
1232 |
bind(profile_continue); |
|
1233 |
} |
|
1234 |
} |
|
1235 |
||
1236 |
// Kills Z_R1_scratch. |
|
1237 |
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { |
|
1238 |
if (ProfileInterpreter) { |
|
1239 |
Label profile_continue; |
|
1240 |
||
1241 |
// If no method data exists, go to profile_continue. |
|
1242 |
test_method_data_pointer(mdp, profile_continue); |
|
1243 |
||
1244 |
// We are taking a branch. Increment the not taken count. |
|
1245 |
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch); |
|
1246 |
||
1247 |
// The method data pointer needs to be updated to correspond to |
|
1248 |
// the next bytecode. |
|
1249 |
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); |
|
1250 |
bind(profile_continue); |
|
1251 |
} |
|
1252 |
} |
|
1253 |
||
1254 |
// Kills: Z_R1_scratch. |
|
1255 |
void InterpreterMacroAssembler::profile_call(Register mdp) { |
|
1256 |
if (ProfileInterpreter) { |
|
1257 |
Label profile_continue; |
|
1258 |
||
1259 |
// If no method data exists, go to profile_continue. |
|
1260 |
test_method_data_pointer(mdp, profile_continue); |
|
1261 |
||
1262 |
// We are making a call. Increment the count. |
|
1263 |
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1264 |
||
1265 |
// The method data pointer needs to be updated to reflect the new target. |
|
1266 |
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); |
|
1267 |
bind(profile_continue); |
|
1268 |
} |
|
1269 |
} |
|
1270 |
||
1271 |
void InterpreterMacroAssembler::profile_final_call(Register mdp) { |
|
1272 |
if (ProfileInterpreter) { |
|
1273 |
Label profile_continue; |
|
1274 |
||
1275 |
// If no method data exists, go to profile_continue. |
|
1276 |
test_method_data_pointer(mdp, profile_continue); |
|
1277 |
||
1278 |
// We are making a call. Increment the count. |
|
1279 |
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1280 |
||
1281 |
// The method data pointer needs to be updated to reflect the new target. |
|
1282 |
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); |
|
1283 |
bind(profile_continue); |
|
1284 |
} |
|
1285 |
} |
|
1286 |
||
1287 |
void InterpreterMacroAssembler::profile_virtual_call(Register receiver, |
|
1288 |
Register mdp, |
|
1289 |
Register reg2, |
|
1290 |
bool receiver_can_be_null) { |
|
1291 |
if (ProfileInterpreter) { |
|
1292 |
NearLabel profile_continue; |
|
1293 |
||
1294 |
// If no method data exists, go to profile_continue. |
|
1295 |
test_method_data_pointer(mdp, profile_continue); |
|
1296 |
||
1297 |
NearLabel skip_receiver_profile; |
|
1298 |
if (receiver_can_be_null) { |
|
1299 |
NearLabel not_null; |
|
1300 |
compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null); |
|
1301 |
// We are making a call. Increment the count for null receiver. |
|
1302 |
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1303 |
z_bru(skip_receiver_profile); |
|
1304 |
bind(not_null); |
|
1305 |
} |
|
1306 |
||
1307 |
// Record the receiver type. |
|
1308 |
record_klass_in_profile(receiver, mdp, reg2, true); |
|
1309 |
bind(skip_receiver_profile); |
|
1310 |
||
1311 |
// The method data pointer needs to be updated to reflect the new target. |
|
1312 |
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); |
|
1313 |
bind(profile_continue); |
|
1314 |
} |
|
1315 |
} |
|
1316 |
||
1317 |
// This routine creates a state machine for updating the multi-row |
|
1318 |
// type profile at a virtual call site (or other type-sensitive bytecode). |
|
1319 |
// The machine visits each row (of receiver/count) until the receiver type |
|
1320 |
// is found, or until it runs out of rows. At the same time, it remembers |
|
1321 |
// the location of the first empty row. (An empty row records null for its |
|
1322 |
// receiver, and can be allocated for a newly-observed receiver type.) |
|
1323 |
// Because there are two degrees of freedom in the state, a simple linear |
|
1324 |
// search will not work; it must be a decision tree. Hence this helper |
|
1325 |
// function is recursive, to generate the required tree structured code. |
|
1326 |
// It's the interpreter, so we are trading off code space for speed. |
|
1327 |
// See below for example code. |
|
1328 |
void InterpreterMacroAssembler::record_klass_in_profile_helper( |
|
1329 |
Register receiver, Register mdp, |
|
1330 |
Register reg2, int start_row, |
|
1331 |
Label& done, bool is_virtual_call) { |
|
1332 |
if (TypeProfileWidth == 0) { |
|
1333 |
if (is_virtual_call) { |
|
1334 |
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1335 |
} |
|
1336 |
return; |
|
1337 |
} |
|
1338 |
||
1339 |
int last_row = VirtualCallData::row_limit() - 1; |
|
1340 |
assert(start_row <= last_row, "must be work left to do"); |
|
1341 |
// Test this row for both the receiver and for null. |
|
1342 |
// Take any of three different outcomes: |
|
1343 |
// 1. found receiver => increment count and goto done |
|
1344 |
// 2. found null => keep looking for case 1, maybe allocate this cell |
|
1345 |
// 3. found something else => keep looking for cases 1 and 2 |
|
1346 |
// Case 3 is handled by a recursive call. |
|
1347 |
for (int row = start_row; row <= last_row; row++) { |
|
1348 |
NearLabel next_test; |
|
1349 |
bool test_for_null_also = (row == start_row); |
|
1350 |
||
1351 |
// See if the receiver is receiver[n]. |
|
1352 |
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); |
|
1353 |
test_mdp_data_at(mdp, recvr_offset, receiver, |
|
1354 |
(test_for_null_also ? reg2 : noreg), |
|
1355 |
next_test); |
|
1356 |
// (Reg2 now contains the receiver from the CallData.) |
|
1357 |
||
1358 |
// The receiver is receiver[n]. Increment count[n]. |
|
1359 |
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); |
|
1360 |
increment_mdp_data_at(mdp, count_offset); |
|
1361 |
z_bru(done); |
|
1362 |
bind(next_test); |
|
1363 |
||
1364 |
if (test_for_null_also) { |
|
1365 |
Label found_null; |
|
1366 |
// Failed the equality check on receiver[n]... Test for null. |
|
1367 |
z_ltgr(reg2, reg2); |
|
1368 |
if (start_row == last_row) { |
|
1369 |
// The only thing left to do is handle the null case. |
|
1370 |
if (is_virtual_call) { |
|
1371 |
z_brz(found_null); |
|
1372 |
// Receiver did not match any saved receiver and there is no empty row for it. |
|
1373 |
// Increment total counter to indicate polymorphic case. |
|
1374 |
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1375 |
z_bru(done); |
|
1376 |
bind(found_null); |
|
1377 |
} else { |
|
1378 |
z_brnz(done); |
|
1379 |
} |
|
1380 |
break; |
|
1381 |
} |
|
1382 |
// Since null is rare, make it be the branch-taken case. |
|
1383 |
z_brz(found_null); |
|
1384 |
||
1385 |
// Put all the "Case 3" tests here. |
|
1386 |
record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call); |
|
1387 |
||
1388 |
// Found a null. Keep searching for a matching receiver, |
|
1389 |
// but remember that this is an empty (unused) slot. |
|
1390 |
bind(found_null); |
|
1391 |
} |
|
1392 |
} |
|
1393 |
||
1394 |
// In the fall-through case, we found no matching receiver, but we |
|
1395 |
// observed the receiver[start_row] is NULL. |
|
1396 |
||
1397 |
// Fill in the receiver field and increment the count. |
|
1398 |
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); |
|
1399 |
set_mdp_data_at(mdp, recvr_offset, receiver); |
|
1400 |
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); |
|
1401 |
load_const_optimized(reg2, DataLayout::counter_increment); |
|
1402 |
set_mdp_data_at(mdp, count_offset, reg2); |
|
1403 |
if (start_row > 0) { |
|
1404 |
z_bru(done); |
|
1405 |
} |
|
1406 |
} |
|
1407 |
||
1408 |
// Example state machine code for three profile rows: |
|
1409 |
// // main copy of decision tree, rooted at row[1] |
|
1410 |
// if (row[0].rec == rec) { row[0].incr(); goto done; } |
|
1411 |
// if (row[0].rec != NULL) { |
|
1412 |
// // inner copy of decision tree, rooted at row[1] |
|
1413 |
// if (row[1].rec == rec) { row[1].incr(); goto done; } |
|
1414 |
// if (row[1].rec != NULL) { |
|
1415 |
// // degenerate decision tree, rooted at row[2] |
|
1416 |
// if (row[2].rec == rec) { row[2].incr(); goto done; } |
|
1417 |
// if (row[2].rec != NULL) { count.incr(); goto done; } // overflow |
|
1418 |
// row[2].init(rec); goto done; |
|
1419 |
// } else { |
|
1420 |
// // remember row[1] is empty |
|
1421 |
// if (row[2].rec == rec) { row[2].incr(); goto done; } |
|
1422 |
// row[1].init(rec); goto done; |
|
1423 |
// } |
|
1424 |
// } else { |
|
1425 |
// // remember row[0] is empty |
|
1426 |
// if (row[1].rec == rec) { row[1].incr(); goto done; } |
|
1427 |
// if (row[2].rec == rec) { row[2].incr(); goto done; } |
|
1428 |
// row[0].init(rec); goto done; |
|
1429 |
// } |
|
1430 |
// done: |
|
1431 |
||
1432 |
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, |
|
1433 |
Register mdp, Register reg2, |
|
1434 |
bool is_virtual_call) { |
|
1435 |
assert(ProfileInterpreter, "must be profiling"); |
|
1436 |
Label done; |
|
1437 |
||
1438 |
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); |
|
1439 |
||
1440 |
bind (done); |
|
1441 |
} |
|
1442 |
||
1443 |
void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { |
|
1444 |
if (ProfileInterpreter) { |
|
1445 |
NearLabel profile_continue; |
|
1446 |
uint row; |
|
1447 |
||
1448 |
// If no method data exists, go to profile_continue. |
|
1449 |
test_method_data_pointer(mdp, profile_continue); |
|
1450 |
||
1451 |
// Update the total ret count. |
|
1452 |
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1453 |
||
1454 |
for (row = 0; row < RetData::row_limit(); row++) { |
|
1455 |
NearLabel next_test; |
|
1456 |
||
1457 |
// See if return_bci is equal to bci[n]: |
|
1458 |
test_mdp_data_at(mdp, |
|
1459 |
in_bytes(RetData::bci_offset(row)), |
|
1460 |
return_bci, noreg, |
|
1461 |
next_test); |
|
1462 |
||
1463 |
// Return_bci is equal to bci[n]. Increment the count. |
|
1464 |
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); |
|
1465 |
||
1466 |
// The method data pointer needs to be updated to reflect the new target. |
|
1467 |
update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); |
|
1468 |
z_bru(profile_continue); |
|
1469 |
bind(next_test); |
|
1470 |
} |
|
1471 |
||
1472 |
update_mdp_for_ret(return_bci); |
|
1473 |
||
1474 |
bind(profile_continue); |
|
1475 |
} |
|
1476 |
} |
|
1477 |
||
1478 |
void InterpreterMacroAssembler::profile_null_seen(Register mdp) { |
|
1479 |
if (ProfileInterpreter) { |
|
1480 |
Label profile_continue; |
|
1481 |
||
1482 |
// If no method data exists, go to profile_continue. |
|
1483 |
test_method_data_pointer(mdp, profile_continue); |
|
1484 |
||
1485 |
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); |
|
1486 |
||
1487 |
// The method data pointer needs to be updated. |
|
1488 |
int mdp_delta = in_bytes(BitData::bit_data_size()); |
|
1489 |
if (TypeProfileCasts) { |
|
1490 |
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); |
|
1491 |
} |
|
1492 |
update_mdp_by_constant(mdp, mdp_delta); |
|
1493 |
||
1494 |
bind(profile_continue); |
|
1495 |
} |
|
1496 |
} |
|
1497 |
||
1498 |
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp, Register tmp) { |
|
1499 |
if (ProfileInterpreter && TypeProfileCasts) { |
|
1500 |
Label profile_continue; |
|
1501 |
||
1502 |
// If no method data exists, go to profile_continue. |
|
1503 |
test_method_data_pointer(mdp, profile_continue); |
|
1504 |
||
1505 |
int count_offset = in_bytes(CounterData::count_offset()); |
|
1506 |
// Back up the address, since we have already bumped the mdp. |
|
1507 |
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); |
|
1508 |
||
1509 |
// *Decrement* the counter. We expect to see zero or small negatives. |
|
1510 |
increment_mdp_data_at(mdp, count_offset, tmp, true); |
|
1511 |
||
1512 |
bind (profile_continue); |
|
1513 |
} |
|
1514 |
} |
|
1515 |
||
1516 |
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { |
|
1517 |
if (ProfileInterpreter) { |
|
1518 |
Label profile_continue; |
|
1519 |
||
1520 |
// If no method data exists, go to profile_continue. |
|
1521 |
test_method_data_pointer(mdp, profile_continue); |
|
1522 |
||
1523 |
// The method data pointer needs to be updated. |
|
1524 |
int mdp_delta = in_bytes(BitData::bit_data_size()); |
|
1525 |
if (TypeProfileCasts) { |
|
1526 |
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); |
|
1527 |
||
1528 |
// Record the object type. |
|
1529 |
record_klass_in_profile(klass, mdp, reg2, false); |
|
1530 |
} |
|
1531 |
update_mdp_by_constant(mdp, mdp_delta); |
|
1532 |
||
1533 |
bind(profile_continue); |
|
1534 |
} |
|
1535 |
} |
|
1536 |
||
1537 |
void InterpreterMacroAssembler::profile_switch_default(Register mdp) { |
|
1538 |
if (ProfileInterpreter) { |
|
1539 |
Label profile_continue; |
|
1540 |
||
1541 |
// If no method data exists, go to profile_continue. |
|
1542 |
test_method_data_pointer(mdp, profile_continue); |
|
1543 |
||
1544 |
// Update the default case count. |
|
1545 |
increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); |
|
1546 |
||
1547 |
// The method data pointer needs to be updated. |
|
1548 |
update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset())); |
|
1549 |
||
1550 |
bind(profile_continue); |
|
1551 |
} |
|
1552 |
} |
|
1553 |
||
1554 |
// Kills: index, scratch1, scratch2. |
|
1555 |
void InterpreterMacroAssembler::profile_switch_case(Register index, |
|
1556 |
Register mdp, |
|
1557 |
Register scratch1, |
|
1558 |
Register scratch2) { |
|
1559 |
if (ProfileInterpreter) { |
|
1560 |
Label profile_continue; |
|
1561 |
assert_different_registers(index, mdp, scratch1, scratch2); |
|
1562 |
||
1563 |
// If no method data exists, go to profile_continue. |
|
1564 |
test_method_data_pointer(mdp, profile_continue); |
|
1565 |
||
1566 |
// Build the base (index * per_case_size_in_bytes()) + |
|
1567 |
// case_array_offset_in_bytes(). |
|
1568 |
z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); |
|
1569 |
add2reg(index, in_bytes(MultiBranchData::case_array_offset())); |
|
1570 |
||
1571 |
// Add the calculated base to the mdp -> address of the case' data. |
|
1572 |
Address case_data_addr(mdp, index); |
|
1573 |
Register case_data = scratch1; |
|
1574 |
load_address(case_data, case_data_addr); |
|
1575 |
||
1576 |
// Update the case count. |
|
1577 |
increment_mdp_data_at(case_data, |
|
1578 |
in_bytes(MultiBranchData::relative_count_offset()), |
|
1579 |
scratch2); |
|
1580 |
||
1581 |
// The method data pointer needs to be updated. |
|
1582 |
update_mdp_by_offset(mdp, |
|
1583 |
index, |
|
1584 |
in_bytes(MultiBranchData::relative_displacement_offset())); |
|
1585 |
||
1586 |
bind(profile_continue); |
|
1587 |
} |
|
1588 |
} |
|
1589 |
||
1590 |
// kills: R0, R1, flags, loads klass from obj (if not null) |
|
1591 |
void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) { |
|
1592 |
NearLabel null_seen, init_klass, do_nothing, do_update; |
|
1593 |
||
1594 |
// Klass = obj is allowed. |
|
1595 |
const Register tmp = Z_R1; |
|
1596 |
assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0); |
|
1597 |
assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0); |
|
1598 |
||
1599 |
z_lg(tmp, mdo_addr); |
|
1600 |
if (cmp_done) { |
|
1601 |
z_brz(null_seen); |
|
1602 |
} else { |
|
1603 |
compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen); |
|
1604 |
} |
|
1605 |
||
1606 |
verify_oop(obj); |
|
1607 |
load_klass(klass, obj); |
|
1608 |
||
1609 |
// Klass seen before, nothing to do (regardless of unknown bit). |
|
1610 |
z_lgr(Z_R0, tmp); |
|
1611 |
assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); |
|
1612 |
z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF); |
|
1613 |
compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing); |
|
1614 |
||
1615 |
// Already unknown. Nothing to do anymore. |
|
1616 |
z_tmll(tmp, TypeEntries::type_unknown); |
|
1617 |
z_brc(Assembler::bcondAllOne, do_nothing); |
|
1618 |
||
1619 |
z_lgr(Z_R0, tmp); |
|
1620 |
assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); |
|
1621 |
z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF); |
|
1622 |
compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass); |
|
1623 |
||
1624 |
// Different than before. Cannot keep accurate profile. |
|
1625 |
z_oill(tmp, TypeEntries::type_unknown); |
|
1626 |
z_bru(do_update); |
|
1627 |
||
1628 |
bind(init_klass); |
|
1629 |
// Combine klass and null_seen bit (only used if (tmp & type_mask)==0). |
|
1630 |
z_ogr(tmp, klass); |
|
1631 |
z_bru(do_update); |
|
1632 |
||
1633 |
bind(null_seen); |
|
1634 |
// Set null_seen if obj is 0. |
|
1635 |
z_oill(tmp, TypeEntries::null_seen); |
|
1636 |
// fallthru: z_bru(do_update); |
|
1637 |
||
1638 |
bind(do_update); |
|
1639 |
z_stg(tmp, mdo_addr); |
|
1640 |
||
1641 |
bind(do_nothing); |
|
1642 |
} |
|
1643 |
||
1644 |
void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { |
|
1645 |
if (!ProfileInterpreter) { |
|
1646 |
return; |
|
1647 |
} |
|
1648 |
||
1649 |
assert_different_registers(mdp, callee, tmp); |
|
1650 |
||
1651 |
if (MethodData::profile_arguments() || MethodData::profile_return()) { |
|
1652 |
Label profile_continue; |
|
1653 |
||
1654 |
test_method_data_pointer(mdp, profile_continue); |
|
1655 |
||
1656 |
int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); |
|
1657 |
||
1658 |
z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp, |
|
1659 |
is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); |
|
1660 |
z_brne(profile_continue); |
|
1661 |
||
1662 |
if (MethodData::profile_arguments()) { |
|
1663 |
NearLabel done; |
|
1664 |
int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); |
|
1665 |
add2reg(mdp, off_to_args); |
|
1666 |
||
1667 |
for (int i = 0; i < TypeProfileArgsLimit; i++) { |
|
1668 |
if (i > 0 || MethodData::profile_return()) { |
|
1669 |
// If return value type is profiled we may have no argument to profile. |
|
1670 |
z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); |
|
1671 |
add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count()); |
|
1672 |
compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done); |
|
1673 |
} |
|
1674 |
z_lg(tmp, Address(callee, Method::const_offset())); |
|
1675 |
z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); |
|
1676 |
// Stack offset o (zero based) from the start of the argument |
|
1677 |
// list. For n arguments translates into offset n - o - 1 from |
|
1678 |
// the end of the argument list. But there is an extra slot at |
|
1679 |
// the top of the stack. So the offset is n - o from Lesp. |
|
1680 |
z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); |
|
1681 |
z_sllg(tmp, tmp, Interpreter::logStackElementSize); |
|
1682 |
Address stack_slot_addr(tmp, Z_esp); |
|
1683 |
z_ltg(tmp, stack_slot_addr); |
|
1684 |
||
1685 |
Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); |
|
1686 |
profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true); |
|
1687 |
||
1688 |
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); |
|
1689 |
add2reg(mdp, to_add); |
|
1690 |
off_to_args += to_add; |
|
1691 |
} |
|
1692 |
||
1693 |
if (MethodData::profile_return()) { |
|
1694 |
z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); |
|
1695 |
add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); |
|
1696 |
} |
|
1697 |
||
1698 |
bind(done); |
|
1699 |
||
1700 |
if (MethodData::profile_return()) { |
|
1701 |
// We're right after the type profile for the last |
|
1702 |
// argument. Tmp is the number of cells left in the |
|
1703 |
// CallTypeData/VirtualCallTypeData to reach its end. Non null |
|
1704 |
// if there's a return to profile. |
|
1705 |
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); |
|
1706 |
z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size)); |
|
1707 |
z_agr(mdp, tmp); |
|
1708 |
} |
|
1709 |
z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); |
|
1710 |
} else { |
|
1711 |
assert(MethodData::profile_return(), "either profile call args or call ret"); |
|
1712 |
update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); |
|
1713 |
} |
|
1714 |
||
1715 |
// Mdp points right after the end of the |
|
1716 |
// CallTypeData/VirtualCallTypeData, right after the cells for the |
|
1717 |
// return value type if there's one. |
|
1718 |
bind(profile_continue); |
|
1719 |
} |
|
1720 |
} |
|
1721 |
||
1722 |
void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { |
|
1723 |
assert_different_registers(mdp, ret, tmp); |
|
1724 |
if (ProfileInterpreter && MethodData::profile_return()) { |
|
1725 |
Label profile_continue; |
|
1726 |
||
1727 |
test_method_data_pointer(mdp, profile_continue); |
|
1728 |
||
1729 |
if (MethodData::profile_return_jsr292_only()) { |
|
1730 |
// If we don't profile all invoke bytecodes we must make sure |
|
1731 |
// it's a bytecode we indeed profile. We can't go back to the |
|
1732 |
// beginning of the ProfileData we intend to update to check its |
|
1733 |
// type because we're right after it and we don't known its |
|
1734 |
// length. |
|
1735 |
NearLabel do_profile; |
|
1736 |
Address bc(Z_bcp); |
|
1737 |
z_lb(tmp, bc); |
|
1738 |
compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile); |
|
1739 |
compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile); |
|
1740 |
get_method(tmp); |
|
1741 |
// Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit. |
|
1742 |
if (Method::intrinsic_id_size_in_bytes() == 1) { |
|
1743 |
z_cli(Method::intrinsic_id_offset_in_bytes(), tmp, vmIntrinsics::_compiledLambdaForm); |
|
1744 |
} else { |
|
1745 |
assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id"); |
|
1746 |
z_lh(tmp, Method::intrinsic_id_offset_in_bytes(), Z_R0, tmp); |
|
1747 |
z_chi(tmp, vmIntrinsics::_compiledLambdaForm); |
|
1748 |
} |
|
1749 |
z_brne(profile_continue); |
|
1750 |
||
1751 |
bind(do_profile); |
|
1752 |
} |
|
1753 |
||
1754 |
Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); |
|
1755 |
profile_obj_type(ret, mdo_ret_addr, tmp); |
|
1756 |
||
1757 |
bind(profile_continue); |
|
1758 |
} |
|
1759 |
} |
|
1760 |
||
1761 |
void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { |
|
1762 |
if (ProfileInterpreter && MethodData::profile_parameters()) { |
|
1763 |
Label profile_continue, done; |
|
1764 |
||
1765 |
test_method_data_pointer(mdp, profile_continue); |
|
1766 |
||
1767 |
// Load the offset of the area within the MDO used for |
|
1768 |
// parameters. If it's negative we're not profiling any parameters. |
|
1769 |
Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())); |
|
1770 |
load_and_test_int2long(tmp1, parm_di_addr); |
|
1771 |
z_brl(profile_continue); |
|
1772 |
||
1773 |
// Compute a pointer to the area for parameters from the offset |
|
1774 |
// and move the pointer to the slot for the last |
|
1775 |
// parameters. Collect profiling from last parameter down. |
|
1776 |
// mdo start + parameters offset + array length - 1 |
|
1777 |
||
1778 |
// Pointer to the parameter area in the MDO. |
|
1779 |
z_agr(mdp, tmp1); |
|
1780 |
||
1781 |
// Offset of the current profile entry to update. |
|
1782 |
const Register entry_offset = tmp1; |
|
1783 |
// entry_offset = array len in number of cells. |
|
1784 |
z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset())); |
|
1785 |
// entry_offset (number of cells) = array len - size of 1 entry |
|
1786 |
add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count()); |
|
1787 |
// entry_offset in bytes |
|
1788 |
z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); |
|
1789 |
||
1790 |
Label loop; |
|
1791 |
bind(loop); |
|
1792 |
||
1793 |
Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0)); |
|
1794 |
Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0)); |
|
1795 |
||
1796 |
// Load offset on the stack from the slot for this parameter. |
|
1797 |
z_lg(tmp2, arg_off); |
|
1798 |
z_sllg(tmp2, tmp2, Interpreter::logStackElementSize); |
|
1799 |
z_lcgr(tmp2); // Negate. |
|
1800 |
||
1801 |
// Profile the parameter. |
|
1802 |
z_ltg(tmp2, Address(Z_locals, tmp2)); |
|
1803 |
profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true); |
|
1804 |
||
1805 |
// Go to next parameter. |
|
1806 |
z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size); |
|
1807 |
z_brnl(loop); |
|
1808 |
||
1809 |
bind(profile_continue); |
|
1810 |
} |
|
1811 |
} |
|
1812 |
||
1813 |
// Jump if ((*counter_addr += increment) & mask) satisfies the condition. |
|
1814 |
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, |
|
1815 |
int increment, |
|
1816 |
Address mask, |
|
1817 |
Register scratch, |
|
1818 |
bool preloaded, |
|
1819 |
branch_condition cond, |
|
1820 |
Label *where) { |
|
1821 |
assert_different_registers(counter_addr.base(), scratch); |
|
1822 |
if (preloaded) { |
|
1823 |
add2reg(scratch, increment); |
|
1824 |
reg2mem_opt(scratch, counter_addr, false); |
|
1825 |
} else { |
|
1826 |
if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) { |
|
1827 |
z_alsi(counter_addr.disp20(), counter_addr.base(), increment); |
|
1828 |
mem2reg_signed_opt(scratch, counter_addr); |
|
1829 |
} else { |
|
1830 |
mem2reg_signed_opt(scratch, counter_addr); |
|
1831 |
add2reg(scratch, increment); |
|
1832 |
reg2mem_opt(scratch, counter_addr, false); |
|
1833 |
} |
|
1834 |
} |
|
1835 |
z_n(scratch, mask); |
|
1836 |
if (where) { z_brc(cond, *where); } |
|
1837 |
} |
|
1838 |
||
1839 |
// Get MethodCounters object for given method. Lazily allocated if necessary. |
|
1840 |
// method - Ptr to Method object. |
|
1841 |
// Rcounters - Ptr to MethodCounters object associated with Method object. |
|
1842 |
// skip - Exit point if MethodCounters object can't be created (OOM condition). |
|
1843 |
void InterpreterMacroAssembler::get_method_counters(Register Rmethod, |
|
1844 |
Register Rcounters, |
|
1845 |
Label& skip) { |
|
1846 |
assert_different_registers(Rmethod, Rcounters); |
|
1847 |
||
1848 |
BLOCK_COMMENT("get MethodCounters object {"); |
|
1849 |
||
1850 |
Label has_counters; |
|
1851 |
load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset())); |
|
1852 |
z_brnz(has_counters); |
|
1853 |
||
1854 |
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod, false); |
|
1855 |
z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object. |
|
1856 |
z_brz(skip); // No MethodCounters, out of memory. |
|
1857 |
||
1858 |
bind(has_counters); |
|
1859 |
||
1860 |
BLOCK_COMMENT("} get MethodCounters object"); |
|
1861 |
} |
|
1862 |
||
1863 |
// Increment invocation counter in MethodCounters object. |
|
1864 |
// Return (invocation_counter+backedge_counter) as "result" in RctrSum. |
|
1865 |
// Counter values are all unsigned. |
|
1866 |
void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) { |
|
1867 |
assert(UseCompiler || LogTouchedMethods, "incrementing must be useful"); |
|
1868 |
assert_different_registers(Rcounters, RctrSum); |
|
1869 |
||
1870 |
int increment = InvocationCounter::count_increment; |
|
1871 |
int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); |
|
1872 |
int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); |
|
1873 |
||
1874 |
BLOCK_COMMENT("Increment invocation counter {"); |
|
1875 |
||
1876 |
if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { |
|
1877 |
// Increment the invocation counter in place, |
|
1878 |
// then add the incremented value to the backedge counter. |
|
1879 |
z_l(RctrSum, be_counter_offset, Rcounters); |
|
1880 |
z_alsi(inv_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! |
|
1881 |
z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. |
|
1882 |
z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); |
|
1883 |
} else { |
|
1884 |
// This path is optimized for low register consumption |
|
1885 |
// at the cost of somewhat higher operand delays. |
|
1886 |
// It does not need an extra temp register. |
|
1887 |
||
1888 |
// Update the invocation counter. |
|
1889 |
z_l(RctrSum, inv_counter_offset, Rcounters); |
|
1890 |
if (RctrSum == Z_R0) { |
|
1891 |
z_ahi(RctrSum, increment); |
|
1892 |
} else { |
|
1893 |
add2reg(RctrSum, increment); |
|
1894 |
} |
|
1895 |
z_st(RctrSum, inv_counter_offset, Rcounters); |
|
1896 |
||
1897 |
// Mask off the state bits. |
|
1898 |
z_nilf(RctrSum, InvocationCounter::count_mask_value); |
|
1899 |
||
1900 |
// Add the backedge counter to the updated invocation counter to |
|
1901 |
// form the result. |
|
1902 |
z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); |
|
1903 |
} |
|
1904 |
||
1905 |
BLOCK_COMMENT("} Increment invocation counter"); |
|
1906 |
||
1907 |
// Note that this macro must leave the backedge_count + invocation_count in Rtmp! |
|
1908 |
} |
|
1909 |
||
1910 |
||
1911 |
// increment backedge counter in MethodCounters object. |
|
1912 |
// return (invocation_counter+backedge_counter) as "result" in RctrSum |
|
1913 |
// counter values are all unsigned! |
|
1914 |
void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) { |
|
1915 |
assert(UseCompiler, "incrementing must be useful"); |
|
1916 |
assert_different_registers(Rcounters, RctrSum); |
|
1917 |
||
1918 |
int increment = InvocationCounter::count_increment; |
|
1919 |
int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); |
|
1920 |
int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); |
|
1921 |
||
1922 |
BLOCK_COMMENT("Increment backedge counter {"); |
|
1923 |
||
1924 |
if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { |
|
1925 |
// Increment the invocation counter in place, |
|
1926 |
// then add the incremented value to the backedge counter. |
|
1927 |
z_l(RctrSum, inv_counter_offset, Rcounters); |
|
1928 |
z_alsi(be_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! |
|
1929 |
z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. |
|
1930 |
z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); |
|
1931 |
} else { |
|
1932 |
// This path is optimized for low register consumption |
|
1933 |
// at the cost of somewhat higher operand delays. |
|
1934 |
// It does not need an extra temp register. |
|
1935 |
||
1936 |
// Update the invocation counter. |
|
1937 |
z_l(RctrSum, be_counter_offset, Rcounters); |
|
1938 |
if (RctrSum == Z_R0) { |
|
1939 |
z_ahi(RctrSum, increment); |
|
1940 |
} else { |
|
1941 |
add2reg(RctrSum, increment); |
|
1942 |
} |
|
1943 |
z_st(RctrSum, be_counter_offset, Rcounters); |
|
1944 |
||
1945 |
// Mask off the state bits. |
|
1946 |
z_nilf(RctrSum, InvocationCounter::count_mask_value); |
|
1947 |
||
1948 |
// Add the backedge counter to the updated invocation counter to |
|
1949 |
// form the result. |
|
1950 |
z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); |
|
1951 |
} |
|
1952 |
||
1953 |
BLOCK_COMMENT("} Increment backedge counter"); |
|
1954 |
||
1955 |
// Note that this macro must leave the backedge_count + invocation_count in Rtmp! |
|
1956 |
} |
|
1957 |
||
1958 |
// Add an InterpMonitorElem to stack (see frame_s390.hpp). |
|
1959 |
void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, |
|
1960 |
Register Rtemp1, |
|
1961 |
Register Rtemp2, |
|
1962 |
Register Rtemp3) { |
|
1963 |
||
1964 |
const Register Rcurr_slot = Rtemp1; |
|
1965 |
const Register Rlimit = Rtemp2; |
|
1966 |
const jint delta = -frame::interpreter_frame_monitor_size() * wordSize; |
|
1967 |
||
1968 |
assert((delta & LongAlignmentMask) == 0, |
|
1969 |
"sizeof BasicObjectLock must be even number of doublewords"); |
|
1970 |
assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize"); |
|
1971 |
assert(Rcurr_slot != Z_R0, "Register must be usable as base register"); |
|
1972 |
assert_different_registers(Rlimit, Rcurr_slot, Rtemp3); |
|
1973 |
||
1974 |
get_monitors(Rlimit); |
|
1975 |
||
1976 |
// Adjust stack pointer for additional monitor entry. |
|
1977 |
resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false); |
|
1978 |
||
1979 |
if (!stack_is_empty) { |
|
1980 |
// Must copy stack contents down. |
|
1981 |
NearLabel next, done; |
|
1982 |
||
1983 |
// Rtemp := addr(Tos), Z_esp is pointing below it! |
|
1984 |
add2reg(Rcurr_slot, wordSize, Z_esp); |
|
1985 |
||
1986 |
// Nothing to do, if already at monitor area. |
|
1987 |
compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done); |
|
1988 |
||
1989 |
bind(next); |
|
1990 |
||
1991 |
// Move one stack slot. |
|
1992 |
mem2reg_opt(Rtemp3, Address(Rcurr_slot)); |
|
1993 |
reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta)); |
|
1994 |
add2reg(Rcurr_slot, wordSize); |
|
1995 |
compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done? |
|
1996 |
||
1997 |
bind(done); |
|
1998 |
// Done copying stack. |
|
1999 |
} |
|
2000 |
||
2001 |
// Adjust expression stack and monitor pointers. |
|
2002 |
add2reg(Z_esp, delta); |
|
2003 |
add2reg(Rlimit, delta); |
|
2004 |
save_monitors(Rlimit); |
|
2005 |
} |
|
2006 |
||
2007 |
// Note: Index holds the offset in bytes afterwards. |
|
2008 |
// You can use this to store a new value (with Llocals as the base). |
|
2009 |
void InterpreterMacroAssembler::access_local_int(Register index, Register dst) { |
|
2010 |
z_sllg(index, index, LogBytesPerWord); |
|
2011 |
mem2reg_opt(dst, Address(Z_locals, index), false); |
|
2012 |
} |
|
2013 |
||
2014 |
void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { |
|
2015 |
if (state == atos) { MacroAssembler::verify_oop(reg); } |
|
2016 |
} |
|
2017 |
||
2018 |
// Inline assembly for: |
|
2019 |
// |
|
2020 |
// if (thread is in interp_only_mode) { |
|
2021 |
// InterpreterRuntime::post_method_entry(); |
|
2022 |
// } |
|
2023 |
||
2024 |
void InterpreterMacroAssembler::notify_method_entry() { |
|
2025 |
||
2026 |
// JVMTI |
|
2027 |
// Whenever JVMTI puts a thread in interp_only_mode, method |
|
2028 |
// entry/exit events are sent for that thread to track stack |
|
2029 |
// depth. If it is possible to enter interp_only_mode we add |
|
2030 |
// the code to check if the event should be sent. |
|
2031 |
if (JvmtiExport::can_post_interpreter_events()) { |
|
2032 |
Label jvmti_post_done; |
|
2033 |
MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); |
|
2034 |
z_bre(jvmti_post_done); |
|
2035 |
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry), /*check_exceptions=*/false); |
|
2036 |
bind(jvmti_post_done); |
|
2037 |
} |
|
2038 |
} |
|
2039 |
||
2040 |
// Inline assembly for: |
|
2041 |
// |
|
2042 |
// if (thread is in interp_only_mode) { |
|
2043 |
// if (!native_method) save result |
|
2044 |
// InterpreterRuntime::post_method_exit(); |
|
2045 |
// if (!native_method) restore result |
|
2046 |
// } |
|
2047 |
// if (DTraceMethodProbes) { |
|
2048 |
// SharedRuntime::dtrace_method_exit(thread, method); |
|
2049 |
// } |
|
2050 |
// |
|
2051 |
// For native methods their result is stored in z_ijava_state.lresult |
|
2052 |
// and z_ijava_state.fresult before coming here. |
|
2053 |
// Java methods have their result stored in the expression stack. |
|
2054 |
// |
|
2055 |
// Notice the dependency to frame::interpreter_frame_result(). |
|
2056 |
void InterpreterMacroAssembler::notify_method_exit(bool native_method, |
|
2057 |
TosState state, |
|
2058 |
NotifyMethodExitMode mode) { |
|
2059 |
// JVMTI |
|
2060 |
// Whenever JVMTI puts a thread in interp_only_mode, method |
|
2061 |
// entry/exit events are sent for that thread to track stack |
|
2062 |
// depth. If it is possible to enter interp_only_mode we add |
|
2063 |
// the code to check if the event should be sent. |
|
2064 |
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { |
|
2065 |
Label jvmti_post_done; |
|
2066 |
MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); |
|
2067 |
z_bre(jvmti_post_done); |
|
2068 |
if (!native_method) push(state); // see frame::interpreter_frame_result() |
|
2069 |
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), /*check_exceptions=*/false); |
|
2070 |
if (!native_method) pop(state); |
|
2071 |
bind(jvmti_post_done); |
|
2072 |
} |
|
2073 |
||
2074 |
#if 0 |
|
2075 |
// Dtrace currently not supported on z/Architecture. |
|
2076 |
{ |
|
2077 |
SkipIfEqual skip(this, &DTraceMethodProbes, false); |
|
2078 |
push(state); |
|
2079 |
get_method(c_rarg1); |
|
2080 |
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), |
|
2081 |
r15_thread, c_rarg1); |
|
2082 |
pop(state); |
|
2083 |
} |
|
2084 |
#endif |
|
2085 |
} |
|
2086 |
||
2087 |
void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) { |
|
2088 |
if (!JvmtiExport::can_post_interpreter_events()) { |
|
2089 |
return; |
|
2090 |
} |
|
2091 |
||
2092 |
load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); |
|
2093 |
z_brnz(Lskip); |
|
2094 |
||
2095 |
} |
|
2096 |
||
2097 |
// Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP. |
|
2098 |
// The return pc is loaded into the register return_pc. |
|
2099 |
// |
|
2100 |
// Registers updated: |
|
2101 |
// return_pc - The return pc of the calling frame. |
|
2102 |
// tmp1, tmp2 - scratch |
|
2103 |
void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) { |
|
2104 |
// F0 Z_SP -> caller_sp (F1's) |
|
2105 |
// ... |
|
2106 |
// sender_sp (F1's) |
|
2107 |
// ... |
|
2108 |
// F1 Z_fp -> caller_sp (F2's) |
|
2109 |
// return_pc (Continuation after return from F0.) |
|
2110 |
// ... |
|
2111 |
// F2 caller_sp |
|
2112 |
||
2113 |
// Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications |
|
2114 |
// (a) by a c2i adapter and (b) by generate_fixed_frame(). |
|
2115 |
// In case (a) the new top frame F1 is an unextended compiled frame. |
|
2116 |
// In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME. |
|
2117 |
||
2118 |
// Case (b) seems to be redundant when returning to a interpreted caller, |
|
2119 |
// because then the caller's top_frame_sp is installed as sp (see |
|
2120 |
// TemplateInterpreterGenerator::generate_return_entry_for ()). But |
|
2121 |
// pop_interpreter_frame() is also used in exception handling and there the |
|
2122 |
// frame type of the caller is unknown, therefore top_frame_sp cannot be used, |
|
2123 |
// so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME. |
|
2124 |
||
2125 |
Register R_f1_sender_sp = tmp1; |
|
2126 |
Register R_f2_sp = tmp2; |
|
2127 |
||
2128 |
// Tirst check the for the interpreter frame's magic. |
|
2129 |
asm_assert_ijava_state_magic(R_f2_sp/*tmp*/); |
|
2130 |
z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp); |
|
2131 |
z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp); |
|
2132 |
if (return_pc->is_valid()) |
|
2133 |
z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); |
|
2134 |
// Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp. |
|
2135 |
resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/); |
|
2136 |
||
2137 |
#ifdef ASSERT |
|
2138 |
// The return_pc in the new top frame is dead... at least that's my |
|
2139 |
// current understanding; to assert this I overwrite it. |
|
2140 |
load_const_optimized(Z_ARG3, 0xb00b1); |
|
2141 |
z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP); |
|
2142 |
#endif |
|
2143 |
} |
|
2144 |
||
2145 |
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { |
|
2146 |
if (VerifyFPU) { |
|
2147 |
unimplemented("verfiyFPU"); |
|
2148 |
} |
|
2149 |
} |
|
2150 |