hotspot/src/cpu/s390/vm/interp_masm_s390.cpp
changeset 42065 6032b31e3719
child 43420 a056d6465ef9
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/s390/vm/interp_masm_s390.cpp	Thu Oct 13 14:49:34 2016 +0200
@@ -0,0 +1,2127 @@
+/*
+ * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2016 SAP SE. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+// Major contributions by AHa, AS, JL, ML.
+
+#include "precompiled.hpp"
+#include "asm/macroAssembler.inline.hpp"
+#include "interp_masm_s390.hpp"
+#include "interpreter/interpreter.hpp"
+#include "interpreter/interpreterRuntime.hpp"
+#include "oops/arrayOop.hpp"
+#include "oops/markOop.hpp"
+#include "prims/jvmtiExport.hpp"
+#include "prims/jvmtiThreadState.hpp"
+#include "runtime/basicLock.hpp"
+#include "runtime/biasedLocking.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/thread.inline.hpp"
+
+// Implementation of InterpreterMacroAssembler.
+// This file specializes the assember with interpreter-specific macros.
+
+#ifdef PRODUCT
+#define BLOCK_COMMENT(str)
+#define BIND(label)        bind(label);
+#else
+#define BLOCK_COMMENT(str) block_comment(str)
+#define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
+#endif
+
+void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
+  assert(entry != NULL, "Entry must have been generated by now");
+  assert(Rscratch != Z_R0, "Can't use R0 for addressing");
+  branch_optimized(Assembler::bcondAlways, entry);
+}
+
+void InterpreterMacroAssembler::empty_expression_stack(void) {
+  get_monitors(Z_R1_scratch);
+  add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch);
+}
+
+// Dispatch code executed in the prolog of a bytecode which does not do it's
+// own dispatch.
+void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
+  // On z/Architecture we are short on registers, therefore we do not preload the
+  // dispatch address of the next bytecode.
+}
+
+// Dispatch code executed in the epilog of a bytecode which does not do it's
+// own dispatch.
+void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
+  dispatch_next(state, step);
+}
+
+void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
+  z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp);  // Load next bytecode.
+  add2reg(Z_bcp, bcp_incr);                   // Advance bcp. Add2reg produces optimal code.
+  dispatch_base(state, Interpreter::dispatch_table(state));
+}
+
+// Common code to dispatch and dispatch_only.
+// Dispatch value in Lbyte_code and increment Lbcp.
+
+void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
+  verify_FPU(1, state);
+
+#ifdef ASSERT
+  address reentry = NULL;
+  { Label OK;
+    // Check if the frame pointer in Z_fp is correct.
+    z_cg(Z_fp, 0, Z_SP);
+    z_bre(OK);
+    reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE);
+    bind(OK);
+  }
+  { Label OK;
+    // check if the locals pointer in Z_locals is correct
+    z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp);
+    z_bre(OK);
+    reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE);
+    bind(OK);
+  }
+#endif
+
+  // TODO: Maybe implement +VerifyActivationFrameSize here.
+  // verify_thread(); // Too slow. We will just verify on method entry & exit.
+  verify_oop(Z_tos, state);
+#ifdef FAST_DISPATCH
+  if (table == Interpreter::dispatch_table(state)) {
+    // Use IdispatchTables.
+    add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
+                                                        // Add offset to correct dispatch table.
+    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // Multiply by wordSize.
+    ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // Get entry addr.
+  } else
+#endif
+  {
+    // Dispatch table to use.
+    load_absolute_address(Z_tmp_1, (address) table);  // Z_tmp_1 = table;
+
+    // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg.
+    // Z_bytecode must have been loaded zero-extended for this approach to be correct.
+    z_sll(Z_bytecode, LogBytesPerWord, Z_R0);   // Multiply by wordSize.
+    z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1);      // Get entry addr.
+  }
+  z_br(Z_tmp_1);
+}
+
+void InterpreterMacroAssembler::dispatch_only(TosState state) {
+  dispatch_base(state, Interpreter::dispatch_table(state));
+}
+
+void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
+  dispatch_base(state, Interpreter::normal_table(state));
+}
+
+void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) {
+  // Load current bytecode.
+  z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0));
+  dispatch_base(state, table);
+}
+
+// The following call_VM*_base() methods overload and mask the respective
+// declarations/definitions in class MacroAssembler. They are meant as a "detour"
+// to perform additional, template interpreter specific tasks before actually
+// calling their MacroAssembler counterparts.
+
+void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) {
+  bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
+  // interpreter specific
+  // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
+  // saved registers and no blocking/ GC can happen in leaf calls.
+
+  // super call
+  MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
+}
+
+void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
+  // interpreter specific
+  // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
+  // saved registers and no blocking/ GC can happen in leaf calls.
+
+  // super call
+  MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
+}
+
+void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
+                                             address entry_point, bool check_exceptions) {
+  bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
+  // interpreter specific
+
+  save_bcp();
+  save_esp();
+  // super call
+  MacroAssembler::call_VM_base(oop_result, last_java_sp,
+                               entry_point, allow_relocation, check_exceptions);
+  restore_bcp();
+}
+
+void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
+                                             address entry_point, bool allow_relocation,
+                                             bool check_exceptions) {
+  // interpreter specific
+
+  save_bcp();
+  save_esp();
+  // super call
+  MacroAssembler::call_VM_base(oop_result, last_java_sp,
+                               entry_point, allow_relocation, check_exceptions);
+  restore_bcp();
+}
+
+void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
+  if (JvmtiExport::can_pop_frame()) {
+    BLOCK_COMMENT("check_and_handle_popframe {");
+    Label L;
+    // Initiate popframe handling only if it is not already being
+    // processed. If the flag has the popframe_processing bit set, it
+    // means that this code is called *during* popframe handling - we
+    // don't want to reenter.
+    // TODO: Check if all four state combinations could be visible.
+    // If (processing and !pending) is an invisible/impossible state,
+    // there is optimization potential by testing both bits at once.
+    // Then, All_Zeroes and All_Ones means skip, Mixed means doit.
+    testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
+            exact_log2(JavaThread::popframe_pending_bit));
+    z_bfalse(L);
+    testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
+            exact_log2(JavaThread::popframe_processing_bit));
+    z_btrue(L);
+
+    // Call Interpreter::remove_activation_preserving_args_entry() to get the
+    // address of the same-named entrypoint in the generated interpreter code.
+    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
+    // The above call should (as its only effect) return the contents of the field
+    // _remove_activation_preserving_args_entry in Z_RET.
+    // We just jump there to have the work done.
+    z_br(Z_RET);
+    // There is no way for control to fall thru here.
+
+    bind(L);
+    BLOCK_COMMENT("} check_and_handle_popframe");
+  }
+}
+
+
+void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
+  Register RjvmtiState = Z_R1_scratch;
+  int      tos_off     = in_bytes(JvmtiThreadState::earlyret_tos_offset());
+  int      oop_off     = in_bytes(JvmtiThreadState::earlyret_oop_offset());
+  int      val_off     = in_bytes(JvmtiThreadState::earlyret_value_offset());
+  int      state_off   = in_bytes(JavaThread::jvmti_thread_state_offset());
+
+  z_lg(RjvmtiState, state_off, Z_thread);
+
+  switch (state) {
+    case atos: z_lg(Z_tos, oop_off, RjvmtiState);
+      store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch);
+                                                    break;
+    case ltos: z_lg(Z_tos, val_off, RjvmtiState);   break;
+    case btos: // fall through
+    case ztos: // fall through
+    case ctos: // fall through
+    case stos: // fall through
+    case itos: z_llgf(Z_tos, val_off, RjvmtiState); break;
+    case ftos: z_le(Z_ftos, val_off, RjvmtiState);  break;
+    case dtos: z_ld(Z_ftos, val_off, RjvmtiState);  break;
+    case vtos:   /* nothing to do */                break;
+    default  : ShouldNotReachHere();
+  }
+
+  // Clean up tos value in the jvmti thread state.
+  store_const(Address(RjvmtiState, val_off),   0L, 8, 8, Z_R0_scratch);
+  // Set tos state field to illegal value.
+  store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch);
+}
+
+void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
+  if (JvmtiExport::can_force_early_return()) {
+    BLOCK_COMMENT("check_and_handle_earlyret {");
+    Label L;
+    // arg regs are save, because we are just behind the call in call_VM_base
+    Register jvmti_thread_state = Z_ARG2;
+    Register tmp                = Z_ARG3;
+    load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset()));
+    z_bre(L); // if (thread->jvmti_thread_state() == NULL) exit;
+
+    // Initiate earlyret handling only if it is not already being processed.
+    // If the flag has the earlyret_processing bit set, it means that this code
+    // is called *during* earlyret handling - we don't want to reenter.
+
+    assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0),
+          "must fix this check, when changing the values of the earlyret enum");
+    assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum");
+
+    load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset()));
+    z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit;
+
+    // Call Interpreter::remove_activation_early_entry() to get the address of the
+    // same-named entrypoint in the generated interpreter code.
+    assert(sizeof(TosState) == 4, "unexpected size");
+    z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset()));
+    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1);
+    // The above call should (as its only effect) return the contents of the field
+    // _remove_activation_preserving_args_entry in Z_RET.
+    // We just jump there to have the work done.
+    z_br(Z_RET);
+    // There is no way for control to fall thru here.
+
+    bind(L);
+    BLOCK_COMMENT("} check_and_handle_earlyret");
+  }
+}
+
+void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
+  lgr_if_needed(Z_ARG1, arg_1);
+  assert(arg_2 != Z_ARG1, "smashed argument");
+  lgr_if_needed(Z_ARG2, arg_2);
+  MacroAssembler::call_VM_leaf_base(entry_point, true);
+}
+
+void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) {
+  Address param(Z_bcp, bcp_offset);
+
+  BLOCK_COMMENT("get_cache_index_at_bcp {");
+  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
+  if (index_size == sizeof(u2)) {
+    load_sized_value(index, param, 2, false /*signed*/);
+  } else if (index_size == sizeof(u4)) {
+
+    load_sized_value(index, param, 4, false);
+
+    // Check if the secondary index definition is still ~x, otherwise
+    // we have to change the following assembler code to calculate the
+    // plain index.
+    assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
+    not_(index);  // Convert to plain index.
+  } else if (index_size == sizeof(u1)) {
+    z_llgc(index, param);
+  } else {
+    ShouldNotReachHere();
+  }
+  BLOCK_COMMENT("}");
+}
+
+
+void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register cpe_offset,
+                                                           int bcp_offset, size_t index_size) {
+  BLOCK_COMMENT("get_cache_and_index_at_bcp {");
+  assert_different_registers(cache, cpe_offset);
+  get_cache_index_at_bcp(cpe_offset, bcp_offset, index_size);
+  z_lg(cache, Address(Z_fp, _z_ijava_state_neg(cpoolCache)));
+  // Convert from field index to ConstantPoolCache offset in bytes.
+  z_sllg(cpe_offset, cpe_offset, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
+  BLOCK_COMMENT("}");
+}
+
+// Kills Z_R0_scratch.
+void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
+                                                                        Register cpe_offset,
+                                                                        Register bytecode,
+                                                                        int byte_no,
+                                                                        int bcp_offset,
+                                                                        size_t index_size) {
+  BLOCK_COMMENT("get_cache_and_index_and_bytecode_at_bcp {");
+  get_cache_and_index_at_bcp(cache, cpe_offset, bcp_offset, index_size);
+
+  // We want to load (from CP cache) the bytecode that corresponds to the passed-in byte_no.
+  // It is located at (cache + cpe_offset + base_offset + indices_offset + (8-1) (last byte in DW) - (byte_no+1).
+  // Instead of loading, shifting and masking a DW, we just load that one byte of interest with z_llgc (unsigned).
+  const int base_ix_off = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset());
+  const int off_in_DW   = (8-1) - (1+byte_no);
+  assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
+  assert(ConstantPoolCacheEntry::bytecode_1_mask == 0xff, "");
+  load_sized_value(bytecode, Address(cache, cpe_offset, base_ix_off+off_in_DW), 1, false /*signed*/);
+
+  BLOCK_COMMENT("}");
+}
+
+// Load object from cpool->resolved_references(index).
+void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
+  assert_different_registers(result, index);
+  get_constant_pool(result);
+
+  // Convert
+  //  - from field index to resolved_references() index and
+  //  - from word index to byte offset.
+  // Since this is a java object, it is potentially compressed.
+  Register tmp = index;  // reuse
+  z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array.
+  // Load pointer for resolved_references[] objArray.
+  z_lg(result, ConstantPool::resolved_references_offset_in_bytes(), result);
+  // JNIHandles::resolve(result)
+  z_lg(result, 0, result); // Load resolved references array itself.
+#ifdef ASSERT
+  NearLabel index_ok;
+  z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes()));
+  z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop);
+  compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok);
+  stop("resolved reference index out of bounds", 0x09256);
+  bind(index_ok);
+#endif
+  z_agr(result, index);    // Address of indexed array element.
+  load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
+}
+
+void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
+                                                               Register tmp,
+                                                               int bcp_offset,
+                                                               size_t index_size) {
+  BLOCK_COMMENT("get_cache_entry_pointer_at_bcp {");
+    get_cache_and_index_at_bcp(cache, tmp, bcp_offset, index_size);
+    add2reg_with_index(cache, in_bytes(ConstantPoolCache::base_offset()), tmp, cache);
+  BLOCK_COMMENT("}");
+}
+
+// Generate a subtype check: branch to ok_is_subtype if sub_klass is
+// a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
+void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
+                                                  Register Rsuper_klass,
+                                                  Register Rtmp1,
+                                                  Register Rtmp2,
+                                                  Label &ok_is_subtype) {
+  // Profile the not-null value's klass.
+  profile_typecheck(Rtmp1, Rsub_klass, Rtmp2);
+
+  // Do the check.
+  check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
+
+  // Profile the failure of the check.
+  profile_typecheck_failed(Rtmp1, Rtmp2);
+}
+
+// Pop topmost element from stack. It just disappears.
+// Useful if consumed previously by access via stackTop().
+void InterpreterMacroAssembler::popx(int len) {
+  add2reg(Z_esp, len*Interpreter::stackElementSize);
+  debug_only(verify_esp(Z_esp, Z_R1_scratch));
+}
+
+// Get Address object of stack top. No checks. No pop.
+// Purpose: - Provide address of stack operand to exploit reg-mem operations.
+//          - Avoid RISC-like mem2reg - reg-reg-op sequence.
+Address InterpreterMacroAssembler::stackTop() {
+  return Address(Z_esp, Interpreter::expr_offset_in_bytes(0));
+}
+
+void InterpreterMacroAssembler::pop_i(Register r) {
+  z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
+  add2reg(Z_esp, Interpreter::stackElementSize);
+  assert_different_registers(r, Z_R1_scratch);
+  debug_only(verify_esp(Z_esp, Z_R1_scratch));
+}
+
+void InterpreterMacroAssembler::pop_ptr(Register r) {
+  z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
+  add2reg(Z_esp, Interpreter::stackElementSize);
+  assert_different_registers(r, Z_R1_scratch);
+  debug_only(verify_esp(Z_esp, Z_R1_scratch));
+}
+
+void InterpreterMacroAssembler::pop_l(Register r) {
+  z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
+  add2reg(Z_esp, 2*Interpreter::stackElementSize);
+  assert_different_registers(r, Z_R1_scratch);
+  debug_only(verify_esp(Z_esp, Z_R1_scratch));
+}
+
+void InterpreterMacroAssembler::pop_f(FloatRegister f) {
+  mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false);
+  add2reg(Z_esp, Interpreter::stackElementSize);
+  debug_only(verify_esp(Z_esp, Z_R1_scratch));
+}
+
+void InterpreterMacroAssembler::pop_d(FloatRegister f) {
+  mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true);
+  add2reg(Z_esp, 2*Interpreter::stackElementSize);
+  debug_only(verify_esp(Z_esp, Z_R1_scratch));
+}
+
+void InterpreterMacroAssembler::push_i(Register r) {
+  assert_different_registers(r, Z_R1_scratch);
+  debug_only(verify_esp(Z_esp, Z_R1_scratch));
+  z_st(r, Address(Z_esp));
+  add2reg(Z_esp, -Interpreter::stackElementSize);
+}
+
+void InterpreterMacroAssembler::push_ptr(Register r) {
+  z_stg(r, Address(Z_esp));
+  add2reg(Z_esp, -Interpreter::stackElementSize);
+}
+
+void InterpreterMacroAssembler::push_l(Register r) {
+  assert_different_registers(r, Z_R1_scratch);
+  debug_only(verify_esp(Z_esp, Z_R1_scratch));
+  int offset = -Interpreter::stackElementSize;
+  z_stg(r, Address(Z_esp, offset));
+  clear_mem(Address(Z_esp), Interpreter::stackElementSize);
+  add2reg(Z_esp, 2 * offset);
+}
+
+void InterpreterMacroAssembler::push_f(FloatRegister f) {
+  debug_only(verify_esp(Z_esp, Z_R1_scratch));
+  freg2mem_opt(f, Address(Z_esp), false);
+  add2reg(Z_esp, -Interpreter::stackElementSize);
+}
+
+void InterpreterMacroAssembler::push_d(FloatRegister d) {
+  debug_only(verify_esp(Z_esp, Z_R1_scratch));
+  int offset = -Interpreter::stackElementSize;
+  freg2mem_opt(d, Address(Z_esp, offset));
+  add2reg(Z_esp, 2 * offset);
+}
+
+void InterpreterMacroAssembler::push(TosState state) {
+  verify_oop(Z_tos, state);
+  switch (state) {
+    case atos: push_ptr();           break;
+    case btos: push_i();             break;
+    case ztos:
+    case ctos:
+    case stos: push_i();             break;
+    case itos: push_i();             break;
+    case ltos: push_l();             break;
+    case ftos: push_f();             break;
+    case dtos: push_d();             break;
+    case vtos: /* nothing to do */   break;
+    default  : ShouldNotReachHere();
+  }
+}
+
+void InterpreterMacroAssembler::pop(TosState state) {
+  switch (state) {
+    case atos: pop_ptr(Z_tos);       break;
+    case btos: pop_i(Z_tos);         break;
+    case ztos:
+    case ctos:
+    case stos: pop_i(Z_tos);         break;
+    case itos: pop_i(Z_tos);         break;
+    case ltos: pop_l(Z_tos);         break;
+    case ftos: pop_f(Z_ftos);        break;
+    case dtos: pop_d(Z_ftos);        break;
+    case vtos: /* nothing to do */   break;
+    default  : ShouldNotReachHere();
+  }
+  verify_oop(Z_tos, state);
+}
+
+// Helpers for swap and dup.
+void InterpreterMacroAssembler::load_ptr(int n, Register val) {
+  z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
+}
+
+void InterpreterMacroAssembler::store_ptr(int n, Register val) {
+  z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
+}
+
+void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) {
+  // Satisfy interpreter calling convention (see generate_normal_entry()).
+  z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp).
+  // Record top_frame_sp, because the callee might modify it, if it's compiled.
+  z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp);
+  save_bcp();
+  save_esp();
+  z_lgr(Z_method, method); // Set Z_method (kills Z_fp!).
+}
+
+// Jump to from_interpreted entry of a call unless single stepping is possible
+// in this thread in which case we must call the i2i entry.
+void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
+  assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp);
+  prepare_to_jump_from_interpreted(method);
+
+  if (JvmtiExport::can_post_interpreter_events()) {
+    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
+    // compiled code in threads for which the event is enabled. Check here for
+    // interp_only_mode if these events CAN be enabled.
+    z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
+    MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
+    z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero.
+    // Run interpreted.
+    z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset()));
+    z_br(Z_R1_scratch);
+  } else {
+    // Run compiled code.
+    z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
+    z_br(Z_R1_scratch);
+  }
+}
+
+#ifdef ASSERT
+void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) {
+  // About to read or write Resp[0].
+  // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI.
+  address reentry = NULL;
+
+  {
+    // Check if the frame pointer in Z_fp is correct.
+    NearLabel OK;
+    z_cg(Z_fp, 0, Z_SP);
+    z_bre(OK);
+    reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp");
+    bind(OK);
+  }
+  {
+    // Resp must not point into or below the operand stack,
+    // i.e. IJAVA_STATE.monitors > Resp.
+    NearLabel OK;
+    Register Rmonitors = Rtemp;
+    z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp);
+    compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK);
+    reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area");
+    bind(OK);
+  }
+  {
+    // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below
+    // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp).
+    NearLabel OK;
+    Register Rabi_bottom = Rtemp;
+    add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP);
+    compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK);
+    reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI");
+    bind(OK);
+  }
+}
+
+void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) {
+  Label magic_ok;
+  load_const_optimized(tmp, frame::z_istate_magic_number);
+  z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic)));
+  z_bre(magic_ok);
+  stop_static("error: wrong magic number in ijava_state access");
+  bind(magic_ok);
+}
+#endif // ASSERT
+
+void InterpreterMacroAssembler::save_bcp() {
+  z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
+  asm_assert_ijava_state_magic(Z_bcp);
+  NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))));
+}
+
+void InterpreterMacroAssembler::restore_bcp() {
+  asm_assert_ijava_state_magic(Z_bcp);
+  z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
+}
+
+void InterpreterMacroAssembler::save_esp() {
+  z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
+}
+
+void InterpreterMacroAssembler::restore_esp() {
+  asm_assert_ijava_state_magic(Z_esp);
+  z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
+}
+
+void InterpreterMacroAssembler::get_monitors(Register reg) {
+  asm_assert_ijava_state_magic(reg);
+  mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
+}
+
+void InterpreterMacroAssembler::save_monitors(Register reg) {
+  reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
+}
+
+void InterpreterMacroAssembler::get_mdp(Register mdp) {
+  z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp);
+}
+
+void InterpreterMacroAssembler::save_mdp(Register mdp) {
+  z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
+}
+
+// Values that are only read (besides initialization).
+void InterpreterMacroAssembler::restore_locals() {
+  asm_assert_ijava_state_magic(Z_locals);
+  z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals)));
+}
+
+void InterpreterMacroAssembler::get_method(Register reg) {
+  asm_assert_ijava_state_magic(reg);
+  z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method)));
+}
+
+void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset,
+                                                          signedOrNot is_signed) {
+  // Rdst is an 8-byte return value!!!
+
+  // Unaligned loads incur only a small penalty on z/Architecture. The penalty
+  // is a few (2..3) ticks, even when the load crosses a cache line
+  // boundary. In case of a cache miss, the stall could, of course, be
+  // much longer.
+
+  switch (is_signed) {
+    case Signed:
+      z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp);
+     break;
+   case Unsigned:
+     z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp);
+     break;
+   default:
+     ShouldNotReachHere();
+  }
+}
+
+
+void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset,
+                                                          setCCOrNot set_cc) {
+  // Rdst is an 8-byte return value!!!
+
+  // Unaligned loads incur only a small penalty on z/Architecture. The penalty
+  // is a few (2..3) ticks, even when the load crosses a cache line
+  // boundary. In case of a cache miss, the stall could, of course, be
+  // much longer.
+
+  // Both variants implement a sign-extending int2long load.
+  if (set_cc == set_CC) {
+    load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
+  } else {
+    mem2reg_signed_opt(    Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
+  }
+}
+
+void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
+  get_method(Rdst);
+  mem2reg_opt(Rdst, Address(Rdst, Method::const_offset()));
+  mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset()));
+}
+
+void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
+  get_constant_pool(Rcpool);
+  mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset_in_bytes()));
+}
+
+// Unlock if synchronized method.
+//
+// Unlock the receiver if this is a synchronized method.
+// Unlock any Java monitors from syncronized blocks.
+//
+// If there are locked Java monitors
+//   If throw_monitor_exception
+//     throws IllegalMonitorStateException
+//   Else if install_monitor_exception
+//     installs IllegalMonitorStateException
+//   Else
+//     no error processing
+void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
+                                                              bool throw_monitor_exception,
+                                                              bool install_monitor_exception) {
+  NearLabel unlocked, unlock, no_unlock;
+
+  {
+    Register R_method = Z_ARG2;
+    Register R_do_not_unlock_if_synchronized = Z_ARG3;
+
+    // Get the value of _do_not_unlock_if_synchronized into G1_scratch.
+    const Address do_not_unlock_if_synchronized(Z_thread,
+                                                JavaThread::do_not_unlock_if_synchronized_offset());
+    load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/);
+    z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag.
+
+    // Check if synchronized method.
+    get_method(R_method);
+    verify_oop(Z_tos, state);
+    push(state); // Save tos/result.
+    testbit(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
+    z_bfalse(unlocked);
+
+    // Don't unlock anything if the _do_not_unlock_if_synchronized flag
+    // is set.
+    compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock);
+  }
+
+  // unlock monitor
+
+  // BasicObjectLock will be first in list, since this is a
+  // synchronized method. However, need to check that the object has
+  // not been unlocked by an explicit monitorexit bytecode.
+  const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock)));
+  // We use Z_ARG2 so that if we go slow path it will be the correct
+  // register for unlock_object to pass to VM directly.
+  load_address(Z_ARG2, monitor); // Address of first monitor.
+  z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset_in_bytes()));
+  compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock);
+
+  if (throw_monitor_exception) {
+    // Entry already unlocked need to throw an exception.
+    MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
+    should_not_reach_here();
+  } else {
+    // Monitor already unlocked during a stack unroll.
+    // If requested, install an illegal_monitor_state_exception.
+    // Continue with stack unrolling.
+    if (install_monitor_exception) {
+      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
+    }
+   z_bru(unlocked);
+  }
+
+  bind(unlock);
+
+  unlock_object(Z_ARG2);
+
+  bind(unlocked);
+
+  // I0, I1: Might contain return value
+
+  // Check that all monitors are unlocked.
+  {
+    NearLabel loop, exception, entry, restart;
+    const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
+    // We use Z_ARG2 so that if we go slow path it will be the correct
+    // register for unlock_object to pass to VM directly.
+    Register R_current_monitor = Z_ARG2;
+    Register R_monitor_block_bot = Z_ARG1;
+    const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors));
+    const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size);
+
+    bind(restart);
+    // Starting with top-most entry.
+    z_lg(R_current_monitor, monitor_block_top);
+    // Points to word before bottom of monitor block.
+    load_address(R_monitor_block_bot, monitor_block_bot);
+    z_bru(entry);
+
+    // Entry already locked, need to throw exception.
+    bind(exception);
+
+    if (throw_monitor_exception) {
+      // Throw exception.
+      MacroAssembler::call_VM(noreg,
+                              CAST_FROM_FN_PTR(address, InterpreterRuntime::
+                                               throw_illegal_monitor_state_exception));
+      should_not_reach_here();
+    } else {
+      // Stack unrolling. Unlock object and install illegal_monitor_exception.
+      // Unlock does not block, so don't have to worry about the frame.
+      // We don't have to preserve c_rarg1 since we are going to throw an exception.
+      unlock_object(R_current_monitor);
+      if (install_monitor_exception) {
+        call_VM(noreg, CAST_FROM_FN_PTR(address,
+                                        InterpreterRuntime::
+                                        new_illegal_monitor_state_exception));
+      }
+      z_bru(restart);
+    }
+
+    bind(loop);
+    // Check if current entry is used.
+    load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset_in_bytes()));
+    z_brne(exception);
+
+    add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry.
+    bind(entry);
+    compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop);
+  }
+
+  bind(no_unlock);
+  pop(state);
+  verify_oop(Z_tos, state);
+}
+
+// remove activation
+//
+// Unlock the receiver if this is a synchronized method.
+// Unlock any Java monitors from syncronized blocks.
+// Remove the activation from the stack.
+//
+// If there are locked Java monitors
+//   If throw_monitor_exception
+//     throws IllegalMonitorStateException
+//   Else if install_monitor_exception
+//     installs IllegalMonitorStateException
+//   Else
+//     no error processing
+void InterpreterMacroAssembler::remove_activation(TosState state,
+                                                  Register return_pc,
+                                                  bool throw_monitor_exception,
+                                                  bool install_monitor_exception,
+                                                  bool notify_jvmti) {
+
+  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
+
+  // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
+  notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI);
+
+  verify_oop(Z_tos, state);
+  verify_thread();
+
+  pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3);
+}
+
+// lock object
+//
+// Registers alive
+//   monitor - Address of the BasicObjectLock to be used for locking,
+//             which must be initialized with the object to lock.
+//   object  - Address of the object to be locked.
+void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
+
+  if (UseHeavyMonitors) {
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
+            monitor, /*check_for_exceptions=*/false);
+    return;
+  }
+
+  // template code:
+  //
+  // markOop displaced_header = obj->mark().set_unlocked();
+  // monitor->lock()->set_displaced_header(displaced_header);
+  // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
+  //   // We stored the monitor address into the object's mark word.
+  // } else if (THREAD->is_lock_owned((address)displaced_header))
+  //   // Simple recursive case.
+  //   monitor->lock()->set_displaced_header(NULL);
+  // } else {
+  //   // Slow path.
+  //   InterpreterRuntime::monitorenter(THREAD, monitor);
+  // }
+
+  const Register displaced_header = Z_ARG5;
+  const Register object_mark_addr = Z_ARG4;
+  const Register current_header   = Z_ARG5;
+
+  NearLabel done;
+  NearLabel slow_case;
+
+  // markOop displaced_header = obj->mark().set_unlocked();
+
+  // Load markOop from object into displaced_header.
+  z_lg(displaced_header, oopDesc::mark_offset_in_bytes(), object);
+
+  if (UseBiasedLocking) {
+    biased_locking_enter(object, displaced_header, Z_R1, Z_R0, done, &slow_case);
+  }
+
+  // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
+  z_oill(displaced_header, markOopDesc::unlocked_value);
+
+  // monitor->lock()->set_displaced_header(displaced_header);
+
+  // Initialize the box (Must happen before we update the object mark!).
+  z_stg(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
+                          BasicLock::displaced_header_offset_in_bytes(), monitor);
+
+  // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
+
+  // Store stack address of the BasicObjectLock (this is monitor) into object.
+  add2reg(object_mark_addr, oopDesc::mark_offset_in_bytes(), object);
+
+  z_csg(displaced_header, monitor, 0, object_mark_addr);
+  assert(current_header==displaced_header, "must be same register"); // Identified two registers from z/Architecture.
+
+  z_bre(done);
+
+  // } else if (THREAD->is_lock_owned((address)displaced_header))
+  //   // Simple recursive case.
+  //   monitor->lock()->set_displaced_header(NULL);
+
+  // We did not see an unlocked object so try the fast recursive case.
+
+  // Check if owner is self by comparing the value in the markOop of object
+  // (current_header) with the stack pointer.
+  z_sgr(current_header, Z_SP);
+
+  assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
+
+  // The prior sequence "LGR, NGR, LTGR" can be done better
+  // (Z_R1 is temp and not used after here).
+  load_const_optimized(Z_R0, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place));
+  z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0)
+
+  // If condition is true we are done and hence we can store 0 in the displaced
+  // header indicating it is a recursive lock and be done.
+  z_brne(slow_case);
+  z_release();  // Membar unnecessary on zarch AND because the above csg does a sync before and after.
+  z_stg(Z_R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
+                      BasicLock::displaced_header_offset_in_bytes(), monitor);
+  z_bru(done);
+
+  // } else {
+  //   // Slow path.
+  //   InterpreterRuntime::monitorenter(THREAD, monitor);
+
+  // None of the above fast optimizations worked so we have to get into the
+  // slow case of monitor enter.
+  bind(slow_case);
+
+  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
+          monitor, /*check_for_exceptions=*/false);
+
+  // }
+
+  bind(done);
+}
+
+// Unlocks an object. Used in monitorexit bytecode and remove_activation.
+//
+// Registers alive
+//   monitor - address of the BasicObjectLock to be used for locking,
+//             which must be initialized with the object to lock.
+//
+// Throw IllegalMonitorException if object is not locked by current thread.
+void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) {
+
+  if (UseHeavyMonitors) {
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
+            monitor, /*check_for_exceptions=*/ true);
+    return;
+  }
+
+// else {
+  // template code:
+  //
+  // if ((displaced_header = monitor->displaced_header()) == NULL) {
+  //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
+  //   monitor->set_obj(NULL);
+  // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
+  //   // We swapped the unlocked mark in displaced_header into the object's mark word.
+  //   monitor->set_obj(NULL);
+  // } else {
+  //   // Slow path.
+  //   InterpreterRuntime::monitorexit(THREAD, monitor);
+  // }
+
+  const Register displaced_header = Z_ARG4;
+  const Register current_header   = Z_R1;
+  Address obj_entry(monitor, BasicObjectLock::obj_offset_in_bytes());
+  Label done;
+
+  if (object == noreg) {
+    // In the template interpreter, we must assure that the object
+    // entry in the monitor is cleared on all paths. Thus we move
+    // loading up to here, and clear the entry afterwards.
+    object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object.
+    z_lg(object, obj_entry);
+  }
+
+  assert_different_registers(monitor, object, displaced_header, current_header);
+
+  // if ((displaced_header = monitor->displaced_header()) == NULL) {
+  //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
+  //   monitor->set_obj(NULL);
+
+  clear_mem(obj_entry, sizeof(oop));
+
+  if (UseBiasedLocking) {
+    // The object address from the monitor is in object.
+    assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
+    biased_locking_exit(object, displaced_header, done);
+  }
+
+  // Test first if we are in the fast recursive case.
+  MacroAssembler::load_and_test_long(displaced_header,
+                                     Address(monitor, BasicObjectLock::lock_offset_in_bytes() +
+                                                      BasicLock::displaced_header_offset_in_bytes()));
+  z_bre(done); // displaced_header == 0 -> goto done
+
+  // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
+  //   // We swapped the unlocked mark in displaced_header into the object's mark word.
+  //   monitor->set_obj(NULL);
+
+  // If we still have a lightweight lock, unlock the object and be done.
+
+  // The markword is expected to be at offset 0.
+  assert(oopDesc::mark_offset_in_bytes() == 0, "unlock_object: review code below");
+
+  // We have the displaced header in displaced_header. If the lock is still
+  // lightweight, it will contain the monitor address and we'll store the
+  // displaced header back into the object's mark word.
+  z_lgr(current_header, monitor);
+  z_csg(current_header, displaced_header, 0, object);
+  z_bre(done);
+
+  // } else {
+  //   // Slow path.
+  //   InterpreterRuntime::monitorexit(THREAD, monitor);
+
+  // The lock has been converted into a heavy lock and hence
+  // we need to get into the slow case.
+  z_stg(object, obj_entry);   // Restore object entry, has been cleared above.
+  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
+          monitor,  /*check_for_exceptions=*/false);
+
+  // }
+
+  bind(done);
+}
+
+void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx)));
+  z_brz(zero_continue);
+}
+
+// Set the method data pointer for the current bcp.
+void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  Label    set_mdp;
+  Register mdp    = Z_ARG4;
+  Register method = Z_ARG5;
+
+  get_method(method);
+  // Test MDO to avoid the call if it is NULL.
+  load_and_test_long(mdp, method2_(method, method_data));
+  z_brz(set_mdp);
+
+  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp);
+  // Z_RET: mdi
+  // Mdo is guaranteed to be non-zero here, we checked for it before the call.
+  assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame");
+  z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg.
+  add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp);
+
+  bind(set_mdp);
+  save_mdp(mdp);
+}
+
+void InterpreterMacroAssembler::verify_method_data_pointer() {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+#ifdef ASSERT
+  NearLabel verify_continue;
+  Register bcp_expected = Z_ARG3;
+  Register mdp    = Z_ARG4;
+  Register method = Z_ARG5;
+
+  test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue
+  get_method(method);
+
+  // If the mdp is valid, it will point to a DataLayout header which is
+  // consistent with the bcp. The converse is highly probable also.
+  load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/);
+  z_ag(bcp_expected, Address(method, Method::const_offset()));
+  load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset()));
+  compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue);
+  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp);
+  bind(verify_continue);
+#endif // ASSERT
+}
+
+void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  z_stg(value, constant, mdp_in);
+}
+
+void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
+                                                      int constant,
+                                                      Register tmp,
+                                                      bool decrement) {
+  assert_different_registers(mdp_in, tmp);
+  // counter address
+  Address data(mdp_in, constant);
+  const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment;
+  add2mem_64(Address(mdp_in, constant), delta, tmp);
+}
+
+void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
+                                                int flag_byte_constant) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  // Set the flag.
+  z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant);
+}
+
+void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
+                                                 int offset,
+                                                 Register value,
+                                                 Register test_value_out,
+                                                 Label& not_equal_continue) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  if (test_value_out == noreg) {
+    z_cg(value, Address(mdp_in, offset));
+    z_brne(not_equal_continue);
+  } else {
+    // Put the test value into a register, so caller can use it:
+    z_lg(test_value_out, Address(mdp_in, offset));
+    compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue);
+  }
+}
+
+void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
+  update_mdp_by_offset(mdp_in, noreg, offset_of_disp);
+}
+
+void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
+                                                     Register dataidx,
+                                                     int offset_of_disp) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  Address disp_address(mdp_in, dataidx, offset_of_disp);
+  Assembler::z_ag(mdp_in, disp_address);
+  save_mdp(mdp_in);
+}
+
+void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  add2reg(mdp_in, constant);
+  save_mdp(mdp_in);
+}
+
+void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore");
+  call_VM(noreg,
+          CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
+          return_bci);
+}
+
+void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    // Otherwise, assign to mdp.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are taking a branch. Increment the taken count.
+    // We inline increment_mdp_data_at to return bumped_count in a register
+    //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
+    Address data(mdp, JumpData::taken_offset());
+    z_lg(bumped_count, data);
+    // 64-bit overflow is very unlikely. Saturation to 32-bit values is
+    // performed when reading the counts.
+    add2reg(bumped_count, DataLayout::counter_increment);
+    z_stg(bumped_count, data); // Store back out
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
+    bind(profile_continue);
+  }
+}
+
+// Kills Z_R1_scratch.
+void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are taking a branch. Increment the not taken count.
+    increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch);
+
+    // The method data pointer needs to be updated to correspond to
+    // the next bytecode.
+    update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
+    bind(profile_continue);
+  }
+}
+
+// Kills: Z_R1_scratch.
+void InterpreterMacroAssembler::profile_call(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are making a call. Increment the count.
+    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_final_call(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // We are making a call. Increment the count.
+    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
+                                                     Register mdp,
+                                                     Register reg2,
+                                                     bool receiver_can_be_null) {
+  if (ProfileInterpreter) {
+    NearLabel profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    NearLabel skip_receiver_profile;
+    if (receiver_can_be_null) {
+      NearLabel not_null;
+      compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null);
+      // We are making a call. Increment the count for null receiver.
+      increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+      z_bru(skip_receiver_profile);
+      bind(not_null);
+    }
+
+    // Record the receiver type.
+    record_klass_in_profile(receiver, mdp, reg2, true);
+    bind(skip_receiver_profile);
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
+    bind(profile_continue);
+  }
+}
+
+// This routine creates a state machine for updating the multi-row
+// type profile at a virtual call site (or other type-sensitive bytecode).
+// The machine visits each row (of receiver/count) until the receiver type
+// is found, or until it runs out of rows. At the same time, it remembers
+// the location of the first empty row. (An empty row records null for its
+// receiver, and can be allocated for a newly-observed receiver type.)
+// Because there are two degrees of freedom in the state, a simple linear
+// search will not work; it must be a decision tree. Hence this helper
+// function is recursive, to generate the required tree structured code.
+// It's the interpreter, so we are trading off code space for speed.
+// See below for example code.
+void InterpreterMacroAssembler::record_klass_in_profile_helper(
+                                        Register receiver, Register mdp,
+                                        Register reg2, int start_row,
+                                        Label& done, bool is_virtual_call) {
+  if (TypeProfileWidth == 0) {
+    if (is_virtual_call) {
+      increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+    }
+    return;
+  }
+
+  int last_row = VirtualCallData::row_limit() - 1;
+  assert(start_row <= last_row, "must be work left to do");
+  // Test this row for both the receiver and for null.
+  // Take any of three different outcomes:
+  //   1. found receiver => increment count and goto done
+  //   2. found null => keep looking for case 1, maybe allocate this cell
+  //   3. found something else => keep looking for cases 1 and 2
+  // Case 3 is handled by a recursive call.
+  for (int row = start_row; row <= last_row; row++) {
+    NearLabel next_test;
+    bool test_for_null_also = (row == start_row);
+
+    // See if the receiver is receiver[n].
+    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
+    test_mdp_data_at(mdp, recvr_offset, receiver,
+                     (test_for_null_also ? reg2 : noreg),
+                     next_test);
+    // (Reg2 now contains the receiver from the CallData.)
+
+    // The receiver is receiver[n]. Increment count[n].
+    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
+    increment_mdp_data_at(mdp, count_offset);
+    z_bru(done);
+    bind(next_test);
+
+    if (test_for_null_also) {
+      Label found_null;
+      // Failed the equality check on receiver[n]... Test for null.
+      z_ltgr(reg2, reg2);
+      if (start_row == last_row) {
+        // The only thing left to do is handle the null case.
+        if (is_virtual_call) {
+          z_brz(found_null);
+          // Receiver did not match any saved receiver and there is no empty row for it.
+          // Increment total counter to indicate polymorphic case.
+          increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+          z_bru(done);
+          bind(found_null);
+        } else {
+          z_brnz(done);
+        }
+        break;
+      }
+      // Since null is rare, make it be the branch-taken case.
+      z_brz(found_null);
+
+      // Put all the "Case 3" tests here.
+      record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
+
+      // Found a null. Keep searching for a matching receiver,
+      // but remember that this is an empty (unused) slot.
+      bind(found_null);
+    }
+  }
+
+  // In the fall-through case, we found no matching receiver, but we
+  // observed the receiver[start_row] is NULL.
+
+  // Fill in the receiver field and increment the count.
+  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
+  set_mdp_data_at(mdp, recvr_offset, receiver);
+  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
+  load_const_optimized(reg2, DataLayout::counter_increment);
+  set_mdp_data_at(mdp, count_offset, reg2);
+  if (start_row > 0) {
+    z_bru(done);
+  }
+}
+
+// Example state machine code for three profile rows:
+//   // main copy of decision tree, rooted at row[1]
+//   if (row[0].rec == rec) { row[0].incr(); goto done; }
+//   if (row[0].rec != NULL) {
+//     // inner copy of decision tree, rooted at row[1]
+//     if (row[1].rec == rec) { row[1].incr(); goto done; }
+//     if (row[1].rec != NULL) {
+//       // degenerate decision tree, rooted at row[2]
+//       if (row[2].rec == rec) { row[2].incr(); goto done; }
+//       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
+//       row[2].init(rec); goto done;
+//     } else {
+//       // remember row[1] is empty
+//       if (row[2].rec == rec) { row[2].incr(); goto done; }
+//       row[1].init(rec); goto done;
+//     }
+//   } else {
+//     // remember row[0] is empty
+//     if (row[1].rec == rec) { row[1].incr(); goto done; }
+//     if (row[2].rec == rec) { row[2].incr(); goto done; }
+//     row[0].init(rec); goto done;
+//   }
+//   done:
+
+void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
+                                                        Register mdp, Register reg2,
+                                                        bool is_virtual_call) {
+  assert(ProfileInterpreter, "must be profiling");
+  Label done;
+
+  record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
+
+  bind (done);
+}
+
+void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
+  if (ProfileInterpreter) {
+    NearLabel profile_continue;
+    uint row;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Update the total ret count.
+    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
+
+    for (row = 0; row < RetData::row_limit(); row++) {
+      NearLabel next_test;
+
+      // See if return_bci is equal to bci[n]:
+      test_mdp_data_at(mdp,
+                       in_bytes(RetData::bci_offset(row)),
+                       return_bci, noreg,
+                       next_test);
+
+      // Return_bci is equal to bci[n]. Increment the count.
+      increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
+
+      // The method data pointer needs to be updated to reflect the new target.
+      update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
+      z_bru(profile_continue);
+      bind(next_test);
+    }
+
+    update_mdp_for_ret(return_bci);
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
+
+    // The method data pointer needs to be updated.
+    int mdp_delta = in_bytes(BitData::bit_data_size());
+    if (TypeProfileCasts) {
+      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
+    }
+    update_mdp_by_constant(mdp, mdp_delta);
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp, Register tmp) {
+  if (ProfileInterpreter && TypeProfileCasts) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    int count_offset = in_bytes(CounterData::count_offset());
+    // Back up the address, since we have already bumped the mdp.
+    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
+
+    // *Decrement* the counter. We expect to see zero or small negatives.
+    increment_mdp_data_at(mdp, count_offset, tmp, true);
+
+    bind (profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // The method data pointer needs to be updated.
+    int mdp_delta = in_bytes(BitData::bit_data_size());
+    if (TypeProfileCasts) {
+      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
+
+      // Record the object type.
+      record_klass_in_profile(klass, mdp, reg2, false);
+    }
+    update_mdp_by_constant(mdp, mdp_delta);
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Update the default case count.
+    increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
+
+    // The method data pointer needs to be updated.
+    update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
+
+    bind(profile_continue);
+  }
+}
+
+// Kills: index, scratch1, scratch2.
+void InterpreterMacroAssembler::profile_switch_case(Register index,
+                                                    Register mdp,
+                                                    Register scratch1,
+                                                    Register scratch2) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+    assert_different_registers(index, mdp, scratch1, scratch2);
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Build the base (index * per_case_size_in_bytes()) +
+    // case_array_offset_in_bytes().
+    z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
+    add2reg(index, in_bytes(MultiBranchData::case_array_offset()));
+
+    // Add the calculated base to the mdp -> address of the case' data.
+    Address case_data_addr(mdp, index);
+    Register case_data = scratch1;
+    load_address(case_data, case_data_addr);
+
+    // Update the case count.
+    increment_mdp_data_at(case_data,
+                          in_bytes(MultiBranchData::relative_count_offset()),
+                          scratch2);
+
+    // The method data pointer needs to be updated.
+    update_mdp_by_offset(mdp,
+                         index,
+                         in_bytes(MultiBranchData::relative_displacement_offset()));
+
+    bind(profile_continue);
+  }
+}
+
+// kills: R0, R1, flags, loads klass from obj (if not null)
+void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) {
+  NearLabel null_seen, init_klass, do_nothing, do_update;
+
+  // Klass = obj is allowed.
+  const Register tmp = Z_R1;
+  assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0);
+  assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0);
+
+  z_lg(tmp, mdo_addr);
+  if (cmp_done) {
+    z_brz(null_seen);
+  } else {
+    compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen);
+  }
+
+  verify_oop(obj);
+  load_klass(klass, obj);
+
+  // Klass seen before, nothing to do (regardless of unknown bit).
+  z_lgr(Z_R0, tmp);
+  assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
+  z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF);
+  compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing);
+
+  // Already unknown. Nothing to do anymore.
+  z_tmll(tmp, TypeEntries::type_unknown);
+  z_brc(Assembler::bcondAllOne, do_nothing);
+
+  z_lgr(Z_R0, tmp);
+  assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
+  z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF);
+  compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass);
+
+  // Different than before. Cannot keep accurate profile.
+  z_oill(tmp, TypeEntries::type_unknown);
+  z_bru(do_update);
+
+  bind(init_klass);
+  // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
+  z_ogr(tmp, klass);
+  z_bru(do_update);
+
+  bind(null_seen);
+  // Set null_seen if obj is 0.
+  z_oill(tmp, TypeEntries::null_seen);
+  // fallthru: z_bru(do_update);
+
+  bind(do_update);
+  z_stg(tmp, mdo_addr);
+
+  bind(do_nothing);
+}
+
+void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
+  if (!ProfileInterpreter) {
+    return;
+  }
+
+  assert_different_registers(mdp, callee, tmp);
+
+  if (MethodData::profile_arguments() || MethodData::profile_return()) {
+    Label profile_continue;
+
+    test_method_data_pointer(mdp, profile_continue);
+
+    int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
+
+    z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp,
+           is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
+    z_brne(profile_continue);
+
+    if (MethodData::profile_arguments()) {
+      NearLabel done;
+      int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
+      add2reg(mdp, off_to_args);
+
+      for (int i = 0; i < TypeProfileArgsLimit; i++) {
+        if (i > 0 || MethodData::profile_return()) {
+          // If return value type is profiled we may have no argument to profile.
+          z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
+          add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count());
+          compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done);
+        }
+        z_lg(tmp, Address(callee, Method::const_offset()));
+        z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
+        // Stack offset o (zero based) from the start of the argument
+        // list. For n arguments translates into offset n - o - 1 from
+        // the end of the argument list. But there is an extra slot at
+        // the top of the stack. So the offset is n - o from Lesp.
+        z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
+        z_sllg(tmp, tmp, Interpreter::logStackElementSize);
+        Address stack_slot_addr(tmp, Z_esp);
+        z_ltg(tmp, stack_slot_addr);
+
+        Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
+        profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true);
+
+        int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
+        add2reg(mdp, to_add);
+        off_to_args += to_add;
+      }
+
+      if (MethodData::profile_return()) {
+        z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
+        add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
+      }
+
+      bind(done);
+
+      if (MethodData::profile_return()) {
+        // We're right after the type profile for the last
+        // argument. Tmp is the number of cells left in the
+        // CallTypeData/VirtualCallTypeData to reach its end. Non null
+        // if there's a return to profile.
+        assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
+        z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size));
+        z_agr(mdp, tmp);
+      }
+      z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
+    } else {
+      assert(MethodData::profile_return(), "either profile call args or call ret");
+      update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
+    }
+
+    // Mdp points right after the end of the
+    // CallTypeData/VirtualCallTypeData, right after the cells for the
+    // return value type if there's one.
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
+  assert_different_registers(mdp, ret, tmp);
+  if (ProfileInterpreter && MethodData::profile_return()) {
+    Label profile_continue;
+
+    test_method_data_pointer(mdp, profile_continue);
+
+    if (MethodData::profile_return_jsr292_only()) {
+      // If we don't profile all invoke bytecodes we must make sure
+      // it's a bytecode we indeed profile. We can't go back to the
+      // beginning of the ProfileData we intend to update to check its
+      // type because we're right after it and we don't known its
+      // length.
+      NearLabel do_profile;
+      Address bc(Z_bcp);
+      z_lb(tmp, bc);
+      compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile);
+      compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile);
+      get_method(tmp);
+      // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit.
+      if (Method::intrinsic_id_size_in_bytes() == 1) {
+        z_cli(Method::intrinsic_id_offset_in_bytes(), tmp, vmIntrinsics::_compiledLambdaForm);
+      } else {
+        assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id");
+        z_lh(tmp, Method::intrinsic_id_offset_in_bytes(), Z_R0, tmp);
+        z_chi(tmp, vmIntrinsics::_compiledLambdaForm);
+      }
+      z_brne(profile_continue);
+
+      bind(do_profile);
+    }
+
+    Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
+    profile_obj_type(ret, mdo_ret_addr, tmp);
+
+    bind(profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
+  if (ProfileInterpreter && MethodData::profile_parameters()) {
+    Label profile_continue, done;
+
+    test_method_data_pointer(mdp, profile_continue);
+
+    // Load the offset of the area within the MDO used for
+    // parameters. If it's negative we're not profiling any parameters.
+    Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()));
+    load_and_test_int2long(tmp1, parm_di_addr);
+    z_brl(profile_continue);
+
+    // Compute a pointer to the area for parameters from the offset
+    // and move the pointer to the slot for the last
+    // parameters. Collect profiling from last parameter down.
+    // mdo start + parameters offset + array length - 1
+
+    // Pointer to the parameter area in the MDO.
+    z_agr(mdp, tmp1);
+
+    // Offset of the current profile entry to update.
+    const Register entry_offset = tmp1;
+    // entry_offset = array len in number of cells.
+    z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset()));
+    // entry_offset (number of cells) = array len - size of 1 entry
+    add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count());
+    // entry_offset in bytes
+    z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
+
+    Label loop;
+    bind(loop);
+
+    Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0));
+    Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0));
+
+    // Load offset on the stack from the slot for this parameter.
+    z_lg(tmp2, arg_off);
+    z_sllg(tmp2, tmp2, Interpreter::logStackElementSize);
+    z_lcgr(tmp2); // Negate.
+
+    // Profile the parameter.
+    z_ltg(tmp2, Address(Z_locals, tmp2));
+    profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true);
+
+    // Go to next parameter.
+    z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size);
+    z_brnl(loop);
+
+    bind(profile_continue);
+  }
+}
+
+// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
+void InterpreterMacroAssembler::increment_mask_and_jump(Address          counter_addr,
+                                                        int              increment,
+                                                        Address          mask,
+                                                        Register         scratch,
+                                                        bool             preloaded,
+                                                        branch_condition cond,
+                                                        Label           *where) {
+  assert_different_registers(counter_addr.base(), scratch);
+  if (preloaded) {
+    add2reg(scratch, increment);
+    reg2mem_opt(scratch, counter_addr, false);
+  } else {
+    if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) {
+      z_alsi(counter_addr.disp20(), counter_addr.base(), increment);
+      mem2reg_signed_opt(scratch, counter_addr);
+    } else {
+      mem2reg_signed_opt(scratch, counter_addr);
+      add2reg(scratch, increment);
+      reg2mem_opt(scratch, counter_addr, false);
+    }
+  }
+  z_n(scratch, mask);
+  if (where) { z_brc(cond, *where); }
+}
+
+// Get MethodCounters object for given method. Lazily allocated if necessary.
+//   method    - Ptr to Method object.
+//   Rcounters - Ptr to MethodCounters object associated with Method object.
+//   skip      - Exit point if MethodCounters object can't be created (OOM condition).
+void InterpreterMacroAssembler::get_method_counters(Register Rmethod,
+                                                    Register Rcounters,
+                                                    Label& skip) {
+  assert_different_registers(Rmethod, Rcounters);
+
+  BLOCK_COMMENT("get MethodCounters object {");
+
+  Label has_counters;
+  load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset()));
+  z_brnz(has_counters);
+
+  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod, false);
+  z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object.
+  z_brz(skip); // No MethodCounters, out of memory.
+
+  bind(has_counters);
+
+  BLOCK_COMMENT("} get MethodCounters object");
+}
+
+// Increment invocation counter in MethodCounters object.
+// Return (invocation_counter+backedge_counter) as "result" in RctrSum.
+// Counter values are all unsigned.
+void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) {
+  assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
+  assert_different_registers(Rcounters, RctrSum);
+
+  int increment          = InvocationCounter::count_increment;
+  int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
+  int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
+
+  BLOCK_COMMENT("Increment invocation counter {");
+
+  if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
+    // Increment the invocation counter in place,
+    // then add the incremented value to the backedge counter.
+    z_l(RctrSum, be_counter_offset, Rcounters);
+    z_alsi(inv_counter_offset, Rcounters, increment);     // Atomic increment @no extra cost!
+    z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
+    z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
+  } else {
+    // This path is optimized for low register consumption
+    // at the cost of somewhat higher operand delays.
+    // It does not need an extra temp register.
+
+    // Update the invocation counter.
+    z_l(RctrSum, inv_counter_offset, Rcounters);
+    if (RctrSum == Z_R0) {
+      z_ahi(RctrSum, increment);
+    } else {
+      add2reg(RctrSum, increment);
+    }
+    z_st(RctrSum, inv_counter_offset, Rcounters);
+
+    // Mask off the state bits.
+    z_nilf(RctrSum, InvocationCounter::count_mask_value);
+
+    // Add the backedge counter to the updated invocation counter to
+    // form the result.
+    z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
+  }
+
+  BLOCK_COMMENT("} Increment invocation counter");
+
+  // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
+}
+
+
+// increment backedge counter in MethodCounters object.
+// return (invocation_counter+backedge_counter) as "result" in RctrSum
+// counter values are all unsigned!
+void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) {
+  assert(UseCompiler, "incrementing must be useful");
+  assert_different_registers(Rcounters, RctrSum);
+
+  int increment          = InvocationCounter::count_increment;
+  int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
+  int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
+
+  BLOCK_COMMENT("Increment backedge counter {");
+
+  if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
+    // Increment the invocation counter in place,
+    // then add the incremented value to the backedge counter.
+    z_l(RctrSum, inv_counter_offset, Rcounters);
+    z_alsi(be_counter_offset, Rcounters, increment);      // Atomic increment @no extra cost!
+    z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
+    z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
+  } else {
+    // This path is optimized for low register consumption
+    // at the cost of somewhat higher operand delays.
+    // It does not need an extra temp register.
+
+    // Update the invocation counter.
+    z_l(RctrSum, be_counter_offset, Rcounters);
+    if (RctrSum == Z_R0) {
+      z_ahi(RctrSum, increment);
+    } else {
+      add2reg(RctrSum, increment);
+    }
+    z_st(RctrSum, be_counter_offset, Rcounters);
+
+    // Mask off the state bits.
+    z_nilf(RctrSum, InvocationCounter::count_mask_value);
+
+    // Add the backedge counter to the updated invocation counter to
+    // form the result.
+    z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
+  }
+
+  BLOCK_COMMENT("} Increment backedge counter");
+
+  // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
+}
+
+// Add an InterpMonitorElem to stack (see frame_s390.hpp).
+void InterpreterMacroAssembler::add_monitor_to_stack(bool     stack_is_empty,
+                                                     Register Rtemp1,
+                                                     Register Rtemp2,
+                                                     Register Rtemp3) {
+
+  const Register Rcurr_slot = Rtemp1;
+  const Register Rlimit     = Rtemp2;
+  const jint delta = -frame::interpreter_frame_monitor_size() * wordSize;
+
+  assert((delta & LongAlignmentMask) == 0,
+         "sizeof BasicObjectLock must be even number of doublewords");
+  assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize");
+  assert(Rcurr_slot != Z_R0, "Register must be usable as base register");
+  assert_different_registers(Rlimit, Rcurr_slot, Rtemp3);
+
+  get_monitors(Rlimit);
+
+  // Adjust stack pointer for additional monitor entry.
+  resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false);
+
+  if (!stack_is_empty) {
+    // Must copy stack contents down.
+    NearLabel next, done;
+
+    // Rtemp := addr(Tos), Z_esp is pointing below it!
+    add2reg(Rcurr_slot, wordSize, Z_esp);
+
+    // Nothing to do, if already at monitor area.
+    compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done);
+
+    bind(next);
+
+    // Move one stack slot.
+    mem2reg_opt(Rtemp3, Address(Rcurr_slot));
+    reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta));
+    add2reg(Rcurr_slot, wordSize);
+    compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done?
+
+    bind(done);
+    // Done copying stack.
+  }
+
+  // Adjust expression stack and monitor pointers.
+  add2reg(Z_esp, delta);
+  add2reg(Rlimit, delta);
+  save_monitors(Rlimit);
+}
+
+// Note: Index holds the offset in bytes afterwards.
+// You can use this to store a new value (with Llocals as the base).
+void InterpreterMacroAssembler::access_local_int(Register index, Register dst) {
+  z_sllg(index, index, LogBytesPerWord);
+  mem2reg_opt(dst, Address(Z_locals, index), false);
+}
+
+void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
+  if (state == atos) { MacroAssembler::verify_oop(reg); }
+}
+
+// Inline assembly for:
+//
+// if (thread is in interp_only_mode) {
+//   InterpreterRuntime::post_method_entry();
+// }
+
+void InterpreterMacroAssembler::notify_method_entry() {
+
+  // JVMTI
+  // Whenever JVMTI puts a thread in interp_only_mode, method
+  // entry/exit events are sent for that thread to track stack
+  // depth. If it is possible to enter interp_only_mode we add
+  // the code to check if the event should be sent.
+  if (JvmtiExport::can_post_interpreter_events()) {
+    Label jvmti_post_done;
+    MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
+    z_bre(jvmti_post_done);
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry), /*check_exceptions=*/false);
+    bind(jvmti_post_done);
+  }
+}
+
+// Inline assembly for:
+//
+// if (thread is in interp_only_mode) {
+//   if (!native_method) save result
+//   InterpreterRuntime::post_method_exit();
+//   if (!native_method) restore result
+// }
+// if (DTraceMethodProbes) {
+//   SharedRuntime::dtrace_method_exit(thread, method);
+// }
+//
+// For native methods their result is stored in z_ijava_state.lresult
+// and z_ijava_state.fresult before coming here.
+// Java methods have their result stored in the expression stack.
+//
+// Notice the dependency to frame::interpreter_frame_result().
+void InterpreterMacroAssembler::notify_method_exit(bool native_method,
+                                                   TosState state,
+                                                   NotifyMethodExitMode mode) {
+  // JVMTI
+  // Whenever JVMTI puts a thread in interp_only_mode, method
+  // entry/exit events are sent for that thread to track stack
+  // depth. If it is possible to enter interp_only_mode we add
+  // the code to check if the event should be sent.
+  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
+    Label jvmti_post_done;
+    MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
+    z_bre(jvmti_post_done);
+    if (!native_method) push(state); // see frame::interpreter_frame_result()
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), /*check_exceptions=*/false);
+    if (!native_method) pop(state);
+    bind(jvmti_post_done);
+  }
+
+#if 0
+  // Dtrace currently not supported on z/Architecture.
+  {
+    SkipIfEqual skip(this, &DTraceMethodProbes, false);
+    push(state);
+    get_method(c_rarg1);
+    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
+                 r15_thread, c_rarg1);
+    pop(state);
+  }
+#endif
+}
+
+void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) {
+  if (!JvmtiExport::can_post_interpreter_events()) {
+    return;
+  }
+
+  load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
+  z_brnz(Lskip);
+
+}
+
+// Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP.
+// The return pc is loaded into the register return_pc.
+//
+// Registers updated:
+//     return_pc  - The return pc of the calling frame.
+//     tmp1, tmp2 - scratch
+void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) {
+  // F0  Z_SP -> caller_sp (F1's)
+  //             ...
+  //             sender_sp (F1's)
+  //             ...
+  // F1  Z_fp -> caller_sp (F2's)
+  //             return_pc (Continuation after return from F0.)
+  //             ...
+  // F2          caller_sp
+
+  // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications
+  // (a) by a c2i adapter and (b) by generate_fixed_frame().
+  // In case (a) the new top frame F1 is an unextended compiled frame.
+  // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME.
+
+  // Case (b) seems to be redundant when returning to a interpreted caller,
+  // because then the caller's top_frame_sp is installed as sp (see
+  // TemplateInterpreterGenerator::generate_return_entry_for ()). But
+  // pop_interpreter_frame() is also used in exception handling and there the
+  // frame type of the caller is unknown, therefore top_frame_sp cannot be used,
+  // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME.
+
+  Register R_f1_sender_sp = tmp1;
+  Register R_f2_sp = tmp2;
+
+  // Tirst check the for the interpreter frame's magic.
+  asm_assert_ijava_state_magic(R_f2_sp/*tmp*/);
+  z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp);
+  z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp);
+  if (return_pc->is_valid())
+    z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
+  // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp.
+  resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/);
+
+#ifdef ASSERT
+  // The return_pc in the new top frame is dead... at least that's my
+  // current understanding; to assert this I overwrite it.
+  load_const_optimized(Z_ARG3, 0xb00b1);
+  z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP);
+#endif
+}
+
+void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
+  if (VerifyFPU) {
+    unimplemented("verfiyFPU");
+  }
+}
+