author | iveresov |
Thu, 22 Jan 2015 11:25:23 -0800 | |
changeset 28723 | 0a36120cb225 |
parent 24923 | 9631f7d691dc |
child 29081 | c61eb4914428 |
permissions | -rw-r--r-- |
23528 | 1 |
/* |
2 |
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. |
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
20 |
* or visit www.oracle.com if you need additional information or have any |
|
21 |
* questions. |
|
22 |
* |
|
23 |
*/ |
|
24 |
||
25 |
#include "precompiled.hpp" |
|
26 |
#include "opto/addnode.hpp" |
|
27 |
#include "opto/convertnode.hpp" |
|
28 |
#include "opto/matcher.hpp" |
|
29 |
#include "opto/phaseX.hpp" |
|
30 |
#include "opto/subnode.hpp" |
|
31 |
||
32 |
//============================================================================= |
|
33 |
//------------------------------Identity--------------------------------------- |
|
34 |
Node *Conv2BNode::Identity( PhaseTransform *phase ) { |
|
35 |
const Type *t = phase->type( in(1) ); |
|
36 |
if( t == Type::TOP ) return in(1); |
|
37 |
if( t == TypeInt::ZERO ) return in(1); |
|
38 |
if( t == TypeInt::ONE ) return in(1); |
|
39 |
if( t == TypeInt::BOOL ) return in(1); |
|
40 |
return this; |
|
41 |
} |
|
42 |
||
43 |
//------------------------------Value------------------------------------------ |
|
44 |
const Type *Conv2BNode::Value( PhaseTransform *phase ) const { |
|
45 |
const Type *t = phase->type( in(1) ); |
|
46 |
if( t == Type::TOP ) return Type::TOP; |
|
47 |
if( t == TypeInt::ZERO ) return TypeInt::ZERO; |
|
48 |
if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO; |
|
49 |
const TypePtr *tp = t->isa_ptr(); |
|
50 |
if( tp != NULL ) { |
|
51 |
if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP; |
|
52 |
if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE; |
|
53 |
if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE; |
|
54 |
return TypeInt::BOOL; |
|
55 |
} |
|
56 |
if (t->base() != Type::Int) return TypeInt::BOOL; |
|
57 |
const TypeInt *ti = t->is_int(); |
|
58 |
if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE; |
|
59 |
return TypeInt::BOOL; |
|
60 |
} |
|
61 |
||
62 |
||
63 |
// The conversions operations are all Alpha sorted. Please keep it that way! |
|
64 |
//============================================================================= |
|
65 |
//------------------------------Value------------------------------------------ |
|
66 |
const Type *ConvD2FNode::Value( PhaseTransform *phase ) const { |
|
67 |
const Type *t = phase->type( in(1) ); |
|
68 |
if( t == Type::TOP ) return Type::TOP; |
|
69 |
if( t == Type::DOUBLE ) return Type::FLOAT; |
|
70 |
const TypeD *td = t->is_double_constant(); |
|
71 |
return TypeF::make( (float)td->getd() ); |
|
72 |
} |
|
73 |
||
74 |
//------------------------------Identity--------------------------------------- |
|
75 |
// Float's can be converted to doubles with no loss of bits. Hence |
|
76 |
// converting a float to a double and back to a float is a NOP. |
|
77 |
Node *ConvD2FNode::Identity(PhaseTransform *phase) { |
|
78 |
return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this; |
|
79 |
} |
|
80 |
||
81 |
//============================================================================= |
|
82 |
//------------------------------Value------------------------------------------ |
|
83 |
const Type *ConvD2INode::Value( PhaseTransform *phase ) const { |
|
84 |
const Type *t = phase->type( in(1) ); |
|
85 |
if( t == Type::TOP ) return Type::TOP; |
|
86 |
if( t == Type::DOUBLE ) return TypeInt::INT; |
|
87 |
const TypeD *td = t->is_double_constant(); |
|
88 |
return TypeInt::make( SharedRuntime::d2i( td->getd() ) ); |
|
89 |
} |
|
90 |
||
91 |
//------------------------------Ideal------------------------------------------ |
|
92 |
// If converting to an int type, skip any rounding nodes |
|
93 |
Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
94 |
if( in(1)->Opcode() == Op_RoundDouble ) |
|
95 |
set_req(1,in(1)->in(1)); |
|
96 |
return NULL; |
|
97 |
} |
|
98 |
||
99 |
//------------------------------Identity--------------------------------------- |
|
100 |
// Int's can be converted to doubles with no loss of bits. Hence |
|
101 |
// converting an integer to a double and back to an integer is a NOP. |
|
102 |
Node *ConvD2INode::Identity(PhaseTransform *phase) { |
|
103 |
return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this; |
|
104 |
} |
|
105 |
||
106 |
//============================================================================= |
|
107 |
//------------------------------Value------------------------------------------ |
|
108 |
const Type *ConvD2LNode::Value( PhaseTransform *phase ) const { |
|
109 |
const Type *t = phase->type( in(1) ); |
|
110 |
if( t == Type::TOP ) return Type::TOP; |
|
111 |
if( t == Type::DOUBLE ) return TypeLong::LONG; |
|
112 |
const TypeD *td = t->is_double_constant(); |
|
113 |
return TypeLong::make( SharedRuntime::d2l( td->getd() ) ); |
|
114 |
} |
|
115 |
||
116 |
//------------------------------Identity--------------------------------------- |
|
117 |
Node *ConvD2LNode::Identity(PhaseTransform *phase) { |
|
118 |
// Remove ConvD2L->ConvL2D->ConvD2L sequences. |
|
119 |
if( in(1) ->Opcode() == Op_ConvL2D && |
|
120 |
in(1)->in(1)->Opcode() == Op_ConvD2L ) |
|
121 |
return in(1)->in(1); |
|
122 |
return this; |
|
123 |
} |
|
124 |
||
125 |
//------------------------------Ideal------------------------------------------ |
|
126 |
// If converting to an int type, skip any rounding nodes |
|
127 |
Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
128 |
if( in(1)->Opcode() == Op_RoundDouble ) |
|
129 |
set_req(1,in(1)->in(1)); |
|
130 |
return NULL; |
|
131 |
} |
|
132 |
||
133 |
//============================================================================= |
|
134 |
//------------------------------Value------------------------------------------ |
|
135 |
const Type *ConvF2DNode::Value( PhaseTransform *phase ) const { |
|
136 |
const Type *t = phase->type( in(1) ); |
|
137 |
if( t == Type::TOP ) return Type::TOP; |
|
138 |
if( t == Type::FLOAT ) return Type::DOUBLE; |
|
139 |
const TypeF *tf = t->is_float_constant(); |
|
140 |
return TypeD::make( (double)tf->getf() ); |
|
141 |
} |
|
142 |
||
143 |
//============================================================================= |
|
144 |
//------------------------------Value------------------------------------------ |
|
145 |
const Type *ConvF2INode::Value( PhaseTransform *phase ) const { |
|
146 |
const Type *t = phase->type( in(1) ); |
|
147 |
if( t == Type::TOP ) return Type::TOP; |
|
148 |
if( t == Type::FLOAT ) return TypeInt::INT; |
|
149 |
const TypeF *tf = t->is_float_constant(); |
|
150 |
return TypeInt::make( SharedRuntime::f2i( tf->getf() ) ); |
|
151 |
} |
|
152 |
||
153 |
//------------------------------Identity--------------------------------------- |
|
154 |
Node *ConvF2INode::Identity(PhaseTransform *phase) { |
|
155 |
// Remove ConvF2I->ConvI2F->ConvF2I sequences. |
|
156 |
if( in(1) ->Opcode() == Op_ConvI2F && |
|
157 |
in(1)->in(1)->Opcode() == Op_ConvF2I ) |
|
158 |
return in(1)->in(1); |
|
159 |
return this; |
|
160 |
} |
|
161 |
||
162 |
//------------------------------Ideal------------------------------------------ |
|
163 |
// If converting to an int type, skip any rounding nodes |
|
164 |
Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
165 |
if( in(1)->Opcode() == Op_RoundFloat ) |
|
166 |
set_req(1,in(1)->in(1)); |
|
167 |
return NULL; |
|
168 |
} |
|
169 |
||
170 |
//============================================================================= |
|
171 |
//------------------------------Value------------------------------------------ |
|
172 |
const Type *ConvF2LNode::Value( PhaseTransform *phase ) const { |
|
173 |
const Type *t = phase->type( in(1) ); |
|
174 |
if( t == Type::TOP ) return Type::TOP; |
|
175 |
if( t == Type::FLOAT ) return TypeLong::LONG; |
|
176 |
const TypeF *tf = t->is_float_constant(); |
|
177 |
return TypeLong::make( SharedRuntime::f2l( tf->getf() ) ); |
|
178 |
} |
|
179 |
||
180 |
//------------------------------Identity--------------------------------------- |
|
181 |
Node *ConvF2LNode::Identity(PhaseTransform *phase) { |
|
182 |
// Remove ConvF2L->ConvL2F->ConvF2L sequences. |
|
183 |
if( in(1) ->Opcode() == Op_ConvL2F && |
|
184 |
in(1)->in(1)->Opcode() == Op_ConvF2L ) |
|
185 |
return in(1)->in(1); |
|
186 |
return this; |
|
187 |
} |
|
188 |
||
189 |
//------------------------------Ideal------------------------------------------ |
|
190 |
// If converting to an int type, skip any rounding nodes |
|
191 |
Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
192 |
if( in(1)->Opcode() == Op_RoundFloat ) |
|
193 |
set_req(1,in(1)->in(1)); |
|
194 |
return NULL; |
|
195 |
} |
|
196 |
||
197 |
//============================================================================= |
|
198 |
//------------------------------Value------------------------------------------ |
|
199 |
const Type *ConvI2DNode::Value( PhaseTransform *phase ) const { |
|
200 |
const Type *t = phase->type( in(1) ); |
|
201 |
if( t == Type::TOP ) return Type::TOP; |
|
202 |
const TypeInt *ti = t->is_int(); |
|
203 |
if( ti->is_con() ) return TypeD::make( (double)ti->get_con() ); |
|
204 |
return bottom_type(); |
|
205 |
} |
|
206 |
||
207 |
//============================================================================= |
|
208 |
//------------------------------Value------------------------------------------ |
|
209 |
const Type *ConvI2FNode::Value( PhaseTransform *phase ) const { |
|
210 |
const Type *t = phase->type( in(1) ); |
|
211 |
if( t == Type::TOP ) return Type::TOP; |
|
212 |
const TypeInt *ti = t->is_int(); |
|
213 |
if( ti->is_con() ) return TypeF::make( (float)ti->get_con() ); |
|
214 |
return bottom_type(); |
|
215 |
} |
|
216 |
||
217 |
//------------------------------Identity--------------------------------------- |
|
218 |
Node *ConvI2FNode::Identity(PhaseTransform *phase) { |
|
219 |
// Remove ConvI2F->ConvF2I->ConvI2F sequences. |
|
220 |
if( in(1) ->Opcode() == Op_ConvF2I && |
|
221 |
in(1)->in(1)->Opcode() == Op_ConvI2F ) |
|
222 |
return in(1)->in(1); |
|
223 |
return this; |
|
224 |
} |
|
225 |
||
226 |
//============================================================================= |
|
227 |
//------------------------------Value------------------------------------------ |
|
228 |
const Type *ConvI2LNode::Value( PhaseTransform *phase ) const { |
|
229 |
const Type *t = phase->type( in(1) ); |
|
230 |
if( t == Type::TOP ) return Type::TOP; |
|
231 |
const TypeInt *ti = t->is_int(); |
|
232 |
const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen); |
|
233 |
// Join my declared type against my incoming type. |
|
234 |
tl = tl->filter(_type); |
|
235 |
return tl; |
|
236 |
} |
|
237 |
||
238 |
#ifdef _LP64 |
|
239 |
static inline bool long_ranges_overlap(jlong lo1, jlong hi1, |
|
240 |
jlong lo2, jlong hi2) { |
|
241 |
// Two ranges overlap iff one range's low point falls in the other range. |
|
242 |
return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1); |
|
243 |
} |
|
244 |
#endif |
|
245 |
||
246 |
//------------------------------Ideal------------------------------------------ |
|
247 |
Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
248 |
const TypeLong* this_type = this->type()->is_long(); |
|
249 |
Node* this_changed = NULL; |
|
250 |
||
251 |
// If _major_progress, then more loop optimizations follow. Do NOT |
|
252 |
// remove this node's type assertion until no more loop ops can happen. |
|
253 |
// The progress bit is set in the major loop optimizations THEN comes the |
|
254 |
// call to IterGVN and any chance of hitting this code. Cf. Opaque1Node. |
|
255 |
if (can_reshape && !phase->C->major_progress()) { |
|
256 |
const TypeInt* in_type = phase->type(in(1))->isa_int(); |
|
257 |
if (in_type != NULL && this_type != NULL && |
|
258 |
(in_type->_lo != this_type->_lo || |
|
259 |
in_type->_hi != this_type->_hi)) { |
|
260 |
// Although this WORSENS the type, it increases GVN opportunities, |
|
261 |
// because I2L nodes with the same input will common up, regardless |
|
262 |
// of slightly differing type assertions. Such slight differences |
|
263 |
// arise routinely as a result of loop unrolling, so this is a |
|
264 |
// post-unrolling graph cleanup. Choose a type which depends only |
|
265 |
// on my input. (Exception: Keep a range assertion of >=0 or <0.) |
|
266 |
jlong lo1 = this_type->_lo; |
|
267 |
jlong hi1 = this_type->_hi; |
|
268 |
int w1 = this_type->_widen; |
|
269 |
if (lo1 != (jint)lo1 || |
|
270 |
hi1 != (jint)hi1 || |
|
271 |
lo1 > hi1) { |
|
272 |
// Overflow leads to wraparound, wraparound leads to range saturation. |
|
273 |
lo1 = min_jint; hi1 = max_jint; |
|
274 |
} else if (lo1 >= 0) { |
|
275 |
// Keep a range assertion of >=0. |
|
276 |
lo1 = 0; hi1 = max_jint; |
|
277 |
} else if (hi1 < 0) { |
|
278 |
// Keep a range assertion of <0. |
|
279 |
lo1 = min_jint; hi1 = -1; |
|
280 |
} else { |
|
281 |
lo1 = min_jint; hi1 = max_jint; |
|
282 |
} |
|
283 |
const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1), |
|
284 |
MIN2((jlong)in_type->_hi, hi1), |
|
285 |
MAX2((int)in_type->_widen, w1)); |
|
286 |
if (wtype != type()) { |
|
287 |
set_type(wtype); |
|
288 |
// Note: this_type still has old type value, for the logic below. |
|
289 |
this_changed = this; |
|
290 |
} |
|
291 |
} |
|
292 |
} |
|
293 |
||
294 |
#ifdef _LP64 |
|
295 |
// Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) , |
|
296 |
// but only if x and y have subranges that cannot cause 32-bit overflow, |
|
297 |
// under the assumption that x+y is in my own subrange this->type(). |
|
298 |
||
299 |
// This assumption is based on a constraint (i.e., type assertion) |
|
300 |
// established in Parse::array_addressing or perhaps elsewhere. |
|
301 |
// This constraint has been adjoined to the "natural" type of |
|
302 |
// the incoming argument in(0). We know (because of runtime |
|
303 |
// checks) - that the result value I2L(x+y) is in the joined range. |
|
304 |
// Hence we can restrict the incoming terms (x, y) to values such |
|
305 |
// that their sum also lands in that range. |
|
306 |
||
307 |
// This optimization is useful only on 64-bit systems, where we hope |
|
308 |
// the addition will end up subsumed in an addressing mode. |
|
309 |
// It is necessary to do this when optimizing an unrolled array |
|
310 |
// copy loop such as x[i++] = y[i++]. |
|
311 |
||
312 |
// On 32-bit systems, it's better to perform as much 32-bit math as |
|
313 |
// possible before the I2L conversion, because 32-bit math is cheaper. |
|
314 |
// There's no common reason to "leak" a constant offset through the I2L. |
|
315 |
// Addressing arithmetic will not absorb it as part of a 64-bit AddL. |
|
316 |
||
317 |
Node* z = in(1); |
|
318 |
int op = z->Opcode(); |
|
319 |
if (op == Op_AddI || op == Op_SubI) { |
|
320 |
Node* x = z->in(1); |
|
321 |
Node* y = z->in(2); |
|
322 |
assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal"); |
|
323 |
if (phase->type(x) == Type::TOP) return this_changed; |
|
324 |
if (phase->type(y) == Type::TOP) return this_changed; |
|
325 |
const TypeInt* tx = phase->type(x)->is_int(); |
|
326 |
const TypeInt* ty = phase->type(y)->is_int(); |
|
327 |
const TypeLong* tz = this_type; |
|
328 |
jlong xlo = tx->_lo; |
|
329 |
jlong xhi = tx->_hi; |
|
330 |
jlong ylo = ty->_lo; |
|
331 |
jlong yhi = ty->_hi; |
|
332 |
jlong zlo = tz->_lo; |
|
333 |
jlong zhi = tz->_hi; |
|
334 |
jlong vbit = CONST64(1) << BitsPerInt; |
|
335 |
int widen = MAX2(tx->_widen, ty->_widen); |
|
336 |
if (op == Op_SubI) { |
|
337 |
jlong ylo0 = ylo; |
|
338 |
ylo = -yhi; |
|
339 |
yhi = -ylo0; |
|
340 |
} |
|
341 |
// See if x+y can cause positive overflow into z+2**32 |
|
342 |
if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) { |
|
343 |
return this_changed; |
|
344 |
} |
|
345 |
// See if x+y can cause negative overflow into z-2**32 |
|
346 |
if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) { |
|
347 |
return this_changed; |
|
348 |
} |
|
349 |
// Now it's always safe to assume x+y does not overflow. |
|
350 |
// This is true even if some pairs x,y might cause overflow, as long |
|
351 |
// as that overflow value cannot fall into [zlo,zhi]. |
|
352 |
||
353 |
// Confident that the arithmetic is "as if infinite precision", |
|
354 |
// we can now use z's range to put constraints on those of x and y. |
|
355 |
// The "natural" range of x [xlo,xhi] can perhaps be narrowed to a |
|
356 |
// more "restricted" range by intersecting [xlo,xhi] with the |
|
357 |
// range obtained by subtracting y's range from the asserted range |
|
358 |
// of the I2L conversion. Here's the interval arithmetic algebra: |
|
359 |
// x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo] |
|
360 |
// => x in [zlo-yhi, zhi-ylo] |
|
361 |
// => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi] |
|
362 |
// => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo] |
|
363 |
jlong rxlo = MAX2(xlo, zlo - yhi); |
|
364 |
jlong rxhi = MIN2(xhi, zhi - ylo); |
|
365 |
// And similarly, x changing place with y: |
|
366 |
jlong rylo = MAX2(ylo, zlo - xhi); |
|
367 |
jlong ryhi = MIN2(yhi, zhi - xlo); |
|
368 |
if (rxlo > rxhi || rylo > ryhi) { |
|
369 |
return this_changed; // x or y is dying; don't mess w/ it |
|
370 |
} |
|
371 |
if (op == Op_SubI) { |
|
372 |
jlong rylo0 = rylo; |
|
373 |
rylo = -ryhi; |
|
374 |
ryhi = -rylo0; |
|
375 |
} |
|
376 |
||
24923
9631f7d691dc
8034812: remove IDX_INIT macro hack in Node class
thartmann
parents:
23528
diff
changeset
|
377 |
Node* cx = phase->transform( new ConvI2LNode(x, TypeLong::make(rxlo, rxhi, widen)) ); |
9631f7d691dc
8034812: remove IDX_INIT macro hack in Node class
thartmann
parents:
23528
diff
changeset
|
378 |
Node* cy = phase->transform( new ConvI2LNode(y, TypeLong::make(rylo, ryhi, widen)) ); |
23528 | 379 |
switch (op) { |
24923
9631f7d691dc
8034812: remove IDX_INIT macro hack in Node class
thartmann
parents:
23528
diff
changeset
|
380 |
case Op_AddI: return new AddLNode(cx, cy); |
9631f7d691dc
8034812: remove IDX_INIT macro hack in Node class
thartmann
parents:
23528
diff
changeset
|
381 |
case Op_SubI: return new SubLNode(cx, cy); |
23528 | 382 |
default: ShouldNotReachHere(); |
383 |
} |
|
384 |
} |
|
385 |
#endif //_LP64 |
|
386 |
||
387 |
return this_changed; |
|
388 |
} |
|
389 |
||
390 |
//============================================================================= |
|
391 |
//------------------------------Value------------------------------------------ |
|
392 |
const Type *ConvL2DNode::Value( PhaseTransform *phase ) const { |
|
393 |
const Type *t = phase->type( in(1) ); |
|
394 |
if( t == Type::TOP ) return Type::TOP; |
|
395 |
const TypeLong *tl = t->is_long(); |
|
396 |
if( tl->is_con() ) return TypeD::make( (double)tl->get_con() ); |
|
397 |
return bottom_type(); |
|
398 |
} |
|
399 |
||
400 |
//============================================================================= |
|
401 |
//------------------------------Value------------------------------------------ |
|
402 |
const Type *ConvL2FNode::Value( PhaseTransform *phase ) const { |
|
403 |
const Type *t = phase->type( in(1) ); |
|
404 |
if( t == Type::TOP ) return Type::TOP; |
|
405 |
const TypeLong *tl = t->is_long(); |
|
406 |
if( tl->is_con() ) return TypeF::make( (float)tl->get_con() ); |
|
407 |
return bottom_type(); |
|
408 |
} |
|
409 |
||
410 |
//============================================================================= |
|
411 |
//----------------------------Identity----------------------------------------- |
|
412 |
Node *ConvL2INode::Identity( PhaseTransform *phase ) { |
|
413 |
// Convert L2I(I2L(x)) => x |
|
414 |
if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1); |
|
415 |
return this; |
|
416 |
} |
|
417 |
||
418 |
//------------------------------Value------------------------------------------ |
|
419 |
const Type *ConvL2INode::Value( PhaseTransform *phase ) const { |
|
420 |
const Type *t = phase->type( in(1) ); |
|
421 |
if( t == Type::TOP ) return Type::TOP; |
|
422 |
const TypeLong *tl = t->is_long(); |
|
423 |
if (tl->is_con()) |
|
424 |
// Easy case. |
|
425 |
return TypeInt::make((jint)tl->get_con()); |
|
426 |
return bottom_type(); |
|
427 |
} |
|
428 |
||
429 |
//------------------------------Ideal------------------------------------------ |
|
430 |
// Return a node which is more "ideal" than the current node. |
|
431 |
// Blow off prior masking to int |
|
432 |
Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) { |
|
433 |
Node *andl = in(1); |
|
434 |
uint andl_op = andl->Opcode(); |
|
435 |
if( andl_op == Op_AndL ) { |
|
436 |
// Blow off prior masking to int |
|
437 |
if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) { |
|
438 |
set_req(1,andl->in(1)); |
|
439 |
return this; |
|
440 |
} |
|
441 |
} |
|
442 |
||
443 |
// Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y)) |
|
444 |
// This replaces an 'AddL' with an 'AddI'. |
|
445 |
if( andl_op == Op_AddL ) { |
|
446 |
// Don't do this for nodes which have more than one user since |
|
447 |
// we'll end up computing the long add anyway. |
|
448 |
if (andl->outcnt() > 1) return NULL; |
|
449 |
||
450 |
Node* x = andl->in(1); |
|
451 |
Node* y = andl->in(2); |
|
452 |
assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" ); |
|
453 |
if (phase->type(x) == Type::TOP) return NULL; |
|
454 |
if (phase->type(y) == Type::TOP) return NULL; |
|
24923
9631f7d691dc
8034812: remove IDX_INIT macro hack in Node class
thartmann
parents:
23528
diff
changeset
|
455 |
Node *add1 = phase->transform(new ConvL2INode(x)); |
9631f7d691dc
8034812: remove IDX_INIT macro hack in Node class
thartmann
parents:
23528
diff
changeset
|
456 |
Node *add2 = phase->transform(new ConvL2INode(y)); |
9631f7d691dc
8034812: remove IDX_INIT macro hack in Node class
thartmann
parents:
23528
diff
changeset
|
457 |
return new AddINode(add1,add2); |
23528 | 458 |
} |
459 |
||
460 |
// Disable optimization: LoadL->ConvL2I ==> LoadI. |
|
461 |
// It causes problems (sizes of Load and Store nodes do not match) |
|
462 |
// in objects initialization code and Escape Analysis. |
|
463 |
return NULL; |
|
464 |
} |
|
465 |
||
466 |
||
467 |
||
468 |
//============================================================================= |
|
469 |
//------------------------------Identity--------------------------------------- |
|
470 |
// Remove redundant roundings |
|
471 |
Node *RoundFloatNode::Identity( PhaseTransform *phase ) { |
|
472 |
assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel"); |
|
473 |
// Do not round constants |
|
474 |
if (phase->type(in(1))->base() == Type::FloatCon) return in(1); |
|
475 |
int op = in(1)->Opcode(); |
|
476 |
// Redundant rounding |
|
477 |
if( op == Op_RoundFloat ) return in(1); |
|
478 |
// Already rounded |
|
479 |
if( op == Op_Parm ) return in(1); |
|
480 |
if( op == Op_LoadF ) return in(1); |
|
481 |
return this; |
|
482 |
} |
|
483 |
||
484 |
//------------------------------Value------------------------------------------ |
|
485 |
const Type *RoundFloatNode::Value( PhaseTransform *phase ) const { |
|
486 |
return phase->type( in(1) ); |
|
487 |
} |
|
488 |
||
489 |
//============================================================================= |
|
490 |
//------------------------------Identity--------------------------------------- |
|
491 |
// Remove redundant roundings. Incoming arguments are already rounded. |
|
492 |
Node *RoundDoubleNode::Identity( PhaseTransform *phase ) { |
|
493 |
assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel"); |
|
494 |
// Do not round constants |
|
495 |
if (phase->type(in(1))->base() == Type::DoubleCon) return in(1); |
|
496 |
int op = in(1)->Opcode(); |
|
497 |
// Redundant rounding |
|
498 |
if( op == Op_RoundDouble ) return in(1); |
|
499 |
// Already rounded |
|
500 |
if( op == Op_Parm ) return in(1); |
|
501 |
if( op == Op_LoadD ) return in(1); |
|
502 |
if( op == Op_ConvF2D ) return in(1); |
|
503 |
if( op == Op_ConvI2D ) return in(1); |
|
504 |
return this; |
|
505 |
} |
|
506 |
||
507 |
//------------------------------Value------------------------------------------ |
|
508 |
const Type *RoundDoubleNode::Value( PhaseTransform *phase ) const { |
|
509 |
return phase->type( in(1) ); |
|
510 |
} |
|
511 |
||
512 |