--- a/jdk/src/share/classes/java/math/BigInteger.java Fri Jul 26 17:03:19 2013 -0700
+++ b/jdk/src/share/classes/java/math/BigInteger.java Fri Jul 26 17:09:30 2013 -0700
@@ -298,7 +298,7 @@
if (signum < -1 || signum > 1)
throw(new NumberFormatException("Invalid signum value"));
- if (this.mag.length==0) {
+ if (this.mag.length == 0) {
this.signum = 0;
} else {
if (signum == 0)
@@ -319,7 +319,7 @@
if (signum < -1 || signum > 1)
throw(new NumberFormatException("Invalid signum value"));
- if (this.mag.length==0) {
+ if (this.mag.length == 0) {
this.signum = 0;
} else {
if (signum == 0)
@@ -372,8 +372,10 @@
// Skip leading zeros and compute number of digits in magnitude
while (cursor < len &&
- Character.digit(val.charAt(cursor), radix) == 0)
+ Character.digit(val.charAt(cursor), radix) == 0) {
cursor++;
+ }
+
if (cursor == len) {
signum = 0;
mag = ZERO.mag;
@@ -463,7 +465,7 @@
if (result == -1)
throw new NumberFormatException(new String(source));
- for (int index = start; index<end; index++) {
+ for (int index = start; index < end; index++) {
int nextVal = Character.digit(source[index], 10);
if (nextVal == -1)
throw new NumberFormatException(new String(source));
@@ -630,9 +632,9 @@
int highBit = 1 << ((bitLength+31) & 0x1f); // High bit of high int
int highMask = (highBit << 1) - 1; // Bits to keep in high int
- while(true) {
+ while (true) {
// Construct a candidate
- for (int i=0; i<magLen; i++)
+ for (int i=0; i < magLen; i++)
temp[i] = rnd.nextInt();
temp[0] = (temp[0] & highMask) | highBit; // Ensure exact length
if (bitLength > 2)
@@ -718,7 +720,7 @@
if (!result.testBit(0))
result = result.add(ONE);
- while(true) {
+ while (true) {
// Do cheap "pre-test" if applicable
if (result.bitLength() > 6) {
long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
@@ -749,7 +751,7 @@
// Looking for the next large prime
int searchLen = (result.bitLength() / 20) * 64;
- while(true) {
+ while (true) {
BitSieve searchSieve = new BitSieve(result, searchLen);
BigInteger candidate = searchSieve.retrieve(result,
DEFAULT_PRIME_CERTAINTY, null);
@@ -816,7 +818,7 @@
int d = 5;
while (jacobiSymbol(d, this) != -1) {
// 5, -7, 9, -11, ...
- d = (d<0) ? Math.abs(d)+2 : -(d+2);
+ d = (d < 0) ? Math.abs(d)+2 : -(d+2);
}
// Step 2
@@ -889,7 +891,7 @@
BigInteger u = ONE; BigInteger u2;
BigInteger v = ONE; BigInteger v2;
- for (int i=k.bitLength()-2; i>=0; i--) {
+ for (int i=k.bitLength()-2; i >= 0; i--) {
u2 = u.multiply(v).mod(n);
v2 = v.square().add(d.multiply(u.square())).mod(n);
@@ -945,7 +947,7 @@
if (rnd == null) {
rnd = getSecureRandom();
}
- for (int i=0; i<iterations; i++) {
+ for (int i=0; i < iterations; i++) {
// Generate a uniform random on (1, this)
BigInteger b;
do {
@@ -954,8 +956,8 @@
int j = 0;
BigInteger z = b.modPow(m, this);
- while(!((j==0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
- if (j>0 && z.equals(ONE) || ++j==a)
+ while (!((j == 0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
+ if (j > 0 && z.equals(ONE) || ++j == a)
return false;
z = z.modPow(TWO, this);
}
@@ -969,7 +971,7 @@
* arguments are correct, and it doesn't copy the magnitude array.
*/
BigInteger(int[] magnitude, int signum) {
- this.signum = (magnitude.length==0 ? 0 : signum);
+ this.signum = (magnitude.length == 0 ? 0 : signum);
this.mag = magnitude;
}
@@ -978,7 +980,7 @@
* arguments are correct.
*/
private BigInteger(byte[] magnitude, int signum) {
- this.signum = (magnitude.length==0 ? 0 : signum);
+ this.signum = (magnitude.length == 0 ? 0 : signum);
this.mag = stripLeadingZeroBytes(magnitude);
}
@@ -1017,7 +1019,7 @@
}
int highWord = (int)(val >>> 32);
- if (highWord==0) {
+ if (highWord == 0) {
mag = new int[1];
mag[0] = (int)val;
} else {
@@ -1033,7 +1035,7 @@
* BigInteger will reference the input array if feasible).
*/
private static BigInteger valueOf(int val[]) {
- return (val[0]>0 ? new BigInteger(val, 1) : new BigInteger(val));
+ return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val));
}
// Constants
@@ -1074,8 +1076,7 @@
powerCache = new BigInteger[Character.MAX_RADIX+1][];
logCache = new double[Character.MAX_RADIX+1];
- for (int i=Character.MIN_RADIX; i<=Character.MAX_RADIX; i++)
- {
+ for (int i=Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
powerCache[i] = new BigInteger[] { BigInteger.valueOf(i) };
logCache[i] = Math.log(i);
}
@@ -1169,7 +1170,7 @@
int xIndex = x.length;
int[] result;
int highWord = (int)(val >>> 32);
- if (highWord==0) {
+ if (highWord == 0) {
result = new int[xIndex];
sum = (x[--xIndex] & LONG_MASK) + val;
result[xIndex] = (int)sum;
@@ -1222,12 +1223,12 @@
int yIndex = y.length;
int result[] = new int[xIndex];
long sum = 0;
- if(yIndex==1) {
+ if (yIndex == 1) {
sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ;
result[xIndex] = (int)sum;
} else {
// Add common parts of both numbers
- while(yIndex > 0) {
+ while (yIndex > 0) {
sum = (x[--xIndex] & LONG_MASK) +
(y[--yIndex] & LONG_MASK) + (sum >>> 32);
result[xIndex] = (int)sum;
@@ -1254,24 +1255,24 @@
private static int[] subtract(long val, int[] little) {
int highWord = (int)(val >>> 32);
- if (highWord==0) {
+ if (highWord == 0) {
int result[] = new int[1];
result[0] = (int)(val - (little[0] & LONG_MASK));
return result;
} else {
int result[] = new int[2];
- if(little.length==1) {
+ if (little.length == 1) {
long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK);
result[1] = (int)difference;
// Subtract remainder of longer number while borrow propagates
boolean borrow = (difference >> 32 != 0);
- if(borrow) {
+ if (borrow) {
result[0] = highWord - 1;
} else { // Copy remainder of longer number
result[0] = highWord;
}
return result;
- } else { // little.length==2
+ } else { // little.length == 2
long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK);
result[1] = (int)difference;
difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32);
@@ -1294,7 +1295,7 @@
int result[] = new int[bigIndex];
long difference = 0;
- if (highWord==0) {
+ if (highWord == 0) {
difference = (big[--bigIndex] & LONG_MASK) - val;
result[bigIndex] = (int)difference;
} else {
@@ -1304,7 +1305,6 @@
result[bigIndex] = (int)difference;
}
-
// Subtract remainder of longer number while borrow propagates
boolean borrow = (difference >> 32 != 0);
while (bigIndex > 0 && borrow)
@@ -1353,7 +1353,7 @@
long difference = 0;
// Subtract common parts of both numbers
- while(littleIndex > 0) {
+ while (littleIndex > 0) {
difference = (big[--bigIndex] & LONG_MASK) -
(little[--littleIndex] & LONG_MASK) +
(difference >> 32);
@@ -1385,29 +1385,29 @@
int xlen = mag.length;
int ylen = val.mag.length;
- if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD))
- {
+ if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) {
int resultSign = signum == val.signum ? 1 : -1;
if (val.mag.length == 1) {
return multiplyByInt(mag,val.mag[0], resultSign);
}
- if(mag.length == 1) {
+ if (mag.length == 1) {
return multiplyByInt(val.mag,mag[0], resultSign);
}
int[] result = multiplyToLen(mag, xlen,
val.mag, ylen, null);
result = trustedStripLeadingZeroInts(result);
return new BigInteger(result, resultSign);
+ } else {
+ if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) {
+ return multiplyKaratsuba(this, val);
+ } else {
+ return multiplyToomCook3(this, val);
+ }
}
- else
- if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD))
- return multiplyKaratsuba(this, val);
- else
- return multiplyToomCook3(this, val);
}
private static BigInteger multiplyByInt(int[] x, int y, int sign) {
- if(Integer.bitCount(y)==1) {
+ if (Integer.bitCount(y) == 1) {
return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign);
}
int xlen = x.length;
@@ -1482,7 +1482,7 @@
z = new int[xlen+ylen];
long carry = 0;
- for (int j=ystart, k=ystart+1+xstart; j>=0; j--, k--) {
+ for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) {
long product = (y[j] & LONG_MASK) *
(x[xstart] & LONG_MASK) + carry;
z[k] = (int)product;
@@ -1492,7 +1492,7 @@
for (int i = xstart-1; i >= 0; i--) {
carry = 0;
- for (int j=ystart, k=ystart+1+i; j>=0; j--, k--) {
+ for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) {
long product = (y[j] & LONG_MASK) *
(x[i] & LONG_MASK) +
(z[k] & LONG_MASK) + carry;
@@ -1519,8 +1519,7 @@
*
* See: http://en.wikipedia.org/wiki/Karatsuba_algorithm
*/
- private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y)
- {
+ private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) {
int xlen = x.mag.length;
int ylen = y.mag.length;
@@ -1543,10 +1542,11 @@
// result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2
BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2);
- if (x.signum != y.signum)
+ if (x.signum != y.signum) {
return result.negate();
- else
+ } else {
return result;
+ }
}
/**
@@ -1577,8 +1577,7 @@
* LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007.
*
*/
- private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b)
- {
+ private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) {
int alen = a.mag.length;
int blen = b.mag.length;
@@ -1613,12 +1612,12 @@
db1.add(b2).shiftLeft(1).subtract(b0));
vinf = a2.multiply(b2);
- /* The algorithm requires two divisions by 2 and one by 3.
- All divisions are known to be exact, that is, they do not produce
- remainders, and all results are positive. The divisions by 2 are
- implemented as right shifts which are relatively efficient, leaving
- only an exact division by 3, which is done by a specialized
- linear-time algorithm. */
+ // The algorithm requires two divisions by 2 and one by 3.
+ // All divisions are known to be exact, that is, they do not produce
+ // remainders, and all results are positive. The divisions by 2 are
+ // implemented as right shifts which are relatively efficient, leaving
+ // only an exact division by 3, which is done by a specialized
+ // linear-time algorithm.
t2 = v2.subtract(vm1).exactDivideBy3();
tm1 = v1.subtract(vm1).shiftRight(1);
t1 = v1.subtract(v0);
@@ -1632,10 +1631,11 @@
BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
- if (a.signum != b.signum)
+ if (a.signum != b.signum) {
return result.negate();
- else
+ } else {
return result;
+ }
}
@@ -1653,38 +1653,38 @@
* numbers.
*/
private BigInteger getToomSlice(int lowerSize, int upperSize, int slice,
- int fullsize)
- {
+ int fullsize) {
int start, end, sliceSize, len, offset;
len = mag.length;
offset = fullsize - len;
- if (slice == 0)
- {
+ if (slice == 0) {
start = 0 - offset;
end = upperSize - 1 - offset;
- }
- else
- {
+ } else {
start = upperSize + (slice-1)*lowerSize - offset;
end = start + lowerSize - 1;
}
- if (start < 0)
+ if (start < 0) {
start = 0;
- if (end < 0)
+ }
+ if (end < 0) {
return ZERO;
+ }
sliceSize = (end-start) + 1;
- if (sliceSize <= 0)
+ if (sliceSize <= 0) {
return ZERO;
+ }
// While performing Toom-Cook, all slices are positive and
// the sign is adjusted when the final number is composed.
- if (start==0 && sliceSize >= len)
+ if (start == 0 && sliceSize >= len) {
return this.abs();
+ }
int intSlice[] = new int[sliceSize];
System.arraycopy(mag, start, intSlice, 0, sliceSize);
@@ -1700,20 +1700,19 @@
* undefined. Note that this is expected to be called with positive
* arguments only.
*/
- private BigInteger exactDivideBy3()
- {
+ private BigInteger exactDivideBy3() {
int len = mag.length;
int[] result = new int[len];
long x, w, q, borrow;
borrow = 0L;
- for (int i=len-1; i>=0; i--)
- {
+ for (int i=len-1; i >= 0; i--) {
x = (mag[i] & LONG_MASK);
w = x - borrow;
- if (borrow > x) // Did we make the number go negative?
+ if (borrow > x) { // Did we make the number go negative?
borrow = 1L;
- else
+ } else {
borrow = 0L;
+ }
// 0xAAAAAAAB is the modular inverse of 3 (mod 2^32). Thus,
// the effect of this is to divide by 3 (mod 2^32).
@@ -1723,8 +1722,7 @@
// Now check the borrow. The second check can of course be
// eliminated if the first fails.
- if (q >= 0x55555556L)
- {
+ if (q >= 0x55555556L) {
borrow++;
if (q >= 0xAAAAAAABL)
borrow++;
@@ -1741,8 +1739,9 @@
private BigInteger getLower(int n) {
int len = mag.length;
- if (len <= n)
+ if (len <= n) {
return this;
+ }
int lowerInts[] = new int[n];
System.arraycopy(mag, len-n, lowerInts, 0, n);
@@ -1758,8 +1757,9 @@
private BigInteger getUpper(int n) {
int len = mag.length;
- if (len <= n)
+ if (len <= n) {
return ZERO;
+ }
int upperLen = len - n;
int upperInts[] = new int[upperLen];
@@ -1776,20 +1776,21 @@
* @return {@code this<sup>2</sup>}
*/
private BigInteger square() {
- if (signum == 0)
+ if (signum == 0) {
return ZERO;
+ }
int len = mag.length;
- if (len < KARATSUBA_SQUARE_THRESHOLD)
- {
+ if (len < KARATSUBA_SQUARE_THRESHOLD) {
int[] z = squareToLen(mag, len, null);
return new BigInteger(trustedStripLeadingZeroInts(z), 1);
+ } else {
+ if (len < TOOM_COOK_SQUARE_THRESHOLD) {
+ return squareKaratsuba();
+ } else {
+ return squareToomCook3();
+ }
}
- else
- if (len < TOOM_COOK_SQUARE_THRESHOLD)
- return squareKaratsuba();
- else
- return squareToomCook3();
}
/**
@@ -1837,7 +1838,7 @@
// Store the squares, right shifted one bit (i.e., divided by 2)
int lastProductLowWord = 0;
- for (int j=0, i=0; j<len; j++) {
+ for (int j=0, i=0; j < len; j++) {
long piece = (x[j] & LONG_MASK);
long product = piece * piece;
z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
@@ -1846,7 +1847,7 @@
}
// Add in off-diagonal sums
- for (int i=len, offset=1; i>0; i--, offset+=2) {
+ for (int i=len, offset=1; i > 0; i--, offset+=2) {
int t = x[i-1];
t = mulAdd(z, x, offset, i-1, t);
addOne(z, offset-1, i, t);
@@ -1866,8 +1867,7 @@
* has better asymptotic performance than the algorithm used in
* squareToLen.
*/
- private BigInteger squareKaratsuba()
- {
+ private BigInteger squareKaratsuba() {
int half = (mag.length+1) / 2;
BigInteger xl = getLower(half);
@@ -1887,8 +1887,7 @@
* that has better asymptotic performance than the algorithm used in
* squareToLen or squareKaratsuba.
*/
- private BigInteger squareToomCook3()
- {
+ private BigInteger squareToomCook3() {
int len = mag.length;
// k is the size (in ints) of the lower-order slices.
@@ -1913,13 +1912,12 @@
vinf = a2.square();
v2 = da1.add(a2).shiftLeft(1).subtract(a0).square();
- /* The algorithm requires two divisions by 2 and one by 3.
- All divisions are known to be exact, that is, they do not produce
- remainders, and all results are positive. The divisions by 2 are
- implemented as right shifts which are relatively efficient, leaving
- only a division by 3.
- The division by 3 is done by an optimized algorithm for this case.
- */
+ // The algorithm requires two divisions by 2 and one by 3.
+ // All divisions are known to be exact, that is, they do not produce
+ // remainders, and all results are positive. The divisions by 2 are
+ // implemented as right shifts which are relatively efficient, leaving
+ // only a division by 3.
+ // The division by 3 is done by an optimized algorithm for this case.
t2 = v2.subtract(vm1).exactDivideBy3();
tm1 = v1.subtract(vm1).shiftRight(1);
t1 = v1.subtract(v0);
@@ -1944,10 +1942,12 @@
* @throws ArithmeticException if {@code val} is zero.
*/
public BigInteger divide(BigInteger val) {
- if (mag.length<BURNIKEL_ZIEGLER_THRESHOLD || val.mag.length<BURNIKEL_ZIEGLER_THRESHOLD)
+ if (mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
+ val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD) {
return divideKnuth(val);
- else
+ } else {
return divideBurnikelZiegler(val);
+ }
}
/**
@@ -1979,10 +1979,12 @@
* @throws ArithmeticException if {@code val} is zero.
*/
public BigInteger[] divideAndRemainder(BigInteger val) {
- if (mag.length<BURNIKEL_ZIEGLER_THRESHOLD || val.mag.length<BURNIKEL_ZIEGLER_THRESHOLD)
+ if (mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
+ val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD) {
return divideAndRemainderKnuth(val);
- else
+ } else {
return divideAndRemainderBurnikelZiegler(val);
+ }
}
/** Long division */
@@ -2006,10 +2008,12 @@
* @throws ArithmeticException if {@code val} is zero.
*/
public BigInteger remainder(BigInteger val) {
- if (mag.length<BURNIKEL_ZIEGLER_THRESHOLD || val.mag.length<BURNIKEL_ZIEGLER_THRESHOLD)
+ if (mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
+ val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD) {
return remainderKnuth(val);
- else
+ } else {
return remainderBurnikelZiegler(val);
+ }
}
/** Long division */
@@ -2063,10 +2067,12 @@
* cause the operation to yield a non-integer value.)
*/
public BigInteger pow(int exponent) {
- if (exponent < 0)
+ if (exponent < 0) {
throw new ArithmeticException("Negative exponent");
- if (signum==0)
- return (exponent==0 ? ONE : this);
+ }
+ if (signum == 0) {
+ return (exponent == 0 ? ONE : this);
+ }
BigInteger partToSquare = this.abs();
@@ -2079,24 +2085,25 @@
int remainingBits;
// Factor the powers of two out quickly by shifting right, if needed.
- if (powersOfTwo > 0)
- {
+ if (powersOfTwo > 0) {
partToSquare = partToSquare.shiftRight(powersOfTwo);
remainingBits = partToSquare.bitLength();
- if (remainingBits == 1) // Nothing left but +/- 1?
- if (signum<0 && (exponent&1)==1)
+ if (remainingBits == 1) { // Nothing left but +/- 1?
+ if (signum < 0 && (exponent&1) == 1) {
return NEGATIVE_ONE.shiftLeft(powersOfTwo*exponent);
- else
+ } else {
return ONE.shiftLeft(powersOfTwo*exponent);
- }
- else
- {
+ }
+ }
+ } else {
remainingBits = partToSquare.bitLength();
- if (remainingBits == 1) // Nothing left but +/- 1?
- if (signum<0 && (exponent&1)==1)
+ if (remainingBits == 1) { // Nothing left but +/- 1?
+ if (signum < 0 && (exponent&1) == 1) {
return NEGATIVE_ONE;
- else
+ } else {
return ONE;
+ }
+ }
}
// This is a quick way to approximate the size of the result,
@@ -2106,10 +2113,9 @@
// Use slightly different algorithms for small and large operands.
// See if the result will safely fit into a long. (Largest 2^63-1)
- if (partToSquare.mag.length==1 && scaleFactor <= 62)
- {
+ if (partToSquare.mag.length == 1 && scaleFactor <= 62) {
// Small number algorithm. Everything fits into a long.
- int newSign = (signum<0 && (exponent&1)==1 ? -1 : 1);
+ int newSign = (signum <0 && (exponent&1) == 1 ? -1 : 1);
long result = 1;
long baseToPow2 = partToSquare.mag[0] & LONG_MASK;
@@ -2117,27 +2123,28 @@
// Perform exponentiation using repeated squaring trick
while (workingExponent != 0) {
- if ((workingExponent & 1)==1)
+ if ((workingExponent & 1) == 1) {
result = result * baseToPow2;
-
- if ((workingExponent >>>= 1) != 0)
+ }
+
+ if ((workingExponent >>>= 1) != 0) {
baseToPow2 = baseToPow2 * baseToPow2;
+ }
}
// Multiply back the powers of two (quickly, by shifting left)
- if (powersOfTwo > 0)
- {
+ if (powersOfTwo > 0) {
int bitsToShift = powersOfTwo*exponent;
- if (bitsToShift + scaleFactor <= 62) // Fits in long?
+ if (bitsToShift + scaleFactor <= 62) { // Fits in long?
return valueOf((result << bitsToShift) * newSign);
- else
+ } else {
return valueOf(result*newSign).shiftLeft(bitsToShift);
+ }
}
- else
+ else {
return valueOf(result*newSign);
- }
- else
- {
+ }
+ } else {
// Large number algorithm. This is basically identical to
// the algorithm above, but calls multiply() and square()
// which may use more efficient algorithms for large numbers.
@@ -2146,28 +2153,32 @@
int workingExponent = exponent;
// Perform exponentiation using repeated squaring trick
while (workingExponent != 0) {
- if ((workingExponent & 1)==1)
+ if ((workingExponent & 1) == 1) {
answer = answer.multiply(partToSquare);
-
- if ((workingExponent >>>= 1) != 0)
+ }
+
+ if ((workingExponent >>>= 1) != 0) {
partToSquare = partToSquare.square();
+ }
}
// Multiply back the (exponentiated) powers of two (quickly,
// by shifting left)
- if (powersOfTwo > 0)
+ if (powersOfTwo > 0) {
answer = answer.shiftLeft(powersOfTwo*exponent);
-
- if (signum<0 && (exponent&1)==1)
+ }
+
+ if (signum < 0 && (exponent&1) == 1) {
return answer.negate();
- else
+ } else {
return answer;
+ }
}
}
/**
* Returns a BigInteger whose value is the greatest common divisor of
* {@code abs(this)} and {@code abs(val)}. Returns 0 if
- * {@code this==0 && val==0}.
+ * {@code this == 0 && val == 0}.
*
* @param val value with which the GCD is to be computed.
* @return {@code GCD(abs(this), abs(val))}
@@ -2224,7 +2235,7 @@
// shifts a up to len right n bits assumes no leading zeros, 0<n<32
static void primitiveRightShift(int[] a, int len, int n) {
int n2 = 32 - n;
- for (int i=len-1, c=a[i]; i>0; i--) {
+ for (int i=len-1, c=a[i]; i > 0; i--) {
int b = c;
c = a[i-1];
a[i] = (c << n2) | (b >>> n);
@@ -2238,7 +2249,7 @@
return;
int n2 = 32 - n;
- for (int i=0, c=a[i], m=i+len-1; i<m; i++) {
+ for (int i=0, c=a[i], m=i+len-1; i < m; i++) {
int b = c;
c = a[i+1];
a[i] = (b << n) | (c >>> n2);
@@ -2449,7 +2460,7 @@
return this;
// Special case for base of zero
- if (signum==0)
+ if (signum == 0)
return ZERO;
int[] base = mag.clone();
@@ -2472,7 +2483,7 @@
// Allocate table for precomputed odd powers of base in Montgomery form
int[][] table = new int[tblmask][];
- for (int i=0; i<tblmask; i++)
+ for (int i=0; i < tblmask; i++)
table[i] = new int[modLen];
// Compute the modular inverse
@@ -2492,7 +2503,7 @@
if (table[0].length < modLen) {
int offset = modLen - table[0].length;
int[] t2 = new int[modLen];
- for (int i=0; i<table[0].length; i++)
+ for (int i=0; i < table[0].length; i++)
t2[i+offset] = table[0][i];
table[0] = t2;
}
@@ -2505,7 +2516,7 @@
int[] t = Arrays.copyOf(b, modLen);
// Fill in the table with odd powers of the base
- for (int i=1; i<tblmask; i++) {
+ for (int i=1; i < tblmask; i++) {
int[] prod = multiplyToLen(t, modLen, table[i-1], modLen, null);
table[i] = montReduce(prod, mod, modLen, inv);
}
@@ -2545,7 +2556,7 @@
isone = false;
// The main loop
- while(true) {
+ while (true) {
ebits--;
// Advance the window
buf <<= 1;
@@ -2622,9 +2633,9 @@
int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
c += addOne(n, offset, mlen, carry);
offset++;
- } while(--len > 0);
-
- while(c>0)
+ } while (--len > 0);
+
+ while (c > 0)
c += subN(n, mod, mlen);
while (intArrayCmpToLen(n, mod, mlen) >= 0)
@@ -2639,7 +2650,7 @@
* equal to, or greater than arg2 up to length len.
*/
private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
- for (int i=0; i<len; i++) {
+ for (int i=0; i < len; i++) {
long b1 = arg1[i] & LONG_MASK;
long b2 = arg2[i] & LONG_MASK;
if (b1 < b2)
@@ -2656,7 +2667,7 @@
private static int subN(int[] a, int[] b, int len) {
long sum = 0;
- while(--len >= 0) {
+ while (--len >= 0) {
sum = (a[len] & LONG_MASK) -
(b[len] & LONG_MASK) + (sum >> 32);
a[len] = (int)sum;
@@ -2750,7 +2761,7 @@
int excessBits = (numInts << 5) - p;
mag[0] &= (1L << (32-excessBits)) - 1;
- return (mag[0]==0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
+ return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
}
/**
@@ -2801,9 +2812,9 @@
public BigInteger shiftLeft(int n) {
if (signum == 0)
return ZERO;
- if (n==0)
+ if (n == 0)
return this;
- if (n<0) {
+ if (n < 0) {
if (n == Integer.MIN_VALUE) {
throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported.");
} else {
@@ -2855,9 +2866,9 @@
* @see #shiftLeft
*/
public BigInteger shiftRight(int n) {
- if (n==0)
+ if (n == 0)
return this;
- if (n<0) {
+ if (n < 0) {
if (n == Integer.MIN_VALUE) {
throw new ArithmeticException("Shift distance of Integer.MIN_VALUE not supported.");
} else {
@@ -2896,7 +2907,7 @@
if (signum < 0) {
// Find out whether any one-bits were shifted off the end.
boolean onesLost = false;
- for (int i=magLen-1, j=magLen-nInts; i>=j && !onesLost; i--)
+ for (int i=magLen-1, j=magLen-nInts; i >= j && !onesLost; i--)
onesLost = (mag[i] != 0);
if (!onesLost && nBits != 0)
onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
@@ -2931,7 +2942,7 @@
*/
public BigInteger and(BigInteger val) {
int[] result = new int[Math.max(intLength(), val.intLength())];
- for (int i=0; i<result.length; i++)
+ for (int i=0; i < result.length; i++)
result[i] = (getInt(result.length-i-1)
& val.getInt(result.length-i-1));
@@ -2948,7 +2959,7 @@
*/
public BigInteger or(BigInteger val) {
int[] result = new int[Math.max(intLength(), val.intLength())];
- for (int i=0; i<result.length; i++)
+ for (int i=0; i < result.length; i++)
result[i] = (getInt(result.length-i-1)
| val.getInt(result.length-i-1));
@@ -2965,7 +2976,7 @@
*/
public BigInteger xor(BigInteger val) {
int[] result = new int[Math.max(intLength(), val.intLength())];
- for (int i=0; i<result.length; i++)
+ for (int i=0; i < result.length; i++)
result[i] = (getInt(result.length-i-1)
^ val.getInt(result.length-i-1));
@@ -2981,7 +2992,7 @@
*/
public BigInteger not() {
int[] result = new int[intLength()];
- for (int i=0; i<result.length; i++)
+ for (int i=0; i < result.length; i++)
result[i] = ~getInt(result.length-i-1);
return valueOf(result);
@@ -2999,7 +3010,7 @@
*/
public BigInteger andNot(BigInteger val) {
int[] result = new int[Math.max(intLength(), val.intLength())];
- for (int i=0; i<result.length; i++)
+ for (int i=0; i < result.length; i++)
result[i] = (getInt(result.length-i-1)
& ~val.getInt(result.length-i-1));
@@ -3018,7 +3029,7 @@
* @throws ArithmeticException {@code n} is negative.
*/
public boolean testBit(int n) {
- if (n<0)
+ if (n < 0)
throw new ArithmeticException("Negative bit address");
return (getInt(n >>> 5) & (1 << (n & 31))) != 0;
@@ -3033,13 +3044,13 @@
* @throws ArithmeticException {@code n} is negative.
*/
public BigInteger setBit(int n) {
- if (n<0)
+ if (n < 0)
throw new ArithmeticException("Negative bit address");
int intNum = n >>> 5;
int[] result = new int[Math.max(intLength(), intNum+2)];
- for (int i=0; i<result.length; i++)
+ for (int i=0; i < result.length; i++)
result[result.length-i-1] = getInt(i);
result[result.length-intNum-1] |= (1 << (n & 31));
@@ -3057,13 +3068,13 @@
* @throws ArithmeticException {@code n} is negative.
*/
public BigInteger clearBit(int n) {
- if (n<0)
+ if (n < 0)
throw new ArithmeticException("Negative bit address");
int intNum = n >>> 5;
int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)];
- for (int i=0; i<result.length; i++)
+ for (int i=0; i < result.length; i++)
result[result.length-i-1] = getInt(i);
result[result.length-intNum-1] &= ~(1 << (n & 31));
@@ -3081,13 +3092,13 @@
* @throws ArithmeticException {@code n} is negative.
*/
public BigInteger flipBit(int n) {
- if (n<0)
+ if (n < 0)
throw new ArithmeticException("Negative bit address");
int intNum = n >>> 5;
int[] result = new int[Math.max(intLength(), intNum+2)];
- for (int i=0; i<result.length; i++)
+ for (int i=0; i < result.length; i++)
result[result.length-i-1] = getInt(i);
result[result.length-intNum-1] ^= (1 << (n & 31));
@@ -3099,7 +3110,7 @@
* Returns the index of the rightmost (lowest-order) one bit in this
* BigInteger (the number of zero bits to the right of the rightmost
* one bit). Returns -1 if this BigInteger contains no one bits.
- * (Computes {@code (this==0? -1 : log2(this & -this))}.)
+ * (Computes {@code (this == 0? -1 : log2(this & -this))}.)
*
* @return index of the rightmost one bit in this BigInteger.
*/
@@ -3112,7 +3123,7 @@
} else {
// Search for lowest order nonzero int
int i,b;
- for (i=0; (b = getInt(i))==0; i++)
+ for (i=0; (b = getInt(i)) == 0; i++)
;
lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
}
@@ -3173,12 +3184,12 @@
if (bc == -1) { // bitCount not initialized yet
bc = 0; // offset by one to initialize
// Count the bits in the magnitude
- for (int i=0; i<mag.length; i++)
+ for (int i=0; i < mag.length; i++)
bc += Integer.bitCount(mag[i]);
if (signum < 0) {
// Count the trailing zeros in the magnitude
int magTrailingZeroCount = 0, j;
- for (j=mag.length-1; mag[j]==0; j--)
+ for (j=mag.length-1; mag[j] == 0; j--)
magTrailingZeroCount += 32;
magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
bc += magTrailingZeroCount - 1;
@@ -3279,14 +3290,14 @@
assert val != Long.MIN_VALUE;
int[] m1 = mag;
int len = m1.length;
- if(len > 2) {
+ if (len > 2) {
return 1;
}
if (val < 0) {
val = -val;
}
int highWord = (int)(val >>> 32);
- if (highWord==0) {
+ if (highWord == 0) {
if (len < 1)
return -1;
if (len > 1)
@@ -3354,7 +3365,7 @@
* {@code val}. If they are equal, either may be returned.
*/
public BigInteger min(BigInteger val) {
- return (compareTo(val)<0 ? this : val);
+ return (compareTo(val) < 0 ? this : val);
}
/**
@@ -3365,7 +3376,7 @@
* {@code val}. If they are equal, either may be returned.
*/
public BigInteger max(BigInteger val) {
- return (compareTo(val)>0 ? this : val);
+ return (compareTo(val) > 0 ? this : val);
}
@@ -3379,7 +3390,7 @@
public int hashCode() {
int hashCode = 0;
- for (int i=0; i<mag.length; i++)
+ for (int i=0; i < mag.length; i++)
hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
return hashCode * signum;
@@ -3427,8 +3438,9 @@
/** This method is used to perform toString when arguments are small. */
private String smallToString(int radix) {
- if (signum == 0)
+ if (signum == 0) {
return "0";
+ }
// Compute upper bound on number of digit groups and allocate space
int maxNumDigitGroups = (4*mag.length + 6)/7;
@@ -3453,16 +3465,18 @@
// Put sign (if any) and first digit group into result buffer
StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1);
- if (signum<0)
+ if (signum < 0) {
buf.append('-');
+ }
buf.append(digitGroup[numGroups-1]);
// Append remaining digit groups padded with leading zeros
- for (int i=numGroups-2; i>=0; i--) {
+ for (int i=numGroups-2; i >= 0; i--) {
// Prepend (any) leading zeros for this digit group
int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
- if (numLeadingZeros != 0)
+ if (numLeadingZeros != 0) {
buf.append(zeros[numLeadingZeros]);
+ }
buf.append(digitGroup[i]);
}
return buf.toString();
@@ -3490,9 +3504,11 @@
// Pad with internal zeros if necessary.
// Don't pad if we're at the beginning of the string.
- if ((s.length() < digits) && (sb.length() > 0))
- for (int i=s.length(); i<digits; i++) // May be a faster way to
+ if ((s.length() < digits) && (sb.length() > 0)) {
+ for (int i=s.length(); i < digits; i++) { // May be a faster way to
sb.append('0'); // do this?
+ }
+ }
sb.append(s);
return;
@@ -3549,7 +3565,7 @@
static {
zeros[63] =
"000000000000000000000000000000000000000000000000000000000000000";
- for (int i=0; i<63; i++)
+ for (int i=0; i < 63; i++)
zeros[i] = zeros[63].substring(0, i);
}
@@ -3587,7 +3603,7 @@
int byteLen = bitLength()/8 + 1;
byte[] byteArray = new byte[byteLen];
- for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i>=0; i--) {
+ for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) {
if (bytesCopied == 4) {
nextInt = getInt(intIndex++);
bytesCopied = 1;
@@ -3639,7 +3655,7 @@
public long longValue() {
long result = 0;
- for (int i=1; i>=0; i--)
+ for (int i=1; i >= 0; i--)
result = (result << 32) + (getInt(i) & LONG_MASK);
return result;
}
@@ -3855,7 +3871,7 @@
int keep;
// Find first nonzero byte
- for (keep = 0; keep < byteLength && a[keep]==0; keep++)
+ for (keep = 0; keep < byteLength && a[keep] == 0; keep++)
;
// Allocate new array and copy relevant part of input array
@@ -3881,16 +3897,16 @@
int byteLength = a.length;
// Find first non-sign (0xff) byte of input
- for (keep=0; keep<byteLength && a[keep]==-1; keep++)
+ for (keep=0; keep < byteLength && a[keep] == -1; keep++)
;
/* Allocate output array. If all non-sign bytes are 0x00, we must
* allocate space for one extra output byte. */
- for (k=keep; k<byteLength && a[k]==0; k++)
+ for (k=keep; k < byteLength && a[k] == 0; k++)
;
- int extraByte = (k==byteLength) ? 1 : 0;
+ int extraByte = (k == byteLength) ? 1 : 0;
int intLength = ((byteLength - keep + extraByte) + 3)/4;
int result[] = new int[intLength];
@@ -3911,7 +3927,7 @@
}
// Add one to one's complement to generate two's complement
- for (int i=result.length-1; i>=0; i--) {
+ for (int i=result.length-1; i >= 0; i--) {
result[i] = (int)((result[i] & LONG_MASK) + 1);
if (result[i] != 0)
break;
@@ -3928,23 +3944,23 @@
int keep, j;
// Find first non-sign (0xffffffff) int of input
- for (keep=0; keep<a.length && a[keep]==-1; keep++)
+ for (keep=0; keep < a.length && a[keep] == -1; keep++)
;
/* Allocate output array. If all non-sign ints are 0x00, we must
* allocate space for one extra output int. */
- for (j=keep; j<a.length && a[j]==0; j++)
+ for (j=keep; j < a.length && a[j] == 0; j++)
;
- int extraInt = (j==a.length ? 1 : 0);
+ int extraInt = (j == a.length ? 1 : 0);
int result[] = new int[a.length - keep + extraInt];
/* Copy one's complement of input into output, leaving extra
* int (if it exists) == 0x00 */
- for (int i = keep; i<a.length; i++)
+ for (int i = keep; i < a.length; i++)
result[i - keep + extraInt] = ~a[i];
// Add one to one's complement to generate two's complement
- for (int i=result.length-1; ++result[i]==0; i--)
+ for (int i=result.length-1; ++result[i] == 0; i--)
;
return result;
@@ -4202,7 +4218,7 @@
byte[] result = new byte[byteLen];
for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
- i>=0; i--) {
+ i >= 0; i--) {
if (bytesCopied == 4) {
nextInt = mag[intIndex--];
bytesCopied = 1;
--- a/jdk/src/share/classes/java/math/MutableBigInteger.java Fri Jul 26 17:03:19 2013 -0700
+++ b/jdk/src/share/classes/java/math/MutableBigInteger.java Fri Jul 26 17:09:30 2013 -0700
@@ -313,7 +313,7 @@
int blen = b.intLen;
int len = intLen;
if (len <= 0)
- return blen <=0 ? 0 : -1;
+ return blen <= 0 ? 0 : -1;
if (len > blen)
return 1;
if (len < blen - 1)
@@ -340,7 +340,7 @@
return v < hb ? -1 : 1;
carry = (bv & 1) << 31; // carray will be either 0x80000000 or 0
}
- return carry == 0? 0 : -1;
+ return carry == 0 ? 0 : -1;
}
/**
@@ -351,10 +351,10 @@
if (intLen == 0)
return -1;
int j, b;
- for (j=intLen-1; (j>0) && (value[j+offset]==0); j--)
+ for (j=intLen-1; (j > 0) && (value[j+offset] == 0); j--)
;
b = value[j+offset];
- if (b==0)
+ if (b == 0)
return -1;
return ((intLen-1-j)<<5) + Integer.numberOfTrailingZeros(b);
}
@@ -395,11 +395,11 @@
int indexBound = index+intLen;
do {
index++;
- } while(index < indexBound && value[index]==0);
+ } while(index < indexBound && value[index] == 0);
int numZeros = index - offset;
intLen -= numZeros;
- offset = (intLen==0 ? 0 : offset+numZeros);
+ offset = (intLen == 0 ? 0 : offset+numZeros);
}
/**
@@ -420,7 +420,7 @@
*/
int[] toIntArray() {
int[] result = new int[intLen];
- for(int i=0; i<intLen; i++)
+ for(int i=0; i < intLen; i++)
result[i] = value[offset+i];
return result;
}
@@ -506,7 +506,7 @@
boolean isNormal() {
if (intLen + offset > value.length)
return false;
- if (intLen ==0)
+ if (intLen == 0)
return true;
return (value[offset] != 0);
}
@@ -523,10 +523,11 @@
* Like {@link #rightShift(int)} but {@code n} can be greater than the length of the number.
*/
void safeRightShift(int n) {
- if (n/32 >= intLen)
+ if (n/32 >= intLen) {
reset();
- else
+ } else {
rightShift(n);
+ }
}
/**
@@ -554,8 +555,9 @@
* Like {@link #leftShift(int)} but {@code n} can be zero.
*/
void safeLeftShift(int n) {
- if (n > 0)
+ if (n > 0) {
leftShift(n);
+ }
}
/**
@@ -586,18 +588,18 @@
if (value.length < newLen) {
// The array must grow
int[] result = new int[newLen];
- for (int i=0; i<intLen; i++)
+ for (int i=0; i < intLen; i++)
result[i] = value[offset+i];
setValue(result, newLen);
} else if (value.length - offset >= newLen) {
// Use space on right
- for(int i=0; i<newLen - intLen; i++)
+ for(int i=0; i < newLen - intLen; i++)
value[offset+intLen+i] = 0;
} else {
// Must use space on left
- for (int i=0; i<intLen; i++)
+ for (int i=0; i < intLen; i++)
value[i] = value[offset+i];
- for (int i=intLen; i<newLen; i++)
+ for (int i=intLen; i < newLen; i++)
value[i] = 0;
offset = 0;
}
@@ -674,7 +676,7 @@
private final void primitiveRightShift(int n) {
int[] val = value;
int n2 = 32 - n;
- for (int i=offset+intLen-1, c=val[i]; i>offset; i--) {
+ for (int i=offset+intLen-1, c=val[i]; i > offset; i--) {
int b = c;
c = val[i-1];
val[i] = (c << n2) | (b >>> n);
@@ -690,7 +692,7 @@
private final void primitiveLeftShift(int n) {
int[] val = value;
int n2 = 32 - n;
- for (int i=offset, c=val[i], m=i+intLen-1; i<m; i++) {
+ for (int i=offset, c=val[i], m=i+intLen-1; i < m; i++) {
int b = c;
c = val[i+1];
val[i] = (b << n) | (c >>> n2);
@@ -703,16 +705,16 @@
* low ints of this number.
*/
private BigInteger getLower(int n) {
- if (isZero())
+ if (isZero()) {
return BigInteger.ZERO;
- else if (intLen < n)
+ } else if (intLen < n) {
return toBigInteger(1);
- else {
+ } else {
// strip zeros
int len = n;
- while (len>0 && value[offset+intLen-len]==0)
+ while (len > 0 && value[offset+intLen-len] == 0)
len--;
- int sign = len>0 ? 1 : 0;
+ int sign = len > 0 ? 1 : 0;
return new BigInteger(Arrays.copyOfRange(value, offset+intLen-len, offset+intLen), sign);
}
}
@@ -743,7 +745,7 @@
long carry = 0;
// Add common parts of both numbers
- while(x>0 && y>0) {
+ while(x > 0 && y > 0) {
x--; y--;
sum = (value[x+offset] & LONG_MASK) +
(addend.value[y+addend.offset] & LONG_MASK) + carry;
@@ -752,7 +754,7 @@
}
// Add remainder of the longer number
- while(x>0) {
+ while(x > 0) {
x--;
if (carry == 0 && result == value && rstart == (x + offset))
return;
@@ -760,7 +762,7 @@
result[rstart--] = (int)sum;
carry = sum >>> 32;
}
- while(y>0) {
+ while(y > 0) {
y--;
sum = (addend.value[y+addend.offset] & LONG_MASK) + carry;
result[rstart--] = (int)sum;
@@ -788,12 +790,13 @@
/**
* Adds the value of {@code addend} shifted {@code n} ints to the left.
- * Has the same effect as {@code addend.leftShift(32*ints); add(b);}
- * but doesn't change the value of {@code b}.
+ * Has the same effect as {@code addend.leftShift(32*ints); add(addend);}
+ * but doesn't change the value of {@code addend}.
*/
void addShifted(MutableBigInteger addend, int n) {
- if (addend.isZero())
+ if (addend.isZero()) {
return;
+ }
int x = intLen;
int y = addend.intLen + n;
@@ -805,9 +808,9 @@
long carry = 0;
// Add common parts of both numbers
- while(x>0 && y>0) {
+ while (x > 0 && y > 0) {
x--; y--;
- int bval = y+addend.offset<addend.value.length ? addend.value[y+addend.offset] : 0;
+ int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
sum = (value[x+offset] & LONG_MASK) +
(bval & LONG_MASK) + carry;
result[rstart--] = (int)sum;
@@ -815,17 +818,18 @@
}
// Add remainder of the longer number
- while(x>0) {
+ while (x > 0) {
x--;
- if (carry == 0 && result == value && rstart == (x + offset))
+ if (carry == 0 && result == value && rstart == (x + offset)) {
return;
+ }
sum = (value[x+offset] & LONG_MASK) + carry;
result[rstart--] = (int)sum;
carry = sum >>> 32;
}
- while(y>0) {
+ while (y > 0) {
y--;
- int bval = y+addend.offset<addend.value.length ? addend.value[y+addend.offset] : 0;
+ int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
sum = (bval & LONG_MASK) + carry;
result[rstart--] = (int)sum;
carry = sum >>> 32;
@@ -881,7 +885,7 @@
System.arraycopy(addend.value, addend.offset, result, rstart+1-y, len);
// zero the gap
- for (int i=rstart+1-y+len; i<rstart+1; i++)
+ for (int i=rstart+1-y+len; i < rstart+1; i++)
result[i] = 0;
value = result;
@@ -932,7 +936,7 @@
int rstart = result.length - 1;
// Subtract common parts of both numbers
- while (y>0) {
+ while (y > 0) {
x--; y--;
diff = (a.value[x+a.offset] & LONG_MASK) -
@@ -940,7 +944,7 @@
result[rstart--] = (int)diff;
}
// Subtract remainder of longer number
- while (x>0) {
+ while (x > 0) {
x--;
diff = (a.value[x+a.offset] & LONG_MASK) - ((int)-(diff>>32));
result[rstart--] = (int)diff;
@@ -961,7 +965,7 @@
private int difference(MutableBigInteger b) {
MutableBigInteger a = this;
int sign = a.compare(b);
- if (sign ==0)
+ if (sign == 0)
return 0;
if (sign < 0) {
MutableBigInteger tmp = a;
@@ -974,14 +978,14 @@
int y = b.intLen;
// Subtract common parts of both numbers
- while (y>0) {
+ while (y > 0) {
x--; y--;
diff = (a.value[a.offset+ x] & LONG_MASK) -
(b.value[b.offset+ y] & LONG_MASK) - ((int)-(diff>>32));
a.value[a.offset+x] = (int)diff;
}
// Subtract remainder of longer number
- while (x>0) {
+ while (x > 0) {
x--;
diff = (a.value[a.offset+ x] & LONG_MASK) - ((int)-(diff>>32));
a.value[a.offset+x] = (int)diff;
@@ -1050,7 +1054,7 @@
// Perform the multiplication word by word
long ylong = y & LONG_MASK;
- int[] zval = (z.value.length<intLen+1 ? new int[intLen + 1]
+ int[] zval = (z.value.length < intLen+1 ? new int[intLen + 1]
: z.value);
long carry = 0;
for (int i = intLen-1; i >= 0; i--) {
@@ -1144,10 +1148,12 @@
}
MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
- if (intLen<BigInteger.BURNIKEL_ZIEGLER_THRESHOLD || b.intLen<BigInteger.BURNIKEL_ZIEGLER_THRESHOLD)
+ if (intLen < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD ||
+ b.intLen < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD) {
return divideKnuth(b, quotient, needRemainder);
- else
+ } else {
return divideAndRemainderBurnikelZiegler(b, quotient);
+ }
}
/**
@@ -1236,9 +1242,9 @@
int r = intLen;
int s = b.intLen;
- if (r < s)
+ if (r < s) {
return this;
- else {
+ } else {
// Unlike Knuth division, we don't check for common powers of two here because
// BZ already runs faster if both numbers contain powers of two and cancelling them has no
// additional benefit.
@@ -1256,8 +1262,9 @@
// step 5: t is the number of blocks needed to accommodate this plus one additional bit
int t = (bitLength()+n32) / n32;
- if (t < 2)
+ if (t < 2) {
t = 2;
+ }
// step 6: conceptually split this into blocks a[t-1], ..., a[0]
MutableBigInteger a1 = getBlock(t-1, t, n); // the most significant block of this
@@ -1270,7 +1277,7 @@
MutableBigInteger qi = new MutableBigInteger();
MutableBigInteger ri;
quotient.offset = quotient.intLen = 0;
- for (int i=t-2; i>0; i--) {
+ for (int i=t-2; i > 0; i--) {
// step 8a: compute (qi,ri) such that z=b*qi+ri
ri = z.divide2n1n(bShifted, qi);
@@ -1302,8 +1309,9 @@
int n = b.intLen;
// step 1: base case
- if (n%2!=0 || n<BigInteger.BURNIKEL_ZIEGLER_THRESHOLD)
+ if (n%2 != 0 || n < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD) {
return divideKnuth(b, quotient);
+ }
// step 2: view this as [a1,a2,a3,a4] where each ai is n/2 ints or less
MutableBigInteger aUpper = new MutableBigInteger(this);
@@ -1352,8 +1360,7 @@
// step 4: d=quotient*b2
d = new MutableBigInteger(quotient.toBigInteger().multiply(b2));
- }
- else {
+ } else {
// step 3b: if a1>=b1, let quotient=beta^n-1 and r=a12-b1*2^n+b1
quotient.ones(n);
a12.add(b1);
@@ -1393,16 +1400,19 @@
*/
private MutableBigInteger getBlock(int index, int numBlocks, int blockLength) {
int blockStart = index * blockLength;
- if (blockStart >= intLen)
+ if (blockStart >= intLen) {
return new MutableBigInteger();
+ }
int blockEnd;
- if (index == numBlocks-1)
+ if (index == numBlocks-1) {
blockEnd = intLen;
- else
+ } else {
blockEnd = (index+1) * blockLength;
- if (blockEnd > intLen)
+ }
+ if (blockEnd > intLen) {
return new MutableBigInteger();
+ }
int[] newVal = Arrays.copyOfRange(value, offset+intLen-blockEnd, offset+intLen-blockStart);
return new MutableBigInteger(newVal);
@@ -1473,7 +1483,7 @@
if (shift > 0) {
divisor = new int[dlen];
copyAndShift(div.value,div.offset,dlen,divisor,0,shift);
- if(Integer.numberOfLeadingZeros(value[offset])>=shift) {
+ if (Integer.numberOfLeadingZeros(value[offset]) >= shift) {
int[] remarr = new int[intLen + 1];
rem = new MutableBigInteger(remarr);
rem.intLen = intLen;
@@ -1526,7 +1536,7 @@
int dl = divisor[1];
// D2 Initialize j
- for(int j=0; j<limit-1; j++) {
+ for (int j=0; j < limit-1; j++) {
// D3 Calculate qhat
// estimate qhat
int qhat = 0;
@@ -1650,7 +1660,7 @@
}
- if(needRemainder) {
+ if (needRemainder) {
// D8 Unnormalize
if (shift > 0)
rem.rightShift(shift);
@@ -1892,7 +1902,7 @@
}
// step B2
- boolean uOdd = (k==s1);
+ boolean uOdd = (k == s1);
MutableBigInteger t = uOdd ? v: u;
int tsign = uOdd ? -1 : 1;
@@ -1934,9 +1944,9 @@
* Calculate GCD of a and b interpreted as unsigned integers.
*/
static int binaryGcd(int a, int b) {
- if (b==0)
+ if (b == 0)
return a;
- if (a==0)
+ if (a == 0)
return b;
// Right shift a & b till their last bits equal to 1.
@@ -2087,7 +2097,7 @@
}
// The Almost Inverse Algorithm
- while(!f.isOne()) {
+ while (!f.isOne()) {
// If gcd(f, g) != 1, number is not invertible modulo mod
if (f.isZero())
throw new ArithmeticException("BigInteger not invertible.");
@@ -2132,7 +2142,7 @@
// Set r to the multiplicative inverse of p mod 2^32
int r = -inverseMod32(p.value[p.offset+p.intLen-1]);
- for(int i=0, numWords = k >> 5; i<numWords; i++) {
+ for (int i=0, numWords = k >> 5; i < numWords; i++) {
// V = R * c (mod 2^j)
int v = r * c.value[c.offset + c.intLen-1];
// c = c + (v * p)