8080945: Improve the performance of primitive Arrays.sort for certain patterns of array elements
authorpsandoz
Tue, 09 Jun 2015 07:05:48 +0100
changeset 31079 bf5fabb914b6
parent 31078 df8046e65630
child 31081 1a9f254fb4b0
8080945: Improve the performance of primitive Arrays.sort for certain patterns of array elements Reviewed-by: psandoz Contributed-by: Sunny Chan <sunny.chan@gs.com>, Mohammad Rezaei <mohammad.rezaei@gs.com>
jdk/src/java.base/share/classes/java/util/DualPivotQuicksort.java
jdk/test/java/util/Arrays/SortingIntBenchmarkTestJMH.java
jdk/test/java/util/Arrays/SortingLongBenchmarkTestJMH.java
jdk/test/java/util/Arrays/SortingNearlySortedPrimitive.java
--- a/jdk/src/java.base/share/classes/java/util/DualPivotQuicksort.java	Mon Jun 08 17:19:50 2015 -0700
+++ b/jdk/src/java.base/share/classes/java/util/DualPivotQuicksort.java	Tue Jun 09 07:05:48 2015 +0100
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2009, 2015, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
@@ -61,11 +61,6 @@
     private static final int MAX_RUN_COUNT = 67;
 
     /**
-     * The maximum length of run in merge sort.
-     */
-    private static final int MAX_RUN_LENGTH = 33;
-
-    /**
      * If the length of an array to be sorted is less than this
      * constant, Quicksort is used in preference to merge sort.
      */
@@ -121,20 +116,24 @@
 
         // Check if the array is nearly sorted
         for (int k = left; k < right; run[count] = k) {
+            // Equal items in the beginning of the sequence
+            while (k < right && a[k] == a[k + 1])
+                k++;
+            if (k == right) break;  // Sequence finishes with equal items
             if (a[k] < a[k + 1]) { // ascending
                 while (++k <= right && a[k - 1] <= a[k]);
             } else if (a[k] > a[k + 1]) { // descending
                 while (++k <= right && a[k - 1] >= a[k]);
+                // Transform into an ascending sequence
                 for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                     int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                 }
-            } else { // equal
-                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
-                    if (--m == 0) {
-                        sort(a, left, right, true);
-                        return;
-                    }
-                }
+            }
+
+            // Merge a transformed descending sequence followed by an
+            // ascending sequence
+            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
+                count--;
             }
 
             /*
@@ -151,7 +150,7 @@
         // Implementation note: variable "right" is increased by 1.
         if (run[count] == right++) { // The last run contains one element
             run[++count] = right;
-        } else if (count == 1) { // The array is already sorted
+        } else if (count <= 1) { // The array is already sorted
             return;
         }
 
@@ -569,20 +568,24 @@
 
         // Check if the array is nearly sorted
         for (int k = left; k < right; run[count] = k) {
+            // Equal items in the beginning of the sequence
+            while (k < right && a[k] == a[k + 1])
+                k++;
+            if (k == right) break;  // Sequence finishes with equal items
             if (a[k] < a[k + 1]) { // ascending
                 while (++k <= right && a[k - 1] <= a[k]);
             } else if (a[k] > a[k + 1]) { // descending
                 while (++k <= right && a[k - 1] >= a[k]);
+                // Transform into an ascending sequence
                 for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                     long t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                 }
-            } else { // equal
-                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
-                    if (--m == 0) {
-                        sort(a, left, right, true);
-                        return;
-                    }
-                }
+            }
+
+            // Merge a transformed descending sequence followed by an
+            // ascending sequence
+            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
+                count--;
             }
 
             /*
@@ -599,7 +602,7 @@
         // Implementation note: variable "right" is increased by 1.
         if (run[count] == right++) { // The last run contains one element
             run[++count] = right;
-        } else if (count == 1) { // The array is already sorted
+        } else if (count <= 1) { // The array is already sorted
             return;
         }
 
@@ -1053,20 +1056,24 @@
 
         // Check if the array is nearly sorted
         for (int k = left; k < right; run[count] = k) {
+            // Equal items in the beginning of the sequence
+            while (k < right && a[k] == a[k + 1])
+                k++;
+            if (k == right) break;  // Sequence finishes with equal items
             if (a[k] < a[k + 1]) { // ascending
                 while (++k <= right && a[k - 1] <= a[k]);
             } else if (a[k] > a[k + 1]) { // descending
                 while (++k <= right && a[k - 1] >= a[k]);
+                // Transform into an ascending sequence
                 for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                     short t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                 }
-            } else { // equal
-                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
-                    if (--m == 0) {
-                        sort(a, left, right, true);
-                        return;
-                    }
-                }
+            }
+
+            // Merge a transformed descending sequence followed by an
+            // ascending sequence
+            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
+                count--;
             }
 
             /*
@@ -1083,7 +1090,7 @@
         // Implementation note: variable "right" is increased by 1.
         if (run[count] == right++) { // The last run contains one element
             run[++count] = right;
-        } else if (count == 1) { // The array is already sorted
+        } else if (count <= 1) { // The array is already sorted
             return;
         }
 
@@ -1537,20 +1544,24 @@
 
         // Check if the array is nearly sorted
         for (int k = left; k < right; run[count] = k) {
+            // Equal items in the beginning of the sequence
+            while (k < right && a[k] == a[k + 1])
+                k++;
+            if (k == right) break;  // Sequence finishes with equal items
             if (a[k] < a[k + 1]) { // ascending
                 while (++k <= right && a[k - 1] <= a[k]);
             } else if (a[k] > a[k + 1]) { // descending
                 while (++k <= right && a[k - 1] >= a[k]);
+                // Transform into an ascending sequence
                 for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                     char t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                 }
-            } else { // equal
-                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
-                    if (--m == 0) {
-                        sort(a, left, right, true);
-                        return;
-                    }
-                }
+            }
+
+            // Merge a transformed descending sequence followed by an
+            // ascending sequence
+            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
+                count--;
             }
 
             /*
@@ -1567,7 +1578,7 @@
         // Implementation note: variable "right" is increased by 1.
         if (run[count] == right++) { // The last run contains one element
             run[++count] = right;
-        } else if (count == 1) { // The array is already sorted
+        } else if (count <= 1) { // The array is already sorted
             return;
         }
 
@@ -2117,20 +2128,24 @@
 
         // Check if the array is nearly sorted
         for (int k = left; k < right; run[count] = k) {
+            // Equal items in the beginning of the sequence
+            while (k < right && a[k] == a[k + 1])
+                k++;
+            if (k == right) break;  // Sequence finishes with equal items
             if (a[k] < a[k + 1]) { // ascending
                 while (++k <= right && a[k - 1] <= a[k]);
             } else if (a[k] > a[k + 1]) { // descending
                 while (++k <= right && a[k - 1] >= a[k]);
+                // Transform into an ascending sequence
                 for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                     float t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                 }
-            } else { // equal
-                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
-                    if (--m == 0) {
-                        sort(a, left, right, true);
-                        return;
-                    }
-                }
+            }
+
+            // Merge a transformed descending sequence followed by an
+            // ascending sequence
+            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
+                count--;
             }
 
             /*
@@ -2147,7 +2162,7 @@
         // Implementation note: variable "right" is increased by 1.
         if (run[count] == right++) { // The last run contains one element
             run[++count] = right;
-        } else if (count == 1) { // The array is already sorted
+        } else if (count <= 1) { // The array is already sorted
             return;
         }
 
@@ -2656,20 +2671,24 @@
 
         // Check if the array is nearly sorted
         for (int k = left; k < right; run[count] = k) {
+            // Equal items in the beginning of the sequence
+            while (k < right && a[k] == a[k + 1])
+                k++;
+            if (k == right) break;  // Sequence finishes with equal items
             if (a[k] < a[k + 1]) { // ascending
                 while (++k <= right && a[k - 1] <= a[k]);
             } else if (a[k] > a[k + 1]) { // descending
                 while (++k <= right && a[k - 1] >= a[k]);
+                // Transform into an ascending sequence
                 for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                     double t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                 }
-            } else { // equal
-                for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
-                    if (--m == 0) {
-                        sort(a, left, right, true);
-                        return;
-                    }
-                }
+            }
+
+            // Merge a transformed descending sequence followed by an
+            // ascending sequence
+            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
+                count--;
             }
 
             /*
@@ -2686,7 +2705,7 @@
         // Implementation note: variable "right" is increased by 1.
         if (run[count] == right++) { // The last run contains one element
             run[++count] = right;
-        } else if (count == 1) { // The array is already sorted
+        } else if (count <= 1) { // The array is already sorted
             return;
         }
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/test/java/util/Arrays/SortingIntBenchmarkTestJMH.java	Tue Jun 09 07:05:48 2015 +0100
@@ -0,0 +1,708 @@
+/*
+ * Copyright 2015 Goldman Sachs.
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+import org.openjdk.jmh.annotations.Benchmark;
+import org.openjdk.jmh.annotations.BenchmarkMode;
+import org.openjdk.jmh.annotations.Measurement;
+import org.openjdk.jmh.annotations.Mode;
+import org.openjdk.jmh.annotations.OutputTimeUnit;
+import org.openjdk.jmh.annotations.Param;
+import org.openjdk.jmh.annotations.Scope;
+import org.openjdk.jmh.annotations.Setup;
+import org.openjdk.jmh.annotations.State;
+import org.openjdk.jmh.annotations.Warmup;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.HashSet;
+import java.util.List;
+import java.util.Random;
+import java.util.Set;
+import java.util.concurrent.TimeUnit;
+
+@State(Scope.Thread)
+@BenchmarkMode(Mode.Throughput)
+@OutputTimeUnit(TimeUnit.SECONDS)
+public class SortingIntBenchmarkTestJMH {
+    private static final int QUICKSORT_THRESHOLD = 286;
+    private static final int MAX_RUN_COUNT = 67;
+    private static final int INSERTION_SORT_THRESHOLD = 47;
+    public static final int MAX_VALUE = 1_000_000;
+
+    @Param({"pairFlipZeroPairFlip", "pairFlipOneHundredPairFlip"
+            , "zeroHi", "hiZeroLow", "hiFlatLow", "identical",
+            "randomDups", "randomNoDups", "sortedReversedSorted", "pairFlip", "endLessThan"})
+
+    public String listType;
+
+    private int[] array;
+    private static final int LIST_SIZE = 10_000_000;
+    public static final int NUMBER_OF_ITERATIONS = 10;
+
+    @Setup
+    public void setUp() {
+        Random random = new Random(123456789012345L);
+        this.array = new int[LIST_SIZE];
+        int threeQuarters = (int) (LIST_SIZE * 0.75);
+        if ("zeroHi".equals(this.listType)) {
+            for (int i = 0; i < threeQuarters; i++) {
+                this.array[i] = 0;
+            }
+            int k = 1;
+            for (int i = threeQuarters; i < LIST_SIZE; i++) {
+                this.array[i] = k;
+                k++;
+            }
+        }
+        else if ("hiFlatLow".equals(this.listType)) {
+            int oneThird = LIST_SIZE / 3;
+            for (int i = 0; i < oneThird; i++) {
+                this.array[i] = i;
+            }
+            int twoThirds = oneThird * 2;
+            int constant = oneThird - 1;
+            for (int i = oneThird; i < twoThirds; i++) {
+                this.array[i] = constant;
+            }
+            for (int i = twoThirds; i < LIST_SIZE; i++) {
+                this.array[i] = constant - i + twoThirds;
+            }
+        }
+        else if ("hiZeroLow".equals(this.listType)) {
+            int oneThird = LIST_SIZE / 3;
+            for (int i = 0; i < oneThird; i++) {
+                this.array[i] = i;
+            }
+            int twoThirds = oneThird * 2;
+            for (int i = oneThird; i < twoThirds; i++) {
+                this.array[i] = 0;
+            }
+            for (int i = twoThirds; i < LIST_SIZE; i++) {
+                this.array[i] = oneThird - i + twoThirds;
+            }
+        }
+        else if ("identical".equals(this.listType)) {
+            for (int i = 0; i < LIST_SIZE; i++) {
+                this.array[i] = 0;
+            }
+        }
+        else if ("randomDups".equals(this.listType)) {
+            for (int i = 0; i < LIST_SIZE; i++) {
+                this.array[i] = random.nextInt(1000);
+            }
+        }
+        else if ("randomNoDups".equals(this.listType)) {
+            Set<Integer> set = new HashSet();
+            while (set.size() < LIST_SIZE + 1) {
+                set.add(random.nextInt());
+            }
+            List<Integer> list = new ArrayList<>(LIST_SIZE);
+            list.addAll(set);
+            for (int i = 0; i < LIST_SIZE; i++) {
+                this.array[i] = list.get(i);
+            }
+        }
+        else if ("sortedReversedSorted".equals(this.listType)) {
+            for (int i = 0; i < LIST_SIZE / 2; i++) {
+                this.array[i] = i;
+            }
+            int num = 0;
+            for (int i = LIST_SIZE / 2; i < LIST_SIZE; i++) {
+                this.array[i] = LIST_SIZE - num;
+                num++;
+            }
+        }
+        else if ("pairFlip".equals(this.listType)) {
+            for (int i = 0; i < LIST_SIZE; i++) {
+                this.array[i] = i;
+            }
+            for (int i = 0; i < LIST_SIZE; i += 2) {
+                int temp = this.array[i];
+                this.array[i] = this.array[i + 1];
+                this.array[i + 1] = temp;
+            }
+        }
+        else if ("endLessThan".equals(this.listType)) {
+            for (int i = 0; i < LIST_SIZE - 1; i++) {
+                this.array[i] = 3;
+            }
+            this.array[LIST_SIZE - 1] = 1;
+        }
+        else if ("pairFlipZeroPairFlip".equals(this.listType)) {
+            //pairflip
+            for (int i = 0; i < 64; i++) {
+                this.array[i] = i;
+            }
+            for (int i = 0; i < 64; i += 2) {
+                int temp = this.array[i];
+                this.array[i] = this.array[i + 1];
+                this.array[i + 1] = temp;
+            }
+            //zero
+            for (int i = 64; i < this.array.length - 64; i++) {
+                this.array[i] = 0;
+            }
+            //pairflip
+            for (int i = this.array.length - 64; i < this.array.length; i++) {
+                this.array[i] = i;
+            }
+            for (int i = this.array.length - 64; i < this.array.length; i += 2) {
+                int temp = this.array[i];
+                this.array[i] = this.array[i + 1];
+                this.array[i + 1] = temp;
+            }
+        }
+        else if ("pairFlipOneHundredPairFlip".equals(this.listType)) {
+            //10, 5
+            for (int i = 0; i < 64; i++) {
+                if (i % 2 == 0) {
+                    this.array[i] = 10;
+                }
+                else {
+                    this.array[i] = 5;
+                }
+            }
+
+            //100
+            for (int i = 64; i < this.array.length - 64; i++) {
+                this.array[i] = 100;
+            }
+
+            //10, 5
+            for (int i = this.array.length - 64; i < this.array.length; i++) {
+                if (i % 2 == 0) {
+                    this.array[i] = 10;
+                }
+                else {
+                    this.array[i] = 5;
+                }
+            }
+        }
+    }
+
+    @Warmup(iterations = 20)
+    @Measurement(iterations = 10)
+    @Benchmark
+    public void sortNewWay() {
+        for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
+            SortingIntTestJMH.sort(this.array, 0, this.array.length - 1, null, 0, 0);
+        }
+    }
+
+    @Warmup(iterations = 20)
+    @Measurement(iterations = 10)
+    @Benchmark
+    public void sortCurrentWay() {
+        for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
+            Arrays.sort(this.array);
+        }
+    }
+
+    static void sort(int[] a, int left, int right,
+                     int[] work, int workBase, int workLen) {
+        // Use Quicksort on small arrays
+        if (right - left < QUICKSORT_THRESHOLD) {
+            SortingIntTestJMH.sort(a, left, right, true);
+            return;
+        }
+
+         /*
+         * Index run[i] is the start of i-th run
+         * (ascending or descending sequence).
+         */
+        int[] run = new int[MAX_RUN_COUNT + 1];
+        int count = 0;
+        run[0] = left;
+
+        // Check if the array is nearly sorted
+        for (int k = left; k < right; run[count] = k) {
+            while (k < right && a[k] == a[k + 1])
+                k++;
+            if (k == right) break;
+            if (a[k] < a[k + 1]) { // ascending
+                while (++k <= right && a[k - 1] <= a[k]) ;
+            }
+            else if (a[k] > a[k + 1]) { // descending
+                while (++k <= right && a[k - 1] >= a[k]) ;
+                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
+                    int t = a[lo];
+                    a[lo] = a[hi];
+                    a[hi] = t;
+                }
+            }
+            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
+                count--;
+            }
+            /*
+             * The array is not highly structured,
+             * use Quicksort instead of merge sort.
+             */
+            if (++count == MAX_RUN_COUNT) {
+                sort(a, left, right, true);
+                return;
+            }
+        }
+
+        // Check special cases
+        // Implementation note: variable "right" is increased by 1.
+        if (run[count] == right++) {
+            run[++count] = right;
+        }
+        if (count <= 1) { // The array is already sorted
+            return;
+        }
+
+        // Determine alternation base for merge
+        byte odd = 0;
+        for (int n = 1; (n <<= 1) < count; odd ^= 1) {
+        }
+
+        // Use or create temporary array b for merging
+        int[] b;                 // temp array; alternates with a
+        int ao, bo;                 // array offsets from 'left'
+        int blen = right - left; // space needed for b
+        if (work == null || workLen < blen || workBase + blen > work.length) {
+            work = new int[blen];
+            workBase = 0;
+        }
+        if (odd == 0) {
+            System.arraycopy(a, left, work, workBase, blen);
+            b = a;
+            bo = 0;
+            a = work;
+            ao = workBase - left;
+        }
+        else {
+            b = work;
+            ao = 0;
+            bo = workBase - left;
+        }
+
+        // Merging
+        for (int last; count > 1; count = last) {
+            for (int k = (last = 0) + 2; k <= count; k += 2) {
+                int hi = run[k], mi = run[k - 1];
+                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
+                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
+                        b[i + bo] = a[p++ + ao];
+                    }
+                    else {
+                        b[i + bo] = a[q++ + ao];
+                    }
+                }
+                run[++last] = hi;
+            }
+            if ((count & 1) != 0) {
+                for (int i = right, lo = run[count - 1]; --i >= lo;
+                     b[i + bo] = a[i + ao]
+                        ) {
+                }
+                run[++last] = right;
+            }
+            int[] t = a;
+            a = b;
+            b = t;
+            int o = ao;
+            ao = bo;
+            bo = o;
+        }
+    }
+
+    private static void sort(int[] a, int left, int right, boolean leftmost) {
+        int length = right - left + 1;
+
+        // Use insertion sort on tiny arrays
+        if (length < INSERTION_SORT_THRESHOLD) {
+            if (leftmost) {
+                /*
+                 * Traditional (without sentinel) insertion sort,
+                 * optimized for server VM, is used in case of
+                 * the leftmost part.
+                 */
+                for (int i = left, j = i; i < right; j = ++i) {
+                    int ai = a[i + 1];
+                    while (ai < a[j]) {
+                        a[j + 1] = a[j];
+                        if (j-- == left) {
+                            break;
+                        }
+                    }
+                    a[j + 1] = ai;
+                }
+            }
+            else {
+                /*
+                 * Skip the longest ascending sequence.
+                 */
+                do {
+                    if (left >= right) {
+                        return;
+                    }
+                }
+                while (a[++left] >= a[left - 1]);
+
+                /*
+                 * Every element from adjoining part plays the role
+                 * of sentinel, therefore this allows us to avoid the
+                 * left range check on each iteration. Moreover, we use
+                 * the more optimized algorithm, so called pair insertion
+                 * sort, which is faster (in the context of Quicksort)
+                 * than traditional implementation of insertion sort.
+                 */
+                for (int k = left; ++left <= right; k = ++left) {
+                    int a1 = a[k], a2 = a[left];
+
+                    if (a1 < a2) {
+                        a2 = a1;
+                        a1 = a[left];
+                    }
+                    while (a1 < a[--k]) {
+                        a[k + 2] = a[k];
+                    }
+                    a[++k + 1] = a1;
+
+                    while (a2 < a[--k]) {
+                        a[k + 1] = a[k];
+                    }
+                    a[k + 1] = a2;
+                }
+                int last = a[right];
+
+                while (last < a[--right]) {
+                    a[right + 1] = a[right];
+                }
+                a[right + 1] = last;
+            }
+            return;
+        }
+
+        // Inexpensive approximation of length / 7
+        int seventh = (length >> 3) + (length >> 6) + 1;
+
+        /*
+         * Sort five evenly spaced elements around (and including) the
+         * center element in the range. These elements will be used for
+         * pivot selection as described below. The choice for spacing
+         * these elements was empirically determined to work well on
+         * a wide variety of inputs.
+         */
+        int e3 = (left + right) >>> 1; // The midpoint
+        int e2 = e3 - seventh;
+        int e1 = e2 - seventh;
+        int e4 = e3 + seventh;
+        int e5 = e4 + seventh;
+
+        // Sort these elements using insertion sort
+        if (a[e2] < a[e1]) {
+            int t = a[e2];
+            a[e2] = a[e1];
+            a[e1] = t;
+        }
+
+        if (a[e3] < a[e2]) {
+            int t = a[e3];
+            a[e3] = a[e2];
+            a[e2] = t;
+            if (t < a[e1]) {
+                a[e2] = a[e1];
+                a[e1] = t;
+            }
+        }
+        if (a[e4] < a[e3]) {
+            int t = a[e4];
+            a[e4] = a[e3];
+            a[e3] = t;
+            if (t < a[e2]) {
+                a[e3] = a[e2];
+                a[e2] = t;
+                if (t < a[e1]) {
+                    a[e2] = a[e1];
+                    a[e1] = t;
+                }
+            }
+        }
+        if (a[e5] < a[e4]) {
+            int t = a[e5];
+            a[e5] = a[e4];
+            a[e4] = t;
+            if (t < a[e3]) {
+                a[e4] = a[e3];
+                a[e3] = t;
+                if (t < a[e2]) {
+                    a[e3] = a[e2];
+                    a[e2] = t;
+                    if (t < a[e1]) {
+                        a[e2] = a[e1];
+                        a[e1] = t;
+                    }
+                }
+            }
+        }
+
+        // Pointers
+        int less = left;  // The index of the first element of center part
+        int great = right; // The index before the first element of right part
+
+        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
+            /*
+             * Use the second and fourth of the five sorted elements as pivots.
+             * These values are inexpensive approximations of the first and
+             * second terciles of the array. Note that pivot1 <= pivot2.
+             */
+            int pivot1 = a[e2];
+            int pivot2 = a[e4];
+
+            /*
+             * The first and the last elements to be sorted are moved to the
+             * locations formerly occupied by the pivots. When partitioning
+             * is complete, the pivots are swapped back into their final
+             * positions, and excluded from subsequent sorting.
+             */
+            a[e2] = a[left];
+            a[e4] = a[right];
+
+            /*
+             * Skip elements, which are less or greater than pivot values.
+             */
+            while (a[++less] < pivot1) {
+            }
+            while (a[--great] > pivot2) {
+            }
+
+            /*
+             * Partitioning:
+             *
+             *   left part           center part                   right part
+             * +--------------------------------------------------------------+
+             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
+             * +--------------------------------------------------------------+
+             *               ^                          ^       ^
+             *               |                          |       |
+             *              less                        k     great
+             *
+             * Invariants:
+             *
+             *              all in (left, less)   < pivot1
+             *    pivot1 <= all in [less, k)      <= pivot2
+             *              all in (great, right) > pivot2
+             *
+             * Pointer k is the first index of ?-part.
+             */
+            outer:
+            for (int k = less - 1; ++k <= great; ) {
+                int ak = a[k];
+                if (ak < pivot1) { // Move a[k] to left part
+                    a[k] = a[less];
+                    /*
+                     * Here and below we use "a[i] = b; i++;" instead
+                     * of "a[i++] = b;" due to performance issue.
+                     */
+                    a[less] = ak;
+                    ++less;
+                }
+                else if (ak > pivot2) { // Move a[k] to right part
+                    while (a[great] > pivot2) {
+                        if (great-- == k) {
+                            break outer;
+                        }
+                    }
+                    if (a[great] < pivot1) { // a[great] <= pivot2
+                        a[k] = a[less];
+                        a[less] = a[great];
+                        ++less;
+                    }
+                    else { // pivot1 <= a[great] <= pivot2
+                        a[k] = a[great];
+                    }
+                    /*
+                     * Here and below we use "a[i] = b; i--;" instead
+                     * of "a[i--] = b;" due to performance issue.
+                     */
+                    a[great] = ak;
+                    --great;
+                }
+            }
+
+            // Swap pivots into their final positions
+            a[left] = a[less - 1];
+            a[less - 1] = pivot1;
+            a[right] = a[great + 1];
+            a[great + 1] = pivot2;
+
+            // Sort left and right parts recursively, excluding known pivots
+            SortingIntTestJMH.sort(a, left, less - 2, leftmost);
+            SortingIntTestJMH.sort(a, great + 2, right, false);
+
+            /*
+             * If center part is too large (comprises > 4/7 of the array),
+             * swap internal pivot values to ends.
+             */
+            if (less < e1 && e5 < great) {
+                /*
+                 * Skip elements, which are equal to pivot values.
+                 */
+                while (a[less] == pivot1) {
+                    ++less;
+                }
+
+                while (a[great] == pivot2) {
+                    --great;
+                }
+
+                /*
+                 * Partitioning:
+                 *
+                 *   left part         center part                  right part
+                 * +----------------------------------------------------------+
+                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
+                 * +----------------------------------------------------------+
+                 *              ^                        ^       ^
+                 *              |                        |       |
+                 *             less                      k     great
+                 *
+                 * Invariants:
+                 *
+                 *              all in (*,  less) == pivot1
+                 *     pivot1 < all in [less,  k)  < pivot2
+                 *              all in (great, *) == pivot2
+                 *
+                 * Pointer k is the first index of ?-part.
+                 */
+                outer:
+                for (int k = less - 1; ++k <= great; ) {
+                    int ak = a[k];
+                    if (ak == pivot1) { // Move a[k] to left part
+                        a[k] = a[less];
+                        a[less] = ak;
+                        ++less;
+                    }
+                    else if (ak == pivot2) { // Move a[k] to right part
+                        while (a[great] == pivot2) {
+                            if (great-- == k) {
+                                break outer;
+                            }
+                        }
+                        if (a[great] == pivot1) { // a[great] < pivot2
+                            a[k] = a[less];
+                            /*
+                             * Even though a[great] equals to pivot1, the
+                             * assignment a[less] = pivot1 may be incorrect,
+                             * if a[great] and pivot1 are floating-point zeros
+                             * of different signs. Therefore in float and
+                             * double sorting methods we have to use more
+                             * accurate assignment a[less] = a[great].
+                             */
+                            a[less] = pivot1;
+                            ++less;
+                        }
+                        else { // pivot1 < a[great] < pivot2
+                            a[k] = a[great];
+                        }
+                        a[great] = ak;
+                        --great;
+                    }
+                }
+            }
+
+            // Sort center part recursively
+            SortingIntTestJMH.sort(a, less, great, false);
+        }
+        else { // Partitioning with one pivot
+            /*
+             * Use the third of the five sorted elements as pivot.
+             * This value is inexpensive approximation of the median.
+             */
+            int pivot = a[e3];
+
+            /*
+             * Partitioning degenerates to the traditional 3-way
+             * (or "Dutch National Flag") schema:
+             *
+             *   left part    center part              right part
+             * +-------------------------------------------------+
+             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
+             * +-------------------------------------------------+
+             *              ^              ^        ^
+             *              |              |        |
+             *             less            k      great
+             *
+             * Invariants:
+             *
+             *   all in (left, less)   < pivot
+             *   all in [less, k)     == pivot
+             *   all in (great, right) > pivot
+             *
+             * Pointer k is the first index of ?-part.
+             */
+            for (int k = less; k <= great; ++k) {
+                if (a[k] == pivot) {
+                    continue;
+                }
+                int ak = a[k];
+                if (ak < pivot) { // Move a[k] to left part
+                    a[k] = a[less];
+                    a[less] = ak;
+                    ++less;
+                }
+                else { // a[k] > pivot - Move a[k] to right part
+                    while (a[great] > pivot) {
+                        --great;
+                    }
+                    if (a[great] < pivot) { // a[great] <= pivot
+                        a[k] = a[less];
+                        a[less] = a[great];
+                        ++less;
+                    }
+                    else { // a[great] == pivot
+                        /*
+                         * Even though a[great] equals to pivot, the
+                         * assignment a[k] = pivot may be incorrect,
+                         * if a[great] and pivot are floating-point
+                         * zeros of different signs. Therefore in float
+                         * and double sorting methods we have to use
+                         * more accurate assignment a[k] = a[great].
+                         */
+                        a[k] = pivot;
+                    }
+                    a[great] = ak;
+                    --great;
+                }
+            }
+
+            /*
+             * Sort left and right parts recursively.
+             * All elements from center part are equal
+             * and, therefore, already sorted.
+             */
+            SortingIntTestJMH.sort(a, left, less - 1, leftmost);
+            SortingIntTestJMH.sort(a, great + 1, right, false);
+        }
+    }
+
+    private static void swap(int[] arr, int i, int j) {
+        int tmp = arr[i];
+        arr[i] = arr[j];
+        arr[j] = tmp;
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/test/java/util/Arrays/SortingLongBenchmarkTestJMH.java	Tue Jun 09 07:05:48 2015 +0100
@@ -0,0 +1,725 @@
+/*
+ * Copyright 2015 Goldman Sachs.
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+import org.openjdk.jmh.annotations.Benchmark;
+import org.openjdk.jmh.annotations.BenchmarkMode;
+import org.openjdk.jmh.annotations.Measurement;
+import org.openjdk.jmh.annotations.Mode;
+import org.openjdk.jmh.annotations.OutputTimeUnit;
+import org.openjdk.jmh.annotations.Param;
+import org.openjdk.jmh.annotations.Scope;
+import org.openjdk.jmh.annotations.Setup;
+import org.openjdk.jmh.annotations.State;
+import org.openjdk.jmh.annotations.Warmup;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.HashSet;
+import java.util.List;
+import java.util.Random;
+import java.util.Set;
+import java.util.concurrent.TimeUnit;
+
+@State(Scope.Thread)
+@BenchmarkMode(Mode.Throughput)
+@OutputTimeUnit(TimeUnit.SECONDS)
+public class SortingLongBenchmarkTestJMH {
+    private static final int QUICKSORT_THRESHOLD = 286;
+    private static final int MAX_RUN_COUNT = 67;
+    private static final int INSERTION_SORT_THRESHOLD = 47;
+    public static final int MAX_VALUE = 1_000_000;
+
+    @Param({"pairFlipZeroPairFlip", "descendingAscending", "zeroHi", "hiZeroLow", "hiFlatLow", "identical",
+            "randomDups", "randomNoDups", "sortedReversedSorted", "pairFlip", "endLessThan"})
+    public String listType;
+
+    private long[] array;
+    private static final int LIST_SIZE = 10_000_000;
+    public static final int NUMBER_OF_ITERATIONS = 10;
+
+    @Setup
+    public void setUp() {
+        Random random = new Random(123456789012345L);
+        this.array = new long[LIST_SIZE];
+        int threeQuarters = (int) (LIST_SIZE * 0.75);
+        if ("zeroHi".equals(this.listType)) {
+            for (int i = 0; i < threeQuarters; i++) {
+                this.array[i] = 0;
+            }
+            int k = 1;
+            for (int i = threeQuarters; i < LIST_SIZE; i++) {
+                this.array[i] = k;
+                k++;
+            }
+        }
+        else if ("hiFlatLow".equals(this.listType)) {
+            int oneThird = LIST_SIZE / 3;
+            for (int i = 0; i < oneThird; i++) {
+                this.array[i] = i;
+            }
+            int twoThirds = oneThird * 2;
+            int constant = oneThird - 1;
+            for (int i = oneThird; i < twoThirds; i++) {
+                this.array[i] = constant;
+            }
+            for (int i = twoThirds; i < LIST_SIZE; i++) {
+                this.array[i] = constant - i + twoThirds;
+            }
+        }
+        else if ("hiZeroLow".equals(this.listType)) {
+            int oneThird = LIST_SIZE / 3;
+            for (int i = 0; i < oneThird; i++) {
+                this.array[i] = i;
+            }
+            int twoThirds = oneThird * 2;
+            for (int i = oneThird; i < twoThirds; i++) {
+                this.array[i] = 0;
+            }
+            for (int i = twoThirds; i < LIST_SIZE; i++) {
+                this.array[i] = oneThird - i + twoThirds;
+            }
+        }
+        else if ("identical".equals(this.listType)) {
+            for (int i = 0; i < LIST_SIZE; i++) {
+                this.array[i] = 0;
+            }
+        }
+        else if ("randomDups".equals(this.listType)) {
+            for (int i = 0; i < LIST_SIZE; i++) {
+                this.array[i] = random.nextInt(1000);
+            }
+        }
+        else if ("randomNoDups".equals(this.listType)) {
+            Set<Integer> set = new HashSet<>();
+            while (set.size() < LIST_SIZE + 1) {
+                set.add(random.nextInt());
+            }
+            List<Integer> list = new ArrayList<>(LIST_SIZE);
+            list.addAll(set);
+            for (int i = 0; i < LIST_SIZE; i++) {
+                this.array[i] = list.get(i);
+            }
+        }
+        else if ("sortedReversedSorted".equals(this.listType)) {
+            for (int i = 0; i < LIST_SIZE / 2; i++) {
+                this.array[i] = i;
+            }
+            int num = 0;
+            for (int i = LIST_SIZE / 2; i < LIST_SIZE; i++) {
+                this.array[i] = LIST_SIZE - num;
+                num++;
+            }
+        }
+        else if ("pairFlip".equals(this.listType)) {
+            for (int i = 0; i < LIST_SIZE; i++) {
+                this.array[i] = i;
+            }
+            for (int i = 0; i < LIST_SIZE; i += 2) {
+                long temp = this.array[i];
+                this.array[i] = this.array[i + 1];
+                this.array[i + 1] = temp;
+            }
+        }
+        else if ("endLessThan".equals(this.listType)) {
+            for (int i = 0; i < LIST_SIZE - 1; i++) {
+                this.array[i] = 3;
+            }
+            this.array[LIST_SIZE - 1] = 1;
+        }
+        else if ("pairFlipZeroPairFlip".equals(this.listType)) {
+            //pairflip
+            for (int i = 0; i < 64; i++) {
+                this.array[i] = i;
+            }
+            for (int i = 0; i < 64; i += 2) {
+                long temp = this.array[i];
+                this.array[i] = this.array[i + 1];
+                this.array[i + 1] = temp;
+            }
+            //zero
+            for (int i = 64; i < this.array.length - 64; i++) {
+                this.array[i] = 0;
+            }
+            //pairflip
+            for (int i = this.array.length - 64; i < this.array.length; i++) {
+                this.array[i] = i;
+            }
+            for (int i = this.array.length - 64; i < this.array.length; i += 2) {
+                long temp = this.array[i];
+                this.array[i] = this.array[i + 1];
+                this.array[i + 1] = temp;
+            }
+        }
+        else if ("pairFlipOneHundredPairFlip".equals(this.listType)) {
+            //10, 5
+            for (int i = 0; i < 64; i++) {
+                if (i % 2 == 0) {
+                    this.array[i] = 10;
+                }
+                else {
+                    this.array[i] = 5;
+                }
+            }
+
+            //100
+            for (int i = 64; i < this.array.length - 64; i++) {
+                this.array[i] = 100;
+            }
+
+            //10, 5
+            for (int i = this.array.length - 64; i < this.array.length; i++) {
+                if (i % 2 == 0) {
+                    this.array[i] = 10;
+                }
+                else {
+                    this.array[i] = 5;
+                }
+            }
+        }
+    }
+
+    @Warmup(iterations = 20)
+    @Measurement(iterations = 10)
+    @Benchmark
+    public void sortNewWay() {
+        for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
+            SortingLongTestJMH.sort(this.array, 0, this.array.length - 1, null, 0, 0);
+        }
+    }
+
+    @Warmup(iterations = 20)
+    @Measurement(iterations = 10)
+    @Benchmark
+    public void sortOldWay() {
+        for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
+            Arrays.sort(this.array);
+        }
+    }
+
+    /**
+     * Sorts the specified range of the array using the given
+     * workspace array slice if possible for merging
+     *
+     * @param a the array to be sorted
+     * @param left the index of the first element, inclusive, to be sorted
+     * @param right the index of the last element, inclusive, to be sorted
+     * @param work a workspace array (slice)
+     * @param workBase origin of usable space in work array
+     * @param workLen usable size of work array
+     */
+    static void sort(long[] a, int left, int right,
+                     long[] work, int workBase, int workLen) {
+// Use Quicksort on small arrays
+        if (right - left < QUICKSORT_THRESHOLD) {
+            SortingLongTestJMH.sort(a, left, right, true);
+            return;
+        }
+
+          /*
+         * Index run[i] is the start of i-th run
+         * (ascending or descending sequence).
+         */
+        int[] run = new int[MAX_RUN_COUNT + 1];
+        int count = 0;
+        run[0] = left;
+
+        // Check if the array is nearly sorted
+        for (int k = left; k < right; run[count] = k) {
+            while (k < right && a[k] == a[k + 1])
+                k++;
+            if (k == right) break;
+            if (a[k] < a[k + 1]) { // ascending
+                while (++k <= right && a[k - 1] <= a[k]) ;
+            }
+            else if (a[k] > a[k + 1]) { // descending
+                while (++k <= right && a[k - 1] >= a[k]) ;
+                for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
+                    long t = a[lo];
+                    a[lo] = a[hi];
+                    a[hi] = t;
+                }
+            }
+            if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
+                count--;
+            }
+            /*
+             * The array is not highly structured,
+             * use Quicksort instead of merge sort.
+             */
+            if (++count == MAX_RUN_COUNT) {
+                sort(a, left, right, true);
+                return;
+            }
+        }
+
+        // Check special cases
+        // Implementation note: variable "right" is increased by 1.
+        if (run[count] == right++) {
+            run[++count] = right;
+        }
+        if (count <= 1) { // The array is already sorted
+            return;
+        }
+
+        // Determine alternation base for merge
+        byte odd = 0;
+        for (int n = 1; (n <<= 1) < count; odd ^= 1) {
+        }
+
+        // Use or create temporary array b for merging
+        long[] b;                  // temp array; alternates with a
+        int ao, bo;                 // array offsets from 'left'
+        int blen = right - left; // space needed for b
+        if (work == null || workLen < blen || workBase + blen > work.length) {
+            work = new long[blen];
+            workBase = 0;
+        }
+        if (odd == 0) {
+            System.arraycopy(a, left, work, workBase, blen);
+            b = a;
+            bo = 0;
+            a = work;
+            ao = workBase - left;
+        }
+        else {
+            b = work;
+            ao = 0;
+            bo = workBase - left;
+        }
+
+        // Merging
+        for (int last; count > 1; count = last) {
+            for (int k = (last = 0) + 2; k <= count; k += 2) {
+                int hi = run[k], mi = run[k - 1];
+                for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
+                    if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
+                        b[i + bo] = a[p++ + ao];
+                    }
+                    else {
+                        b[i + bo] = a[q++ + ao];
+                    }
+                }
+                run[++last] = hi;
+            }
+            if ((count & 1) != 0) {
+                for (int i = right, lo = run[count - 1]; --i >= lo;
+                     b[i + bo] = a[i + ao]
+                        ) {
+                }
+                run[++last] = right;
+            }
+            long[] t = a;
+            a = b;
+            b = t;
+            int o = ao;
+            ao = bo;
+            bo = o;
+        }
+    }
+
+    /**
+     * Sorts the specified range of the array by Dual-Pivot Quicksort.
+     *
+     * @param a the array to be sorted
+     * @param left the index of the first element, inclusive, to be sorted
+     * @param right the index of the last element, inclusive, to be sorted
+     * @param leftmost indicates if this part is the leftmost in the range
+     */
+    private static void sort(long[] a, int left, int right, boolean leftmost) {
+        int length = right - left + 1;
+
+        // Use insertion sort on tiny arrays
+        if (length < INSERTION_SORT_THRESHOLD) {
+            if (leftmost) {
+                /*
+                 * Traditional (without sentinel) insertion sort,
+                 * optimized for server VM, is used in case of
+                 * the leftmost part.
+                 */
+                for (int i = left, j = i; i < right; j = ++i) {
+                    long ai = a[i + 1];
+                    while (ai < a[j]) {
+                        a[j + 1] = a[j];
+                        if (j-- == left) {
+                            break;
+                        }
+                    }
+                    a[j + 1] = ai;
+                }
+            }
+            else {
+                /*
+                 * Skip the longest ascending sequence.
+                 */
+                do {
+                    if (left >= right) {
+                        return;
+                    }
+                }
+                while (a[++left] >= a[left - 1]);
+
+                /*
+                 * Every element from adjoining part plays the role
+                 * of sentinel, therefore this allows us to avoid the
+                 * left range check on each iteration. Moreover, we use
+                 * the more optimized algorithm, so called pair insertion
+                 * sort, which is faster (in the context of Quicksort)
+                 * than traditional implementation of insertion sort.
+                 */
+                for (int k = left; ++left <= right; k = ++left) {
+                    long a1 = a[k], a2 = a[left];
+
+                    if (a1 < a2) {
+                        a2 = a1;
+                        a1 = a[left];
+                    }
+                    while (a1 < a[--k]) {
+                        a[k + 2] = a[k];
+                    }
+                    a[++k + 1] = a1;
+
+                    while (a2 < a[--k]) {
+                        a[k + 1] = a[k];
+                    }
+                    a[k + 1] = a2;
+                }
+                long last = a[right];
+
+                while (last < a[--right]) {
+                    a[right + 1] = a[right];
+                }
+                a[right + 1] = last;
+            }
+            return;
+        }
+
+        // Inexpensive approximation of length / 7
+        int seventh = (length >> 3) + (length >> 6) + 1;
+
+        /*
+         * Sort five evenly spaced elements around (and including) the
+         * center element in the range. These elements will be used for
+         * pivot selection as described below. The choice for spacing
+         * these elements was empirically determined to work well on
+         * a wide variety of inputs.
+         */
+        int e3 = (left + right) >>> 1; // The midpoint
+        int e2 = e3 - seventh;
+        int e1 = e2 - seventh;
+        int e4 = e3 + seventh;
+        int e5 = e4 + seventh;
+
+        // Sort these elements using insertion sort
+        if (a[e2] < a[e1]) {
+            long t = a[e2];
+            a[e2] = a[e1];
+            a[e1] = t;
+        }
+
+        if (a[e3] < a[e2]) {
+            long t = a[e3];
+            a[e3] = a[e2];
+            a[e2] = t;
+            if (t < a[e1]) {
+                a[e2] = a[e1];
+                a[e1] = t;
+            }
+        }
+        if (a[e4] < a[e3]) {
+            long t = a[e4];
+            a[e4] = a[e3];
+            a[e3] = t;
+            if (t < a[e2]) {
+                a[e3] = a[e2];
+                a[e2] = t;
+                if (t < a[e1]) {
+                    a[e2] = a[e1];
+                    a[e1] = t;
+                }
+            }
+        }
+        if (a[e5] < a[e4]) {
+            long t = a[e5];
+            a[e5] = a[e4];
+            a[e4] = t;
+            if (t < a[e3]) {
+                a[e4] = a[e3];
+                a[e3] = t;
+                if (t < a[e2]) {
+                    a[e3] = a[e2];
+                    a[e2] = t;
+                    if (t < a[e1]) {
+                        a[e2] = a[e1];
+                        a[e1] = t;
+                    }
+                }
+            }
+        }
+
+        // Pointers
+        int less = left;  // The index of the first element of center part
+        int great = right; // The index before the first element of right part
+
+        if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
+            /*
+             * Use the second and fourth of the five sorted elements as pivots.
+             * These values are inexpensive approximations of the first and
+             * second terciles of the array. Note that pivot1 <= pivot2.
+             */
+            long pivot1 = a[e2];
+            long pivot2 = a[e4];
+
+            /*
+             * The first and the last elements to be sorted are moved to the
+             * locations formerly occupied by the pivots. When partitioning
+             * is complete, the pivots are swapped back into their final
+             * positions, and excluded from subsequent sorting.
+             */
+            a[e2] = a[left];
+            a[e4] = a[right];
+
+            /*
+             * Skip elements, which are less or greater than pivot values.
+             */
+            while (a[++less] < pivot1) {
+            }
+            while (a[--great] > pivot2) {
+            }
+
+            /*
+             * Partitioning:
+             *
+             *   left part           center part                   right part
+             * +--------------------------------------------------------------+
+             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
+             * +--------------------------------------------------------------+
+             *               ^                          ^       ^
+             *               |                          |       |
+             *              less                        k     great
+             *
+             * Invariants:
+             *
+             *              all in (left, less)   < pivot1
+             *    pivot1 <= all in [less, k)      <= pivot2
+             *              all in (great, right) > pivot2
+             *
+             * Pointer k is the first index of ?-part.
+             */
+            outer:
+            for (int k = less - 1; ++k <= great; ) {
+                long ak = a[k];
+                if (ak < pivot1) { // Move a[k] to left part
+                    a[k] = a[less];
+                    /*
+                     * Here and below we use "a[i] = b; i++;" instead
+                     * of "a[i++] = b;" due to performance issue.
+                     */
+                    a[less] = ak;
+                    ++less;
+                }
+                else if (ak > pivot2) { // Move a[k] to right part
+                    while (a[great] > pivot2) {
+                        if (great-- == k) {
+                            break outer;
+                        }
+                    }
+                    if (a[great] < pivot1) { // a[great] <= pivot2
+                        a[k] = a[less];
+                        a[less] = a[great];
+                        ++less;
+                    }
+                    else { // pivot1 <= a[great] <= pivot2
+                        a[k] = a[great];
+                    }
+                    /*
+                     * Here and below we use "a[i] = b; i--;" instead
+                     * of "a[i--] = b;" due to performance issue.
+                     */
+                    a[great] = ak;
+                    --great;
+                }
+            }
+
+            // Swap pivots into their final positions
+            a[left] = a[less - 1];
+            a[less - 1] = pivot1;
+            a[right] = a[great + 1];
+            a[great + 1] = pivot2;
+
+            // Sort left and right parts recursively, excluding known pivots
+            SortingLongTestJMH.sort(a, left, less - 2, leftmost);
+            SortingLongTestJMH.sort(a, great + 2, right, false);
+
+            /*
+             * If center part is too large (comprises > 4/7 of the array),
+             * swap internal pivot values to ends.
+             */
+            if (less < e1 && e5 < great) {
+                /*
+                 * Skip elements, which are equal to pivot values.
+                 */
+                while (a[less] == pivot1) {
+                    ++less;
+                }
+
+                while (a[great] == pivot2) {
+                    --great;
+                }
+
+                /*
+                 * Partitioning:
+                 *
+                 *   left part         center part                  right part
+                 * +----------------------------------------------------------+
+                 * | == pivot1 |  pivot1 < && < pivot2  |    ?    | == pivot2 |
+                 * +----------------------------------------------------------+
+                 *              ^                        ^       ^
+                 *              |                        |       |
+                 *             less                      k     great
+                 *
+                 * Invariants:
+                 *
+                 *              all in (*,  less) == pivot1
+                 *     pivot1 < all in [less,  k)  < pivot2
+                 *              all in (great, *) == pivot2
+                 *
+                 * Pointer k is the first index of ?-part.
+                 */
+                outer:
+                for (int k = less - 1; ++k <= great; ) {
+                    long ak = a[k];
+                    if (ak == pivot1) { // Move a[k] to left part
+                        a[k] = a[less];
+                        a[less] = ak;
+                        ++less;
+                    }
+                    else if (ak == pivot2) { // Move a[k] to right part
+                        while (a[great] == pivot2) {
+                            if (great-- == k) {
+                                break outer;
+                            }
+                        }
+                        if (a[great] == pivot1) { // a[great] < pivot2
+                            a[k] = a[less];
+                            /*
+                             * Even though a[great] equals to pivot1, the
+                             * assignment a[less] = pivot1 may be incorrect,
+                             * if a[great] and pivot1 are floating-point zeros
+                             * of different signs. Therefore in float and
+                             * double sorting methods we have to use more
+                             * accurate assignment a[less] = a[great].
+                             */
+                            a[less] = pivot1;
+                            ++less;
+                        }
+                        else { // pivot1 < a[great] < pivot2
+                            a[k] = a[great];
+                        }
+                        a[great] = ak;
+                        --great;
+                    }
+                }
+            }
+
+            // Sort center part recursively
+            SortingLongTestJMH.sort(a, less, great, false);
+        }
+        else { // Partitioning with one pivot
+            /*
+             * Use the third of the five sorted elements as pivot.
+             * This value is inexpensive approximation of the median.
+             */
+            long pivot = a[e3];
+
+            /*
+             * Partitioning degenerates to the traditional 3-way
+             * (or "Dutch National Flag") schema:
+             *
+             *   left part    center part              right part
+             * +-------------------------------------------------+
+             * |  < pivot  |   == pivot   |     ?    |  > pivot  |
+             * +-------------------------------------------------+
+             *              ^              ^        ^
+             *              |              |        |
+             *             less            k      great
+             *
+             * Invariants:
+             *
+             *   all in (left, less)   < pivot
+             *   all in [less, k)     == pivot
+             *   all in (great, right) > pivot
+             *
+             * Pointer k is the first index of ?-part.
+             */
+            for (int k = less; k <= great; ++k) {
+                if (a[k] == pivot) {
+                    continue;
+                }
+                long ak = a[k];
+                if (ak < pivot) { // Move a[k] to left part
+                    a[k] = a[less];
+                    a[less] = ak;
+                    ++less;
+                }
+                else { // a[k] > pivot - Move a[k] to right part
+                    while (a[great] > pivot) {
+                        --great;
+                    }
+                    if (a[great] < pivot) { // a[great] <= pivot
+                        a[k] = a[less];
+                        a[less] = a[great];
+                        ++less;
+                    }
+                    else { // a[great] == pivot
+                        /*
+                         * Even though a[great] equals to pivot, the
+                         * assignment a[k] = pivot may be incorrect,
+                         * if a[great] and pivot are floating-point
+                         * zeros of different signs. Therefore in float
+                         * and double sorting methods we have to use
+                         * more accurate assignment a[k] = a[great].
+                         */
+                        a[k] = pivot;
+                    }
+                    a[great] = ak;
+                    --great;
+                }
+            }
+
+            /*
+             * Sort left and right parts recursively.
+             * All elements from center part are equal
+             * and, therefore, already sorted.
+             */
+            SortingLongTestJMH.sort(a, left, less - 1, leftmost);
+            SortingLongTestJMH.sort(a, great + 1, right, false);
+        }
+    }
+
+    private static void swap(long[] arr, int i, int j) {
+        long tmp = arr[i];
+        arr[i] = arr[j];
+        arr[j] = tmp;
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/test/java/util/Arrays/SortingNearlySortedPrimitive.java	Tue Jun 09 07:05:48 2015 +0100
@@ -0,0 +1,274 @@
+/*
+ * Copyright 2015 Goldman Sachs.
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+/*
+ * @test
+ * @summary Tests the sorting of a large array of sorted primitive values,
+ *          predominently for cases where the array is nearly sorted. This tests
+ *          code that detects patterns in the array to determine if it is nearly
+ *          sorted and if so employs and optimizes merge sort rather than a
+ *          Dual-Pivot QuickSort.
+ *
+ * @run testng SortingNearlySortedPrimitive
+ */
+
+import org.testng.Assert;
+import org.testng.annotations.DataProvider;
+import org.testng.annotations.Test;
+
+import java.util.Arrays;
+import java.util.function.Supplier;
+
+public class SortingNearlySortedPrimitive {
+    private static final int ARRAY_SIZE = 1_000_000;
+
+    @DataProvider(name = "arrays")
+    public Object[][] createData() {
+        return new Object[][]{
+                {"hiZeroLowTest", (Supplier<int[]>) this::hiZeroLowData},
+                {"endLessThanTest", (Supplier<int[]>) this::endLessThanData},
+                {"highFlatLowTest", (Supplier<int[]>) this::highFlatLowData},
+                {"identicalTest", (Supplier<int[]>) this::identicalData},
+                {"sortedReversedSortedTest", (Supplier<int[]>) this::sortedReversedSortedData},
+                {"pairFlipTest", (Supplier<int[]>) this::pairFlipData},
+                {"zeroHiTest", (Supplier<int[]>) this::zeroHiData},
+        };
+    }
+
+    @Test(dataProvider = "arrays")
+    public void runTests(String testName, Supplier<int[]> dataMethod) throws Exception {
+        int[] intSourceArray = dataMethod.get();
+
+        // Clone source array to ensure it is not modified
+        this.sortAndAssert(intSourceArray.clone());
+        this.sortAndAssert(floatCopyFromInt(intSourceArray));
+        this.sortAndAssert(doubleCopyFromInt(intSourceArray));
+        this.sortAndAssert(longCopyFromInt(intSourceArray));
+        this.sortAndAssert(shortCopyFromInt(intSourceArray));
+        this.sortAndAssert(charCopyFromInt(intSourceArray));
+    }
+
+    private float[] floatCopyFromInt(int[] src) {
+        float[] result = new float[src.length];
+        for (int i = 0; i < result.length; i++) {
+            result[i] = src[i];
+        }
+        return result;
+    }
+
+    private double[] doubleCopyFromInt(int[] src) {
+        double[] result = new double[src.length];
+        for (int i = 0; i < result.length; i++) {
+            result[i] = src[i];
+        }
+        return result;
+    }
+
+    private long[] longCopyFromInt(int[] src) {
+        long[] result = new long[src.length];
+        for (int i = 0; i < result.length; i++) {
+            result[i] = src[i];
+        }
+        return result;
+    }
+
+    private short[] shortCopyFromInt(int[] src) {
+        short[] result = new short[src.length];
+        for (int i = 0; i < result.length; i++) {
+            result[i] = (short) src[i];
+        }
+        return result;
+    }
+
+    private char[] charCopyFromInt(int[] src) {
+        char[] result = new char[src.length];
+        for (int i = 0; i < result.length; i++) {
+            result[i] = (char) src[i];
+        }
+        return result;
+    }
+
+    private void sortAndAssert(int[] array) {
+        Arrays.sort(array);
+        for (int i = 1; i < ARRAY_SIZE; i++) {
+            if (array[i] < array[i - 1]) {
+                throw new AssertionError("not sorted");
+            }
+        }
+        Assert.assertEquals(ARRAY_SIZE, array.length);
+    }
+
+    private void sortAndAssert(char[] array) {
+        Arrays.sort(array);
+        for (int i = 1; i < ARRAY_SIZE; i++) {
+            if (array[i] < array[i - 1]) {
+                throw new AssertionError("not sorted");
+            }
+        }
+        Assert.assertEquals(ARRAY_SIZE, array.length);
+    }
+
+    private void sortAndAssert(short[] array) {
+        Arrays.sort(array);
+        for (int i = 1; i < ARRAY_SIZE; i++) {
+            if (array[i] < array[i - 1]) {
+                throw new AssertionError("not sorted");
+            }
+        }
+        Assert.assertEquals(ARRAY_SIZE, array.length);
+    }
+
+    private void sortAndAssert(double[] array) {
+        Arrays.sort(array);
+        for (int i = 1; i < ARRAY_SIZE; i++) {
+            if (array[i] < array[i - 1]) {
+                throw new AssertionError("not sorted");
+            }
+        }
+        Assert.assertEquals(ARRAY_SIZE, array.length);
+    }
+
+    private void sortAndAssert(float[] array) {
+        Arrays.sort(array);
+        for (int i = 1; i < ARRAY_SIZE; i++) {
+            if (array[i] < array[i - 1]) {
+                throw new AssertionError("not sorted");
+            }
+        }
+        Assert.assertEquals(ARRAY_SIZE, array.length);
+    }
+
+    private void sortAndAssert(long[] array) {
+        Arrays.sort(array);
+        for (int i = 1; i < ARRAY_SIZE; i++) {
+            if (array[i] < array[i - 1]) {
+                throw new AssertionError("not sorted");
+            }
+        }
+        Assert.assertEquals(ARRAY_SIZE, array.length);
+    }
+
+    private int[] zeroHiData() {
+        int[] array = new int[ARRAY_SIZE];
+
+        int threeQuarters = (int) (ARRAY_SIZE * 0.75);
+        for (int i = 0; i < threeQuarters; i++) {
+            array[i] = 0;
+        }
+        int k = 1;
+        for (int i = threeQuarters; i < ARRAY_SIZE; i++) {
+            array[i] = k;
+            k++;
+        }
+
+        return array;
+    }
+
+    private int[] hiZeroLowData() {
+        int[] array = new int[ARRAY_SIZE];
+
+        int oneThird = ARRAY_SIZE / 3;
+        for (int i = 0; i < oneThird; i++) {
+            array[i] = i;
+        }
+        int twoThirds = oneThird * 2;
+        for (int i = oneThird; i < twoThirds; i++) {
+            array[i] = 0;
+        }
+        for (int i = twoThirds; i < ARRAY_SIZE; i++) {
+            array[i] = oneThird - i + twoThirds;
+        }
+        return array;
+    }
+
+    private int[] highFlatLowData() {
+        int[] array = new int[ARRAY_SIZE];
+
+        int oneThird = ARRAY_SIZE / 3;
+        for (int i = 0; i < oneThird; i++) {
+            array[i] = i;
+        }
+        int twoThirds = oneThird * 2;
+        int constant = oneThird - 1;
+        for (int i = oneThird; i < twoThirds; i++) {
+            array[i] = constant;
+        }
+        for (int i = twoThirds; i < ARRAY_SIZE; i++) {
+            array[i] = constant - i + twoThirds;
+        }
+
+        return array;
+    }
+
+    private int[] identicalData() {
+        int[] array = new int[ARRAY_SIZE];
+        int listNumber = 24;
+
+        for (int i = 0; i < ARRAY_SIZE; i++) {
+            array[i] = listNumber;
+        }
+
+        return array;
+    }
+
+    private int[] endLessThanData() {
+        int[] array = new int[ARRAY_SIZE];
+
+        for (int i = 0; i < ARRAY_SIZE - 1; i++) {
+            array[i] = 3;
+        }
+        array[ARRAY_SIZE - 1] = 1;
+
+        return array;
+    }
+
+    private int[] sortedReversedSortedData() {
+        int[] array = new int[ARRAY_SIZE];
+
+        for (int i = 0; i < ARRAY_SIZE / 2; i++) {
+            array[i] = i;
+        }
+        int num = 0;
+        for (int i = ARRAY_SIZE / 2; i < ARRAY_SIZE; i++) {
+            array[i] = ARRAY_SIZE - num;
+            num++;
+        }
+
+        return array;
+    }
+
+    private int[] pairFlipData() {
+        int[] array = new int[ARRAY_SIZE];
+
+        for (int i = 0; i < ARRAY_SIZE; i++) {
+            array[i] = i;
+        }
+        for (int i = 0; i < ARRAY_SIZE; i += 2) {
+            int temp = array[i];
+            array[i] = array[i + 1];
+            array[i + 1] = temp;
+        }
+
+        return array;
+    }
+}