--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/code/codeHeapState.cpp Mon Mar 26 12:59:45 2018 -0700
@@ -0,0 +1,2322 @@
+/*
+ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2018 SAP SE. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "code/codeHeapState.hpp"
+#include "compiler/compileBroker.hpp"
+#include "runtime/sweeper.hpp"
+
+// -------------------------
+// | General Description |
+// -------------------------
+// The CodeHeap state analytics are divided in two parts.
+// The first part examines the entire CodeHeap and aggregates all
+// information that is believed useful/important.
+//
+// Aggregation condenses the information of a piece of the CodeHeap
+// (4096 bytes by default) into an analysis granule. These granules
+// contain enough detail to gain initial insight while keeping the
+// internal sttructure sizes in check.
+//
+// The CodeHeap is a living thing. Therefore, the aggregate is collected
+// under the CodeCache_lock. The subsequent print steps are only locked
+// against concurrent aggregations. That keeps the impact on
+// "normal operation" (JIT compiler and sweeper activity) to a minimum.
+//
+// The second part, which consists of several, independent steps,
+// prints the previously collected information with emphasis on
+// various aspects.
+//
+// Data collection and printing is done on an "on request" basis.
+// While no request is being processed, there is no impact on performance.
+// The CodeHeap state analytics do have some memory footprint.
+// The "aggregate" step allocates some data structures to hold the aggregated
+// information for later output. These data structures live until they are
+// explicitly discarded (function "discard") or until the VM terminates.
+// There is one exception: the function "all" does not leave any data
+// structures allocated.
+//
+// Requests for real-time, on-the-fly analysis can be issued via
+// jcmd <pid> Compiler.CodeHeap_Analytics [<function>] [<granularity>]
+//
+// If you are (only) interested in how the CodeHeap looks like after running
+// a sample workload, you can use the command line option
+// -Xlog:codecache=Trace
+//
+// To see the CodeHeap state in case of a "CodeCache full" condition, start the
+// VM with the
+// -Xlog:codecache=Debug
+// command line option. It will produce output only for the first time the
+// condition is recognized.
+//
+// Both command line option variants produce output identical to the jcmd function
+// jcmd <pid> Compiler.CodeHeap_Analytics all 4096
+// ---------------------------------------------------------------------------------
+
+// With this declaration macro, it is possible to switch between
+// - direct output into an argument-passed outputStream and
+// - buffered output into a bufferedStream with subsequent flush
+// of the filled buffer to the outputStream.
+#define USE_STRINGSTREAM
+#define HEX32_FORMAT "0x%x" // just a helper format string used below multiple times
+//
+// Writing to a bufferedStream buffer first has a significant advantage:
+// It uses noticeably less cpu cycles and reduces (when wirting to a
+// network file) the required bandwidth by at least a factor of ten.
+// That clearly makes up for the increased code complexity.
+#if defined(USE_STRINGSTREAM)
+#define STRINGSTREAM_DECL(_anyst, _outst) \
+ /* _anyst name of the stream as used in the code */ \
+ /* _outst stream where final output will go to */ \
+ ResourceMark rm; \
+ bufferedStream _sstobj = bufferedStream(4*K); \
+ bufferedStream* _sstbuf = &_sstobj; \
+ outputStream* _outbuf = _outst; \
+ bufferedStream* _anyst = &_sstobj; /* any stream. Use this to just print - no buffer flush. */
+
+#define STRINGSTREAM_FLUSH(termString) \
+ _sstbuf->print("%s", termString); \
+ _outbuf->print("%s", _sstbuf->as_string()); \
+ _sstbuf->reset();
+
+#define STRINGSTREAM_FLUSH_LOCKED(termString) \
+ { ttyLocker ttyl;/* keep this output block together */\
+ STRINGSTREAM_FLUSH(termString) \
+ }
+#else
+#define STRINGSTREAM_DECL(_anyst, _outst) \
+ outputStream* _outbuf = _outst; \
+ outputStream* _anyst = _outst; /* any stream. Use this to just print - no buffer flush. */
+
+#define STRINGSTREAM_FLUSH(termString) \
+ _outbuf->print("%s", termString);
+
+#define STRINGSTREAM_FLUSH_LOCKED(termString) \
+ _outbuf->print("%s", termString);
+#endif
+
+const char blobTypeChar[] = {' ', 'N', 'I', 'X', 'Z', 'U', 'R', '?', 'D', 'T', 'E', 'S', 'A', 'M', 'B', 'L' };
+const char* blobTypeName[] = {"noType"
+ , "nMethod (active)"
+ , "nMethod (inactive)"
+ , "nMethod (deopt)"
+ , "nMethod (zombie)"
+ , "nMethod (unloaded)"
+ , "runtime stub"
+ , "ricochet stub"
+ , "deopt stub"
+ , "uncommon trap stub"
+ , "exception stub"
+ , "safepoint stub"
+ , "adapter blob"
+ , "MH adapter blob"
+ , "buffer blob"
+ , "lastType"
+ };
+const char* compTypeName[] = { "none", "c1", "c2", "jvmci" };
+
+// Be prepared for ten different CodeHeap segments. Should be enough for a few years.
+const unsigned int nSizeDistElements = 31; // logarithmic range growth, max size: 2**32
+const unsigned int maxTopSizeBlocks = 50;
+const unsigned int tsbStopper = 2 * maxTopSizeBlocks;
+const unsigned int maxHeaps = 10;
+static unsigned int nHeaps = 0;
+static struct CodeHeapStat CodeHeapStatArray[maxHeaps];
+
+// static struct StatElement *StatArray = NULL;
+static StatElement* StatArray = NULL;
+static int log2_seg_size = 0;
+static size_t seg_size = 0;
+static size_t alloc_granules = 0;
+static size_t granule_size = 0;
+static bool segment_granules = false;
+static unsigned int nBlocks_t1 = 0; // counting "in_use" nmethods only.
+static unsigned int nBlocks_t2 = 0; // counting "in_use" nmethods only.
+static unsigned int nBlocks_alive = 0; // counting "not_used" and "not_entrant" nmethods only.
+static unsigned int nBlocks_dead = 0; // counting "zombie" and "unloaded" methods only.
+static unsigned int nBlocks_unloaded = 0; // counting "unloaded" nmethods only. This is a transien state.
+static unsigned int nBlocks_stub = 0;
+
+static struct FreeBlk* FreeArray = NULL;
+static unsigned int alloc_freeBlocks = 0;
+
+static struct TopSizeBlk* TopSizeArray = NULL;
+static unsigned int alloc_topSizeBlocks = 0;
+static unsigned int used_topSizeBlocks = 0;
+
+static struct SizeDistributionElement* SizeDistributionArray = NULL;
+
+// nMethod temperature (hotness) indicators.
+static int avgTemp = 0;
+static int maxTemp = 0;
+static int minTemp = 0;
+
+static unsigned int latest_compilation_id = 0;
+static volatile bool initialization_complete = false;
+
+const char* CodeHeapState::get_heapName(CodeHeap* heap) {
+ if (SegmentedCodeCache) {
+ return heap->name();
+ } else {
+ return "CodeHeap";
+ }
+}
+
+// returns the index for the heap being processed.
+unsigned int CodeHeapState::findHeapIndex(outputStream* out, const char* heapName) {
+ if (heapName == NULL) {
+ return maxHeaps;
+ }
+ if (SegmentedCodeCache) {
+ // Search for a pre-existing entry. If found, return that index.
+ for (unsigned int i = 0; i < nHeaps; i++) {
+ if (CodeHeapStatArray[i].heapName != NULL && strcmp(heapName, CodeHeapStatArray[i].heapName) == 0) {
+ return i;
+ }
+ }
+
+ // check if there are more code heap segments than we can handle.
+ if (nHeaps == maxHeaps) {
+ out->print_cr("Too many heap segments for current limit(%d).", maxHeaps);
+ return maxHeaps;
+ }
+
+ // allocate new slot in StatArray.
+ CodeHeapStatArray[nHeaps].heapName = heapName;
+ return nHeaps++;
+ } else {
+ nHeaps = 1;
+ CodeHeapStatArray[0].heapName = heapName;
+ return 0; // This is the default index if CodeCache is not segmented.
+ }
+}
+
+void CodeHeapState::get_HeapStatGlobals(outputStream* out, const char* heapName) {
+ unsigned int ix = findHeapIndex(out, heapName);
+ if (ix < maxHeaps) {
+ StatArray = CodeHeapStatArray[ix].StatArray;
+ seg_size = CodeHeapStatArray[ix].segment_size;
+ log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size);
+ alloc_granules = CodeHeapStatArray[ix].alloc_granules;
+ granule_size = CodeHeapStatArray[ix].granule_size;
+ segment_granules = CodeHeapStatArray[ix].segment_granules;
+ nBlocks_t1 = CodeHeapStatArray[ix].nBlocks_t1;
+ nBlocks_t2 = CodeHeapStatArray[ix].nBlocks_t2;
+ nBlocks_alive = CodeHeapStatArray[ix].nBlocks_alive;
+ nBlocks_dead = CodeHeapStatArray[ix].nBlocks_dead;
+ nBlocks_unloaded = CodeHeapStatArray[ix].nBlocks_unloaded;
+ nBlocks_stub = CodeHeapStatArray[ix].nBlocks_stub;
+ FreeArray = CodeHeapStatArray[ix].FreeArray;
+ alloc_freeBlocks = CodeHeapStatArray[ix].alloc_freeBlocks;
+ TopSizeArray = CodeHeapStatArray[ix].TopSizeArray;
+ alloc_topSizeBlocks = CodeHeapStatArray[ix].alloc_topSizeBlocks;
+ used_topSizeBlocks = CodeHeapStatArray[ix].used_topSizeBlocks;
+ SizeDistributionArray = CodeHeapStatArray[ix].SizeDistributionArray;
+ avgTemp = CodeHeapStatArray[ix].avgTemp;
+ maxTemp = CodeHeapStatArray[ix].maxTemp;
+ minTemp = CodeHeapStatArray[ix].minTemp;
+ } else {
+ StatArray = NULL;
+ seg_size = 0;
+ log2_seg_size = 0;
+ alloc_granules = 0;
+ granule_size = 0;
+ segment_granules = false;
+ nBlocks_t1 = 0;
+ nBlocks_t2 = 0;
+ nBlocks_alive = 0;
+ nBlocks_dead = 0;
+ nBlocks_unloaded = 0;
+ nBlocks_stub = 0;
+ FreeArray = NULL;
+ alloc_freeBlocks = 0;
+ TopSizeArray = NULL;
+ alloc_topSizeBlocks = 0;
+ used_topSizeBlocks = 0;
+ SizeDistributionArray = NULL;
+ avgTemp = 0;
+ maxTemp = 0;
+ minTemp = 0;
+ }
+}
+
+void CodeHeapState::set_HeapStatGlobals(outputStream* out, const char* heapName) {
+ unsigned int ix = findHeapIndex(out, heapName);
+ if (ix < maxHeaps) {
+ CodeHeapStatArray[ix].StatArray = StatArray;
+ CodeHeapStatArray[ix].segment_size = seg_size;
+ CodeHeapStatArray[ix].alloc_granules = alloc_granules;
+ CodeHeapStatArray[ix].granule_size = granule_size;
+ CodeHeapStatArray[ix].segment_granules = segment_granules;
+ CodeHeapStatArray[ix].nBlocks_t1 = nBlocks_t1;
+ CodeHeapStatArray[ix].nBlocks_t2 = nBlocks_t2;
+ CodeHeapStatArray[ix].nBlocks_alive = nBlocks_alive;
+ CodeHeapStatArray[ix].nBlocks_dead = nBlocks_dead;
+ CodeHeapStatArray[ix].nBlocks_unloaded = nBlocks_unloaded;
+ CodeHeapStatArray[ix].nBlocks_stub = nBlocks_stub;
+ CodeHeapStatArray[ix].FreeArray = FreeArray;
+ CodeHeapStatArray[ix].alloc_freeBlocks = alloc_freeBlocks;
+ CodeHeapStatArray[ix].TopSizeArray = TopSizeArray;
+ CodeHeapStatArray[ix].alloc_topSizeBlocks = alloc_topSizeBlocks;
+ CodeHeapStatArray[ix].used_topSizeBlocks = used_topSizeBlocks;
+ CodeHeapStatArray[ix].SizeDistributionArray = SizeDistributionArray;
+ CodeHeapStatArray[ix].avgTemp = avgTemp;
+ CodeHeapStatArray[ix].maxTemp = maxTemp;
+ CodeHeapStatArray[ix].minTemp = minTemp;
+ }
+}
+
+//---< get a new statistics array >---
+void CodeHeapState::prepare_StatArray(outputStream* out, size_t nElem, size_t granularity, const char* heapName) {
+ if (StatArray == NULL) {
+ StatArray = new StatElement[nElem];
+ //---< reset some counts >---
+ alloc_granules = nElem;
+ granule_size = granularity;
+ }
+
+ if (StatArray == NULL) {
+ //---< just do nothing if allocation failed >---
+ out->print_cr("Statistics could not be collected for %s, probably out of memory.", heapName);
+ out->print_cr("Current granularity is " SIZE_FORMAT " bytes. Try a coarser granularity.", granularity);
+ alloc_granules = 0;
+ granule_size = 0;
+ } else {
+ //---< initialize statistics array >---
+ memset((void*)StatArray, 0, nElem*sizeof(StatElement));
+ }
+}
+
+//---< get a new free block array >---
+void CodeHeapState::prepare_FreeArray(outputStream* out, unsigned int nElem, const char* heapName) {
+ if (FreeArray == NULL) {
+ FreeArray = new FreeBlk[nElem];
+ //---< reset some counts >---
+ alloc_freeBlocks = nElem;
+ }
+
+ if (FreeArray == NULL) {
+ //---< just do nothing if allocation failed >---
+ out->print_cr("Free space analysis cannot be done for %s, probably out of memory.", heapName);
+ alloc_freeBlocks = 0;
+ } else {
+ //---< initialize free block array >---
+ memset((void*)FreeArray, 0, alloc_freeBlocks*sizeof(FreeBlk));
+ }
+}
+
+//---< get a new TopSizeArray >---
+void CodeHeapState::prepare_TopSizeArray(outputStream* out, unsigned int nElem, const char* heapName) {
+ if (TopSizeArray == NULL) {
+ TopSizeArray = new TopSizeBlk[nElem];
+ //---< reset some counts >---
+ alloc_topSizeBlocks = nElem;
+ used_topSizeBlocks = 0;
+ }
+
+ if (TopSizeArray == NULL) {
+ //---< just do nothing if allocation failed >---
+ out->print_cr("Top-%d list of largest CodeHeap blocks can not be collected for %s, probably out of memory.", nElem, heapName);
+ alloc_topSizeBlocks = 0;
+ } else {
+ //---< initialize TopSizeArray >---
+ memset((void*)TopSizeArray, 0, nElem*sizeof(TopSizeBlk));
+ used_topSizeBlocks = 0;
+ }
+}
+
+//---< get a new SizeDistributionArray >---
+void CodeHeapState::prepare_SizeDistArray(outputStream* out, unsigned int nElem, const char* heapName) {
+ if (SizeDistributionArray == NULL) {
+ SizeDistributionArray = new SizeDistributionElement[nElem];
+ }
+
+ if (SizeDistributionArray == NULL) {
+ //---< just do nothing if allocation failed >---
+ out->print_cr("Size distribution can not be collected for %s, probably out of memory.", heapName);
+ } else {
+ //---< initialize SizeDistArray >---
+ memset((void*)SizeDistributionArray, 0, nElem*sizeof(SizeDistributionElement));
+ // Logarithmic range growth. First range starts at _segment_size.
+ SizeDistributionArray[log2_seg_size-1].rangeEnd = 1U;
+ for (unsigned int i = log2_seg_size; i < nElem; i++) {
+ SizeDistributionArray[i].rangeStart = 1U << (i - log2_seg_size);
+ SizeDistributionArray[i].rangeEnd = 1U << ((i+1) - log2_seg_size);
+ }
+ }
+}
+
+//---< get a new SizeDistributionArray >---
+void CodeHeapState::update_SizeDistArray(outputStream* out, unsigned int len) {
+ if (SizeDistributionArray != NULL) {
+ for (unsigned int i = log2_seg_size-1; i < nSizeDistElements; i++) {
+ if ((SizeDistributionArray[i].rangeStart <= len) && (len < SizeDistributionArray[i].rangeEnd)) {
+ SizeDistributionArray[i].lenSum += len;
+ SizeDistributionArray[i].count++;
+ break;
+ }
+ }
+ }
+}
+
+void CodeHeapState::discard_StatArray(outputStream* out) {
+ if (StatArray != NULL) {
+ delete StatArray;
+ StatArray = NULL;
+ alloc_granules = 0;
+ granule_size = 0;
+ }
+}
+
+void CodeHeapState::discard_FreeArray(outputStream* out) {
+ if (FreeArray != NULL) {
+ delete[] FreeArray;
+ FreeArray = NULL;
+ alloc_freeBlocks = 0;
+ }
+}
+
+void CodeHeapState::discard_TopSizeArray(outputStream* out) {
+ if (TopSizeArray != NULL) {
+ delete[] TopSizeArray;
+ TopSizeArray = NULL;
+ alloc_topSizeBlocks = 0;
+ used_topSizeBlocks = 0;
+ }
+}
+
+void CodeHeapState::discard_SizeDistArray(outputStream* out) {
+ if (SizeDistributionArray != NULL) {
+ delete[] SizeDistributionArray;
+ SizeDistributionArray = NULL;
+ }
+}
+
+// Discard all allocated internal data structures.
+// This should be done after an analysis session is completed.
+void CodeHeapState::discard(outputStream* out, CodeHeap* heap) {
+ if (!initialization_complete) {
+ return;
+ }
+
+ if (nHeaps > 0) {
+ for (unsigned int ix = 0; ix < nHeaps; ix++) {
+ get_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
+ discard_StatArray(out);
+ discard_FreeArray(out);
+ discard_TopSizeArray(out);
+ discard_SizeDistArray(out);
+ set_HeapStatGlobals(out, CodeHeapStatArray[ix].heapName);
+ CodeHeapStatArray[ix].heapName = NULL;
+ }
+ nHeaps = 0;
+ }
+}
+
+void CodeHeapState::aggregate(outputStream* out, CodeHeap* heap, const char* granularity_request) {
+ unsigned int nBlocks_free = 0;
+ unsigned int nBlocks_used = 0;
+ unsigned int nBlocks_zomb = 0;
+ unsigned int nBlocks_disconn = 0;
+ unsigned int nBlocks_notentr = 0;
+
+ //---< max & min of TopSizeArray >---
+ // it is sufficient to have these sizes as 32bit unsigned ints.
+ // The CodeHeap is limited in size to 4GB. Furthermore, the sizes
+ // are stored in _segment_size units, scaling them down by a factor of 64 (at least).
+ unsigned int currMax = 0;
+ unsigned int currMin = 0;
+ unsigned int currMin_ix = 0;
+ unsigned long total_iterations = 0;
+
+ bool done = false;
+ const int min_granules = 256;
+ const int max_granules = 512*K; // limits analyzable CodeHeap (with segment_granules) to 32M..128M
+ // results in StatArray size of 20M (= max_granules * 40 Bytes per element)
+ // For a 1GB CodeHeap, the granule size must be at least 2kB to not violate the max_granles limit.
+ const char* heapName = get_heapName(heap);
+ STRINGSTREAM_DECL(ast, out)
+
+ if (!initialization_complete) {
+ memset(CodeHeapStatArray, 0, sizeof(CodeHeapStatArray));
+ initialization_complete = true;
+
+ printBox(ast, '=', "C O D E H E A P A N A L Y S I S (general remarks)", NULL);
+ ast->print_cr(" The code heap analysis function provides deep insights into\n"
+ " the inner workings and the internal state of the Java VM's\n"
+ " code cache - the place where all the JVM generated machine\n"
+ " code is stored.\n"
+ " \n"
+ " This function is designed and provided for support engineers\n"
+ " to help them understand and solve issues in customer systems.\n"
+ " It is not intended for use and interpretation by other persons.\n"
+ " \n");
+ STRINGSTREAM_FLUSH("")
+ }
+ get_HeapStatGlobals(out, heapName);
+
+
+ // Since we are (and must be) analyzing the CodeHeap contents under the CodeCache_lock,
+ // all heap information is "constant" and can be safely extracted/calculated before we
+ // enter the while() loop. Actually, the loop will only be iterated once.
+ char* low_bound = heap->low_boundary();
+ size_t size = heap->capacity();
+ size_t res_size = heap->max_capacity();
+ seg_size = heap->segment_size();
+ log2_seg_size = seg_size == 0 ? 0 : exact_log2(seg_size); // This is a global static value.
+
+ if (seg_size == 0) {
+ printBox(ast, '-', "Heap not fully initialized yet, segment size is zero for segment ", heapName);
+ STRINGSTREAM_FLUSH("")
+ return;
+ }
+
+ // Calculate granularity of analysis (and output).
+ // The CodeHeap is managed (allocated) in segments (units) of CodeCacheSegmentSize.
+ // The CodeHeap can become fairly large, in particular in productive real-life systems.
+ //
+ // It is often neither feasible nor desirable to aggregate the data with the highest possible
+ // level of detail, i.e. inspecting and printing each segment on its own.
+ //
+ // The granularity parameter allows to specify the level of detail available in the analysis.
+ // It must be a positive multiple of the segment size and should be selected such that enough
+ // detail is provided while, at the same time, the printed output does not explode.
+ //
+ // By manipulating the granularity value, we enforce that at least min_granules units
+ // of analysis are available. We also enforce an upper limit of max_granules units to
+ // keep the amount of allocated storage in check.
+ //
+ // Finally, we adjust the granularity such that each granule covers at most 64k-1 segments.
+ // This is necessary to prevent an unsigned short overflow while accumulating space information.
+ //
+ size_t granularity = strtol(granularity_request, NULL, 0);
+ if (granularity > size) {
+ granularity = size;
+ }
+ if (size/granularity < min_granules) {
+ granularity = size/min_granules; // at least min_granules granules
+ }
+ granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size
+ if (granularity < seg_size) {
+ granularity = seg_size; // must be at least seg_size
+ }
+ if (size/granularity > max_granules) {
+ granularity = size/max_granules; // at most max_granules granules
+ }
+ granularity = granularity & (~(seg_size - 1)); // must be multiple of seg_size
+ if (granularity>>log2_seg_size >= (1L<<sizeof(unsigned short)*8)) {
+ granularity = ((1L<<(sizeof(unsigned short)*8))-1)<<log2_seg_size; // Limit: (64k-1) * seg_size
+ }
+ segment_granules = granularity == seg_size;
+ size_t granules = (size + (granularity-1))/granularity;
+
+ printBox(ast, '=', "C O D E H E A P A N A L Y S I S (used blocks) for segment ", heapName);
+ ast->print_cr(" The aggregate step takes an aggregated snapshot of the CodeHeap.\n"
+ " Subsequent print functions create their output based on this snapshot.\n"
+ " The CodeHeap is a living thing, and every effort has been made for the\n"
+ " collected data to be consistent. Only the method names and signatures\n"
+ " are retrieved at print time. That may lead to rare cases where the\n"
+ " name of a method is no longer available, e.g. because it was unloaded.\n");
+ ast->print_cr(" CodeHeap committed size " SIZE_FORMAT "K (" SIZE_FORMAT "M), reserved size " SIZE_FORMAT "K (" SIZE_FORMAT "M), %d%% occupied.",
+ size/(size_t)K, size/(size_t)M, res_size/(size_t)K, res_size/(size_t)M, (unsigned int)(100.0*size/res_size));
+ ast->print_cr(" CodeHeap allocation segment size is " SIZE_FORMAT " bytes. This is the smallest possible granularity.", seg_size);
+ ast->print_cr(" CodeHeap (committed part) is mapped to " SIZE_FORMAT " granules of size " SIZE_FORMAT " bytes.", granules, granularity);
+ ast->print_cr(" Each granule takes " SIZE_FORMAT " bytes of C heap, that is " SIZE_FORMAT "K in total for statistics data.", sizeof(StatElement), (sizeof(StatElement)*granules)/(size_t)K);
+ ast->print_cr(" The number of granules is limited to %dk, requiring a granules size of at least %d bytes for a 1GB heap.", (unsigned int)(max_granules/K), (unsigned int)(G/max_granules));
+ STRINGSTREAM_FLUSH("\n")
+
+
+ while (!done) {
+ //---< reset counters with every aggregation >---
+ nBlocks_t1 = 0;
+ nBlocks_t2 = 0;
+ nBlocks_alive = 0;
+ nBlocks_dead = 0;
+ nBlocks_unloaded = 0;
+ nBlocks_stub = 0;
+
+ nBlocks_free = 0;
+ nBlocks_used = 0;
+ nBlocks_zomb = 0;
+ nBlocks_disconn = 0;
+ nBlocks_notentr = 0;
+
+ //---< discard old arrays if size does not match >---
+ if (granules != alloc_granules) {
+ discard_StatArray(out);
+ discard_TopSizeArray(out);
+ }
+
+ //---< allocate arrays if they don't yet exist, initialize >---
+ prepare_StatArray(out, granules, granularity, heapName);
+ if (StatArray == NULL) {
+ set_HeapStatGlobals(out, heapName);
+ return;
+ }
+ prepare_TopSizeArray(out, maxTopSizeBlocks, heapName);
+ prepare_SizeDistArray(out, nSizeDistElements, heapName);
+
+ latest_compilation_id = CompileBroker::get_compilation_id();
+ unsigned int highest_compilation_id = 0;
+ size_t usedSpace = 0;
+ size_t t1Space = 0;
+ size_t t2Space = 0;
+ size_t aliveSpace = 0;
+ size_t disconnSpace = 0;
+ size_t notentrSpace = 0;
+ size_t deadSpace = 0;
+ size_t unloadedSpace = 0;
+ size_t stubSpace = 0;
+ size_t freeSpace = 0;
+ size_t maxFreeSize = 0;
+ HeapBlock* maxFreeBlock = NULL;
+ bool insane = false;
+
+ int64_t hotnessAccumulator = 0;
+ unsigned int n_methods = 0;
+ avgTemp = 0;
+ minTemp = (int)(res_size > M ? (res_size/M)*2 : 1);
+ maxTemp = -minTemp;
+
+ for (HeapBlock *h = heap->first_block(); h != NULL && !insane; h = heap->next_block(h)) {
+ unsigned int hb_len = (unsigned int)h->length(); // despite being size_t, length can never overflow an unsigned int.
+ size_t hb_bytelen = ((size_t)hb_len)<<log2_seg_size;
+ unsigned int ix_beg = (unsigned int)(((char*)h-low_bound)/granule_size);
+ unsigned int ix_end = (unsigned int)(((char*)h-low_bound+(hb_bytelen-1))/granule_size);
+ unsigned int compile_id = 0;
+ CompLevel comp_lvl = CompLevel_none;
+ compType cType = noComp;
+ blobType cbType = noType;
+
+ //---< some sanity checks >---
+ // Do not assert here, just check, print error message and return.
+ // This is a diagnostic function. It is not supposed to tear down the VM.
+ if ((char*)h < low_bound ) {
+ insane = true; ast->print_cr("Sanity check: HeapBlock @%p below low bound (%p)", (char*)h, low_bound);
+ }
+ if (ix_end >= granules ) {
+ insane = true; ast->print_cr("Sanity check: end index (%d) out of bounds (" SIZE_FORMAT ")", ix_end, granules);
+ }
+ if (size != heap->capacity()) {
+ insane = true; ast->print_cr("Sanity check: code heap capacity has changed (" SIZE_FORMAT "K to " SIZE_FORMAT "K)", size/(size_t)K, heap->capacity()/(size_t)K);
+ }
+ if (ix_beg > ix_end ) {
+ insane = true; ast->print_cr("Sanity check: end index (%d) lower than begin index (%d)", ix_end, ix_beg);
+ }
+ if (insane) {
+ STRINGSTREAM_FLUSH("")
+ continue;
+ }
+
+ if (h->free()) {
+ nBlocks_free++;
+ freeSpace += hb_bytelen;
+ if (hb_bytelen > maxFreeSize) {
+ maxFreeSize = hb_bytelen;
+ maxFreeBlock = h;
+ }
+ } else {
+ update_SizeDistArray(out, hb_len);
+ nBlocks_used++;
+ usedSpace += hb_bytelen;
+ CodeBlob* cb = (CodeBlob*)heap->find_start(h);
+ if (cb != NULL) {
+ cbType = get_cbType(cb);
+ if (cb->is_nmethod()) {
+ compile_id = ((nmethod*)cb)->compile_id();
+ comp_lvl = (CompLevel)((nmethod*)cb)->comp_level();
+ if (((nmethod*)cb)->is_compiled_by_c1()) {
+ cType = c1;
+ }
+ if (((nmethod*)cb)->is_compiled_by_c2()) {
+ cType = c2;
+ }
+ if (((nmethod*)cb)->is_compiled_by_jvmci()) {
+ cType = jvmci;
+ }
+ switch (cbType) {
+ case nMethod_inuse: { // only for executable methods!!!
+ // space for these cbs is accounted for later.
+ int temperature = ((nmethod*)cb)->hotness_counter();
+ hotnessAccumulator += temperature;
+ n_methods++;
+ maxTemp = (temperature > maxTemp) ? temperature : maxTemp;
+ minTemp = (temperature < minTemp) ? temperature : minTemp;
+ break;
+ }
+ case nMethod_notused:
+ nBlocks_alive++;
+ nBlocks_disconn++;
+ aliveSpace += hb_bytelen;
+ disconnSpace += hb_bytelen;
+ break;
+ case nMethod_notentrant: // equivalent to nMethod_alive
+ nBlocks_alive++;
+ nBlocks_notentr++;
+ aliveSpace += hb_bytelen;
+ notentrSpace += hb_bytelen;
+ break;
+ case nMethod_unloaded:
+ nBlocks_unloaded++;
+ unloadedSpace += hb_bytelen;
+ break;
+ case nMethod_dead:
+ nBlocks_dead++;
+ deadSpace += hb_bytelen;
+ break;
+ default:
+ break;
+ }
+ }
+
+ //------------------------------------------
+ //---< register block in TopSizeArray >---
+ //------------------------------------------
+ if (alloc_topSizeBlocks > 0) {
+ if (used_topSizeBlocks == 0) {
+ TopSizeArray[0].start = h;
+ TopSizeArray[0].len = hb_len;
+ TopSizeArray[0].index = tsbStopper;
+ TopSizeArray[0].compiler = cType;
+ TopSizeArray[0].level = comp_lvl;
+ TopSizeArray[0].type = cbType;
+ currMax = hb_len;
+ currMin = hb_len;
+ currMin_ix = 0;
+ used_topSizeBlocks++;
+ // This check roughly cuts 5000 iterations (JVM98, mixed, dbg, termination stats):
+ } else if ((used_topSizeBlocks < alloc_topSizeBlocks) && (hb_len < currMin)) {
+ //---< all blocks in list are larger, but there is room left in array >---
+ TopSizeArray[currMin_ix].index = used_topSizeBlocks;
+ TopSizeArray[used_topSizeBlocks].start = h;
+ TopSizeArray[used_topSizeBlocks].len = hb_len;
+ TopSizeArray[used_topSizeBlocks].index = tsbStopper;
+ TopSizeArray[used_topSizeBlocks].compiler = cType;
+ TopSizeArray[used_topSizeBlocks].level = comp_lvl;
+ TopSizeArray[used_topSizeBlocks].type = cbType;
+ currMin = hb_len;
+ currMin_ix = used_topSizeBlocks;
+ used_topSizeBlocks++;
+ } else {
+ // This check cuts total_iterations by a factor of 6 (JVM98, mixed, dbg, termination stats):
+ // We don't need to search the list if we know beforehand that the current block size is
+ // smaller than the currently recorded minimum and there is no free entry left in the list.
+ if (!((used_topSizeBlocks == alloc_topSizeBlocks) && (hb_len <= currMin))) {
+ if (currMax < hb_len) {
+ currMax = hb_len;
+ }
+ unsigned int i;
+ unsigned int prev_i = tsbStopper;
+ unsigned int limit_i = 0;
+ for (i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
+ if (limit_i++ >= alloc_topSizeBlocks) {
+ insane = true; break; // emergency exit
+ }
+ if (i >= used_topSizeBlocks) {
+ insane = true; break; // emergency exit
+ }
+ total_iterations++;
+ if (TopSizeArray[i].len < hb_len) {
+ //---< We want to insert here, element <i> is smaller than the current one >---
+ if (used_topSizeBlocks < alloc_topSizeBlocks) { // still room for a new entry to insert
+ // old entry gets moved to the next free element of the array.
+ // That's necessary to keep the entry for the largest block at index 0.
+ // This move might cause the current minimum to be moved to another place
+ if (i == currMin_ix) {
+ assert(TopSizeArray[i].len == currMin, "sort error");
+ currMin_ix = used_topSizeBlocks;
+ }
+ memcpy((void*)&TopSizeArray[used_topSizeBlocks], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
+ TopSizeArray[i].start = h;
+ TopSizeArray[i].len = hb_len;
+ TopSizeArray[i].index = used_topSizeBlocks;
+ TopSizeArray[i].compiler = cType;
+ TopSizeArray[i].level = comp_lvl;
+ TopSizeArray[i].type = cbType;
+ used_topSizeBlocks++;
+ } else { // no room for new entries, current block replaces entry for smallest block
+ //---< Find last entry (entry for smallest remembered block) >---
+ unsigned int j = i;
+ unsigned int prev_j = tsbStopper;
+ unsigned int limit_j = 0;
+ while (TopSizeArray[j].index != tsbStopper) {
+ if (limit_j++ >= alloc_topSizeBlocks) {
+ insane = true; break; // emergency exit
+ }
+ if (j >= used_topSizeBlocks) {
+ insane = true; break; // emergency exit
+ }
+ total_iterations++;
+ prev_j = j;
+ j = TopSizeArray[j].index;
+ }
+ if (!insane) {
+ if (prev_j == tsbStopper) {
+ //---< Above while loop did not iterate, we already are the min entry >---
+ //---< We have to just replace the smallest entry >---
+ currMin = hb_len;
+ currMin_ix = j;
+ TopSizeArray[j].start = h;
+ TopSizeArray[j].len = hb_len;
+ TopSizeArray[j].index = tsbStopper; // already set!!
+ TopSizeArray[j].compiler = cType;
+ TopSizeArray[j].level = comp_lvl;
+ TopSizeArray[j].type = cbType;
+ } else {
+ //---< second-smallest entry is now smallest >---
+ TopSizeArray[prev_j].index = tsbStopper;
+ currMin = TopSizeArray[prev_j].len;
+ currMin_ix = prev_j;
+ //---< smallest entry gets overwritten >---
+ memcpy((void*)&TopSizeArray[j], (void*)&TopSizeArray[i], sizeof(TopSizeBlk));
+ TopSizeArray[i].start = h;
+ TopSizeArray[i].len = hb_len;
+ TopSizeArray[i].index = j;
+ TopSizeArray[i].compiler = cType;
+ TopSizeArray[i].level = comp_lvl;
+ TopSizeArray[i].type = cbType;
+ }
+ } // insane
+ }
+ break;
+ }
+ prev_i = i;
+ }
+ if (insane) {
+ // Note: regular analysis could probably continue by resetting "insane" flag.
+ out->print_cr("Possible loop in TopSizeBlocks list detected. Analysis aborted.");
+ discard_TopSizeArray(out);
+ }
+ }
+ }
+ }
+ //----------------------------------------------
+ //---< END register block in TopSizeArray >---
+ //----------------------------------------------
+ } else {
+ nBlocks_zomb++;
+ }
+
+ if (ix_beg == ix_end) {
+ StatArray[ix_beg].type = cbType;
+ switch (cbType) {
+ case nMethod_inuse:
+ highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
+ if (comp_lvl < CompLevel_full_optimization) {
+ nBlocks_t1++;
+ t1Space += hb_bytelen;
+ StatArray[ix_beg].t1_count++;
+ StatArray[ix_beg].t1_space += (unsigned short)hb_len;
+ StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
+ } else {
+ nBlocks_t2++;
+ t2Space += hb_bytelen;
+ StatArray[ix_beg].t2_count++;
+ StatArray[ix_beg].t2_space += (unsigned short)hb_len;
+ StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
+ }
+ StatArray[ix_beg].level = comp_lvl;
+ StatArray[ix_beg].compiler = cType;
+ break;
+ case nMethod_alive:
+ StatArray[ix_beg].tx_count++;
+ StatArray[ix_beg].tx_space += (unsigned short)hb_len;
+ StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
+ StatArray[ix_beg].level = comp_lvl;
+ StatArray[ix_beg].compiler = cType;
+ break;
+ case nMethod_dead:
+ case nMethod_unloaded:
+ StatArray[ix_beg].dead_count++;
+ StatArray[ix_beg].dead_space += (unsigned short)hb_len;
+ break;
+ default:
+ // must be a stub, if it's not a dead or alive nMethod
+ nBlocks_stub++;
+ stubSpace += hb_bytelen;
+ StatArray[ix_beg].stub_count++;
+ StatArray[ix_beg].stub_space += (unsigned short)hb_len;
+ break;
+ }
+ } else {
+ unsigned int beg_space = (unsigned int)(granule_size - ((char*)h - low_bound - ix_beg*granule_size));
+ unsigned int end_space = (unsigned int)(hb_bytelen - beg_space - (ix_end-ix_beg-1)*granule_size);
+ beg_space = beg_space>>log2_seg_size; // store in units of _segment_size
+ end_space = end_space>>log2_seg_size; // store in units of _segment_size
+ StatArray[ix_beg].type = cbType;
+ StatArray[ix_end].type = cbType;
+ switch (cbType) {
+ case nMethod_inuse:
+ highest_compilation_id = (highest_compilation_id >= compile_id) ? highest_compilation_id : compile_id;
+ if (comp_lvl < CompLevel_full_optimization) {
+ nBlocks_t1++;
+ t1Space += hb_bytelen;
+ StatArray[ix_beg].t1_count++;
+ StatArray[ix_beg].t1_space += (unsigned short)beg_space;
+ StatArray[ix_beg].t1_age = StatArray[ix_beg].t1_age < compile_id ? compile_id : StatArray[ix_beg].t1_age;
+
+ StatArray[ix_end].t1_count++;
+ StatArray[ix_end].t1_space += (unsigned short)end_space;
+ StatArray[ix_end].t1_age = StatArray[ix_end].t1_age < compile_id ? compile_id : StatArray[ix_end].t1_age;
+ } else {
+ nBlocks_t2++;
+ t2Space += hb_bytelen;
+ StatArray[ix_beg].t2_count++;
+ StatArray[ix_beg].t2_space += (unsigned short)beg_space;
+ StatArray[ix_beg].t2_age = StatArray[ix_beg].t2_age < compile_id ? compile_id : StatArray[ix_beg].t2_age;
+
+ StatArray[ix_end].t2_count++;
+ StatArray[ix_end].t2_space += (unsigned short)end_space;
+ StatArray[ix_end].t2_age = StatArray[ix_end].t2_age < compile_id ? compile_id : StatArray[ix_end].t2_age;
+ }
+ StatArray[ix_beg].level = comp_lvl;
+ StatArray[ix_beg].compiler = cType;
+ StatArray[ix_end].level = comp_lvl;
+ StatArray[ix_end].compiler = cType;
+ break;
+ case nMethod_alive:
+ StatArray[ix_beg].tx_count++;
+ StatArray[ix_beg].tx_space += (unsigned short)beg_space;
+ StatArray[ix_beg].tx_age = StatArray[ix_beg].tx_age < compile_id ? compile_id : StatArray[ix_beg].tx_age;
+
+ StatArray[ix_end].tx_count++;
+ StatArray[ix_end].tx_space += (unsigned short)end_space;
+ StatArray[ix_end].tx_age = StatArray[ix_end].tx_age < compile_id ? compile_id : StatArray[ix_end].tx_age;
+
+ StatArray[ix_beg].level = comp_lvl;
+ StatArray[ix_beg].compiler = cType;
+ StatArray[ix_end].level = comp_lvl;
+ StatArray[ix_end].compiler = cType;
+ break;
+ case nMethod_dead:
+ case nMethod_unloaded:
+ StatArray[ix_beg].dead_count++;
+ StatArray[ix_beg].dead_space += (unsigned short)beg_space;
+ StatArray[ix_end].dead_count++;
+ StatArray[ix_end].dead_space += (unsigned short)end_space;
+ break;
+ default:
+ // must be a stub, if it's not a dead or alive nMethod
+ nBlocks_stub++;
+ stubSpace += hb_bytelen;
+ StatArray[ix_beg].stub_count++;
+ StatArray[ix_beg].stub_space += (unsigned short)beg_space;
+ StatArray[ix_end].stub_count++;
+ StatArray[ix_end].stub_space += (unsigned short)end_space;
+ break;
+ }
+ for (unsigned int ix = ix_beg+1; ix < ix_end; ix++) {
+ StatArray[ix].type = cbType;
+ switch (cbType) {
+ case nMethod_inuse:
+ if (comp_lvl < CompLevel_full_optimization) {
+ StatArray[ix].t1_count++;
+ StatArray[ix].t1_space += (unsigned short)(granule_size>>log2_seg_size);
+ StatArray[ix].t1_age = StatArray[ix].t1_age < compile_id ? compile_id : StatArray[ix].t1_age;
+ } else {
+ StatArray[ix].t2_count++;
+ StatArray[ix].t2_space += (unsigned short)(granule_size>>log2_seg_size);
+ StatArray[ix].t2_age = StatArray[ix].t2_age < compile_id ? compile_id : StatArray[ix].t2_age;
+ }
+ StatArray[ix].level = comp_lvl;
+ StatArray[ix].compiler = cType;
+ break;
+ case nMethod_alive:
+ StatArray[ix].tx_count++;
+ StatArray[ix].tx_space += (unsigned short)(granule_size>>log2_seg_size);
+ StatArray[ix].tx_age = StatArray[ix].tx_age < compile_id ? compile_id : StatArray[ix].tx_age;
+ StatArray[ix].level = comp_lvl;
+ StatArray[ix].compiler = cType;
+ break;
+ case nMethod_dead:
+ case nMethod_unloaded:
+ StatArray[ix].dead_count++;
+ StatArray[ix].dead_space += (unsigned short)(granule_size>>log2_seg_size);
+ break;
+ default:
+ // must be a stub, if it's not a dead or alive nMethod
+ StatArray[ix].stub_count++;
+ StatArray[ix].stub_space += (unsigned short)(granule_size>>log2_seg_size);
+ break;
+ }
+ }
+ }
+ }
+ }
+ if (n_methods > 0) {
+ avgTemp = hotnessAccumulator/n_methods;
+ } else {
+ avgTemp = 0;
+ }
+ done = true;
+
+ if (!insane) {
+ // There is a risk for this block (because it contains many print statements) to get
+ // interspersed with print data from other threads. We take this risk intentionally.
+ // Getting stalled waiting for tty_lock while holding the CodeCache_lock is not desirable.
+ printBox(ast, '-', "Global CodeHeap statistics for segment ", heapName);
+ ast->print_cr("freeSpace = " SIZE_FORMAT_W(8) "k, nBlocks_free = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", freeSpace/(size_t)K, nBlocks_free, (100.0*freeSpace)/size, (100.0*freeSpace)/res_size);
+ ast->print_cr("usedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_used = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", usedSpace/(size_t)K, nBlocks_used, (100.0*usedSpace)/size, (100.0*usedSpace)/res_size);
+ ast->print_cr(" Tier1 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t1 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t1Space/(size_t)K, nBlocks_t1, (100.0*t1Space)/size, (100.0*t1Space)/res_size);
+ ast->print_cr(" Tier2 Space = " SIZE_FORMAT_W(8) "k, nBlocks_t2 = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", t2Space/(size_t)K, nBlocks_t2, (100.0*t2Space)/size, (100.0*t2Space)/res_size);
+ ast->print_cr(" Alive Space = " SIZE_FORMAT_W(8) "k, nBlocks_alive = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", aliveSpace/(size_t)K, nBlocks_alive, (100.0*aliveSpace)/size, (100.0*aliveSpace)/res_size);
+ ast->print_cr(" disconnected = " SIZE_FORMAT_W(8) "k, nBlocks_disconn = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", disconnSpace/(size_t)K, nBlocks_disconn, (100.0*disconnSpace)/size, (100.0*disconnSpace)/res_size);
+ ast->print_cr(" not entrant = " SIZE_FORMAT_W(8) "k, nBlocks_notentr = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", notentrSpace/(size_t)K, nBlocks_notentr, (100.0*notentrSpace)/size, (100.0*notentrSpace)/res_size);
+ ast->print_cr(" unloadedSpace = " SIZE_FORMAT_W(8) "k, nBlocks_unloaded = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", unloadedSpace/(size_t)K, nBlocks_unloaded, (100.0*unloadedSpace)/size, (100.0*unloadedSpace)/res_size);
+ ast->print_cr(" deadSpace = " SIZE_FORMAT_W(8) "k, nBlocks_dead = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", deadSpace/(size_t)K, nBlocks_dead, (100.0*deadSpace)/size, (100.0*deadSpace)/res_size);
+ ast->print_cr(" stubSpace = " SIZE_FORMAT_W(8) "k, nBlocks_stub = %6d, %10.3f%% of capacity, %10.3f%% of max_capacity", stubSpace/(size_t)K, nBlocks_stub, (100.0*stubSpace)/size, (100.0*stubSpace)/res_size);
+ ast->print_cr("ZombieBlocks = %8d. These are HeapBlocks which could not be identified as CodeBlobs.", nBlocks_zomb);
+ ast->print_cr("latest allocated compilation id = %d", latest_compilation_id);
+ ast->print_cr("highest observed compilation id = %d", highest_compilation_id);
+ ast->print_cr("Building TopSizeList iterations = %ld", total_iterations);
+ ast->cr();
+
+ int reset_val = NMethodSweeper::hotness_counter_reset_val();
+ double reverse_free_ratio = (res_size > size) ? (double)res_size/(double)(res_size-size) : (double)res_size;
+ printBox(ast, '-', "Method hotness information at time of this analysis", NULL);
+ ast->print_cr("Highest possible method temperature: %12d", reset_val);
+ ast->print_cr("Threshold for method to be considered 'cold': %12.3f", -reset_val + reverse_free_ratio * NmethodSweepActivity);
+ ast->print_cr("min. hotness = %6d", minTemp);
+ ast->print_cr("avg. hotness = %6d", avgTemp);
+ ast->print_cr("max. hotness = %6d", maxTemp);
+ STRINGSTREAM_FLUSH("\n")
+
+ // This loop is intentionally printing directly to "out".
+ out->print("Verifying collected data...");
+ size_t granule_segs = granule_size>>log2_seg_size;
+ for (unsigned int ix = 0; ix < granules; ix++) {
+ if (StatArray[ix].t1_count > granule_segs) {
+ out->print_cr("t1_count[%d] = %d", ix, StatArray[ix].t1_count);
+ }
+ if (StatArray[ix].t2_count > granule_segs) {
+ out->print_cr("t2_count[%d] = %d", ix, StatArray[ix].t2_count);
+ }
+ if (StatArray[ix].stub_count > granule_segs) {
+ out->print_cr("stub_count[%d] = %d", ix, StatArray[ix].stub_count);
+ }
+ if (StatArray[ix].dead_count > granule_segs) {
+ out->print_cr("dead_count[%d] = %d", ix, StatArray[ix].dead_count);
+ }
+ if (StatArray[ix].t1_space > granule_segs) {
+ out->print_cr("t1_space[%d] = %d", ix, StatArray[ix].t1_space);
+ }
+ if (StatArray[ix].t2_space > granule_segs) {
+ out->print_cr("t2_space[%d] = %d", ix, StatArray[ix].t2_space);
+ }
+ if (StatArray[ix].stub_space > granule_segs) {
+ out->print_cr("stub_space[%d] = %d", ix, StatArray[ix].stub_space);
+ }
+ if (StatArray[ix].dead_space > granule_segs) {
+ out->print_cr("dead_space[%d] = %d", ix, StatArray[ix].dead_space);
+ }
+ // this cast is awful! I need it because NT/Intel reports a signed/unsigned mismatch.
+ if ((size_t)(StatArray[ix].t1_count+StatArray[ix].t2_count+StatArray[ix].stub_count+StatArray[ix].dead_count) > granule_segs) {
+ out->print_cr("t1_count[%d] = %d, t2_count[%d] = %d, stub_count[%d] = %d", ix, StatArray[ix].t1_count, ix, StatArray[ix].t2_count, ix, StatArray[ix].stub_count);
+ }
+ if ((size_t)(StatArray[ix].t1_space+StatArray[ix].t2_space+StatArray[ix].stub_space+StatArray[ix].dead_space) > granule_segs) {
+ out->print_cr("t1_space[%d] = %d, t2_space[%d] = %d, stub_space[%d] = %d", ix, StatArray[ix].t1_space, ix, StatArray[ix].t2_space, ix, StatArray[ix].stub_space);
+ }
+ }
+
+ // This loop is intentionally printing directly to "out".
+ if (used_topSizeBlocks > 0) {
+ unsigned int j = 0;
+ if (TopSizeArray[0].len != currMax) {
+ out->print_cr("currMax(%d) differs from TopSizeArray[0].len(%d)", currMax, TopSizeArray[0].len);
+ }
+ for (unsigned int i = 0; (TopSizeArray[i].index != tsbStopper) && (j++ < alloc_topSizeBlocks); i = TopSizeArray[i].index) {
+ if (TopSizeArray[i].len < TopSizeArray[TopSizeArray[i].index].len) {
+ out->print_cr("sort error at index %d: %d !>= %d", i, TopSizeArray[i].len, TopSizeArray[TopSizeArray[i].index].len);
+ }
+ }
+ if (j >= alloc_topSizeBlocks) {
+ out->print_cr("Possible loop in TopSizeArray chaining!\n allocBlocks = %d, usedBlocks = %d", alloc_topSizeBlocks, used_topSizeBlocks);
+ for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
+ out->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
+ }
+ }
+ }
+ out->print_cr("...done\n\n");
+ } else {
+ // insane heap state detected. Analysis data incomplete. Just throw it away.
+ discard_StatArray(out);
+ discard_TopSizeArray(out);
+ }
+ }
+
+
+ done = false;
+ while (!done && (nBlocks_free > 0)) {
+
+ printBox(ast, '=', "C O D E H E A P A N A L Y S I S (free blocks) for segment ", heapName);
+ ast->print_cr(" The aggregate step collects information about all free blocks in CodeHeap.\n"
+ " Subsequent print functions create their output based on this snapshot.\n");
+ ast->print_cr(" Free space in %s is distributed over %d free blocks.", heapName, nBlocks_free);
+ ast->print_cr(" Each free block takes " SIZE_FORMAT " bytes of C heap for statistics data, that is " SIZE_FORMAT "K in total.", sizeof(FreeBlk), (sizeof(FreeBlk)*nBlocks_free)/K);
+ STRINGSTREAM_FLUSH("\n")
+
+ //----------------------------------------
+ //-- Prepare the FreeArray of FreeBlks --
+ //----------------------------------------
+
+ //---< discard old array if size does not match >---
+ if (nBlocks_free != alloc_freeBlocks) {
+ discard_FreeArray(out);
+ }
+
+ prepare_FreeArray(out, nBlocks_free, heapName);
+ if (FreeArray == NULL) {
+ done = true;
+ continue;
+ }
+
+ //----------------------------------------
+ //-- Collect all FreeBlks in FreeArray --
+ //----------------------------------------
+
+ unsigned int ix = 0;
+ FreeBlock* cur = heap->freelist();
+
+ while (cur != NULL) {
+ if (ix < alloc_freeBlocks) { // don't index out of bounds if _freelist has more blocks than anticipated
+ FreeArray[ix].start = cur;
+ FreeArray[ix].len = (unsigned int)(cur->length()<<log2_seg_size);
+ FreeArray[ix].index = ix;
+ }
+ cur = cur->link();
+ ix++;
+ }
+ if (ix != alloc_freeBlocks) {
+ ast->print_cr("Free block count mismatch. Expected %d free blocks, but found %d.", alloc_freeBlocks, ix);
+ ast->print_cr("I will update the counter and retry data collection");
+ STRINGSTREAM_FLUSH("\n")
+ nBlocks_free = ix;
+ continue;
+ }
+ done = true;
+ }
+
+ if (!done || (nBlocks_free == 0)) {
+ if (nBlocks_free == 0) {
+ printBox(ast, '-', "no free blocks found in", heapName);
+ } else if (!done) {
+ ast->print_cr("Free block count mismatch could not be resolved.");
+ ast->print_cr("Try to run \"aggregate\" function to update counters");
+ }
+ STRINGSTREAM_FLUSH("")
+
+ //---< discard old array and update global values >---
+ discard_FreeArray(out);
+ set_HeapStatGlobals(out, heapName);
+ return;
+ }
+
+ //---< calculate and fill remaining fields >---
+ if (FreeArray != NULL) {
+ // This loop is intentionally printing directly to "out".
+ for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
+ size_t lenSum = 0;
+ FreeArray[ix].gap = (unsigned int)((address)FreeArray[ix+1].start - ((address)FreeArray[ix].start + FreeArray[ix].len));
+ for (HeapBlock *h = heap->next_block(FreeArray[ix].start); (h != NULL) && (h != FreeArray[ix+1].start); h = heap->next_block(h)) {
+ CodeBlob *cb = (CodeBlob*)(heap->find_start(h));
+ if ((cb != NULL) && !cb->is_nmethod()) {
+ FreeArray[ix].stubs_in_gap = true;
+ }
+ FreeArray[ix].n_gapBlocks++;
+ lenSum += h->length()<<log2_seg_size;
+ if (((address)h < ((address)FreeArray[ix].start+FreeArray[ix].len)) || (h >= FreeArray[ix+1].start)) {
+ out->print_cr("unsorted occupied CodeHeap block found @ %p, gap interval [%p, %p)", h, (address)FreeArray[ix].start+FreeArray[ix].len, FreeArray[ix+1].start);
+ }
+ }
+ if (lenSum != FreeArray[ix].gap) {
+ out->print_cr("Length mismatch for gap between FreeBlk[%d] and FreeBlk[%d]. Calculated: %d, accumulated: %d.", ix, ix+1, FreeArray[ix].gap, (unsigned int)lenSum);
+ }
+ }
+ }
+ set_HeapStatGlobals(out, heapName);
+
+ printBox(ast, '=', "C O D E H E A P A N A L Y S I S C O M P L E T E for segment ", heapName);
+ STRINGSTREAM_FLUSH("\n")
+}
+
+
+void CodeHeapState::print_usedSpace(outputStream* out, CodeHeap* heap) {
+ if (!initialization_complete) {
+ return;
+ }
+
+ const char* heapName = get_heapName(heap);
+ get_HeapStatGlobals(out, heapName);
+
+ if ((StatArray == NULL) || (TopSizeArray == NULL) || (used_topSizeBlocks == 0)) {
+ return;
+ }
+ STRINGSTREAM_DECL(ast, out)
+
+ {
+ printBox(ast, '=', "U S E D S P A C E S T A T I S T I C S for ", heapName);
+ ast->print_cr("Note: The Top%d list of the largest used blocks associates method names\n"
+ " and other identifying information with the block size data.\n"
+ "\n"
+ " Method names are dynamically retrieved from the code cache at print time.\n"
+ " Due to the living nature of the code cache and because the CodeCache_lock\n"
+ " is not continuously held, the displayed name might be wrong or no name\n"
+ " might be found at all. The likelihood for that to happen increases\n"
+ " over time passed between analysis and print step.\n", used_topSizeBlocks);
+ STRINGSTREAM_FLUSH_LOCKED("\n")
+ }
+
+ //----------------------------
+ //-- Print Top Used Blocks --
+ //----------------------------
+ {
+ char* low_bound = heap->low_boundary();
+
+ printBox(ast, '-', "Largest Used Blocks in ", heapName);
+ print_blobType_legend(ast);
+
+ ast->fill_to(51);
+ ast->print("%4s", "blob");
+ ast->fill_to(56);
+ ast->print("%9s", "compiler");
+ ast->fill_to(66);
+ ast->print_cr("%6s", "method");
+ ast->print_cr("%18s %13s %17s %4s %9s %5s %s", "Addr(module) ", "offset", "size", "type", " type lvl", " temp", "Name");
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ //---< print Top Ten Used Blocks >---
+ if (used_topSizeBlocks > 0) {
+ unsigned int printed_topSizeBlocks = 0;
+ for (unsigned int i = 0; i != tsbStopper; i = TopSizeArray[i].index) {
+ printed_topSizeBlocks++;
+ CodeBlob* this_blob = (CodeBlob*)(heap->find_start(TopSizeArray[i].start));
+ nmethod* nm = NULL;
+ const char* blob_name = "unnamed blob";
+ if (this_blob != NULL) {
+ blob_name = this_blob->name();
+ nm = this_blob->as_nmethod_or_null();
+ //---< blob address >---
+ ast->print("%p", this_blob);
+ ast->fill_to(19);
+ //---< blob offset from CodeHeap begin >---
+ ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
+ ast->fill_to(33);
+ } else {
+ //---< block address >---
+ ast->print("%p", TopSizeArray[i].start);
+ ast->fill_to(19);
+ //---< block offset from CodeHeap begin >---
+ ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)TopSizeArray[i].start-low_bound));
+ ast->fill_to(33);
+ }
+
+
+ //---< print size, name, and signature (for nMethods) >---
+ if ((nm != NULL) && (nm->method() != NULL)) {
+ ResourceMark rm;
+ //---< nMethod size in hex >---
+ unsigned int total_size = nm->total_size();
+ ast->print(PTR32_FORMAT, total_size);
+ ast->print("(%4ldK)", total_size/K);
+ ast->fill_to(51);
+ ast->print(" %c", blobTypeChar[TopSizeArray[i].type]);
+ //---< compiler information >---
+ ast->fill_to(56);
+ ast->print("%5s %3d", compTypeName[TopSizeArray[i].compiler], TopSizeArray[i].level);
+ //---< method temperature >---
+ ast->fill_to(67);
+ ast->print("%5d", nm->hotness_counter());
+ //---< name and signature >---
+ ast->fill_to(67+6);
+ if (nm->is_in_use()) {blob_name = nm->method()->name_and_sig_as_C_string(); }
+ if (nm->is_not_entrant()) {blob_name = nm->method()->name_and_sig_as_C_string(); }
+ if (nm->is_zombie()) {ast->print("%14s", " zombie method"); }
+ ast->print("%s", blob_name);
+ } else {
+ //---< block size in hex >---
+ ast->print(PTR32_FORMAT, (unsigned int)(TopSizeArray[i].len<<log2_seg_size));
+ ast->print("(%4ldK)", (TopSizeArray[i].len<<log2_seg_size)/K);
+ //---< no compiler information >---
+ ast->fill_to(56);
+ //---< name and signature >---
+ ast->fill_to(67+6);
+ ast->print("%s", blob_name);
+ }
+ STRINGSTREAM_FLUSH_LOCKED("\n")
+ }
+ if (used_topSizeBlocks != printed_topSizeBlocks) {
+ ast->print_cr("used blocks: %d, printed blocks: %d", used_topSizeBlocks, printed_topSizeBlocks);
+ STRINGSTREAM_FLUSH("")
+ for (unsigned int i = 0; i < alloc_topSizeBlocks; i++) {
+ ast->print_cr(" TopSizeArray[%d].index = %d, len = %d", i, TopSizeArray[i].index, TopSizeArray[i].len);
+ STRINGSTREAM_FLUSH("")
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("\n\n")
+ }
+ }
+
+ //-----------------------------
+ //-- Print Usage Histogram --
+ //-----------------------------
+
+ if (SizeDistributionArray != NULL) {
+ unsigned long total_count = 0;
+ unsigned long total_size = 0;
+ const unsigned long pctFactor = 200;
+
+ for (unsigned int i = 0; i < nSizeDistElements; i++) {
+ total_count += SizeDistributionArray[i].count;
+ total_size += SizeDistributionArray[i].lenSum;
+ }
+
+ if ((total_count > 0) && (total_size > 0)) {
+ printBox(ast, '-', "Block count histogram for ", heapName);
+ ast->print_cr("Note: The histogram indicates how many blocks (as a percentage\n"
+ " of all blocks) have a size in the given range.\n"
+ " %ld characters are printed per percentage point.\n", pctFactor/100);
+ ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
+ ast->print_cr("total number of all blocks: %7ld\n", total_count);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ ast->print_cr("[Size Range)------avg.-size-+----count-+");
+ for (unsigned int i = 0; i < nSizeDistElements; i++) {
+ if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
+ ast->print("[%5d ..%5d ): "
+ ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)
+ ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
+ );
+ } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
+ ast->print("[%5ldK..%5ldK): "
+ ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
+ ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
+ );
+ } else {
+ ast->print("[%5ldM..%5ldM): "
+ ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
+ ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
+ );
+ }
+ ast->print(" %8d | %8d |",
+ SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
+ SizeDistributionArray[i].count);
+
+ unsigned int percent = pctFactor*SizeDistributionArray[i].count/total_count;
+ for (unsigned int j = 1; j <= percent; j++) {
+ ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
+ }
+ ast->cr();
+ }
+ ast->print_cr("----------------------------+----------+\n\n");
+ STRINGSTREAM_FLUSH_LOCKED("\n")
+
+ printBox(ast, '-', "Contribution per size range to total size for ", heapName);
+ ast->print_cr("Note: The histogram indicates how much space (as a percentage of all\n"
+ " occupied space) is used by the blocks in the given size range.\n"
+ " %ld characters are printed per percentage point.\n", pctFactor/100);
+ ast->print_cr("total size of all blocks: %7ldM", (total_size<<log2_seg_size)/M);
+ ast->print_cr("total number of all blocks: %7ld\n", total_count);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ ast->print_cr("[Size Range)------avg.-size-+----count-+");
+ for (unsigned int i = 0; i < nSizeDistElements; i++) {
+ if (SizeDistributionArray[i].rangeStart<<log2_seg_size < K) {
+ ast->print("[%5d ..%5d ): "
+ ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)
+ ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)
+ );
+ } else if (SizeDistributionArray[i].rangeStart<<log2_seg_size < M) {
+ ast->print("[%5ldK..%5ldK): "
+ ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/K
+ ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/K
+ );
+ } else {
+ ast->print("[%5ldM..%5ldM): "
+ ,(SizeDistributionArray[i].rangeStart<<log2_seg_size)/M
+ ,(SizeDistributionArray[i].rangeEnd<<log2_seg_size)/M
+ );
+ }
+ ast->print(" %8d | %8d |",
+ SizeDistributionArray[i].count > 0 ? (SizeDistributionArray[i].lenSum<<log2_seg_size)/SizeDistributionArray[i].count : 0,
+ SizeDistributionArray[i].count);
+
+ unsigned int percent = pctFactor*(unsigned long)SizeDistributionArray[i].lenSum/total_size;
+ for (unsigned int j = 1; j <= percent; j++) {
+ ast->print("%c", (j%((pctFactor/100)*10) == 0) ? ('0'+j/(((unsigned int)pctFactor/100)*10)) : '*');
+ }
+ ast->cr();
+ }
+ ast->print_cr("----------------------------+----------+");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+}
+
+
+void CodeHeapState::print_freeSpace(outputStream* out, CodeHeap* heap) {
+ if (!initialization_complete) {
+ return;
+ }
+
+ const char* heapName = get_heapName(heap);
+ get_HeapStatGlobals(out, heapName);
+
+ if ((StatArray == NULL) || (FreeArray == NULL) || (alloc_granules == 0)) {
+ return;
+ }
+ STRINGSTREAM_DECL(ast, out)
+
+ {
+ printBox(ast, '=', "F R E E S P A C E S T A T I S T I C S for ", heapName);
+ ast->print_cr("Note: in this context, a gap is the occupied space between two free blocks.\n"
+ " Those gaps are of interest if there is a chance that they become\n"
+ " unoccupied, e.g. by class unloading. Then, the two adjacent free\n"
+ " blocks, together with the now unoccupied space, form a new, large\n"
+ " free block.");
+ STRINGSTREAM_FLUSH_LOCKED("\n")
+ }
+
+ {
+ printBox(ast, '-', "List of all Free Blocks in ", heapName);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ unsigned int ix = 0;
+ for (ix = 0; ix < alloc_freeBlocks-1; ix++) {
+ ast->print("%p: Len[%4d] = " HEX32_FORMAT ",", FreeArray[ix].start, ix, FreeArray[ix].len);
+ ast->fill_to(38);
+ ast->print("Gap[%4d..%4d]: " HEX32_FORMAT " bytes,", ix, ix+1, FreeArray[ix].gap);
+ ast->fill_to(71);
+ ast->print("block count: %6d", FreeArray[ix].n_gapBlocks);
+ if (FreeArray[ix].stubs_in_gap) {
+ ast->print(" !! permanent gap, contains stubs and/or blobs !!");
+ }
+ STRINGSTREAM_FLUSH_LOCKED("\n")
+ }
+ ast->print_cr("%p: Len[%4d] = " HEX32_FORMAT, FreeArray[ix].start, ix, FreeArray[ix].len);
+ STRINGSTREAM_FLUSH_LOCKED("\n\n")
+ }
+
+
+ //-----------------------------------------
+ //-- Find and Print Top Ten Free Blocks --
+ //-----------------------------------------
+
+ //---< find Top Ten Free Blocks >---
+ const unsigned int nTop = 10;
+ unsigned int currMax10 = 0;
+ struct FreeBlk* FreeTopTen[nTop];
+ memset(FreeTopTen, 0, sizeof(FreeTopTen));
+
+ for (unsigned int ix = 0; ix < alloc_freeBlocks; ix++) {
+ if (FreeArray[ix].len > currMax10) { // larger than the ten largest found so far
+ unsigned int currSize = FreeArray[ix].len;
+
+ unsigned int iy;
+ for (iy = 0; iy < nTop && FreeTopTen[iy] != NULL; iy++) {
+ if (FreeTopTen[iy]->len < currSize) {
+ for (unsigned int iz = nTop-1; iz > iy; iz--) { // make room to insert new free block
+ FreeTopTen[iz] = FreeTopTen[iz-1];
+ }
+ FreeTopTen[iy] = &FreeArray[ix]; // insert new free block
+ if (FreeTopTen[nTop-1] != NULL) {
+ currMax10 = FreeTopTen[nTop-1]->len;
+ }
+ break; // done with this, check next free block
+ }
+ }
+ if (iy >= nTop) {
+ ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
+ currSize, currMax10);
+ continue;
+ }
+ if (FreeTopTen[iy] == NULL) {
+ FreeTopTen[iy] = &FreeArray[ix];
+ if (iy == (nTop-1)) {
+ currMax10 = currSize;
+ }
+ }
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ {
+ printBox(ast, '-', "Top Ten Free Blocks in ", heapName);
+
+ //---< print Top Ten Free Blocks >---
+ for (unsigned int iy = 0; (iy < nTop) && (FreeTopTen[iy] != NULL); iy++) {
+ ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTen[iy]->index, FreeTopTen[iy]->len);
+ ast->fill_to(39);
+ if (FreeTopTen[iy]->index == (alloc_freeBlocks-1)) {
+ ast->print("last free block in list.");
+ } else {
+ ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTen[iy]->gap);
+ ast->fill_to(63);
+ ast->print("#blocks (in gap) %d", FreeTopTen[iy]->n_gapBlocks);
+ }
+ ast->cr();
+ }
+ STRINGSTREAM_FLUSH_LOCKED("\n\n")
+ }
+
+
+ //--------------------------------------------------------
+ //-- Find and Print Top Ten Free-Occupied-Free Triples --
+ //--------------------------------------------------------
+
+ //---< find and print Top Ten Triples (Free-Occupied-Free) >---
+ currMax10 = 0;
+ struct FreeBlk *FreeTopTenTriple[nTop];
+ memset(FreeTopTenTriple, 0, sizeof(FreeTopTenTriple));
+
+ for (unsigned int ix = 0; ix < alloc_freeBlocks-1; ix++) {
+ // If there are stubs in the gap, this gap will never become completely free.
+ // The triple will thus never merge to one free block.
+ unsigned int lenTriple = FreeArray[ix].len + (FreeArray[ix].stubs_in_gap ? 0 : FreeArray[ix].gap + FreeArray[ix+1].len);
+ FreeArray[ix].len = lenTriple;
+ if (lenTriple > currMax10) { // larger than the ten largest found so far
+
+ unsigned int iy;
+ for (iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
+ if (FreeTopTenTriple[iy]->len < lenTriple) {
+ for (unsigned int iz = nTop-1; iz > iy; iz--) {
+ FreeTopTenTriple[iz] = FreeTopTenTriple[iz-1];
+ }
+ FreeTopTenTriple[iy] = &FreeArray[ix];
+ if (FreeTopTenTriple[nTop-1] != NULL) {
+ currMax10 = FreeTopTenTriple[nTop-1]->len;
+ }
+ break;
+ }
+ }
+ if (iy == nTop) {
+ ast->print_cr("Internal logic error. New Max10 = %d detected, but could not be merged. Old Max10 = %d",
+ lenTriple, currMax10);
+ continue;
+ }
+ if (FreeTopTenTriple[iy] == NULL) {
+ FreeTopTenTriple[iy] = &FreeArray[ix];
+ if (iy == (nTop-1)) {
+ currMax10 = lenTriple;
+ }
+ }
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ {
+ printBox(ast, '-', "Top Ten Free-Occupied-Free Triples in ", heapName);
+ ast->print_cr(" Use this information to judge how likely it is that a large(r) free block\n"
+ " might get created by code cache sweeping.\n"
+ " If all the occupied blocks can be swept, the three free blocks will be\n"
+ " merged into one (much larger) free block. That would reduce free space\n"
+ " fragmentation.\n");
+
+ //---< print Top Ten Free-Occupied-Free Triples >---
+ for (unsigned int iy = 0; (iy < nTop) && (FreeTopTenTriple[iy] != NULL); iy++) {
+ ast->print("Pos %3d: Block %4d - size " HEX32_FORMAT ",", iy+1, FreeTopTenTriple[iy]->index, FreeTopTenTriple[iy]->len);
+ ast->fill_to(39);
+ ast->print("Gap (to next) " HEX32_FORMAT ",", FreeTopTenTriple[iy]->gap);
+ ast->fill_to(63);
+ ast->print("#blocks (in gap) %d", FreeTopTenTriple[iy]->n_gapBlocks);
+ ast->cr();
+ }
+ STRINGSTREAM_FLUSH_LOCKED("\n\n")
+ }
+}
+
+
+void CodeHeapState::print_count(outputStream* out, CodeHeap* heap) {
+ if (!initialization_complete) {
+ return;
+ }
+
+ const char* heapName = get_heapName(heap);
+ get_HeapStatGlobals(out, heapName);
+
+ if ((StatArray == NULL) || (alloc_granules == 0)) {
+ return;
+ }
+ STRINGSTREAM_DECL(ast, out)
+
+ unsigned int granules_per_line = 32;
+ char* low_bound = heap->low_boundary();
+
+ {
+ printBox(ast, '=', "B L O C K C O U N T S for ", heapName);
+ ast->print_cr(" Each granule contains an individual number of heap blocks. Large blocks\n"
+ " may span multiple granules and are counted for each granule they touch.\n");
+ if (segment_granules) {
+ ast->print_cr(" You have selected granule size to be as small as segment size.\n"
+ " As a result, each granule contains exactly one block (or a part of one block)\n"
+ " or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
+ " Occupied granules show their BlobType character, see legend.\n");
+ print_blobType_legend(ast);
+ }
+ STRINGSTREAM_FLUSH_LOCKED("")
+ }
+
+ {
+ if (segment_granules) {
+ printBox(ast, '-', "Total (all types) count for granule size == segment size", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ print_blobType_single(ast, StatArray[ix].type);
+ }
+ } else {
+ printBox(ast, '-', "Total (all tiers) count, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ unsigned int count = StatArray[ix].t1_count + StatArray[ix].t2_count + StatArray[ix].tx_count
+ + StatArray[ix].stub_count + StatArray[ix].dead_count;
+ print_count_single(ast, count);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ }
+
+ {
+ if (nBlocks_t1 > 0) {
+ printBox(ast, '-', "Tier1 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ if (segment_granules && StatArray[ix].t1_count > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_count_single(ast, StatArray[ix].t1_count);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No Tier1 nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (nBlocks_t2 > 0) {
+ printBox(ast, '-', "Tier2 nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ if (segment_granules && StatArray[ix].t2_count > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_count_single(ast, StatArray[ix].t2_count);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No Tier2 nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (nBlocks_alive > 0) {
+ printBox(ast, '-', "not_used/not_entrant nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ if (segment_granules && StatArray[ix].tx_count > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_count_single(ast, StatArray[ix].tx_count);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No not_used/not_entrant nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (nBlocks_stub > 0) {
+ printBox(ast, '-', "Stub & Blob count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ if (segment_granules && StatArray[ix].stub_count > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_count_single(ast, StatArray[ix].stub_count);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No Stubs and Blobs found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (nBlocks_dead > 0) {
+ printBox(ast, '-', "Dead nMethod count only, 0x1..0xf. '*' indicates >= 16 blocks, ' ' indicates empty", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ if (segment_granules && StatArray[ix].dead_count > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_count_single(ast, StatArray[ix].dead_count);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No dead nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (!segment_granules) { // Prevent totally redundant printouts
+ printBox(ast, '-', "Count by tier (combined, no dead blocks): <#t1>:<#t2>:<#s>, 0x0..0xf. '*' indicates >= 16 blocks", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 24;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+
+ print_count_single(ast, StatArray[ix].t1_count);
+ ast->print(":");
+ print_count_single(ast, StatArray[ix].t2_count);
+ ast->print(":");
+ if (segment_granules && StatArray[ix].stub_count > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_count_single(ast, StatArray[ix].stub_count);
+ }
+ ast->print(" ");
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ }
+ }
+}
+
+
+void CodeHeapState::print_space(outputStream* out, CodeHeap* heap) {
+ if (!initialization_complete) {
+ return;
+ }
+
+ const char* heapName = get_heapName(heap);
+ get_HeapStatGlobals(out, heapName);
+
+ if ((StatArray == NULL) || (alloc_granules == 0)) {
+ return;
+ }
+ STRINGSTREAM_DECL(ast, out)
+
+ unsigned int granules_per_line = 32;
+ char* low_bound = heap->low_boundary();
+
+ {
+ printBox(ast, '=', "S P A C E U S A G E & F R A G M E N T A T I O N for ", heapName);
+ ast->print_cr(" The heap space covered by one granule is occupied to a various extend.\n"
+ " The granule occupancy is displayed by one decimal digit per granule.\n");
+ if (segment_granules) {
+ ast->print_cr(" You have selected granule size to be as small as segment size.\n"
+ " As a result, each granule contains exactly one block (or a part of one block)\n"
+ " or is displayed as empty (' ') if it's BlobType does not match the selection.\n"
+ " Occupied granules show their BlobType character, see legend.\n");
+ print_blobType_legend(ast);
+ } else {
+ ast->print_cr(" These digits represent a fill percentage range (see legend).\n");
+ print_space_legend(ast);
+ }
+ STRINGSTREAM_FLUSH_LOCKED("")
+ }
+
+ {
+ if (segment_granules) {
+ printBox(ast, '-', "Total (all types) space consumption for granule size == segment size", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ print_blobType_single(ast, StatArray[ix].type);
+ }
+ } else {
+ printBox(ast, '-', "Total (all types) space consumption. ' ' indicates empty, '*' indicates full.", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ unsigned int space = StatArray[ix].t1_space + StatArray[ix].t2_space + StatArray[ix].tx_space
+ + StatArray[ix].stub_space + StatArray[ix].dead_space;
+ print_space_single(ast, space);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ }
+
+ {
+ if (nBlocks_t1 > 0) {
+ printBox(ast, '-', "Tier1 space consumption. ' ' indicates empty, '*' indicates full", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ if (segment_granules && StatArray[ix].t1_space > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_space_single(ast, StatArray[ix].t1_space);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No Tier1 nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (nBlocks_t2 > 0) {
+ printBox(ast, '-', "Tier2 space consumption. ' ' indicates empty, '*' indicates full", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ if (segment_granules && StatArray[ix].t2_space > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_space_single(ast, StatArray[ix].t2_space);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No Tier2 nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (nBlocks_alive > 0) {
+ printBox(ast, '-', "not_used/not_entrant space consumption. ' ' indicates empty, '*' indicates full", NULL);
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ if (segment_granules && StatArray[ix].tx_space > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_space_single(ast, StatArray[ix].tx_space);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No Tier2 nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (nBlocks_stub > 0) {
+ printBox(ast, '-', "Stub and Blob space consumption. ' ' indicates empty, '*' indicates full", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ if (segment_granules && StatArray[ix].stub_space > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_space_single(ast, StatArray[ix].stub_space);
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No Stubs and Blobs found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (nBlocks_dead > 0) {
+ printBox(ast, '-', "Dead space consumption. ' ' indicates empty, '*' indicates full", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ print_space_single(ast, StatArray[ix].dead_space);
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No dead nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (!segment_granules) { // Prevent totally redundant printouts
+ printBox(ast, '-', "Space consumption by tier (combined): <t1%>:<t2%>:<s%>. ' ' indicates empty, '*' indicates full", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 24;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+
+ if (segment_granules && StatArray[ix].t1_space > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_space_single(ast, StatArray[ix].t1_space);
+ }
+ ast->print(":");
+ if (segment_granules && StatArray[ix].t2_space > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_space_single(ast, StatArray[ix].t2_space);
+ }
+ ast->print(":");
+ if (segment_granules && StatArray[ix].stub_space > 0) {
+ print_blobType_single(ast, StatArray[ix].type);
+ } else {
+ print_space_single(ast, StatArray[ix].stub_space);
+ }
+ ast->print(" ");
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ }
+ }
+}
+
+void CodeHeapState::print_age(outputStream* out, CodeHeap* heap) {
+ if (!initialization_complete) {
+ return;
+ }
+
+ const char* heapName = get_heapName(heap);
+ get_HeapStatGlobals(out, heapName);
+
+ if ((StatArray == NULL) || (alloc_granules == 0)) {
+ return;
+ }
+ STRINGSTREAM_DECL(ast, out)
+
+ unsigned int granules_per_line = 32;
+ char* low_bound = heap->low_boundary();
+
+ {
+ printBox(ast, '=', "M E T H O D A G E by CompileID for ", heapName);
+ ast->print_cr(" The age of a compiled method in the CodeHeap is not available as a\n"
+ " time stamp. Instead, a relative age is deducted from the method's compilation ID.\n"
+ " Age information is available for tier1 and tier2 methods only. There is no\n"
+ " age information for stubs and blobs, because they have no compilation ID assigned.\n"
+ " Information for the youngest method (highest ID) in the granule is printed.\n"
+ " Refer to the legend to learn how method age is mapped to the displayed digit.");
+ print_age_legend(ast);
+ STRINGSTREAM_FLUSH_LOCKED("")
+ }
+
+ {
+ printBox(ast, '-', "Age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ unsigned int age1 = StatArray[ix].t1_age;
+ unsigned int age2 = StatArray[ix].t2_age;
+ unsigned int agex = StatArray[ix].tx_age;
+ unsigned int age = age1 > age2 ? age1 : age2;
+ age = age > agex ? age : agex;
+ print_age_single(ast, age);
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ }
+
+ {
+ if (nBlocks_t1 > 0) {
+ printBox(ast, '-', "Tier1 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ print_age_single(ast, StatArray[ix].t1_age);
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No Tier1 nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (nBlocks_t2 > 0) {
+ printBox(ast, '-', "Tier2 age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ print_age_single(ast, StatArray[ix].t2_age);
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No Tier2 nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (nBlocks_alive > 0) {
+ printBox(ast, '-', "not_used/not_entrant age distribution. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 128;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ print_age_single(ast, StatArray[ix].tx_age);
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ } else {
+ ast->print("No Tier2 nMethods found in CodeHeap.");
+ STRINGSTREAM_FLUSH_LOCKED("\n\n\n")
+ }
+ }
+
+ {
+ if (!segment_granules) { // Prevent totally redundant printouts
+ printBox(ast, '-', "age distribution by tier <a1>:<a2>. '0' indicates youngest 1/256, '8': oldest half, ' ': no age information", NULL);
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ granules_per_line = 32;
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ print_line_delim(out, ast, low_bound, ix, granules_per_line);
+ print_age_single(ast, StatArray[ix].t1_age);
+ ast->print(":");
+ print_age_single(ast, StatArray[ix].t2_age);
+ ast->print(" ");
+ }
+ STRINGSTREAM_FLUSH_LOCKED("|\n\n\n")
+ }
+ }
+}
+
+
+void CodeHeapState::print_names(outputStream* out, CodeHeap* heap) {
+ if (!initialization_complete) {
+ return;
+ }
+
+ const char* heapName = get_heapName(heap);
+ get_HeapStatGlobals(out, heapName);
+
+ if ((StatArray == NULL) || (alloc_granules == 0)) {
+ return;
+ }
+ STRINGSTREAM_DECL(ast, out)
+
+ unsigned int granules_per_line = 128;
+ char* low_bound = heap->low_boundary();
+ CodeBlob* last_blob = NULL;
+ bool name_in_addr_range = true;
+
+ //---< print at least 128K per block >---
+ if (granules_per_line*granule_size < 128*K) {
+ granules_per_line = (unsigned int)((128*K)/granule_size);
+ }
+
+ printBox(ast, '=', "M E T H O D N A M E S for ", heapName);
+ ast->print_cr(" Method names are dynamically retrieved from the code cache at print time.\n"
+ " Due to the living nature of the code heap and because the CodeCache_lock\n"
+ " is not continuously held, the displayed name might be wrong or no name\n"
+ " might be found at all. The likelihood for that to happen increases\n"
+ " over time passed between analysis and print step.\n");
+ STRINGSTREAM_FLUSH_LOCKED("")
+
+ for (unsigned int ix = 0; ix < alloc_granules; ix++) {
+ //---< print a new blob on a new line >---
+ if (ix%granules_per_line == 0) {
+ if (!name_in_addr_range) {
+ ast->print_cr("No methods, blobs, or stubs found in this address range");
+ }
+ name_in_addr_range = false;
+
+ ast->cr();
+ ast->print_cr("--------------------------------------------------------------------");
+ ast->print_cr("Address range [%p,%p), " SIZE_FORMAT "k", low_bound+ix*granule_size, low_bound+(ix+granules_per_line)*granule_size, granules_per_line*granule_size/(size_t)K);
+ ast->print_cr("--------------------------------------------------------------------");
+ STRINGSTREAM_FLUSH_LOCKED("")
+ }
+ for (unsigned int is = 0; is < granule_size; is+=(unsigned int)seg_size) {
+ CodeBlob* this_blob = (CodeBlob *)(heap->find_start(low_bound+ix*granule_size+is));
+ if ((this_blob != NULL) && (this_blob != last_blob)) {
+ if (!name_in_addr_range) {
+ name_in_addr_range = true;
+ ast->fill_to(51);
+ ast->print("%9s", "compiler");
+ ast->fill_to(61);
+ ast->print_cr("%6s", "method");
+ ast->print_cr("%18s %13s %17s %9s %5s %18s %s", "Addr(module) ", "offset", "size", " type lvl", " temp", "blobType ", "Name");
+ }
+
+ //---< Print blobTypeName as recorded during analysis >---
+ ast->print("%p", this_blob);
+ ast->fill_to(19);
+ ast->print("(+" PTR32_FORMAT ")", (unsigned int)((char*)this_blob-low_bound));
+ ast->fill_to(33);
+
+ //---< print size, name, and signature (for nMethods) >---
+ const char *blob_name = this_blob->name();
+ nmethod* nm = this_blob->as_nmethod_or_null();
+ blobType cbType = noType;
+ if (segment_granules) {
+ cbType = (blobType)StatArray[ix].type;
+ } else {
+ cbType = get_cbType(this_blob);
+ }
+ if ((nm != NULL) && (nm->method() != NULL)) {
+ ResourceMark rm;
+ //---< nMethod size in hex >---
+ unsigned int total_size = nm->total_size();
+ ast->print(PTR32_FORMAT, total_size);
+ ast->print("(%4ldK)", total_size/K);
+ //---< compiler information >---
+ ast->fill_to(51);
+ ast->print("%5s %3d", compTypeName[StatArray[ix].compiler], StatArray[ix].level);
+ //---< method temperature >---
+ ast->fill_to(62);
+ ast->print("%5d", nm->hotness_counter());
+ //---< name and signature >---
+ ast->fill_to(62+6);
+ ast->print("%s", blobTypeName[cbType]);
+ ast->fill_to(82+6);
+ if (nm->is_in_use()) {
+ blob_name = nm->method()->name_and_sig_as_C_string();
+ }
+ if (nm->is_not_entrant()) {
+ blob_name = nm->method()->name_and_sig_as_C_string();
+ }
+ if (nm->is_zombie()) {
+ ast->print("%14s", " zombie method");
+ }
+ ast->print("%s", blob_name);
+ } else {
+ ast->fill_to(62+6);
+ ast->print("%s", blobTypeName[cbType]);
+ ast->fill_to(82+6);
+ ast->print("%s", blob_name);
+ }
+ STRINGSTREAM_FLUSH_LOCKED("\n")
+ last_blob = this_blob;
+ }
+ }
+ }
+ STRINGSTREAM_FLUSH_LOCKED("\n\n")
+}
+
+
+void CodeHeapState::printBox(outputStream* ast, const char border, const char* text1, const char* text2) {
+ unsigned int lineLen = 1 + 2 + 2 + 1;
+ char edge, frame;
+
+ if (text1 != NULL) {
+ lineLen += (unsigned int)strlen(text1); // text1 is much shorter than MAX_INT chars.
+ }
+ if (text2 != NULL) {
+ lineLen += (unsigned int)strlen(text2); // text2 is much shorter than MAX_INT chars.
+ }
+ if (border == '-') {
+ edge = '+';
+ frame = '|';
+ } else {
+ edge = border;
+ frame = border;
+ }
+
+ ast->print("%c", edge);
+ for (unsigned int i = 0; i < lineLen-2; i++) {
+ ast->print("%c", border);
+ }
+ ast->print_cr("%c", edge);
+
+ ast->print("%c ", frame);
+ if (text1 != NULL) {
+ ast->print("%s", text1);
+ }
+ if (text2 != NULL) {
+ ast->print("%s", text2);
+ }
+ ast->print_cr(" %c", frame);
+
+ ast->print("%c", edge);
+ for (unsigned int i = 0; i < lineLen-2; i++) {
+ ast->print("%c", border);
+ }
+ ast->print_cr("%c", edge);
+}
+
+void CodeHeapState::print_blobType_legend(outputStream* out) {
+ out->cr();
+ printBox(out, '-', "Block types used in the following CodeHeap dump", NULL);
+ for (int type = noType; type < lastType; type += 1) {
+ out->print_cr(" %c - %s", blobTypeChar[type], blobTypeName[type]);
+ }
+ out->print_cr(" -----------------------------------------------------");
+ out->cr();
+}
+
+void CodeHeapState::print_space_legend(outputStream* out) {
+ unsigned int indicator = 0;
+ unsigned int age_range = 256;
+ unsigned int range_beg = latest_compilation_id;
+ out->cr();
+ printBox(out, '-', "Space ranges, based on granule occupancy", NULL);
+ out->print_cr(" - 0%% == occupancy");
+ for (int i=0; i<=9; i++) {
+ out->print_cr(" %d - %3d%% < occupancy < %3d%%", i, 10*i, 10*(i+1));
+ }
+ out->print_cr(" * - 100%% == occupancy");
+ out->print_cr(" ----------------------------------------------");
+ out->cr();
+}
+
+void CodeHeapState::print_age_legend(outputStream* out) {
+ unsigned int indicator = 0;
+ unsigned int age_range = 256;
+ unsigned int range_beg = latest_compilation_id;
+ out->cr();
+ printBox(out, '-', "Age ranges, based on compilation id", NULL);
+ while (age_range > 0) {
+ out->print_cr(" %d - %6d to %6d", indicator, range_beg, latest_compilation_id - latest_compilation_id/age_range);
+ range_beg = latest_compilation_id - latest_compilation_id/age_range;
+ age_range /= 2;
+ indicator += 1;
+ }
+ out->print_cr(" -----------------------------------------");
+ out->cr();
+}
+
+void CodeHeapState::print_blobType_single(outputStream* out, u2 /* blobType */ type) {
+ out->print("%c", blobTypeChar[type]);
+}
+
+void CodeHeapState::print_count_single(outputStream* out, unsigned short count) {
+ if (count >= 16) out->print("*");
+ else if (count > 0) out->print("%1.1x", count);
+ else out->print(" ");
+}
+
+void CodeHeapState::print_space_single(outputStream* out, unsigned short space) {
+ size_t space_in_bytes = ((unsigned int)space)<<log2_seg_size;
+ char fraction = (space == 0) ? ' ' : (space_in_bytes >= granule_size-1) ? '*' : char('0'+10*space_in_bytes/granule_size);
+ out->print("%c", fraction);
+}
+
+void CodeHeapState::print_age_single(outputStream* out, unsigned int age) {
+ unsigned int indicator = 0;
+ unsigned int age_range = 256;
+ if (age > 0) {
+ while ((age_range > 0) && (latest_compilation_id-age > latest_compilation_id/age_range)) {
+ age_range /= 2;
+ indicator += 1;
+ }
+ out->print("%c", char('0'+indicator));
+ } else {
+ out->print(" ");
+ }
+}
+
+void CodeHeapState::print_line_delim(outputStream* out, outputStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
+ if (ix % gpl == 0) {
+ if (ix > 0) {
+ ast->print("|");
+ }
+ ast->cr();
+ assert(out == ast, "must use the same stream!");
+
+ ast->print("%p", low_bound + ix*granule_size);
+ ast->fill_to(19);
+ ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
+ }
+}
+
+void CodeHeapState::print_line_delim(outputStream* out, bufferedStream* ast, char* low_bound, unsigned int ix, unsigned int gpl) {
+ assert(out != ast, "must not use the same stream!");
+ if (ix % gpl == 0) {
+ if (ix > 0) {
+ ast->print("|");
+ }
+ ast->cr();
+
+ { // can't use STRINGSTREAM_FLUSH_LOCKED("") here.
+ ttyLocker ttyl;
+ out->print("%s", ast->as_string());
+ ast->reset();
+ }
+
+ ast->print("%p", low_bound + ix*granule_size);
+ ast->fill_to(19);
+ ast->print("(+" PTR32_FORMAT "): |", (unsigned int)(ix*granule_size));
+ }
+}
+
+CodeHeapState::blobType CodeHeapState::get_cbType(CodeBlob* cb) {
+ if (cb != NULL ) {
+ if (cb->is_runtime_stub()) return runtimeStub;
+ if (cb->is_deoptimization_stub()) return deoptimizationStub;
+ if (cb->is_uncommon_trap_stub()) return uncommonTrapStub;
+ if (cb->is_exception_stub()) return exceptionStub;
+ if (cb->is_safepoint_stub()) return safepointStub;
+ if (cb->is_adapter_blob()) return adapterBlob;
+ if (cb->is_method_handles_adapter_blob()) return mh_adapterBlob;
+ if (cb->is_buffer_blob()) return bufferBlob;
+
+ if (cb->is_nmethod() ) {
+ if (((nmethod*)cb)->is_in_use()) return nMethod_inuse;
+ if (((nmethod*)cb)->is_alive() && !(((nmethod*)cb)->is_not_entrant())) return nMethod_notused;
+ if (((nmethod*)cb)->is_alive()) return nMethod_alive;
+ if (((nmethod*)cb)->is_unloaded()) return nMethod_unloaded;
+ if (((nmethod*)cb)->is_zombie()) return nMethod_dead;
+ tty->print_cr("unhandled nmethod state");
+ return nMethod_dead;
+ }
+ }
+ return noType;
+}