--- a/src/hotspot/share/utilities/bitMap.hpp Fri Nov 02 14:00:29 2018 -0700
+++ b/src/hotspot/share/utilities/bitMap.hpp Fri Nov 02 17:51:21 2018 -0400
@@ -61,6 +61,17 @@
bm_word_t* _map; // First word in bitmap
idx_t _size; // Size of bitmap (in bits)
+ // Helper for get_next_{zero,one}_bit variants.
+ // - flip designates whether searching for 1s or 0s. Must be one of
+ // find_{zeros,ones}_flip.
+ // - aligned_right is true if r_index is a priori on a bm_word_t boundary.
+ template<bm_word_t flip, bool aligned_right>
+ inline idx_t get_next_bit_impl(idx_t l_index, idx_t r_index) const;
+
+ // Values for get_next_bit_impl flip parameter.
+ static const bm_word_t find_ones_flip = 0;
+ static const bm_word_t find_zeros_flip = ~(bm_word_t)0;
+
protected:
// Return the position of bit within the word that contains it (e.g., if
// bitmap words are 32 bits, return a number 0 <= n <= 31).
--- a/src/hotspot/share/utilities/bitMap.inline.hpp Fri Nov 02 14:00:29 2018 -0700
+++ b/src/hotspot/share/utilities/bitMap.inline.hpp Fri Nov 02 17:51:21 2018 -0400
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -27,6 +27,7 @@
#include "runtime/atomic.hpp"
#include "utilities/bitMap.hpp"
+#include "utilities/count_trailing_zeros.hpp"
inline void BitMap::set_bit(idx_t bit) {
verify_index(bit);
@@ -141,152 +142,84 @@
}
}
+template<BitMap::bm_word_t flip, bool aligned_right>
+inline BitMap::idx_t BitMap::get_next_bit_impl(idx_t l_index, idx_t r_index) const {
+ STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip);
+ verify_range(l_index, r_index);
+ assert(!aligned_right || is_word_aligned(r_index), "r_index not aligned");
+
+ // The first word often contains an interesting bit, either due to
+ // density or because of features of the calling algorithm. So it's
+ // important to examine that first word with a minimum of fuss,
+ // minimizing setup time for later words that will be wasted if the
+ // first word is indeed interesting.
+
+ // The benefit from aligned_right being true is relatively small.
+ // It saves a couple instructions in the setup for the word search
+ // loop. It also eliminates the range check on the final result.
+ // However, callers often have a comparison with r_index, and
+ // inlining often allows the two comparisons to be combined; it is
+ // important when !aligned_right that return paths either return
+ // r_index or a value dominated by a comparison with r_index.
+ // aligned_right is still helpful when the caller doesn't have a
+ // range check because features of the calling algorithm guarantee
+ // an interesting bit will be present.
+
+ if (l_index < r_index) {
+ // Get the word containing l_index, and shift out low bits.
+ idx_t index = word_index(l_index);
+ bm_word_t cword = (map(index) ^ flip) >> bit_in_word(l_index);
+ if ((cword & 1) != 0) {
+ // The first bit is similarly often interesting. When it matters
+ // (density or features of the calling algorithm make it likely
+ // the first bit is set), going straight to the next clause compares
+ // poorly with doing this check first; count_trailing_zeros can be
+ // relatively expensive, plus there is the additional range check.
+ // But when the first bit isn't set, the cost of having tested for
+ // it is relatively small compared to the rest of the search.
+ return l_index;
+ } else if (cword != 0) {
+ // Flipped and shifted first word is non-zero.
+ idx_t result = l_index + count_trailing_zeros(cword);
+ if (aligned_right || (result < r_index)) return result;
+ // Result is beyond range bound; return r_index.
+ } else {
+ // Flipped and shifted first word is zero. Word search through
+ // aligned up r_index for a non-zero flipped word.
+ idx_t limit = aligned_right
+ ? word_index(r_index)
+ : (word_index(r_index - 1) + 1); // Align up, knowing r_index > 0.
+ while (++index < limit) {
+ cword = map(index) ^ flip;
+ if (cword != 0) {
+ idx_t result = bit_index(index) + count_trailing_zeros(cword);
+ if (aligned_right || (result < r_index)) return result;
+ // Result is beyond range bound; return r_index.
+ assert((index + 1) == limit, "invariant");
+ break;
+ }
+ }
+ // No bits in range; return r_index.
+ }
+ }
+ return r_index;
+}
+
inline BitMap::idx_t
BitMap::get_next_one_offset(idx_t l_offset, idx_t r_offset) const {
- assert(l_offset <= size(), "BitMap index out of bounds");
- assert(r_offset <= size(), "BitMap index out of bounds");
- assert(l_offset <= r_offset, "l_offset > r_offset ?");
-
- if (l_offset == r_offset) {
- return l_offset;
- }
- idx_t index = word_index(l_offset);
- idx_t r_index = word_index(r_offset-1) + 1;
- idx_t res_offset = l_offset;
-
- // check bits including and to the _left_ of offset's position
- idx_t pos = bit_in_word(res_offset);
- bm_word_t res = map(index) >> pos;
- if (res != 0) {
- // find the position of the 1-bit
- for (; !(res & 1); res_offset++) {
- res = res >> 1;
- }
-
-#ifdef ASSERT
- // In the following assert, if r_offset is not bitamp word aligned,
- // checking that res_offset is strictly less than r_offset is too
- // strong and will trip the assert.
- //
- // Consider the case where l_offset is bit 15 and r_offset is bit 17
- // of the same map word, and where bits [15:16:17:18] == [00:00:00:01].
- // All the bits in the range [l_offset:r_offset) are 0.
- // The loop that calculates res_offset, above, would yield the offset
- // of bit 18 because it's in the same map word as l_offset and there
- // is a set bit in that map word above l_offset (i.e. res != NoBits).
- //
- // In this case, however, we can assert is that res_offset is strictly
- // less than size() since we know that there is at least one set bit
- // at an offset above, but in the same map word as, r_offset.
- // Otherwise, if r_offset is word aligned then it will not be in the
- // same map word as l_offset (unless it equals l_offset). So either
- // there won't be a set bit between l_offset and the end of it's map
- // word (i.e. res == NoBits), or res_offset will be less than r_offset.
-
- idx_t limit = is_word_aligned(r_offset) ? r_offset : size();
- assert(res_offset >= l_offset && res_offset < limit, "just checking");
-#endif // ASSERT
- return MIN2(res_offset, r_offset);
- }
- // skip over all word length 0-bit runs
- for (index++; index < r_index; index++) {
- res = map(index);
- if (res != 0) {
- // found a 1, return the offset
- for (res_offset = bit_index(index); !(res & 1); res_offset++) {
- res = res >> 1;
- }
- assert(res & 1, "tautology; see loop condition");
- assert(res_offset >= l_offset, "just checking");
- return MIN2(res_offset, r_offset);
- }
- }
- return r_offset;
+ return get_next_bit_impl<find_ones_flip, false>(l_offset, r_offset);
}
inline BitMap::idx_t
BitMap::get_next_zero_offset(idx_t l_offset, idx_t r_offset) const {
- assert(l_offset <= size(), "BitMap index out of bounds");
- assert(r_offset <= size(), "BitMap index out of bounds");
- assert(l_offset <= r_offset, "l_offset > r_offset ?");
-
- if (l_offset == r_offset) {
- return l_offset;
- }
- idx_t index = word_index(l_offset);
- idx_t r_index = word_index(r_offset-1) + 1;
- idx_t res_offset = l_offset;
-
- // check bits including and to the _left_ of offset's position
- idx_t pos = bit_in_word(res_offset);
- bm_word_t res = ~map(index) >> pos; // flip bits and shift for l_offset
-
- if (res != 0) {
- // find the position of the 1-bit
- for (; !(res & 1); res_offset++) {
- res = res >> 1;
- }
- assert(res_offset >= l_offset, "just checking");
- return MIN2(res_offset, r_offset);
- }
- // skip over all word length 1-bit runs
- for (index++; index < r_index; index++) {
- res = map(index);
- if (res != ~(bm_word_t)0) {
- // found a 0, return the offset
- for (res_offset = index << LogBitsPerWord; res & 1;
- res_offset++) {
- res = res >> 1;
- }
- assert(!(res & 1), "tautology; see loop condition");
- assert(res_offset >= l_offset, "just checking");
- return MIN2(res_offset, r_offset);
- }
- }
- return r_offset;
+ return get_next_bit_impl<find_zeros_flip, false>(l_offset, r_offset);
}
inline BitMap::idx_t
-BitMap::get_next_one_offset_aligned_right(idx_t l_offset, idx_t r_offset) const
-{
- verify_range(l_offset, r_offset);
- assert(bit_in_word(r_offset) == 0, "r_offset not word-aligned");
-
- if (l_offset == r_offset) {
- return l_offset;
- }
- idx_t index = word_index(l_offset);
- idx_t r_index = word_index(r_offset);
- idx_t res_offset = l_offset;
-
- // check bits including and to the _left_ of offset's position
- bm_word_t res = map(index) >> bit_in_word(res_offset);
- if (res != 0) {
- // find the position of the 1-bit
- for (; !(res & 1); res_offset++) {
- res = res >> 1;
- }
- assert(res_offset >= l_offset &&
- res_offset < r_offset, "just checking");
- return res_offset;
- }
- // skip over all word length 0-bit runs
- for (index++; index < r_index; index++) {
- res = map(index);
- if (res != 0) {
- // found a 1, return the offset
- for (res_offset = bit_index(index); !(res & 1); res_offset++) {
- res = res >> 1;
- }
- assert(res & 1, "tautology; see loop condition");
- assert(res_offset >= l_offset && res_offset < r_offset, "just checking");
- return res_offset;
- }
- }
- return r_offset;
+BitMap::get_next_one_offset_aligned_right(idx_t l_offset, idx_t r_offset) const {
+ return get_next_bit_impl<find_ones_flip, true>(l_offset, r_offset);
}
-
// Returns a bit mask for a range of bits [beg, end) within a single word. Each
// bit in the mask is 0 if the bit is in the range, 1 if not in the range. The
// returned mask can be used directly to clear the range, or inverted to set the