8134795: Port fdlibm pow to Java
authordarcy
Thu, 17 Sep 2015 13:43:06 -0700
changeset 32655 8dfeae0ff332
parent 32654 23ae9cdf149e
child 32656 a76c2d877a16
8134795: Port fdlibm pow to Java Reviewed-by: bpb
jdk/make/mapfiles/libjava/mapfile-vers
jdk/src/java.base/share/classes/java/lang/FdLibm.java
jdk/src/java.base/share/classes/java/lang/StrictMath.java
jdk/src/java.base/share/native/libfdlibm/e_pow.c
jdk/src/java.base/share/native/libfdlibm/fdlibm.h
jdk/src/java.base/share/native/libfdlibm/w_pow.c
jdk/src/java.base/share/native/libjava/StrictMath.c
jdk/test/java/lang/Math/PowTests.java
--- a/jdk/make/mapfiles/libjava/mapfile-vers	Thu Sep 17 18:04:53 2015 +0200
+++ b/jdk/make/mapfiles/libjava/mapfile-vers	Thu Sep 17 13:43:06 2015 -0700
@@ -150,7 +150,6 @@
 		Java_java_lang_StrictMath_exp;
 		Java_java_lang_StrictMath_log;
 		Java_java_lang_StrictMath_log10;
-		Java_java_lang_StrictMath_pow;
 		Java_java_lang_StrictMath_sin;
 		Java_java_lang_StrictMath_sqrt;
 		Java_java_lang_StrictMath_cbrt;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.base/share/classes/java/lang/FdLibm.java	Thu Sep 17 13:43:06 2015 -0700
@@ -0,0 +1,383 @@
+/*
+ * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang;
+
+/**
+ * Port of the "Freely Distributable Math Library", version 5.3, from C to Java.
+ *
+ * <p>The C version of fdlibm relied on the idiom of pointer aliasing
+ * a 64-bit double floating-point value as a two-element array of
+ * 32-bit integers and reading and writing the two halves of the
+ * double independently. This coding pattern was problematic to C
+ * optimizers and not directly expressible in Java. Therefore, rather
+ * than a memory level overlay, if portions of a double need to be
+ * operated on as integer values, the standard library methods for
+ * bitwise floating-point to integer conversion,
+ * Double.longBitsToDouble and Double.doubleToRawLongBits, are directly
+ * or indirectly used .
+ *
+ * <p>The C version of fdlibm also took some pains to signal the
+ * correct IEEE 754 exceptional conditions divide by zero, invalid,
+ * overflow and underflow. For example, overflow would be signaled by
+ * {@code huge * huge} where {@code huge} was a large constant that
+ * would overflow when squared. Since IEEE floating-point exceptional
+ * handling is not supported natively in the JVM, such coding patterns
+ * have been omitted from this port. For example, rather than {@code
+ * return huge * huge}, this port will use {@code return INFINITY}.
+ */
+class FdLibm {
+    // Constants used by multiple algorithms
+    private static final double INFINITY = Double.POSITIVE_INFINITY;
+
+    private FdLibm() {
+        throw new UnsupportedOperationException("No instances for you.");
+    }
+
+    /**
+     * Return the low-order 32 bits of the double argument as an int.
+     */
+    private static int __LO(double x) {
+        long transducer = Double.doubleToRawLongBits(x);
+        return (int)transducer;
+    }
+
+    /**
+     * Return a double with its low-order bits of the second argument
+     * and the high-order bits of the first argument..
+     */
+    private static double __LO(double x, int low) {
+        long transX = Double.doubleToRawLongBits(x);
+        return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
+    }
+
+    /**
+     * Return the high-order 32 bits of the double argument as an int.
+     */
+    private static int __HI(double x) {
+        long transducer = Double.doubleToRawLongBits(x);
+        return (int)(transducer >> 32);
+    }
+
+    /**
+     * Return a double with its high-order bits of the second argument
+     * and the low-order bits of the first argument..
+     */
+    private static double __HI(double x, int high) {
+        long transX = Double.doubleToRawLongBits(x);
+        return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
+    }
+
+    /**
+     * Compute x**y
+     *                    n
+     * Method:  Let x =  2   * (1+f)
+     *      1. Compute and return log2(x) in two pieces:
+     *              log2(x) = w1 + w2,
+     *         where w1 has 53 - 24 = 29 bit trailing zeros.
+     *      2. Perform y*log2(x) = n+y' by simulating muti-precision
+     *         arithmetic, where |y'| <= 0.5.
+     *      3. Return x**y = 2**n*exp(y'*log2)
+     *
+     * Special cases:
+     *      1.  (anything) ** 0  is 1
+     *      2.  (anything) ** 1  is itself
+     *      3.  (anything) ** NAN is NAN
+     *      4.  NAN ** (anything except 0) is NAN
+     *      5.  +-(|x| > 1) **  +INF is +INF
+     *      6.  +-(|x| > 1) **  -INF is +0
+     *      7.  +-(|x| < 1) **  +INF is +0
+     *      8.  +-(|x| < 1) **  -INF is +INF
+     *      9.  +-1         ** +-INF is NAN
+     *      10. +0 ** (+anything except 0, NAN)               is +0
+     *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
+     *      12. +0 ** (-anything except 0, NAN)               is +INF
+     *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
+     *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
+     *      15. +INF ** (+anything except 0,NAN) is +INF
+     *      16. +INF ** (-anything except 0,NAN) is +0
+     *      17. -INF ** (anything)  = -0 ** (-anything)
+     *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+     *      19. (-anything except 0 and inf) ** (non-integer) is NAN
+     *
+     * Accuracy:
+     *      pow(x,y) returns x**y nearly rounded. In particular
+     *                      pow(integer,integer)
+     *      always returns the correct integer provided it is
+     *      representable.
+     */
+    public static class Pow {
+        public static strictfp double compute(final double x, final double y) {
+            double z;
+            double r, s, t, u, v, w;
+            int i, j, k, n;
+
+            // y == zero: x**0 = 1
+            if (y == 0.0)
+                return 1.0;
+
+            // +/-NaN return x + y to propagate NaN significands
+            if (Double.isNaN(x) || Double.isNaN(y))
+                return x + y;
+
+            final double y_abs = Math.abs(y);
+            double x_abs   = Math.abs(x);
+            // Special values of y
+            if (y == 2.0) {
+                return x * x;
+            } else if (y == 0.5) {
+                if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
+                    return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
+            } else if (y_abs == 1.0) {        // y is  +/-1
+                return (y == 1.0) ? x : 1.0 / x;
+            } else if (y_abs == INFINITY) {       // y is +/-infinity
+                if (x_abs == 1.0)
+                    return  y - y;         // inf**+/-1 is NaN
+                else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
+                    return (y >= 0) ? y : 0.0;
+                else                       // (|x| < 1)**-/+inf = inf, 0
+                    return (y < 0) ? -y : 0.0;
+            }
+
+            final int hx = __HI(x);
+            int ix = hx & 0x7fffffff;
+
+            /*
+             * When x < 0, determine if y is an odd integer:
+             * y_is_int = 0       ... y is not an integer
+             * y_is_int = 1       ... y is an odd int
+             * y_is_int = 2       ... y is an even int
+             */
+            int y_is_int  = 0;
+            if (hx < 0) {
+                if (y_abs >= 0x1.0p53)   // |y| >= 2^53 = 9.007199254740992E15
+                    y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0
+                else if (y_abs >= 1.0) { // |y| >= 1.0
+                    long y_abs_as_long = (long) y_abs;
+                    if ( ((double) y_abs_as_long) == y_abs) {
+                        y_is_int = 2 -  (int)(y_abs_as_long & 0x1L);
+                    }
+                }
+            }
+
+            // Special value of x
+            if (x_abs == 0.0 ||
+                x_abs == INFINITY ||
+                x_abs == 1.0) {
+                z = x_abs;                 // x is +/-0, +/-inf, +/-1
+                if (y < 0.0)
+                    z = 1.0/z;     // z = (1/|x|)
+                if (hx < 0) {
+                    if (((ix - 0x3ff00000) | y_is_int) == 0) {
+                        z = (z-z)/(z-z); // (-1)**non-int is NaN
+                    } else if (y_is_int == 1)
+                        z = -1.0 * z;             // (x < 0)**odd = -(|x|**odd)
+                }
+                return z;
+            }
+
+            n = (hx >> 31) + 1;
+
+            // (x < 0)**(non-int) is NaN
+            if ((n | y_is_int) == 0)
+                return (x-x)/(x-x);
+
+            s = 1.0; // s (sign of result -ve**odd) = -1 else = 1
+            if ( (n | (y_is_int - 1)) == 0)
+                s = -1.0; // (-ve)**(odd int)
+
+            double p_h, p_l, t1, t2;
+            // |y| is huge
+            if (y_abs > 0x1.0p31) { // if |y| > 2**31
+                final double INV_LN2   =  0x1.7154_7652_b82fep0;   //  1.44269504088896338700e+00 = 1/ln2
+                final double INV_LN2_H =  0x1.715476p0;            //  1.44269502162933349609e+00 = 24 bits of 1/ln2
+                final double INV_LN2_L =  0x1.4ae0_bf85_ddf44p-26; //  1.92596299112661746887e-08 = 1/ln2 tail
+
+                // Over/underflow if x is not close to one
+                if (x_abs < 0x1.fffffp-1) // |x| < 0.9999995231628418
+                    return (y < 0.0) ? s * INFINITY : s * 0.0;
+                if (x_abs > 1.0)         // |x| > 1.0
+                    return (y > 0.0) ? s * INFINITY : s * 0.0;
+                /*
+                 * now |1-x| is tiny <= 2**-20, sufficient to compute
+                 * log(x) by x - x^2/2 + x^3/3 - x^4/4
+                 */
+                t = x_abs - 1.0;        // t has 20 trailing zeros
+                w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
+                u = INV_LN2_H * t;      // INV_LN2_H has 21 sig. bits
+                v =  t * INV_LN2_L - w * INV_LN2;
+                t1 = u + v;
+                t1 =__LO(t1, 0);
+                t2 = v - (t1 - u);
+            } else {
+                final double CP      =  0x1.ec70_9dc3_a03fdp-1;  //  9.61796693925975554329e-01 = 2/(3ln2)
+                final double CP_H    =  0x1.ec709ep-1;           //  9.61796700954437255859e-01 = (float)cp
+                final double CP_L    = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H
+
+                double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
+                n = 0;
+                // Take care of subnormal numbers
+                if (ix < 0x00100000) {
+                    x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0
+                    n -= 53;
+                    ix = __HI(x_abs);
+                }
+                n  += ((ix) >> 20) - 0x3ff;
+                j  = ix & 0x000fffff;
+                // Determine interval
+                ix = j | 0x3ff00000;          // Normalize ix
+                if (j <= 0x3988E)
+                    k = 0;         // |x| <sqrt(3/2)
+                else if (j < 0xBB67A)
+                    k = 1;         // |x| <sqrt(3)
+                else {
+                    k = 0;
+                    n += 1;
+                    ix -= 0x00100000;
+                }
+                x_abs = __HI(x_abs, ix);
+
+                // Compute ss = s_h + s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5)
+
+                final double BP[]    = {1.0,
+                                       1.5};
+                final double DP_H[]  = {0.0,
+                                        0x1.2b80_34p-1};        // 5.84962487220764160156e-01
+                final double DP_L[]  = {0.0,
+                                        0x1.cfde_b43c_fd006p-27};// 1.35003920212974897128e-08
+
+                // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
+                final double L1      =  0x1.3333_3333_33303p-1;  //  5.99999999999994648725e-01
+                final double L2      =  0x1.b6db_6db6_fabffp-2;  //  4.28571428578550184252e-01
+                final double L3      =  0x1.5555_5518_f264dp-2;  //  3.33333329818377432918e-01
+                final double L4      =  0x1.1746_0a91_d4101p-2;  //  2.72728123808534006489e-01
+                final double L5      =  0x1.d864_a93c_9db65p-3;  //  2.30660745775561754067e-01
+                final double L6      =  0x1.a7e2_84a4_54eefp-3;  //  2.06975017800338417784e-01
+                u = x_abs - BP[k];               // BP[0]=1.0, BP[1]=1.5
+                v = 1.0 / (x_abs + BP[k]);
+                ss = u * v;
+                s_h = ss;
+                s_h = __LO(s_h, 0);
+                // t_h=x_abs + BP[k] High
+                t_h = 0.0;
+                t_h = __HI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18) );
+                t_l = x_abs - (t_h - BP[k]);
+                s_l = v * ((u - s_h * t_h) - s_h * t_l);
+                // Compute log(x_abs)
+                s2 = ss * ss;
+                r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+                r += s_l * (s_h + ss);
+                s2  = s_h * s_h;
+                t_h = 3.0 + s2 + r;
+                t_h = __LO(t_h, 0);
+                t_l = r - ((t_h - 3.0) - s2);
+                // u+v = ss*(1+...)
+                u = s_h * t_h;
+                v = s_l * t_h + t_l * ss;
+                // 2/(3log2)*(ss + ...)
+                p_h = u + v;
+                p_h = __LO(p_h, 0);
+                p_l = v - (p_h - u);
+                z_h = CP_H * p_h;             // CP_H + CP_L = 2/(3*log2)
+                z_l = CP_L * p_h + p_l * CP + DP_L[k];
+                // log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l
+                t = (double)n;
+                t1 = (((z_h + z_l) + DP_H[k]) + t);
+                t1 = __LO(t1, 0);
+                t2 = z_l - (((t1 - t) - DP_H[k]) - z_h);
+            }
+
+            // Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)
+            double y1  = y;
+            y1 = __LO(y1, 0);
+            p_l = (y - y1) * t1 + y * t2;
+            p_h = y1 * t1;
+            z = p_l + p_h;
+            j = __HI(z);
+            i = __LO(z);
+            if (j >= 0x40900000) {                           // z >= 1024
+                if (((j - 0x40900000) | i)!=0)               // if z > 1024
+                    return s * INFINITY;                     // Overflow
+                else {
+                    final double OVT     =  8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
+                    if (p_l + OVT > z - p_h)
+                        return s * INFINITY;   // Overflow
+                }
+            } else if ((j & 0x7fffffff) >= 0x4090cc00 ) {        // z <= -1075
+                if (((j - 0xc090cc00) | i)!=0)           // z < -1075
+                    return s * 0.0;           // Underflow
+                else {
+                    if (p_l <= z - p_h)
+                        return s * 0.0;      // Underflow
+                }
+            }
+            /*
+             * Compute 2**(p_h+p_l)
+             */
+            // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
+            final double P1      =  0x1.5555_5555_5553ep-3;  //  1.66666666666666019037e-01
+            final double P2      = -0x1.6c16_c16b_ebd93p-9;  // -2.77777777770155933842e-03
+            final double P3      =  0x1.1566_aaf2_5de2cp-14; //  6.61375632143793436117e-05
+            final double P4      = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06
+            final double P5      =  0x1.6376_972b_ea4d0p-25; //  4.13813679705723846039e-08
+            final double LG2     =  0x1.62e4_2fef_a39efp-1;  //  6.93147180559945286227e-01
+            final double LG2_H   =  0x1.62e43p-1;            //  6.93147182464599609375e-01
+            final double LG2_L   = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09
+            i = j & 0x7fffffff;
+            k = (i >> 20) - 0x3ff;
+            n = 0;
+            if (i > 0x3fe00000) {              // if |z| > 0.5, set n = [z + 0.5]
+                n = j + (0x00100000 >> (k + 1));
+                k = ((n & 0x7fffffff) >> 20) - 0x3ff;     // new k for n
+                t = 0.0;
+                t = __HI(t, (n & ~(0x000fffff >> k)) );
+                n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
+                if (j < 0)
+                    n = -n;
+                p_h -= t;
+            }
+            t = p_l + p_h;
+            t = __LO(t, 0);
+            u = t * LG2_H;
+            v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
+            z = u + v;
+            w = v - (z - u);
+            t  = z * z;
+            t1  = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+            r  = (z * t1)/(t1 - 2.0) - (w + z * w);
+            z  = 1.0 - (r - z);
+            j  = __HI(z);
+            j += (n << 20);
+            if ((j >> 20) <= 0)
+                z = Math.scalb(z, n); // subnormal output
+            else {
+                int z_hi = __HI(z);
+                z_hi += (n << 20);
+                z = __HI(z, z_hi);
+            }
+            return s * z;
+        }
+    }
+}
--- a/jdk/src/java.base/share/classes/java/lang/StrictMath.java	Thu Sep 17 18:04:53 2015 +0200
+++ b/jdk/src/java.base/share/classes/java/lang/StrictMath.java	Thu Sep 17 13:43:06 2015 -0700
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
@@ -643,7 +643,9 @@
      * @param   b   the exponent.
      * @return  the value {@code a}<sup>{@code b}</sup>.
      */
-    public static native double pow(double a, double b);
+    public static double pow(double a, double b) {
+        return FdLibm.Pow.compute(a, b);
+    }
 
     /**
      * Returns the closest {@code int} to the argument, with ties
--- a/jdk/src/java.base/share/native/libfdlibm/e_pow.c	Thu Sep 17 18:04:53 2015 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,320 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2004, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* __ieee754_pow(x,y) return x**y
- *
- *                    n
- * Method:  Let x =  2   * (1+f)
- *      1. Compute and return log2(x) in two pieces:
- *              log2(x) = w1 + w2,
- *         where w1 has 53-24 = 29 bit trailing zeros.
- *      2. Perform y*log2(x) = n+y' by simulating muti-precision
- *         arithmetic, where |y'|<=0.5.
- *      3. Return x**y = 2**n*exp(y'*log2)
- *
- * Special cases:
- *      1.  (anything) ** 0  is 1
- *      2.  (anything) ** 1  is itself
- *      3.  (anything) ** NAN is NAN
- *      4.  NAN ** (anything except 0) is NAN
- *      5.  +-(|x| > 1) **  +INF is +INF
- *      6.  +-(|x| > 1) **  -INF is +0
- *      7.  +-(|x| < 1) **  +INF is +0
- *      8.  +-(|x| < 1) **  -INF is +INF
- *      9.  +-1         ** +-INF is NAN
- *      10. +0 ** (+anything except 0, NAN)               is +0
- *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
- *      12. +0 ** (-anything except 0, NAN)               is +INF
- *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
- *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
- *      15. +INF ** (+anything except 0,NAN) is +INF
- *      16. +INF ** (-anything except 0,NAN) is +0
- *      17. -INF ** (anything)  = -0 ** (-anything)
- *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
- *      19. (-anything except 0 and inf) ** (non-integer) is NAN
- *
- * Accuracy:
- *      pow(x,y) returns x**y nearly rounded. In particular
- *                      pow(integer,integer)
- *      always returns the correct integer provided it is
- *      representable.
- *
- * Constants :
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-bp[] = {1.0, 1.5,},
-dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
-dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
-zero    =  0.0,
-one     =  1.0,
-two     =  2.0,
-two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
-huge    =  1.0e300,
-tiny    =  1.0e-300,
-        /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
-L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
-L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
-L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
-L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
-L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
-L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
-P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
-P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
-P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
-P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
-P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
-lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
-lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
-lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
-ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
-cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
-cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
-cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
-ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
-ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
-ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
-
-#ifdef __STDC__
-        double __ieee754_pow(double x, double y)
-#else
-        double __ieee754_pow(x,y)
-        double x, y;
-#endif
-{
-        double z,ax,z_h,z_l,p_h,p_l;
-        double y1,t1,t2,r,s,t,u,v,w;
-        int i0,i1,i,j,k,yisint,n;
-        int hx,hy,ix,iy;
-        unsigned lx,ly;
-
-        i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
-        hx = __HI(x); lx = __LO(x);
-        hy = __HI(y); ly = __LO(y);
-        ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
-
-    /* y==zero: x**0 = 1 */
-        if((iy|ly)==0) return one;
-
-    /* +-NaN return x+y */
-        if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
-           iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
-                return x+y;
-
-    /* determine if y is an odd int when x < 0
-     * yisint = 0       ... y is not an integer
-     * yisint = 1       ... y is an odd int
-     * yisint = 2       ... y is an even int
-     */
-        yisint  = 0;
-        if(hx<0) {
-            if(iy>=0x43400000) yisint = 2; /* even integer y */
-            else if(iy>=0x3ff00000) {
-                k = (iy>>20)-0x3ff;        /* exponent */
-                if(k>20) {
-                    j = ly>>(52-k);
-                    if((j<<(52-k))==ly) yisint = 2-(j&1);
-                } else if(ly==0) {
-                    j = iy>>(20-k);
-                    if((j<<(20-k))==iy) yisint = 2-(j&1);
-                }
-            }
-        }
-
-    /* special value of y */
-        if(ly==0) {
-            if (iy==0x7ff00000) {       /* y is +-inf */
-                if(((ix-0x3ff00000)|lx)==0)
-                    return  y - y;      /* inf**+-1 is NaN */
-                else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
-                    return (hy>=0)? y: zero;
-                else                    /* (|x|<1)**-,+inf = inf,0 */
-                    return (hy<0)?-y: zero;
-            }
-            if(iy==0x3ff00000) {        /* y is  +-1 */
-                if(hy<0) return one/x; else return x;
-            }
-            if(hy==0x40000000) return x*x; /* y is  2 */
-            if(hy==0x3fe00000) {        /* y is  0.5 */
-                if(hx>=0)       /* x >= +0 */
-                return sqrt(x);
-            }
-        }
-
-        ax   = fabs(x);
-    /* special value of x */
-        if(lx==0) {
-            if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
-                z = ax;                 /*x is +-0,+-inf,+-1*/
-                if(hy<0) z = one/z;     /* z = (1/|x|) */
-                if(hx<0) {
-                    if(((ix-0x3ff00000)|yisint)==0) {
-                        z = (z-z)/(z-z); /* (-1)**non-int is NaN */
-                    } else if(yisint==1)
-                        z = -1.0*z;             /* (x<0)**odd = -(|x|**odd) */
-                }
-                return z;
-            }
-        }
-
-        n = (hx>>31)+1;
-
-    /* (x<0)**(non-int) is NaN */
-        if((n|yisint)==0) return (x-x)/(x-x);
-
-        s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
-        if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
-
-    /* |y| is huge */
-        if(iy>0x41e00000) { /* if |y| > 2**31 */
-            if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
-                if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
-                if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
-            }
-        /* over/underflow if x is not close to one */
-            if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
-            if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
-        /* now |1-x| is tiny <= 2**-20, suffice to compute
-           log(x) by x-x^2/2+x^3/3-x^4/4 */
-            t = ax-one;         /* t has 20 trailing zeros */
-            w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
-            u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
-            v = t*ivln2_l-w*ivln2;
-            t1 = u+v;
-            __LO(t1) = 0;
-            t2 = v-(t1-u);
-        } else {
-            double ss,s2,s_h,s_l,t_h,t_l;
-            n = 0;
-        /* take care subnormal number */
-            if(ix<0x00100000)
-                {ax *= two53; n -= 53; ix = __HI(ax); }
-            n  += ((ix)>>20)-0x3ff;
-            j  = ix&0x000fffff;
-        /* determine interval */
-            ix = j|0x3ff00000;          /* normalize ix */
-            if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
-            else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
-            else {k=0;n+=1;ix -= 0x00100000;}
-            __HI(ax) = ix;
-
-        /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
-            u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
-            v = one/(ax+bp[k]);
-            ss = u*v;
-            s_h = ss;
-            __LO(s_h) = 0;
-        /* t_h=ax+bp[k] High */
-            t_h = zero;
-            __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
-            t_l = ax - (t_h-bp[k]);
-            s_l = v*((u-s_h*t_h)-s_h*t_l);
-        /* compute log(ax) */
-            s2 = ss*ss;
-            r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
-            r += s_l*(s_h+ss);
-            s2  = s_h*s_h;
-            t_h = 3.0+s2+r;
-            __LO(t_h) = 0;
-            t_l = r-((t_h-3.0)-s2);
-        /* u+v = ss*(1+...) */
-            u = s_h*t_h;
-            v = s_l*t_h+t_l*ss;
-        /* 2/(3log2)*(ss+...) */
-            p_h = u+v;
-            __LO(p_h) = 0;
-            p_l = v-(p_h-u);
-            z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
-            z_l = cp_l*p_h+p_l*cp+dp_l[k];
-        /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
-            t = (double)n;
-            t1 = (((z_h+z_l)+dp_h[k])+t);
-            __LO(t1) = 0;
-            t2 = z_l-(((t1-t)-dp_h[k])-z_h);
-        }
-
-    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
-        y1  = y;
-        __LO(y1) = 0;
-        p_l = (y-y1)*t1+y*t2;
-        p_h = y1*t1;
-        z = p_l+p_h;
-        j = __HI(z);
-        i = __LO(z);
-        if (j>=0x40900000) {                            /* z >= 1024 */
-            if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
-                return s*huge*huge;                     /* overflow */
-            else {
-                if(p_l+ovt>z-p_h) return s*huge*huge;   /* overflow */
-            }
-        } else if((j&0x7fffffff)>=0x4090cc00 ) {        /* z <= -1075 */
-            if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
-                return s*tiny*tiny;             /* underflow */
-            else {
-                if(p_l<=z-p_h) return s*tiny*tiny;      /* underflow */
-            }
-        }
-    /*
-     * compute 2**(p_h+p_l)
-     */
-        i = j&0x7fffffff;
-        k = (i>>20)-0x3ff;
-        n = 0;
-        if(i>0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */
-            n = j+(0x00100000>>(k+1));
-            k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
-            t = zero;
-            __HI(t) = (n&~(0x000fffff>>k));
-            n = ((n&0x000fffff)|0x00100000)>>(20-k);
-            if(j<0) n = -n;
-            p_h -= t;
-        }
-        t = p_l+p_h;
-        __LO(t) = 0;
-        u = t*lg2_h;
-        v = (p_l-(t-p_h))*lg2+t*lg2_l;
-        z = u+v;
-        w = v-(z-u);
-        t  = z*z;
-        t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
-        r  = (z*t1)/(t1-two)-(w+z*w);
-        z  = one-(r-z);
-        j  = __HI(z);
-        j += (n<<20);
-        if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
-        else __HI(z) += (n<<20);
-        return s*z;
-}
--- a/jdk/src/java.base/share/native/libfdlibm/fdlibm.h	Thu Sep 17 18:04:53 2015 +0200
+++ b/jdk/src/java.base/share/native/libfdlibm/fdlibm.h	Thu Sep 17 13:43:06 2015 -0700
@@ -133,7 +133,6 @@
 extern double log10 __P((double));
 extern double modf __P((double, double *));
 
-extern double pow __P((double, double));
 extern double sqrt __P((double));
 
 extern double ceil __P((double));
@@ -187,7 +186,6 @@
 extern double __ieee754_exp __P((double));
 extern double __ieee754_cosh __P((double));
 extern double __ieee754_fmod __P((double,double));
-extern double __ieee754_pow __P((double,double));
 extern double __ieee754_log10 __P((double));
 extern double __ieee754_sinh __P((double));
 extern double __ieee754_hypot __P((double,double));
--- a/jdk/src/java.base/share/native/libfdlibm/w_pow.c	Thu Sep 17 18:04:53 2015 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,73 +0,0 @@
-
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/*
- * wrapper pow(x,y) return x**y
- */
-
-#include "fdlibm.h"
-
-
-#ifdef __STDC__
-        double pow(double x, double y)  /* wrapper pow */
-#else
-        double pow(x,y)                 /* wrapper pow */
-        double x,y;
-#endif
-{
-#ifdef _IEEE_LIBM
-        return  __ieee754_pow(x,y);
-#else
-        double z;
-        z=__ieee754_pow(x,y);
-        if(_LIB_VERSION == _IEEE_|| isnan(y)) return z;
-        if(isnan(x)) {
-            if(y==0.0)
-                return __kernel_standard(x,y,42); /* pow(NaN,0.0) */
-            else
-                return z;
-        }
-        if(x==0.0){
-            if(y==0.0)
-                return __kernel_standard(x,y,20); /* pow(0.0,0.0) */
-            if(finite(y)&&y<0.0)
-                return __kernel_standard(x,y,23); /* pow(0.0,negative) */
-            return z;
-        }
-        if(!finite(z)) {
-            if(finite(x)&&finite(y)) {
-                if(isnan(z))
-                    return __kernel_standard(x,y,24); /* pow neg**non-int */
-                else
-                    return __kernel_standard(x,y,21); /* pow overflow */
-            }
-        }
-        if(z==0.0&&finite(x)&&finite(y))
-            return __kernel_standard(x,y,22); /* pow underflow */
-        return z;
-#endif
-}
--- a/jdk/src/java.base/share/native/libjava/StrictMath.c	Thu Sep 17 18:04:53 2015 +0200
+++ b/jdk/src/java.base/share/native/libjava/StrictMath.c	Thu Sep 17 13:43:06 2015 -0700
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 1994, 2003, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 1994, 2015, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
@@ -101,12 +101,6 @@
 }
 
 JNIEXPORT jdouble JNICALL
-Java_java_lang_StrictMath_pow(JNIEnv *env, jclass unused, jdouble d1, jdouble d2)
-{
-    return (jdouble) jpow((double)d1, (double)d2);
-}
-
-JNIEXPORT jdouble JNICALL
 Java_java_lang_StrictMath_IEEEremainder(JNIEnv *env, jclass unused,
                                   jdouble dividend,
                                   jdouble divisor)
--- a/jdk/test/java/lang/Math/PowTests.java	Thu Sep 17 18:04:53 2015 +0200
+++ b/jdk/test/java/lang/Math/PowTests.java	Thu Sep 17 13:43:06 2015 -0700
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2004, 2015, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
@@ -23,7 +23,7 @@
 
 /*
  * @test
- * @bug 4984407 5033578
+ * @bug 4984407 5033578 8134795
  * @summary Tests for {Math, StrictMath}.pow
  * @author Joseph D. Darcy
  */
@@ -88,12 +88,19 @@
 /* > -oo */                     -Double.MAX_VALUE,
 /**/                            (double)Long.MIN_VALUE,
 /**/                            (double) -((1L<<53)+2L),
+                                -0x1.0p65,
+                                -0x1.0000000000001p64,
+                                -0x1.0p64,
 /**/                            (double) -((1L<<53)),
 /**/                            (double) -((1L<<53)-1L),
 /**/                            -((double)Integer.MAX_VALUE + 4.0),
 /**/                            (double)Integer.MIN_VALUE - 1.0,
 /**/                            (double)Integer.MIN_VALUE,
 /**/                            (double)Integer.MIN_VALUE + 1.0,
+                                -0x1.0p31 + 2.0,
+                                -0x1.0p31 + 1.0,
+                                -0x1.0000000000001p31,
+                                -0x1.0p31,
 /**/                            -Math.PI,
 /**/                            -3.0,
 /**/                            -Math.E,
@@ -103,6 +110,8 @@
                                 -1.0,
 /* > -1.0 */                    -0.9999999999999999, // nextAfter(-1.0, +oo)
 /* > -1.0 */                    -0.9999999999999998,
+                                -0x1.fffffp-1,
+                                -0x1.ffffeffffffffp-1,
 /**/                            -0.5,
 /**/                            -1.0/3.0,
 /* < 0.0 */                     -Double.MIN_VALUE,
@@ -111,6 +120,8 @@
 /* > 0.0 */                     +Double.MIN_VALUE,
 /**/                            +1.0/3.0,
 /**/                            +0.5,
+                                +0x1.ffffeffffffffp-1,
+                                +0x1.fffffp-1,
 /**/                            +0.9999999999999998,
 /* < +1.0 */                    +0.9999999999999999, // nextAfter(-1.0, +oo)
                                 +1.0,
@@ -120,6 +131,10 @@
 /**/                            +Math.E,
 /**/                            +3.0,
 /**/                            +Math.PI,
+                                0x1.0p31,
+                                0x1.0000000000001p31,
+                                0x1.0p31 + 1.0,
+                                0x1.0p31 + 2.0,
 /**/                            -(double)Integer.MIN_VALUE - 1.0,
 /**/                            -(double)Integer.MIN_VALUE,
 /**/                            -(double)Integer.MIN_VALUE + 1.0,
@@ -127,6 +142,9 @@
 /**/                            (double) ((1L<<53)-1L),
 /**/                            (double) ((1L<<53)),
 /**/                            (double) ((1L<<53)+2L),
+                                0x1.0p64,
+                                0x1.0000000000001p64,
+                                0x1.0p65,
 /**/                            -(double)Long.MIN_VALUE,
 /* < oo */                      Double.MAX_VALUE,
                                 Double.POSITIVE_INFINITY,
@@ -257,7 +275,7 @@
     }
 
     static boolean isFinite(double a) {
-        return (0.0*a  == 0);
+        return (0.0 * a  == 0);
     }
 
     /**