8017540: Improve multi-threaded contention behavior of radix conversion cache
Summary: Replace array of ArrayList of BigIntegers with a volatile two-dimensional BigInteger array eliminate the synchronization of getRadixConversionCache()
Reviewed-by: plevart, shade, bpb, alanb
Contributed-by: Peter Levart <peter.levart@gmail.com>, Dmitry Nadezhin <dmitry.nadezhin@oracle.com>, Aleksey Shipilev <aleksey.shipilev@oracle.com>
--- a/jdk/src/share/classes/java/math/BigInteger.java Mon Jul 01 14:39:47 2013 +0100
+++ b/jdk/src/share/classes/java/math/BigInteger.java Mon Jul 01 11:30:14 2013 -0700
@@ -1042,7 +1042,7 @@
* recalculate powers of radix^(2^n) more than once. This speeds
* Schoenhage recursive base conversion significantly.
*/
- private static ArrayList<BigInteger>[] powerCache;
+ private static volatile BigInteger[][] powerCache;
/** The cache of logarithms of radices for base conversion. */
private static final double[] logCache;
@@ -1063,14 +1063,12 @@
* with just the very first value. Additional values will be created
* on demand.
*/
- powerCache = (ArrayList<BigInteger>[])
- new ArrayList[Character.MAX_RADIX+1];
+ powerCache = new BigInteger[Character.MAX_RADIX+1][];
logCache = new double[Character.MAX_RADIX+1];
for (int i=Character.MIN_RADIX; i<=Character.MAX_RADIX; i++)
{
- powerCache[i] = new ArrayList<BigInteger>(1);
- powerCache[i].add(BigInteger.valueOf(i));
+ powerCache[i] = new BigInteger[] { BigInteger.valueOf(i) };
logCache[i] = Math.log(i);
}
}
@@ -3454,22 +3452,25 @@
* This could be changed to a more complicated caching method using
* <code>Future</code>.
*/
- private static synchronized BigInteger getRadixConversionCache(int radix,
- int exponent) {
- BigInteger retVal = null;
- ArrayList<BigInteger> cacheLine = powerCache[radix];
- int oldSize = cacheLine.size();
- if (exponent >= oldSize) {
- cacheLine.ensureCapacity(exponent+1);
- for (int i=oldSize; i<=exponent; i++) {
- retVal = cacheLine.get(i-1).square();
- cacheLine.add(i, retVal);
- }
+ private static BigInteger getRadixConversionCache(int radix, int exponent) {
+ BigInteger[] cacheLine = powerCache[radix]; // volatile read
+ if (exponent < cacheLine.length) {
+ return cacheLine[exponent];
}
- else
- retVal = cacheLine.get(exponent);
-
- return retVal;
+
+ int oldLength = cacheLine.length;
+ cacheLine = Arrays.copyOf(cacheLine, exponent + 1);
+ for (int i = oldLength; i <= exponent; i++) {
+ cacheLine[i] = cacheLine[i - 1].pow(2);
+ }
+
+ BigInteger[][] pc = powerCache; // volatile read again
+ if (exponent >= pc[radix].length) {
+ pc = pc.clone();
+ pc[radix] = cacheLine;
+ powerCache = pc; // volatile write, publish
+ }
+ return cacheLine[exponent];
}
/* zero[i] is a string of i consecutive zeros. */