--- a/jdk/src/share/classes/sun/misc/FpUtils.java Wed Dec 01 19:40:34 2010 +0000
+++ b/jdk/src/share/classes/sun/misc/FpUtils.java Wed Dec 01 13:01:53 2010 -0800
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2003, 2010 Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@@ -29,9 +29,9 @@
import sun.misc.DoubleConsts;
/**
- * The class <code>FpUtils</code> contains static utility methods for
- * manipulating and inspecting <code>float</code> and
- * <code>double</code> floating-point numbers. These methods include
+ * The class {@code FpUtils} contains static utility methods for
+ * manipulating and inspecting {@code float} and
+ * {@code double} floating-point numbers. These methods include
* functionality recommended or required by the IEEE 754
* floating-point standard.
*
@@ -136,7 +136,7 @@
// tests for exception cases.
/**
- * Returns unbiased exponent of a <code>double</code>.
+ * Returns unbiased exponent of a {@code double}.
*/
public static int getExponent(double d){
/*
@@ -149,7 +149,7 @@
}
/**
- * Returns unbiased exponent of a <code>float</code>.
+ * Returns unbiased exponent of a {@code float}.
*/
public static int getExponent(float f){
/*
@@ -185,15 +185,15 @@
* Returns the first floating-point argument with the sign of the
* second floating-point argument. Note that unlike the {@link
* FpUtils#copySign(double, double) copySign} method, this method
- * does not require NaN <code>sign</code> arguments to be treated
+ * does not require NaN {@code sign} arguments to be treated
* as positive values; implementations are permitted to treat some
* NaN arguments as positive and other NaN arguments as negative
* to allow greater performance.
*
* @param magnitude the parameter providing the magnitude of the result
* @param sign the parameter providing the sign of the result
- * @return a value with the magnitude of <code>magnitude</code>
- * and the sign of <code>sign</code>.
+ * @return a value with the magnitude of {@code magnitude}
+ * and the sign of {@code sign}.
* @author Joseph D. Darcy
*/
public static double rawCopySign(double magnitude, double sign) {
@@ -208,15 +208,15 @@
* Returns the first floating-point argument with the sign of the
* second floating-point argument. Note that unlike the {@link
* FpUtils#copySign(float, float) copySign} method, this method
- * does not require NaN <code>sign</code> arguments to be treated
+ * does not require NaN {@code sign} arguments to be treated
* as positive values; implementations are permitted to treat some
* NaN arguments as positive and other NaN arguments as negative
* to allow greater performance.
*
* @param magnitude the parameter providing the magnitude of the result
* @param sign the parameter providing the sign of the result
- * @return a value with the magnitude of <code>magnitude</code>
- * and the sign of <code>sign</code>.
+ * @return a value with the magnitude of {@code magnitude}
+ * and the sign of {@code sign}.
* @author Joseph D. Darcy
*/
public static float rawCopySign(float magnitude, float sign) {
@@ -230,129 +230,129 @@
/* ***************************************************************** */
/**
- * Returns <code>true</code> if the argument is a finite
- * floating-point value; returns <code>false</code> otherwise (for
+ * Returns {@code true} if the argument is a finite
+ * floating-point value; returns {@code false} otherwise (for
* NaN and infinity arguments).
*
- * @param d the <code>double</code> value to be tested
- * @return <code>true</code> if the argument is a finite
- * floating-point value, <code>false</code> otherwise.
+ * @param d the {@code double} value to be tested
+ * @return {@code true} if the argument is a finite
+ * floating-point value, {@code false} otherwise.
*/
public static boolean isFinite(double d) {
return Math.abs(d) <= DoubleConsts.MAX_VALUE;
}
/**
- * Returns <code>true</code> if the argument is a finite
- * floating-point value; returns <code>false</code> otherwise (for
+ * Returns {@code true} if the argument is a finite
+ * floating-point value; returns {@code false} otherwise (for
* NaN and infinity arguments).
*
- * @param f the <code>float</code> value to be tested
- * @return <code>true</code> if the argument is a finite
- * floating-point value, <code>false</code> otherwise.
+ * @param f the {@code float} value to be tested
+ * @return {@code true} if the argument is a finite
+ * floating-point value, {@code false} otherwise.
*/
public static boolean isFinite(float f) {
return Math.abs(f) <= FloatConsts.MAX_VALUE;
}
/**
- * Returns <code>true</code> if the specified number is infinitely
- * large in magnitude, <code>false</code> otherwise.
+ * Returns {@code true} if the specified number is infinitely
+ * large in magnitude, {@code false} otherwise.
*
* <p>Note that this method is equivalent to the {@link
* Double#isInfinite(double) Double.isInfinite} method; the
* functionality is included in this class for convenience.
*
* @param d the value to be tested.
- * @return <code>true</code> if the value of the argument is positive
- * infinity or negative infinity; <code>false</code> otherwise.
+ * @return {@code true} if the value of the argument is positive
+ * infinity or negative infinity; {@code false} otherwise.
*/
public static boolean isInfinite(double d) {
return Double.isInfinite(d);
}
/**
- * Returns <code>true</code> if the specified number is infinitely
- * large in magnitude, <code>false</code> otherwise.
+ * Returns {@code true} if the specified number is infinitely
+ * large in magnitude, {@code false} otherwise.
*
* <p>Note that this method is equivalent to the {@link
* Float#isInfinite(float) Float.isInfinite} method; the
* functionality is included in this class for convenience.
*
* @param f the value to be tested.
- * @return <code>true</code> if the argument is positive infinity or
- * negative infinity; <code>false</code> otherwise.
+ * @return {@code true} if the argument is positive infinity or
+ * negative infinity; {@code false} otherwise.
*/
public static boolean isInfinite(float f) {
return Float.isInfinite(f);
}
/**
- * Returns <code>true</code> if the specified number is a
- * Not-a-Number (NaN) value, <code>false</code> otherwise.
+ * Returns {@code true} if the specified number is a
+ * Not-a-Number (NaN) value, {@code false} otherwise.
*
* <p>Note that this method is equivalent to the {@link
* Double#isNaN(double) Double.isNaN} method; the functionality is
* included in this class for convenience.
*
* @param d the value to be tested.
- * @return <code>true</code> if the value of the argument is NaN;
- * <code>false</code> otherwise.
+ * @return {@code true} if the value of the argument is NaN;
+ * {@code false} otherwise.
*/
public static boolean isNaN(double d) {
return Double.isNaN(d);
}
/**
- * Returns <code>true</code> if the specified number is a
- * Not-a-Number (NaN) value, <code>false</code> otherwise.
+ * Returns {@code true} if the specified number is a
+ * Not-a-Number (NaN) value, {@code false} otherwise.
*
* <p>Note that this method is equivalent to the {@link
* Float#isNaN(float) Float.isNaN} method; the functionality is
* included in this class for convenience.
*
* @param f the value to be tested.
- * @return <code>true</code> if the argument is NaN;
- * <code>false</code> otherwise.
+ * @return {@code true} if the argument is NaN;
+ * {@code false} otherwise.
*/
public static boolean isNaN(float f) {
return Float.isNaN(f);
}
/**
- * Returns <code>true</code> if the unordered relation holds
+ * Returns {@code true} if the unordered relation holds
* between the two arguments. When two floating-point values are
* unordered, one value is neither less than, equal to, nor
* greater than the other. For the unordered relation to be true,
- * at least one argument must be a <code>NaN</code>.
+ * at least one argument must be a {@code NaN}.
*
* @param arg1 the first argument
* @param arg2 the second argument
- * @return <code>true</code> if at least one argument is a NaN,
- * <code>false</code> otherwise.
+ * @return {@code true} if at least one argument is a NaN,
+ * {@code false} otherwise.
*/
public static boolean isUnordered(double arg1, double arg2) {
return isNaN(arg1) || isNaN(arg2);
}
/**
- * Returns <code>true</code> if the unordered relation holds
+ * Returns {@code true} if the unordered relation holds
* between the two arguments. When two floating-point values are
* unordered, one value is neither less than, equal to, nor
* greater than the other. For the unordered relation to be true,
- * at least one argument must be a <code>NaN</code>.
+ * at least one argument must be a {@code NaN}.
*
* @param arg1 the first argument
* @param arg2 the second argument
- * @return <code>true</code> if at least one argument is a NaN,
- * <code>false</code> otherwise.
+ * @return {@code true} if at least one argument is a NaN,
+ * {@code false} otherwise.
*/
public static boolean isUnordered(float arg1, float arg2) {
return isNaN(arg1) || isNaN(arg2);
}
/**
- * Returns unbiased exponent of a <code>double</code>; for
+ * Returns unbiased exponent of a {@code double}; for
* subnormal values, the number is treated as if it were
* normalized. That is for all finite, non-zero, positive numbers
* <i>x</i>, <code>scalb(<i>x</i>, -ilogb(<i>x</i>))</code> is
@@ -378,7 +378,6 @@
return (1<<30); // 2^30
else // infinite value
return (1<<28); // 2^28
- // break;
case DoubleConsts.MIN_EXPONENT-1: // zero or subnormal
if(d == 0.0) {
@@ -414,18 +413,16 @@
exponent < DoubleConsts.MIN_EXPONENT);
return exponent;
}
- // break;
default:
assert( exponent >= DoubleConsts.MIN_EXPONENT &&
exponent <= DoubleConsts.MAX_EXPONENT);
return exponent;
- // break;
}
}
/**
- * Returns unbiased exponent of a <code>float</code>; for
+ * Returns unbiased exponent of a {@code float}; for
* subnormal values, the number is treated as if it were
* normalized. That is for all finite, non-zero, positive numbers
* <i>x</i>, <code>scalb(<i>x</i>, -ilogb(<i>x</i>))</code> is
@@ -451,7 +448,6 @@
return (1<<30); // 2^30
else // infinite value
return (1<<28); // 2^28
- // break;
case FloatConsts.MIN_EXPONENT-1: // zero or subnormal
if(f == 0.0f) {
@@ -487,13 +483,11 @@
exponent < FloatConsts.MIN_EXPONENT);
return exponent;
}
- // break;
default:
assert( exponent >= FloatConsts.MIN_EXPONENT &&
exponent <= FloatConsts.MAX_EXPONENT);
return exponent;
- // break;
}
}
@@ -534,22 +528,22 @@
*/
/**
- * Return <code>d</code> ×
- * 2<sup><code>scale_factor</code></sup> rounded as if performed
+ * Return {@code d} ×
+ * 2<sup>{@code scale_factor}</sup> rounded as if performed
* by a single correctly rounded floating-point multiply to a
* member of the double value set. See <a
* href="http://java.sun.com/docs/books/jls/second_edition/html/typesValues.doc.html#9208">§4.2.3</a>
* of the <a href="http://java.sun.com/docs/books/jls/html/">Java
* Language Specification</a> for a discussion of floating-point
* value sets. If the exponent of the result is between the
- * <code>double</code>'s minimum exponent and maximum exponent,
+ * {@code double}'s minimum exponent and maximum exponent,
* the answer is calculated exactly. If the exponent of the
- * result would be larger than <code>doubles</code>'s maximum
+ * result would be larger than {@code doubles}'s maximum
* exponent, an infinity is returned. Note that if the result is
- * subnormal, precision may be lost; that is, when <code>scalb(x,
- * n)</code> is subnormal, <code>scalb(scalb(x, n), -n)</code> may
+ * subnormal, precision may be lost; that is, when {@code scalb(x,
+ * n)} is subnormal, {@code scalb(scalb(x, n), -n)} may
* not equal <i>x</i>. When the result is non-NaN, the result has
- * the same sign as <code>d</code>.
+ * the same sign as {@code d}.
*
*<p>
* Special cases:
@@ -562,8 +556,8 @@
* </ul>
*
* @param d number to be scaled by a power of two.
- * @param scale_factor power of 2 used to scale <code>d</code>
- * @return <code>d * </code>2<sup><code>scale_factor</code></sup>
+ * @param scale_factor power of 2 used to scale {@code d}
+ * @return {@code d * }2<sup>{@code scale_factor}</sup>
* @author Joseph D. Darcy
*/
public static double scalb(double d, int scale_factor) {
@@ -644,22 +638,22 @@
}
/**
- * Return <code>f </code>×
- * 2<sup><code>scale_factor</code></sup> rounded as if performed
+ * Return {@code f} ×
+ * 2<sup>{@code scale_factor}</sup> rounded as if performed
* by a single correctly rounded floating-point multiply to a
* member of the float value set. See <a
* href="http://java.sun.com/docs/books/jls/second_edition/html/typesValues.doc.html#9208">§4.2.3</a>
* of the <a href="http://java.sun.com/docs/books/jls/html/">Java
* Language Specification</a> for a discussion of floating-point
* value set. If the exponent of the result is between the
- * <code>float</code>'s minimum exponent and maximum exponent, the
+ * {@code float}'s minimum exponent and maximum exponent, the
* answer is calculated exactly. If the exponent of the result
- * would be larger than <code>float</code>'s maximum exponent, an
+ * would be larger than {@code float}'s maximum exponent, an
* infinity is returned. Note that if the result is subnormal,
- * precision may be lost; that is, when <code>scalb(x, n)</code>
- * is subnormal, <code>scalb(scalb(x, n), -n)</code> may not equal
+ * precision may be lost; that is, when {@code scalb(x, n)}
+ * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
* <i>x</i>. When the result is non-NaN, the result has the same
- * sign as <code>f</code>.
+ * sign as {@code f}.
*
*<p>
* Special cases:
@@ -672,8 +666,8 @@
* </ul>
*
* @param f number to be scaled by a power of two.
- * @param scale_factor power of 2 used to scale <code>f</code>
- * @return <code>f * </code>2<sup><code>scale_factor</code></sup>
+ * @param scale_factor power of 2 used to scale {@code f}
+ * @return {@code f * }2<sup>{@code scale_factor}</sup>
* @author Joseph D. Darcy
*/
public static float scalb(float f, int scale_factor) {
@@ -709,34 +703,34 @@
* <ul>
* <li> If either argument is a NaN, then NaN is returned.
*
- * <li> If both arguments are signed zeros, <code>direction</code>
+ * <li> If both arguments are signed zeros, {@code direction}
* is returned unchanged (as implied by the requirement of
* returning the second argument if the arguments compare as
* equal).
*
- * <li> If <code>start</code> is
- * ±<code>Double.MIN_VALUE</code> and <code>direction</code>
+ * <li> If {@code start} is
+ * ±{@code Double.MIN_VALUE} and {@code direction}
* has a value such that the result should have a smaller
- * magnitude, then a zero with the same sign as <code>start</code>
+ * magnitude, then a zero with the same sign as {@code start}
* is returned.
*
- * <li> If <code>start</code> is infinite and
- * <code>direction</code> has a value such that the result should
- * have a smaller magnitude, <code>Double.MAX_VALUE</code> with the
- * same sign as <code>start</code> is returned.
+ * <li> If {@code start} is infinite and
+ * {@code direction} has a value such that the result should
+ * have a smaller magnitude, {@code Double.MAX_VALUE} with the
+ * same sign as {@code start} is returned.
*
- * <li> If <code>start</code> is equal to ±
- * <code>Double.MAX_VALUE</code> and <code>direction</code> has a
+ * <li> If {@code start} is equal to ±
+ * {@code Double.MAX_VALUE} and {@code direction} has a
* value such that the result should have a larger magnitude, an
- * infinity with same sign as <code>start</code> is returned.
+ * infinity with same sign as {@code start} is returned.
* </ul>
*
* @param start starting floating-point value
* @param direction value indicating which of
- * <code>start</code>'s neighbors or <code>start</code> should
+ * {@code start}'s neighbors or {@code start} should
* be returned
- * @return The floating-point number adjacent to <code>start</code> in the
- * direction of <code>direction</code>.
+ * @return The floating-point number adjacent to {@code start} in the
+ * direction of {@code direction}.
* @author Joseph D. Darcy
*/
public static double nextAfter(double start, double direction) {
@@ -809,34 +803,34 @@
* <ul>
* <li> If either argument is a NaN, then NaN is returned.
*
- * <li> If both arguments are signed zeros, a <code>float</code>
- * zero with the same sign as <code>direction</code> is returned
+ * <li> If both arguments are signed zeros, a {@code float}
+ * zero with the same sign as {@code direction} is returned
* (as implied by the requirement of returning the second argument
* if the arguments compare as equal).
*
- * <li> If <code>start</code> is
- * ±<code>Float.MIN_VALUE</code> and <code>direction</code>
+ * <li> If {@code start} is
+ * ±{@code Float.MIN_VALUE} and {@code direction}
* has a value such that the result should have a smaller
- * magnitude, then a zero with the same sign as <code>start</code>
+ * magnitude, then a zero with the same sign as {@code start}
* is returned.
*
- * <li> If <code>start</code> is infinite and
- * <code>direction</code> has a value such that the result should
- * have a smaller magnitude, <code>Float.MAX_VALUE</code> with the
- * same sign as <code>start</code> is returned.
+ * <li> If {@code start} is infinite and
+ * {@code direction} has a value such that the result should
+ * have a smaller magnitude, {@code Float.MAX_VALUE} with the
+ * same sign as {@code start} is returned.
*
- * <li> If <code>start</code> is equal to ±
- * <code>Float.MAX_VALUE</code> and <code>direction</code> has a
+ * <li> If {@code start} is equal to ±
+ * {@code Float.MAX_VALUE} and {@code direction} has a
* value such that the result should have a larger magnitude, an
- * infinity with same sign as <code>start</code> is returned.
+ * infinity with same sign as {@code start} is returned.
* </ul>
*
* @param start starting floating-point value
* @param direction value indicating which of
- * <code>start</code>'s neighbors or <code>start</code> should
+ * {@code start}'s neighbors or {@code start} should
* be returned
- * @return The floating-point number adjacent to <code>start</code> in the
- * direction of <code>direction</code>.
+ * @return The floating-point number adjacent to {@code start} in the
+ * direction of {@code direction}.
* @author Joseph D. Darcy
*/
public static float nextAfter(float start, double direction) {
@@ -900,12 +894,12 @@
}
/**
- * Returns the floating-point value adjacent to <code>d</code> in
+ * Returns the floating-point value adjacent to {@code d} in
* the direction of positive infinity. This method is
- * semantically equivalent to <code>nextAfter(d,
- * Double.POSITIVE_INFINITY)</code>; however, a <code>nextUp</code>
+ * semantically equivalent to {@code nextAfter(d,
+ * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
* implementation may run faster than its equivalent
- * <code>nextAfter</code> call.
+ * {@code nextAfter} call.
*
* <p>Special Cases:
* <ul>
@@ -915,7 +909,7 @@
* positive infinity.
*
* <li> If the argument is zero, the result is
- * <code>Double.MIN_VALUE</code>
+ * {@code Double.MIN_VALUE}
*
* </ul>
*
@@ -935,12 +929,12 @@
}
/**
- * Returns the floating-point value adjacent to <code>f</code> in
+ * Returns the floating-point value adjacent to {@code f} in
* the direction of positive infinity. This method is
- * semantically equivalent to <code>nextAfter(f,
- * Double.POSITIVE_INFINITY)</code>; however, a <code>nextUp</code>
+ * semantically equivalent to {@code nextAfter(f,
+ * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
* implementation may run faster than its equivalent
- * <code>nextAfter</code> call.
+ * {@code nextAfter} call.
*
* <p>Special Cases:
* <ul>
@@ -950,7 +944,7 @@
* positive infinity.
*
* <li> If the argument is zero, the result is
- * <code>Float.MIN_VALUE</code>
+ * {@code Float.MIN_VALUE}
*
* </ul>
*
@@ -970,12 +964,12 @@
}
/**
- * Returns the floating-point value adjacent to <code>d</code> in
+ * Returns the floating-point value adjacent to {@code d} in
* the direction of negative infinity. This method is
- * semantically equivalent to <code>nextAfter(d,
- * Double.NEGATIVE_INFINITY)</code>; however, a
- * <code>nextDown</code> implementation may run faster than its
- * equivalent <code>nextAfter</code> call.
+ * semantically equivalent to {@code nextAfter(d,
+ * Double.NEGATIVE_INFINITY)}; however, a
+ * {@code nextDown} implementation may run faster than its
+ * equivalent {@code nextAfter} call.
*
* <p>Special Cases:
* <ul>
@@ -985,7 +979,7 @@
* negative infinity.
*
* <li> If the argument is zero, the result is
- * <code>-Double.MIN_VALUE</code>
+ * {@code -Double.MIN_VALUE}
*
* </ul>
*
@@ -1007,12 +1001,12 @@
}
/**
- * Returns the floating-point value adjacent to <code>f</code> in
+ * Returns the floating-point value adjacent to {@code f} in
* the direction of negative infinity. This method is
- * semantically equivalent to <code>nextAfter(f,
- * Float.NEGATIVE_INFINITY)</code>; however, a
- * <code>nextDown</code> implementation may run faster than its
- * equivalent <code>nextAfter</code> call.
+ * semantically equivalent to {@code nextAfter(f,
+ * Float.NEGATIVE_INFINITY)}; however, a
+ * {@code nextDown} implementation may run faster than its
+ * equivalent {@code nextAfter} call.
*
* <p>Special Cases:
* <ul>
@@ -1022,7 +1016,7 @@
* negative infinity.
*
* <li> If the argument is zero, the result is
- * <code>-Float.MIN_VALUE</code>
+ * {@code -Float.MIN_VALUE}
*
* </ul>
*
@@ -1046,13 +1040,13 @@
/**
* Returns the first floating-point argument with the sign of the
* second floating-point argument. For this method, a NaN
- * <code>sign</code> argument is always treated as if it were
+ * {@code sign} argument is always treated as if it were
* positive.
*
* @param magnitude the parameter providing the magnitude of the result
* @param sign the parameter providing the sign of the result
- * @return a value with the magnitude of <code>magnitude</code>
- * and the sign of <code>sign</code>.
+ * @return a value with the magnitude of {@code magnitude}
+ * and the sign of {@code sign}.
* @author Joseph D. Darcy
* @since 1.5
*/
@@ -1063,13 +1057,13 @@
/**
* Returns the first floating-point argument with the sign of the
* second floating-point argument. For this method, a NaN
- * <code>sign</code> argument is always treated as if it were
+ * {@code sign} argument is always treated as if it were
* positive.
*
* @param magnitude the parameter providing the magnitude of the result
* @param sign the parameter providing the sign of the result
- * @return a value with the magnitude of <code>magnitude</code>
- * and the sign of <code>sign</code>.
+ * @return a value with the magnitude of {@code magnitude}
+ * and the sign of {@code sign}.
* @author Joseph D. Darcy
*/
public static float copySign(float magnitude, float sign) {
@@ -1078,8 +1072,8 @@
/**
* Returns the size of an ulp of the argument. An ulp of a
- * <code>double</code> value is the positive distance between this
- * floating-point value and the <code>double</code> value next
+ * {@code double} value is the positive distance between this
+ * floating-point value and the {@code double} value next
* larger in magnitude. Note that for non-NaN <i>x</i>,
* <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
*
@@ -1089,8 +1083,8 @@
* <li> If the argument is positive or negative infinity, then the
* result is positive infinity.
* <li> If the argument is positive or negative zero, then the result is
- * <code>Double.MIN_VALUE</code>.
- * <li> If the argument is ±<code>Double.MAX_VALUE</code>, then
+ * {@code Double.MIN_VALUE}.
+ * <li> If the argument is ±{@code Double.MAX_VALUE}, then
* the result is equal to 2<sup>971</sup>.
* </ul>
*
@@ -1105,11 +1099,9 @@
switch(exp) {
case DoubleConsts.MAX_EXPONENT+1: // NaN or infinity
return Math.abs(d);
- // break;
case DoubleConsts.MIN_EXPONENT-1: // zero or subnormal
return Double.MIN_VALUE;
- // break
default:
assert exp <= DoubleConsts.MAX_EXPONENT && exp >= DoubleConsts.MIN_EXPONENT;
@@ -1126,14 +1118,13 @@
return Double.longBitsToDouble(1L <<
(exp - (DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) ));
}
- // break
}
}
/**
* Returns the size of an ulp of the argument. An ulp of a
- * <code>float</code> value is the positive distance between this
- * floating-point value and the <code>float</code> value next
+ * {@code float} value is the positive distance between this
+ * floating-point value and the {@code float} value next
* larger in magnitude. Note that for non-NaN <i>x</i>,
* <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
*
@@ -1143,8 +1134,8 @@
* <li> If the argument is positive or negative infinity, then the
* result is positive infinity.
* <li> If the argument is positive or negative zero, then the result is
- * <code>Float.MIN_VALUE</code>.
- * <li> If the argument is ±<code>Float.MAX_VALUE</code>, then
+ * {@code Float.MIN_VALUE}.
+ * <li> If the argument is ±{@code Float.MAX_VALUE}, then
* the result is equal to 2<sup>104</sup>.
* </ul>
*
@@ -1159,11 +1150,9 @@
switch(exp) {
case FloatConsts.MAX_EXPONENT+1: // NaN or infinity
return Math.abs(f);
- // break;
case FloatConsts.MIN_EXPONENT-1: // zero or subnormal
return FloatConsts.MIN_VALUE;
- // break
default:
assert exp <= FloatConsts.MAX_EXPONENT && exp >= FloatConsts.MIN_EXPONENT;
@@ -1180,7 +1169,6 @@
return Float.intBitsToFloat(1 <<
(exp - (FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) ));
}
- // break
}
}