6891632: Remove duplicate ECC source files
authorvinnie
Wed, 14 Oct 2009 23:41:11 +0100
changeset 3985 6bab93485a15
parent 3984 f294fe995b86
child 3986 e460d20b8501
6891632: Remove duplicate ECC source files Reviewed-by: wetmore
jdk/src/share/native/sun/security/ec/ec.h
jdk/src/share/native/sun/security/ec/ec2.h
jdk/src/share/native/sun/security/ec/ec2_163.c
jdk/src/share/native/sun/security/ec/ec2_193.c
jdk/src/share/native/sun/security/ec/ec2_233.c
jdk/src/share/native/sun/security/ec/ec2_aff.c
jdk/src/share/native/sun/security/ec/ec2_mont.c
jdk/src/share/native/sun/security/ec/ec_naf.c
jdk/src/share/native/sun/security/ec/ecc_impl.h
jdk/src/share/native/sun/security/ec/ecdecode.c
jdk/src/share/native/sun/security/ec/ecl-curve.h
jdk/src/share/native/sun/security/ec/ecl-exp.h
jdk/src/share/native/sun/security/ec/ecl-priv.h
jdk/src/share/native/sun/security/ec/ecl.c
jdk/src/share/native/sun/security/ec/ecl.h
jdk/src/share/native/sun/security/ec/ecl_curve.c
jdk/src/share/native/sun/security/ec/ecl_gf.c
jdk/src/share/native/sun/security/ec/ecl_mult.c
jdk/src/share/native/sun/security/ec/ecp.h
jdk/src/share/native/sun/security/ec/ecp_192.c
jdk/src/share/native/sun/security/ec/ecp_224.c
jdk/src/share/native/sun/security/ec/ecp_256.c
jdk/src/share/native/sun/security/ec/ecp_384.c
jdk/src/share/native/sun/security/ec/ecp_521.c
jdk/src/share/native/sun/security/ec/ecp_aff.c
jdk/src/share/native/sun/security/ec/ecp_jac.c
jdk/src/share/native/sun/security/ec/ecp_jm.c
jdk/src/share/native/sun/security/ec/ecp_mont.c
jdk/src/share/native/sun/security/ec/logtab.h
jdk/src/share/native/sun/security/ec/mp_gf2m-priv.h
jdk/src/share/native/sun/security/ec/mp_gf2m.c
jdk/src/share/native/sun/security/ec/mp_gf2m.h
jdk/src/share/native/sun/security/ec/mpi-config.h
jdk/src/share/native/sun/security/ec/mpi-priv.h
jdk/src/share/native/sun/security/ec/mpi.c
jdk/src/share/native/sun/security/ec/mpi.h
jdk/src/share/native/sun/security/ec/mplogic.c
jdk/src/share/native/sun/security/ec/mplogic.h
jdk/src/share/native/sun/security/ec/mpmontg.c
jdk/src/share/native/sun/security/ec/mpprime.h
jdk/src/share/native/sun/security/ec/oid.c
jdk/src/share/native/sun/security/ec/secitem.c
jdk/src/share/native/sun/security/ec/secoidt.h
--- a/jdk/src/share/native/sun/security/ec/ec.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,72 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Elliptic Curve Cryptography library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef __ec_h_
-#define __ec_h_
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#define EC_DEBUG                          0
-#define EC_POINT_FORM_COMPRESSED_Y0    0x02
-#define EC_POINT_FORM_COMPRESSED_Y1    0x03
-#define EC_POINT_FORM_UNCOMPRESSED     0x04
-#define EC_POINT_FORM_HYBRID_Y0        0x06
-#define EC_POINT_FORM_HYBRID_Y1        0x07
-
-#define ANSI_X962_CURVE_OID_TOTAL_LEN    10
-#define SECG_CURVE_OID_TOTAL_LEN          7
-
-#endif /* __ec_h_ */
--- a/jdk/src/share/native/sun/security/ec/ec2.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,146 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for binary polynomial field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _EC2_H
-#define _EC2_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecl-priv.h"
-
-/* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
-mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py);
-
-/* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
-mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py);
-
-/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
- * qy). Uses affine coordinates. */
-mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py,
-                                                  const mp_int *qx, const mp_int *qy, mp_int *rx,
-                                                  mp_int *ry, const ECGroup *group);
-
-/* Computes R = P - Q.  Uses affine coordinates. */
-mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py,
-                                                  const mp_int *qx, const mp_int *qy, mp_int *rx,
-                                                  mp_int *ry, const ECGroup *group);
-
-/* Computes R = 2P.  Uses affine coordinates. */
-mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
-                                                  mp_int *ry, const ECGroup *group);
-
-/* Validates a point on a GF2m curve. */
-mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
-
-/* by default, this routine is unused and thus doesn't need to be compiled */
-#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
-/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
- * a, b and p are the elliptic curve coefficients and the irreducible that
- * determines the field GF2m.  Uses affine coordinates. */
-mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px,
-                                                  const mp_int *py, mp_int *rx, mp_int *ry,
-                                                  const ECGroup *group);
-#endif
-
-/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
- * a, b and p are the elliptic curve coefficients and the irreducible that
- * determines the field GF2m.  Uses Montgomery projective coordinates. */
-mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px,
-                                                   const mp_int *py, mp_int *rx, mp_int *ry,
-                                                   const ECGroup *group);
-
-#ifdef ECL_ENABLE_GF2M_PROJ
-/* Converts a point P(px, py) from affine coordinates to projective
- * coordinates R(rx, ry, rz). */
-mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx,
-                                                   mp_int *ry, mp_int *rz, const ECGroup *group);
-
-/* Converts a point P(px, py, pz) from projective coordinates to affine
- * coordinates R(rx, ry). */
-mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py,
-                                                   const mp_int *pz, mp_int *rx, mp_int *ry,
-                                                   const ECGroup *group);
-
-/* Checks if point P(px, py, pz) is at infinity.  Uses projective
- * coordinates. */
-mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py,
-                                                          const mp_int *pz);
-
-/* Sets P(px, py, pz) to be the point at infinity.  Uses projective
- * coordinates. */
-mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz);
-
-/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
- * (qx, qy, qz).  Uses projective coordinates. */
-mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py,
-                                                   const mp_int *pz, const mp_int *qx,
-                                                   const mp_int *qy, mp_int *rx, mp_int *ry,
-                                                   mp_int *rz, const ECGroup *group);
-
-/* Computes R = 2P.  Uses projective coordinates. */
-mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py,
-                                                   const mp_int *pz, mp_int *rx, mp_int *ry,
-                                                   mp_int *rz, const ECGroup *group);
-
-/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
- * a, b and p are the elliptic curve coefficients and the prime that
- * determines the field GF2m.  Uses projective coordinates. */
-mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px,
-                                                   const mp_int *py, mp_int *rx, mp_int *ry,
-                                                   const ECGroup *group);
-#endif
-
-#endif /* _EC2_H */
--- a/jdk/src/share/native/sun/security/ec/ec2_163.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,281 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for binary polynomial field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
- *   Stephen Fung <fungstep@hotmail.com>, and
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ec2.h"
-#include "mp_gf2m.h"
-#include "mp_gf2m-priv.h"
-#include "mpi.h"
-#include "mpi-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* Fast reduction for polynomials over a 163-bit curve. Assumes reduction
- * polynomial with terms {163, 7, 6, 3, 0}. */
-mp_err
-ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit *u, z;
-
-        if (a != r) {
-                MP_CHECKOK(mp_copy(a, r));
-        }
-#ifdef ECL_SIXTY_FOUR_BIT
-        if (MP_USED(r) < 6) {
-                MP_CHECKOK(s_mp_pad(r, 6));
-        }
-        u = MP_DIGITS(r);
-        MP_USED(r) = 6;
-
-        /* u[5] only has 6 significant bits */
-        z = u[5];
-        u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
-        z = u[4];
-        u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
-        u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
-        z = u[3];
-        u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
-        u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
-        z = u[2] >> 35;                         /* z only has 29 significant bits */
-        u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
-        /* clear bits above 163 */
-        u[5] = u[4] = u[3] = 0;
-        u[2] ^= z << 35;
-#else
-        if (MP_USED(r) < 11) {
-                MP_CHECKOK(s_mp_pad(r, 11));
-        }
-        u = MP_DIGITS(r);
-        MP_USED(r) = 11;
-
-        /* u[11] only has 6 significant bits */
-        z = u[10];
-        u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
-        u[4] ^= (z << 29);
-        z = u[9];
-        u[5] ^= (z >> 28) ^ (z >> 29);
-        u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
-        u[3] ^= (z << 29);
-        z = u[8];
-        u[4] ^= (z >> 28) ^ (z >> 29);
-        u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
-        u[2] ^= (z << 29);
-        z = u[7];
-        u[3] ^= (z >> 28) ^ (z >> 29);
-        u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
-        u[1] ^= (z << 29);
-        z = u[6];
-        u[2] ^= (z >> 28) ^ (z >> 29);
-        u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
-        u[0] ^= (z << 29);
-        z = u[5] >> 3;                          /* z only has 29 significant bits */
-        u[1] ^= (z >> 25) ^ (z >> 26);
-        u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
-        /* clear bits above 163 */
-        u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0;
-        u[5] ^= z << 3;
-#endif
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-/* Fast squaring for polynomials over a 163-bit curve. Assumes reduction
- * polynomial with terms {163, 7, 6, 3, 0}. */
-mp_err
-ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit *u, *v;
-
-        v = MP_DIGITS(a);
-
-#ifdef ECL_SIXTY_FOUR_BIT
-        if (MP_USED(a) < 3) {
-                return mp_bsqrmod(a, meth->irr_arr, r);
-        }
-        if (MP_USED(r) < 6) {
-                MP_CHECKOK(s_mp_pad(r, 6));
-        }
-        MP_USED(r) = 6;
-#else
-        if (MP_USED(a) < 6) {
-                return mp_bsqrmod(a, meth->irr_arr, r);
-        }
-        if (MP_USED(r) < 12) {
-                MP_CHECKOK(s_mp_pad(r, 12));
-        }
-        MP_USED(r) = 12;
-#endif
-        u = MP_DIGITS(r);
-
-#ifdef ECL_THIRTY_TWO_BIT
-        u[11] = gf2m_SQR1(v[5]);
-        u[10] = gf2m_SQR0(v[5]);
-        u[9] = gf2m_SQR1(v[4]);
-        u[8] = gf2m_SQR0(v[4]);
-        u[7] = gf2m_SQR1(v[3]);
-        u[6] = gf2m_SQR0(v[3]);
-#endif
-        u[5] = gf2m_SQR1(v[2]);
-        u[4] = gf2m_SQR0(v[2]);
-        u[3] = gf2m_SQR1(v[1]);
-        u[2] = gf2m_SQR0(v[1]);
-        u[1] = gf2m_SQR1(v[0]);
-        u[0] = gf2m_SQR0(v[0]);
-        return ec_GF2m_163_mod(r, r, meth);
-
-  CLEANUP:
-        return res;
-}
-
-/* Fast multiplication for polynomials over a 163-bit curve. Assumes
- * reduction polynomial with terms {163, 7, 6, 3, 0}. */
-mp_err
-ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                                const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0;
-
-#ifdef ECL_THIRTY_TWO_BIT
-        mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0;
-        mp_digit rm[6];
-#endif
-
-        if (a == b) {
-                return ec_GF2m_163_sqr(a, r, meth);
-        } else {
-                switch (MP_USED(a)) {
-#ifdef ECL_THIRTY_TWO_BIT
-                case 6:
-                        a5 = MP_DIGIT(a, 5);
-                case 5:
-                        a4 = MP_DIGIT(a, 4);
-                case 4:
-                        a3 = MP_DIGIT(a, 3);
-#endif
-                case 3:
-                        a2 = MP_DIGIT(a, 2);
-                case 2:
-                        a1 = MP_DIGIT(a, 1);
-                default:
-                        a0 = MP_DIGIT(a, 0);
-                }
-                switch (MP_USED(b)) {
-#ifdef ECL_THIRTY_TWO_BIT
-                case 6:
-                        b5 = MP_DIGIT(b, 5);
-                case 5:
-                        b4 = MP_DIGIT(b, 4);
-                case 4:
-                        b3 = MP_DIGIT(b, 3);
-#endif
-                case 3:
-                        b2 = MP_DIGIT(b, 2);
-                case 2:
-                        b1 = MP_DIGIT(b, 1);
-                default:
-                        b0 = MP_DIGIT(b, 0);
-                }
-#ifdef ECL_SIXTY_FOUR_BIT
-                MP_CHECKOK(s_mp_pad(r, 6));
-                s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
-                MP_USED(r) = 6;
-                s_mp_clamp(r);
-#else
-                MP_CHECKOK(s_mp_pad(r, 12));
-                s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3);
-                s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
-                s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1,
-                                   b3 ^ b0);
-                rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11);
-                rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10);
-                rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9);
-                rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 8);
-                rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 7);
-                rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 6);
-                MP_DIGIT(r, 8) ^= rm[5];
-                MP_DIGIT(r, 7) ^= rm[4];
-                MP_DIGIT(r, 6) ^= rm[3];
-                MP_DIGIT(r, 5) ^= rm[2];
-                MP_DIGIT(r, 4) ^= rm[1];
-                MP_DIGIT(r, 3) ^= rm[0];
-                MP_USED(r) = 12;
-                s_mp_clamp(r);
-#endif
-                return ec_GF2m_163_mod(r, r, meth);
-        }
-
-  CLEANUP:
-        return res;
-}
-
-/* Wire in fast field arithmetic for 163-bit curves. */
-mp_err
-ec_group_set_gf2m163(ECGroup *group, ECCurveName name)
-{
-        group->meth->field_mod = &ec_GF2m_163_mod;
-        group->meth->field_mul = &ec_GF2m_163_mul;
-        group->meth->field_sqr = &ec_GF2m_163_sqr;
-        return MP_OKAY;
-}
--- a/jdk/src/share/native/sun/security/ec/ec2_193.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,298 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for binary polynomial field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
- *   Stephen Fung <fungstep@hotmail.com>, and
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ec2.h"
-#include "mp_gf2m.h"
-#include "mp_gf2m-priv.h"
-#include "mpi.h"
-#include "mpi-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* Fast reduction for polynomials over a 193-bit curve. Assumes reduction
- * polynomial with terms {193, 15, 0}. */
-mp_err
-ec_GF2m_193_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit *u, z;
-
-        if (a != r) {
-                MP_CHECKOK(mp_copy(a, r));
-        }
-#ifdef ECL_SIXTY_FOUR_BIT
-        if (MP_USED(r) < 7) {
-                MP_CHECKOK(s_mp_pad(r, 7));
-        }
-        u = MP_DIGITS(r);
-        MP_USED(r) = 7;
-
-        /* u[6] only has 2 significant bits */
-        z = u[6];
-        u[3] ^= (z << 14) ^ (z >> 1);
-        u[2] ^= (z << 63);
-        z = u[5];
-        u[3] ^= (z >> 50);
-        u[2] ^= (z << 14) ^ (z >> 1);
-        u[1] ^= (z << 63);
-        z = u[4];
-        u[2] ^= (z >> 50);
-        u[1] ^= (z << 14) ^ (z >> 1);
-        u[0] ^= (z << 63);
-        z = u[3] >> 1;                          /* z only has 63 significant bits */
-        u[1] ^= (z >> 49);
-        u[0] ^= (z << 15) ^ z;
-        /* clear bits above 193 */
-        u[6] = u[5] = u[4] = 0;
-        u[3] ^= z << 1;
-#else
-        if (MP_USED(r) < 13) {
-                MP_CHECKOK(s_mp_pad(r, 13));
-        }
-        u = MP_DIGITS(r);
-        MP_USED(r) = 13;
-
-        /* u[12] only has 2 significant bits */
-        z = u[12];
-        u[6] ^= (z << 14) ^ (z >> 1);
-        u[5] ^= (z << 31);
-        z = u[11];
-        u[6] ^= (z >> 18);
-        u[5] ^= (z << 14) ^ (z >> 1);
-        u[4] ^= (z << 31);
-        z = u[10];
-        u[5] ^= (z >> 18);
-        u[4] ^= (z << 14) ^ (z >> 1);
-        u[3] ^= (z << 31);
-        z = u[9];
-        u[4] ^= (z >> 18);
-        u[3] ^= (z << 14) ^ (z >> 1);
-        u[2] ^= (z << 31);
-        z = u[8];
-        u[3] ^= (z >> 18);
-        u[2] ^= (z << 14) ^ (z >> 1);
-        u[1] ^= (z << 31);
-        z = u[7];
-        u[2] ^= (z >> 18);
-        u[1] ^= (z << 14) ^ (z >> 1);
-        u[0] ^= (z << 31);
-        z = u[6] >> 1;                          /* z only has 31 significant bits */
-        u[1] ^= (z >> 17);
-        u[0] ^= (z << 15) ^ z;
-        /* clear bits above 193 */
-        u[12] = u[11] = u[10] = u[9] = u[8] = u[7] = 0;
-        u[6] ^= z << 1;
-#endif
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-/* Fast squaring for polynomials over a 193-bit curve. Assumes reduction
- * polynomial with terms {193, 15, 0}. */
-mp_err
-ec_GF2m_193_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit *u, *v;
-
-        v = MP_DIGITS(a);
-
-#ifdef ECL_SIXTY_FOUR_BIT
-        if (MP_USED(a) < 4) {
-                return mp_bsqrmod(a, meth->irr_arr, r);
-        }
-        if (MP_USED(r) < 7) {
-                MP_CHECKOK(s_mp_pad(r, 7));
-        }
-        MP_USED(r) = 7;
-#else
-        if (MP_USED(a) < 7) {
-                return mp_bsqrmod(a, meth->irr_arr, r);
-        }
-        if (MP_USED(r) < 13) {
-                MP_CHECKOK(s_mp_pad(r, 13));
-        }
-        MP_USED(r) = 13;
-#endif
-        u = MP_DIGITS(r);
-
-#ifdef ECL_THIRTY_TWO_BIT
-        u[12] = gf2m_SQR0(v[6]);
-        u[11] = gf2m_SQR1(v[5]);
-        u[10] = gf2m_SQR0(v[5]);
-        u[9] = gf2m_SQR1(v[4]);
-        u[8] = gf2m_SQR0(v[4]);
-        u[7] = gf2m_SQR1(v[3]);
-#endif
-        u[6] = gf2m_SQR0(v[3]);
-        u[5] = gf2m_SQR1(v[2]);
-        u[4] = gf2m_SQR0(v[2]);
-        u[3] = gf2m_SQR1(v[1]);
-        u[2] = gf2m_SQR0(v[1]);
-        u[1] = gf2m_SQR1(v[0]);
-        u[0] = gf2m_SQR0(v[0]);
-        return ec_GF2m_193_mod(r, r, meth);
-
-  CLEANUP:
-        return res;
-}
-
-/* Fast multiplication for polynomials over a 193-bit curve. Assumes
- * reduction polynomial with terms {193, 15, 0}. */
-mp_err
-ec_GF2m_193_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                                const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0;
-
-#ifdef ECL_THIRTY_TWO_BIT
-        mp_digit a6 = 0, a5 = 0, a4 = 0, b6 = 0, b5 = 0, b4 = 0;
-        mp_digit rm[8];
-#endif
-
-        if (a == b) {
-                return ec_GF2m_193_sqr(a, r, meth);
-        } else {
-                switch (MP_USED(a)) {
-#ifdef ECL_THIRTY_TWO_BIT
-                case 7:
-                        a6 = MP_DIGIT(a, 6);
-                case 6:
-                        a5 = MP_DIGIT(a, 5);
-                case 5:
-                        a4 = MP_DIGIT(a, 4);
-#endif
-                case 4:
-                        a3 = MP_DIGIT(a, 3);
-                case 3:
-                        a2 = MP_DIGIT(a, 2);
-                case 2:
-                        a1 = MP_DIGIT(a, 1);
-                default:
-                        a0 = MP_DIGIT(a, 0);
-                }
-                switch (MP_USED(b)) {
-#ifdef ECL_THIRTY_TWO_BIT
-                case 7:
-                        b6 = MP_DIGIT(b, 6);
-                case 6:
-                        b5 = MP_DIGIT(b, 5);
-                case 5:
-                        b4 = MP_DIGIT(b, 4);
-#endif
-                case 4:
-                        b3 = MP_DIGIT(b, 3);
-                case 3:
-                        b2 = MP_DIGIT(b, 2);
-                case 2:
-                        b1 = MP_DIGIT(b, 1);
-                default:
-                        b0 = MP_DIGIT(b, 0);
-                }
-#ifdef ECL_SIXTY_FOUR_BIT
-                MP_CHECKOK(s_mp_pad(r, 8));
-                s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
-                MP_USED(r) = 8;
-                s_mp_clamp(r);
-#else
-                MP_CHECKOK(s_mp_pad(r, 14));
-                s_bmul_3x3(MP_DIGITS(r) + 8, a6, a5, a4, b6, b5, b4);
-                s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
-                s_bmul_4x4(rm, a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b3, b6 ^ b2, b5 ^ b1,
-                                   b4 ^ b0);
-                rm[7] ^= MP_DIGIT(r, 7);
-                rm[6] ^= MP_DIGIT(r, 6);
-                rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13);
-                rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12);
-                rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11);
-                rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10);
-                rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9);
-                rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8);
-                MP_DIGIT(r, 11) ^= rm[7];
-                MP_DIGIT(r, 10) ^= rm[6];
-                MP_DIGIT(r, 9) ^= rm[5];
-                MP_DIGIT(r, 8) ^= rm[4];
-                MP_DIGIT(r, 7) ^= rm[3];
-                MP_DIGIT(r, 6) ^= rm[2];
-                MP_DIGIT(r, 5) ^= rm[1];
-                MP_DIGIT(r, 4) ^= rm[0];
-                MP_USED(r) = 14;
-                s_mp_clamp(r);
-#endif
-                return ec_GF2m_193_mod(r, r, meth);
-        }
-
-  CLEANUP:
-        return res;
-}
-
-/* Wire in fast field arithmetic for 193-bit curves. */
-mp_err
-ec_group_set_gf2m193(ECGroup *group, ECCurveName name)
-{
-        group->meth->field_mod = &ec_GF2m_193_mod;
-        group->meth->field_mul = &ec_GF2m_193_mul;
-        group->meth->field_sqr = &ec_GF2m_193_sqr;
-        return MP_OKAY;
-}
--- a/jdk/src/share/native/sun/security/ec/ec2_233.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,321 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for binary polynomial field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
- *   Stephen Fung <fungstep@hotmail.com>, and
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ec2.h"
-#include "mp_gf2m.h"
-#include "mp_gf2m-priv.h"
-#include "mpi.h"
-#include "mpi-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* Fast reduction for polynomials over a 233-bit curve. Assumes reduction
- * polynomial with terms {233, 74, 0}. */
-mp_err
-ec_GF2m_233_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit *u, z;
-
-        if (a != r) {
-                MP_CHECKOK(mp_copy(a, r));
-        }
-#ifdef ECL_SIXTY_FOUR_BIT
-        if (MP_USED(r) < 8) {
-                MP_CHECKOK(s_mp_pad(r, 8));
-        }
-        u = MP_DIGITS(r);
-        MP_USED(r) = 8;
-
-        /* u[7] only has 18 significant bits */
-        z = u[7];
-        u[4] ^= (z << 33) ^ (z >> 41);
-        u[3] ^= (z << 23);
-        z = u[6];
-        u[4] ^= (z >> 31);
-        u[3] ^= (z << 33) ^ (z >> 41);
-        u[2] ^= (z << 23);
-        z = u[5];
-        u[3] ^= (z >> 31);
-        u[2] ^= (z << 33) ^ (z >> 41);
-        u[1] ^= (z << 23);
-        z = u[4];
-        u[2] ^= (z >> 31);
-        u[1] ^= (z << 33) ^ (z >> 41);
-        u[0] ^= (z << 23);
-        z = u[3] >> 41;                         /* z only has 23 significant bits */
-        u[1] ^= (z << 10);
-        u[0] ^= z;
-        /* clear bits above 233 */
-        u[7] = u[6] = u[5] = u[4] = 0;
-        u[3] ^= z << 41;
-#else
-        if (MP_USED(r) < 15) {
-                MP_CHECKOK(s_mp_pad(r, 15));
-        }
-        u = MP_DIGITS(r);
-        MP_USED(r) = 15;
-
-        /* u[14] only has 18 significant bits */
-        z = u[14];
-        u[9] ^= (z << 1);
-        u[7] ^= (z >> 9);
-        u[6] ^= (z << 23);
-        z = u[13];
-        u[9] ^= (z >> 31);
-        u[8] ^= (z << 1);
-        u[6] ^= (z >> 9);
-        u[5] ^= (z << 23);
-        z = u[12];
-        u[8] ^= (z >> 31);
-        u[7] ^= (z << 1);
-        u[5] ^= (z >> 9);
-        u[4] ^= (z << 23);
-        z = u[11];
-        u[7] ^= (z >> 31);
-        u[6] ^= (z << 1);
-        u[4] ^= (z >> 9);
-        u[3] ^= (z << 23);
-        z = u[10];
-        u[6] ^= (z >> 31);
-        u[5] ^= (z << 1);
-        u[3] ^= (z >> 9);
-        u[2] ^= (z << 23);
-        z = u[9];
-        u[5] ^= (z >> 31);
-        u[4] ^= (z << 1);
-        u[2] ^= (z >> 9);
-        u[1] ^= (z << 23);
-        z = u[8];
-        u[4] ^= (z >> 31);
-        u[3] ^= (z << 1);
-        u[1] ^= (z >> 9);
-        u[0] ^= (z << 23);
-        z = u[7] >> 9;                          /* z only has 23 significant bits */
-        u[3] ^= (z >> 22);
-        u[2] ^= (z << 10);
-        u[0] ^= z;
-        /* clear bits above 233 */
-        u[14] = u[13] = u[12] = u[11] = u[10] = u[9] = u[8] = 0;
-        u[7] ^= z << 9;
-#endif
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-/* Fast squaring for polynomials over a 233-bit curve. Assumes reduction
- * polynomial with terms {233, 74, 0}. */
-mp_err
-ec_GF2m_233_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit *u, *v;
-
-        v = MP_DIGITS(a);
-
-#ifdef ECL_SIXTY_FOUR_BIT
-        if (MP_USED(a) < 4) {
-                return mp_bsqrmod(a, meth->irr_arr, r);
-        }
-        if (MP_USED(r) < 8) {
-                MP_CHECKOK(s_mp_pad(r, 8));
-        }
-        MP_USED(r) = 8;
-#else
-        if (MP_USED(a) < 8) {
-                return mp_bsqrmod(a, meth->irr_arr, r);
-        }
-        if (MP_USED(r) < 15) {
-                MP_CHECKOK(s_mp_pad(r, 15));
-        }
-        MP_USED(r) = 15;
-#endif
-        u = MP_DIGITS(r);
-
-#ifdef ECL_THIRTY_TWO_BIT
-        u[14] = gf2m_SQR0(v[7]);
-        u[13] = gf2m_SQR1(v[6]);
-        u[12] = gf2m_SQR0(v[6]);
-        u[11] = gf2m_SQR1(v[5]);
-        u[10] = gf2m_SQR0(v[5]);
-        u[9] = gf2m_SQR1(v[4]);
-        u[8] = gf2m_SQR0(v[4]);
-#endif
-        u[7] = gf2m_SQR1(v[3]);
-        u[6] = gf2m_SQR0(v[3]);
-        u[5] = gf2m_SQR1(v[2]);
-        u[4] = gf2m_SQR0(v[2]);
-        u[3] = gf2m_SQR1(v[1]);
-        u[2] = gf2m_SQR0(v[1]);
-        u[1] = gf2m_SQR1(v[0]);
-        u[0] = gf2m_SQR0(v[0]);
-        return ec_GF2m_233_mod(r, r, meth);
-
-  CLEANUP:
-        return res;
-}
-
-/* Fast multiplication for polynomials over a 233-bit curve. Assumes
- * reduction polynomial with terms {233, 74, 0}. */
-mp_err
-ec_GF2m_233_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                                const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0;
-
-#ifdef ECL_THIRTY_TWO_BIT
-        mp_digit a7 = 0, a6 = 0, a5 = 0, a4 = 0, b7 = 0, b6 = 0, b5 = 0, b4 =
-                0;
-        mp_digit rm[8];
-#endif
-
-        if (a == b) {
-                return ec_GF2m_233_sqr(a, r, meth);
-        } else {
-                switch (MP_USED(a)) {
-#ifdef ECL_THIRTY_TWO_BIT
-                case 8:
-                        a7 = MP_DIGIT(a, 7);
-                case 7:
-                        a6 = MP_DIGIT(a, 6);
-                case 6:
-                        a5 = MP_DIGIT(a, 5);
-                case 5:
-                        a4 = MP_DIGIT(a, 4);
-#endif
-                case 4:
-                        a3 = MP_DIGIT(a, 3);
-                case 3:
-                        a2 = MP_DIGIT(a, 2);
-                case 2:
-                        a1 = MP_DIGIT(a, 1);
-                default:
-                        a0 = MP_DIGIT(a, 0);
-                }
-                switch (MP_USED(b)) {
-#ifdef ECL_THIRTY_TWO_BIT
-                case 8:
-                        b7 = MP_DIGIT(b, 7);
-                case 7:
-                        b6 = MP_DIGIT(b, 6);
-                case 6:
-                        b5 = MP_DIGIT(b, 5);
-                case 5:
-                        b4 = MP_DIGIT(b, 4);
-#endif
-                case 4:
-                        b3 = MP_DIGIT(b, 3);
-                case 3:
-                        b2 = MP_DIGIT(b, 2);
-                case 2:
-                        b1 = MP_DIGIT(b, 1);
-                default:
-                        b0 = MP_DIGIT(b, 0);
-                }
-#ifdef ECL_SIXTY_FOUR_BIT
-                MP_CHECKOK(s_mp_pad(r, 8));
-                s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
-                MP_USED(r) = 8;
-                s_mp_clamp(r);
-#else
-                MP_CHECKOK(s_mp_pad(r, 16));
-                s_bmul_4x4(MP_DIGITS(r) + 8, a7, a6, a5, a4, b7, b6, b5, b4);
-                s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
-                s_bmul_4x4(rm, a7 ^ a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b7 ^ b3,
-                                   b6 ^ b2, b5 ^ b1, b4 ^ b0);
-                rm[7] ^= MP_DIGIT(r, 7) ^ MP_DIGIT(r, 15);
-                rm[6] ^= MP_DIGIT(r, 6) ^ MP_DIGIT(r, 14);
-                rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13);
-                rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12);
-                rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11);
-                rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10);
-                rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9);
-                rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8);
-                MP_DIGIT(r, 11) ^= rm[7];
-                MP_DIGIT(r, 10) ^= rm[6];
-                MP_DIGIT(r, 9) ^= rm[5];
-                MP_DIGIT(r, 8) ^= rm[4];
-                MP_DIGIT(r, 7) ^= rm[3];
-                MP_DIGIT(r, 6) ^= rm[2];
-                MP_DIGIT(r, 5) ^= rm[1];
-                MP_DIGIT(r, 4) ^= rm[0];
-                MP_USED(r) = 16;
-                s_mp_clamp(r);
-#endif
-                return ec_GF2m_233_mod(r, r, meth);
-        }
-
-  CLEANUP:
-        return res;
-}
-
-/* Wire in fast field arithmetic for 233-bit curves. */
-mp_err
-ec_group_set_gf2m233(ECGroup *group, ECCurveName name)
-{
-        group->meth->field_mod = &ec_GF2m_233_mod;
-        group->meth->field_mul = &ec_GF2m_233_mul;
-        group->meth->field_sqr = &ec_GF2m_233_sqr;
-        return MP_OKAY;
-}
--- a/jdk/src/share/native/sun/security/ec/ec2_aff.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,368 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for binary polynomial field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ec2.h"
-#include "mplogic.h"
-#include "mp_gf2m.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
-mp_err
-ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py)
-{
-
-        if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
-                return MP_YES;
-        } else {
-                return MP_NO;
-        }
-
-}
-
-/* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
-mp_err
-ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py)
-{
-        mp_zero(px);
-        mp_zero(py);
-        return MP_OKAY;
-}
-
-/* Computes R = P + Q based on IEEE P1363 A.10.2. Elliptic curve points P,
- * Q, and R can all be identical. Uses affine coordinates. */
-mp_err
-ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
-                                   const mp_int *qy, mp_int *rx, mp_int *ry,
-                                   const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int lambda, tempx, tempy;
-
-        MP_DIGITS(&lambda) = 0;
-        MP_DIGITS(&tempx) = 0;
-        MP_DIGITS(&tempy) = 0;
-        MP_CHECKOK(mp_init(&lambda, FLAG(px)));
-        MP_CHECKOK(mp_init(&tempx, FLAG(px)));
-        MP_CHECKOK(mp_init(&tempy, FLAG(px)));
-        /* if P = inf, then R = Q */
-        if (ec_GF2m_pt_is_inf_aff(px, py) == 0) {
-                MP_CHECKOK(mp_copy(qx, rx));
-                MP_CHECKOK(mp_copy(qy, ry));
-                res = MP_OKAY;
-                goto CLEANUP;
-        }
-        /* if Q = inf, then R = P */
-        if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) {
-                MP_CHECKOK(mp_copy(px, rx));
-                MP_CHECKOK(mp_copy(py, ry));
-                res = MP_OKAY;
-                goto CLEANUP;
-        }
-        /* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2
-         * + lambda + px + qx */
-        if (mp_cmp(px, qx) != 0) {
-                MP_CHECKOK(group->meth->field_add(py, qy, &tempy, group->meth));
-                MP_CHECKOK(group->meth->field_add(px, qx, &tempx, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_div(&tempy, &tempx, &lambda, group->meth));
-                MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_add(&tempx, &lambda, &tempx, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_add(&tempx, &group->curvea, &tempx, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_add(&tempx, px, &tempx, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_add(&tempx, qx, &tempx, group->meth));
-        } else {
-                /* if py != qy or qx = 0, then R = inf */
-                if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) {
-                        mp_zero(rx);
-                        mp_zero(ry);
-                        res = MP_OKAY;
-                        goto CLEANUP;
-                }
-                /* lambda = qx + qy / qx */
-                MP_CHECKOK(group->meth->field_div(qy, qx, &lambda, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_add(&lambda, qx, &lambda, group->meth));
-                /* tempx = a + lambda^2 + lambda */
-                MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_add(&tempx, &lambda, &tempx, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_add(&tempx, &group->curvea, &tempx, group->meth));
-        }
-        /* ry = (qx + tempx) * lambda + tempx + qy */
-        MP_CHECKOK(group->meth->field_add(qx, &tempx, &tempy, group->meth));
-        MP_CHECKOK(group->meth->
-                           field_mul(&tempy, &lambda, &tempy, group->meth));
-        MP_CHECKOK(group->meth->
-                           field_add(&tempy, &tempx, &tempy, group->meth));
-        MP_CHECKOK(group->meth->field_add(&tempy, qy, ry, group->meth));
-        /* rx = tempx */
-        MP_CHECKOK(mp_copy(&tempx, rx));
-
-  CLEANUP:
-        mp_clear(&lambda);
-        mp_clear(&tempx);
-        mp_clear(&tempy);
-        return res;
-}
-
-/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
- * identical. Uses affine coordinates. */
-mp_err
-ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
-                                   const mp_int *qy, mp_int *rx, mp_int *ry,
-                                   const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int nqy;
-
-        MP_DIGITS(&nqy) = 0;
-        MP_CHECKOK(mp_init(&nqy, FLAG(px)));
-        /* nqy = qx+qy */
-        MP_CHECKOK(group->meth->field_add(qx, qy, &nqy, group->meth));
-        MP_CHECKOK(group->point_add(px, py, qx, &nqy, rx, ry, group));
-  CLEANUP:
-        mp_clear(&nqy);
-        return res;
-}
-
-/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
- * affine coordinates. */
-mp_err
-ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
-                                   mp_int *ry, const ECGroup *group)
-{
-        return group->point_add(px, py, px, py, rx, ry, group);
-}
-
-/* by default, this routine is unused and thus doesn't need to be compiled */
-#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
-/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
- * R can be identical. Uses affine coordinates. */
-mp_err
-ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
-                                   mp_int *rx, mp_int *ry, const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int k, k3, qx, qy, sx, sy;
-        int b1, b3, i, l;
-
-        MP_DIGITS(&k) = 0;
-        MP_DIGITS(&k3) = 0;
-        MP_DIGITS(&qx) = 0;
-        MP_DIGITS(&qy) = 0;
-        MP_DIGITS(&sx) = 0;
-        MP_DIGITS(&sy) = 0;
-        MP_CHECKOK(mp_init(&k));
-        MP_CHECKOK(mp_init(&k3));
-        MP_CHECKOK(mp_init(&qx));
-        MP_CHECKOK(mp_init(&qy));
-        MP_CHECKOK(mp_init(&sx));
-        MP_CHECKOK(mp_init(&sy));
-
-        /* if n = 0 then r = inf */
-        if (mp_cmp_z(n) == 0) {
-                mp_zero(rx);
-                mp_zero(ry);
-                res = MP_OKAY;
-                goto CLEANUP;
-        }
-        /* Q = P, k = n */
-        MP_CHECKOK(mp_copy(px, &qx));
-        MP_CHECKOK(mp_copy(py, &qy));
-        MP_CHECKOK(mp_copy(n, &k));
-        /* if n < 0 then Q = -Q, k = -k */
-        if (mp_cmp_z(n) < 0) {
-                MP_CHECKOK(group->meth->field_add(&qx, &qy, &qy, group->meth));
-                MP_CHECKOK(mp_neg(&k, &k));
-        }
-#ifdef ECL_DEBUG                                /* basic double and add method */
-        l = mpl_significant_bits(&k) - 1;
-        MP_CHECKOK(mp_copy(&qx, &sx));
-        MP_CHECKOK(mp_copy(&qy, &sy));
-        for (i = l - 1; i >= 0; i--) {
-                /* S = 2S */
-                MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
-                /* if k_i = 1, then S = S + Q */
-                if (mpl_get_bit(&k, i) != 0) {
-                        MP_CHECKOK(group->
-                                           point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
-                }
-        }
-#else                                                   /* double and add/subtract method from
-                                                                 * standard */
-        /* k3 = 3 * k */
-        MP_CHECKOK(mp_set_int(&k3, 3));
-        MP_CHECKOK(mp_mul(&k, &k3, &k3));
-        /* S = Q */
-        MP_CHECKOK(mp_copy(&qx, &sx));
-        MP_CHECKOK(mp_copy(&qy, &sy));
-        /* l = index of high order bit in binary representation of 3*k */
-        l = mpl_significant_bits(&k3) - 1;
-        /* for i = l-1 downto 1 */
-        for (i = l - 1; i >= 1; i--) {
-                /* S = 2S */
-                MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
-                b3 = MP_GET_BIT(&k3, i);
-                b1 = MP_GET_BIT(&k, i);
-                /* if k3_i = 1 and k_i = 0, then S = S + Q */
-                if ((b3 == 1) && (b1 == 0)) {
-                        MP_CHECKOK(group->
-                                           point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
-                        /* if k3_i = 0 and k_i = 1, then S = S - Q */
-                } else if ((b3 == 0) && (b1 == 1)) {
-                        MP_CHECKOK(group->
-                                           point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
-                }
-        }
-#endif
-        /* output S */
-        MP_CHECKOK(mp_copy(&sx, rx));
-        MP_CHECKOK(mp_copy(&sy, ry));
-
-  CLEANUP:
-        mp_clear(&k);
-        mp_clear(&k3);
-        mp_clear(&qx);
-        mp_clear(&qy);
-        mp_clear(&sx);
-        mp_clear(&sy);
-        return res;
-}
-#endif
-
-/* Validates a point on a GF2m curve. */
-mp_err
-ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
-{
-        mp_err res = MP_NO;
-        mp_int accl, accr, tmp, pxt, pyt;
-
-        MP_DIGITS(&accl) = 0;
-        MP_DIGITS(&accr) = 0;
-        MP_DIGITS(&tmp) = 0;
-        MP_DIGITS(&pxt) = 0;
-        MP_DIGITS(&pyt) = 0;
-        MP_CHECKOK(mp_init(&accl, FLAG(px)));
-        MP_CHECKOK(mp_init(&accr, FLAG(px)));
-        MP_CHECKOK(mp_init(&tmp, FLAG(px)));
-        MP_CHECKOK(mp_init(&pxt, FLAG(px)));
-        MP_CHECKOK(mp_init(&pyt, FLAG(px)));
-
-    /* 1: Verify that publicValue is not the point at infinity */
-        if (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES) {
-                res = MP_NO;
-                goto CLEANUP;
-        }
-    /* 2: Verify that the coordinates of publicValue are elements
-     *    of the field.
-     */
-        if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
-                (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
-                res = MP_NO;
-                goto CLEANUP;
-        }
-    /* 3: Verify that publicValue is on the curve. */
-        if (group->meth->field_enc) {
-                group->meth->field_enc(px, &pxt, group->meth);
-                group->meth->field_enc(py, &pyt, group->meth);
-        } else {
-                mp_copy(px, &pxt);
-                mp_copy(py, &pyt);
-        }
-        /* left-hand side: y^2 + x*y  */
-        MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
-        MP_CHECKOK( group->meth->field_mul(&pxt, &pyt, &tmp, group->meth) );
-        MP_CHECKOK( group->meth->field_add(&accl, &tmp, &accl, group->meth) );
-        /* right-hand side: x^3 + a*x^2 + b */
-        MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
-        MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
-        MP_CHECKOK( group->meth->field_mul(&group->curvea, &tmp, &tmp, group->meth) );
-        MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
-        MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
-        /* check LHS - RHS == 0 */
-        MP_CHECKOK( group->meth->field_add(&accl, &accr, &accr, group->meth) );
-        if (mp_cmp_z(&accr) != 0) {
-                res = MP_NO;
-                goto CLEANUP;
-        }
-    /* 4: Verify that the order of the curve times the publicValue
-     *    is the point at infinity.
-     */
-        MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
-        if (ec_GF2m_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
-                res = MP_NO;
-                goto CLEANUP;
-        }
-
-        res = MP_YES;
-
-CLEANUP:
-        mp_clear(&accl);
-        mp_clear(&accr);
-        mp_clear(&tmp);
-        mp_clear(&pxt);
-        mp_clear(&pyt);
-        return res;
-}
--- a/jdk/src/share/native/sun/security/ec/ec2_mont.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,296 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for binary polynomial field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
- *   Stephen Fung <fungstep@hotmail.com>, and
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ec2.h"
-#include "mplogic.h"
-#include "mp_gf2m.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
- * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J.
- * and Dahab, R.  "Fast multiplication on elliptic curves over GF(2^m)
- * without precomputation". modified to not require precomputation of
- * c=b^{2^{m-1}}. */
-static mp_err
-gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group, int kmflag)
-{
-        mp_err res = MP_OKAY;
-        mp_int t1;
-
-        MP_DIGITS(&t1) = 0;
-        MP_CHECKOK(mp_init(&t1, kmflag));
-
-        MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
-        MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
-        MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
-        MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
-        MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
-        MP_CHECKOK(group->meth->
-                           field_mul(&group->curveb, &t1, &t1, group->meth));
-        MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));
-
-  CLEANUP:
-        mp_clear(&t1);
-        return res;
-}
-
-/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
- * Montgomery projective coordinates. Uses algorithm Madd in appendix of
- * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
- * GF(2^m) without precomputation". */
-static mp_err
-gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
-                  const ECGroup *group, int kmflag)
-{
-        mp_err res = MP_OKAY;
-        mp_int t1, t2;
-
-        MP_DIGITS(&t1) = 0;
-        MP_DIGITS(&t2) = 0;
-        MP_CHECKOK(mp_init(&t1, kmflag));
-        MP_CHECKOK(mp_init(&t2, kmflag));
-
-        MP_CHECKOK(mp_copy(x, &t1));
-        MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
-        MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
-        MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
-        MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
-        MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
-        MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
-        MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));
-
-  CLEANUP:
-        mp_clear(&t1);
-        mp_clear(&t2);
-        return res;
-}
-
-/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
- * using Montgomery point multiplication algorithm Mxy() in appendix of
- * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
- * GF(2^m) without precomputation". Returns: 0 on error 1 if return value
- * should be the point at infinity 2 otherwise */
-static int
-gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
-                 mp_int *x2, mp_int *z2, const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        int ret = 0;
-        mp_int t3, t4, t5;
-
-        MP_DIGITS(&t3) = 0;
-        MP_DIGITS(&t4) = 0;
-        MP_DIGITS(&t5) = 0;
-        MP_CHECKOK(mp_init(&t3, FLAG(x2)));
-        MP_CHECKOK(mp_init(&t4, FLAG(x2)));
-        MP_CHECKOK(mp_init(&t5, FLAG(x2)));
-
-        if (mp_cmp_z(z1) == 0) {
-                mp_zero(x2);
-                mp_zero(z2);
-                ret = 1;
-                goto CLEANUP;
-        }
-
-        if (mp_cmp_z(z2) == 0) {
-                MP_CHECKOK(mp_copy(x, x2));
-                MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
-                ret = 2;
-                goto CLEANUP;
-        }
-
-        MP_CHECKOK(mp_set_int(&t5, 1));
-        if (group->meth->field_enc) {
-                MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
-        }
-
-        MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));
-
-        MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
-        MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
-        MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
-        MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
-        MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));
-
-        MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
-        MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
-        MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
-        MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
-        MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));
-
-        MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
-        MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
-        MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
-        MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
-        MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));
-
-        MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
-        MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));
-
-        ret = 2;
-
-  CLEANUP:
-        mp_clear(&t3);
-        mp_clear(&t4);
-        mp_clear(&t5);
-        if (res == MP_OKAY) {
-                return ret;
-        } else {
-                return 0;
-        }
-}
-
-/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R.  "Fast
- * multiplication on elliptic curves over GF(2^m) without
- * precomputation". Elliptic curve points P and R can be identical. Uses
- * Montgomery projective coordinates. */
-mp_err
-ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
-                                        mp_int *rx, mp_int *ry, const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int x1, x2, z1, z2;
-        int i, j;
-        mp_digit top_bit, mask;
-
-        MP_DIGITS(&x1) = 0;
-        MP_DIGITS(&x2) = 0;
-        MP_DIGITS(&z1) = 0;
-        MP_DIGITS(&z2) = 0;
-        MP_CHECKOK(mp_init(&x1, FLAG(n)));
-        MP_CHECKOK(mp_init(&x2, FLAG(n)));
-        MP_CHECKOK(mp_init(&z1, FLAG(n)));
-        MP_CHECKOK(mp_init(&z2, FLAG(n)));
-
-        /* if result should be point at infinity */
-        if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
-                MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
-                goto CLEANUP;
-        }
-
-        MP_CHECKOK(mp_copy(px, &x1));   /* x1 = px */
-        MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */
-        MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth));      /* z2 =
-                                                                                                                                 * x1^2 =
-                                                                                                                                 * px^2 */
-        MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
-        MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth));      /* x2
-                                                                                                                                                                 * =
-                                                                                                                                                                 * px^4
-                                                                                                                                                                 * +
-                                                                                                                                                                 * b
-                                                                                                                                                                 */
-
-        /* find top-most bit and go one past it */
-        i = MP_USED(n) - 1;
-        j = MP_DIGIT_BIT - 1;
-        top_bit = 1;
-        top_bit <<= MP_DIGIT_BIT - 1;
-        mask = top_bit;
-        while (!(MP_DIGITS(n)[i] & mask)) {
-                mask >>= 1;
-                j--;
-        }
-        mask >>= 1;
-        j--;
-
-        /* if top most bit was at word break, go to next word */
-        if (!mask) {
-                i--;
-                j = MP_DIGIT_BIT - 1;
-                mask = top_bit;
-        }
-
-        for (; i >= 0; i--) {
-                for (; j >= 0; j--) {
-                        if (MP_DIGITS(n)[i] & mask) {
-                                MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n)));
-                                MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n)));
-                        } else {
-                                MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n)));
-                                MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n)));
-                        }
-                        mask >>= 1;
-                }
-                j = MP_DIGIT_BIT - 1;
-                mask = top_bit;
-        }
-
-        /* convert out of "projective" coordinates */
-        i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
-        if (i == 0) {
-                res = MP_BADARG;
-                goto CLEANUP;
-        } else if (i == 1) {
-                MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
-        } else {
-                MP_CHECKOK(mp_copy(&x2, rx));
-                MP_CHECKOK(mp_copy(&z2, ry));
-        }
-
-  CLEANUP:
-        mp_clear(&x1);
-        mp_clear(&x2);
-        mp_clear(&z1);
-        mp_clear(&z2);
-        return res;
-}
--- a/jdk/src/share/native/sun/security/ec/ec_naf.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,123 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecl-priv.h"
-
-/* Returns 2^e as an integer. This is meant to be used for small powers of
- * two. */
-int
-ec_twoTo(int e)
-{
-        int a = 1;
-        int i;
-
-        for (i = 0; i < e; i++) {
-                a *= 2;
-        }
-        return a;
-}
-
-/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
- * be an array of signed char's to output to, bitsize should be the number
- * of bits of out, in is the original scalar, and w is the window size.
- * NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
- * Menezes, "Software implementation of elliptic curve cryptography over
- * binary fields", Proc. CHES 2000. */
-mp_err
-ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in, int w)
-{
-        mp_int k;
-        mp_err res = MP_OKAY;
-        int i, twowm1, mask;
-
-        twowm1 = ec_twoTo(w - 1);
-        mask = 2 * twowm1 - 1;
-
-        MP_DIGITS(&k) = 0;
-        MP_CHECKOK(mp_init_copy(&k, in));
-
-        i = 0;
-        /* Compute wNAF form */
-        while (mp_cmp_z(&k) > 0) {
-                if (mp_isodd(&k)) {
-                        out[i] = MP_DIGIT(&k, 0) & mask;
-                        if (out[i] >= twowm1)
-                                out[i] -= 2 * twowm1;
-
-                        /* Subtract off out[i].  Note mp_sub_d only works with
-                         * unsigned digits */
-                        if (out[i] >= 0) {
-                                mp_sub_d(&k, out[i], &k);
-                        } else {
-                                mp_add_d(&k, -(out[i]), &k);
-                        }
-                } else {
-                        out[i] = 0;
-                }
-                mp_div_2(&k, &k);
-                i++;
-        }
-        /* Zero out the remaining elements of the out array. */
-        for (; i < bitsize + 1; i++) {
-                out[i] = 0;
-        }
-  CLEANUP:
-        mp_clear(&k);
-        return res;
-
-}
--- a/jdk/src/share/native/sun/security/ec/ecc_impl.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,278 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is
- * Netscape Communications Corporation.
- * Portions created by the Initial Developer are Copyright (C) 1994-2000
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Dr Vipul Gupta <vipul.gupta@sun.com> and
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _ECC_IMPL_H
-#define _ECC_IMPL_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#include <sys/types.h>
-#include "ecl-exp.h"
-
-/*
- * Multi-platform definitions
- */
-#ifdef __linux__
-#define B_FALSE FALSE
-#define B_TRUE TRUE
-typedef unsigned char uint8_t;
-typedef unsigned long ulong_t;
-typedef enum { B_FALSE, B_TRUE } boolean_t;
-#endif /* __linux__ */
-
-#ifdef _WIN32
-typedef unsigned char uint8_t;
-typedef unsigned long ulong_t;
-typedef enum boolean { B_FALSE, B_TRUE } boolean_t;
-#endif /* _WIN32 */
-
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif  /* _KERNEL */
-
-#define EC_MAX_DIGEST_LEN 1024  /* max digest that can be signed */
-#define EC_MAX_POINT_LEN 145    /* max len of DER encoded Q */
-#define EC_MAX_VALUE_LEN 72     /* max len of ANSI X9.62 private value d */
-#define EC_MAX_SIG_LEN 144      /* max signature len for supported curves */
-#define EC_MIN_KEY_LEN  112     /* min key length in bits */
-#define EC_MAX_KEY_LEN  571     /* max key length in bits */
-#define EC_MAX_OID_LEN 10       /* max length of OID buffer */
-
-/*
- * Various structures and definitions from NSS are here.
- */
-
-#ifdef _KERNEL
-#define PORT_ArenaAlloc(a, n, f)        kmem_alloc((n), (f))
-#define PORT_ArenaZAlloc(a, n, f)       kmem_zalloc((n), (f))
-#define PORT_ArenaGrow(a, b, c, d)      NULL
-#define PORT_ZAlloc(n, f)               kmem_zalloc((n), (f))
-#define PORT_Alloc(n, f)                kmem_alloc((n), (f))
-#else
-#define PORT_ArenaAlloc(a, n, f)        malloc((n))
-#define PORT_ArenaZAlloc(a, n, f)       calloc(1, (n))
-#define PORT_ArenaGrow(a, b, c, d)      NULL
-#define PORT_ZAlloc(n, f)               calloc(1, (n))
-#define PORT_Alloc(n, f)                malloc((n))
-#endif
-
-#define PORT_NewArena(b)                (char *)12345
-#define PORT_ArenaMark(a)               NULL
-#define PORT_ArenaUnmark(a, b)
-#define PORT_ArenaRelease(a, m)
-#define PORT_FreeArena(a, b)
-#define PORT_Strlen(s)                  strlen((s))
-#define PORT_SetError(e)
-
-#define PRBool                          boolean_t
-#define PR_TRUE                         B_TRUE
-#define PR_FALSE                        B_FALSE
-
-#ifdef _KERNEL
-#define PORT_Assert                     ASSERT
-#define PORT_Memcpy(t, f, l)            bcopy((f), (t), (l))
-#else
-#define PORT_Assert                     assert
-#define PORT_Memcpy(t, f, l)            memcpy((t), (f), (l))
-#endif
-
-#define CHECK_OK(func) if (func == NULL) goto cleanup
-#define CHECK_SEC_OK(func) if (SECSuccess != (rv = func)) goto cleanup
-
-typedef enum {
-        siBuffer = 0,
-        siClearDataBuffer = 1,
-        siCipherDataBuffer = 2,
-        siDERCertBuffer = 3,
-        siEncodedCertBuffer = 4,
-        siDERNameBuffer = 5,
-        siEncodedNameBuffer = 6,
-        siAsciiNameString = 7,
-        siAsciiString = 8,
-        siDEROID = 9,
-        siUnsignedInteger = 10,
-        siUTCTime = 11,
-        siGeneralizedTime = 12
-} SECItemType;
-
-typedef struct SECItemStr SECItem;
-
-struct SECItemStr {
-        SECItemType type;
-        unsigned char *data;
-        unsigned int len;
-};
-
-typedef SECItem SECKEYECParams;
-
-typedef enum { ec_params_explicit,
-               ec_params_named
-} ECParamsType;
-
-typedef enum { ec_field_GFp = 1,
-               ec_field_GF2m
-} ECFieldType;
-
-struct ECFieldIDStr {
-    int         size;   /* field size in bits */
-    ECFieldType type;
-    union {
-        SECItem  prime; /* prime p for (GFp) */
-        SECItem  poly;  /* irreducible binary polynomial for (GF2m) */
-    } u;
-    int         k1;     /* first coefficient of pentanomial or
-                         * the only coefficient of trinomial
-                         */
-    int         k2;     /* two remaining coefficients of pentanomial */
-    int         k3;
-};
-typedef struct ECFieldIDStr ECFieldID;
-
-struct ECCurveStr {
-        SECItem a;      /* contains octet stream encoding of
-                         * field element (X9.62 section 4.3.3)
-                         */
-        SECItem b;
-        SECItem seed;
-};
-typedef struct ECCurveStr ECCurve;
-
-typedef void PRArenaPool;
-
-struct ECParamsStr {
-    PRArenaPool * arena;
-    ECParamsType  type;
-    ECFieldID     fieldID;
-    ECCurve       curve;
-    SECItem       base;
-    SECItem       order;
-    int           cofactor;
-    SECItem       DEREncoding;
-    ECCurveName   name;
-    SECItem       curveOID;
-};
-typedef struct ECParamsStr ECParams;
-
-struct ECPublicKeyStr {
-    ECParams ecParams;
-    SECItem publicValue;   /* elliptic curve point encoded as
-                            * octet stream.
-                            */
-};
-typedef struct ECPublicKeyStr ECPublicKey;
-
-struct ECPrivateKeyStr {
-    ECParams ecParams;
-    SECItem publicValue;   /* encoded ec point */
-    SECItem privateValue;  /* private big integer */
-    SECItem version;       /* As per SEC 1, Appendix C, Section C.4 */
-};
-typedef struct ECPrivateKeyStr ECPrivateKey;
-
-typedef enum _SECStatus {
-        SECBufferTooSmall = -3,
-        SECWouldBlock = -2,
-        SECFailure = -1,
-        SECSuccess = 0
-} SECStatus;
-
-#ifdef _KERNEL
-#define RNG_GenerateGlobalRandomBytes(p,l) ecc_knzero_random_generator((p), (l))
-#else
-/*
- This function is no longer required because the random bytes are now
- supplied by the caller. Force a failure.
-VR
-#define RNG_GenerateGlobalRandomBytes(p,l) SECFailure
-*/
-#define RNG_GenerateGlobalRandomBytes(p,l) SECSuccess
-#endif
-#define CHECK_MPI_OK(func) if (MP_OKAY > (err = func)) goto cleanup
-#define MP_TO_SEC_ERROR(err)
-
-#define SECITEM_TO_MPINT(it, mp)                                        \
-        CHECK_MPI_OK(mp_read_unsigned_octets((mp), (it).data, (it).len))
-
-extern int ecc_knzero_random_generator(uint8_t *, size_t);
-extern ulong_t soft_nzero_random_generator(uint8_t *, ulong_t);
-
-extern SECStatus EC_DecodeParams(const SECItem *, ECParams **, int);
-extern SECItem * SECITEM_AllocItem(PRArenaPool *, SECItem *, unsigned int, int);
-extern SECStatus SECITEM_CopyItem(PRArenaPool *, SECItem *, const SECItem *,
-    int);
-extern void SECITEM_FreeItem(SECItem *, boolean_t);
-extern SECStatus EC_NewKey(ECParams *ecParams, ECPrivateKey **privKey, const unsigned char* random, int randomlen, int);
-extern SECStatus EC_NewKeyFromSeed(ECParams *ecParams, ECPrivateKey **privKey,
-    const unsigned char *seed, int seedlen, int kmflag);
-extern SECStatus ECDSA_SignDigest(ECPrivateKey *, SECItem *, const SECItem *,
-    const unsigned char* randon, int randomlen, int);
-extern SECStatus ECDSA_SignDigestWithSeed(ECPrivateKey *, SECItem *,
-    const SECItem *, const unsigned char *seed, int seedlen, int kmflag);
-extern SECStatus ECDSA_VerifyDigest(ECPublicKey *, const SECItem *,
-    const SECItem *, int);
-extern SECStatus ECDH_Derive(SECItem *, ECParams *, SECItem *, boolean_t,
-    SECItem *, int);
-
-#ifdef  __cplusplus
-}
-#endif
-
-#endif /* _ECC_IMPL_H */
--- a/jdk/src/share/native/sun/security/ec/ecdecode.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,632 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Elliptic Curve Cryptography library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Dr Vipul Gupta <vipul.gupta@sun.com> and
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include <sys/types.h>
-
-#ifndef _WIN32
-#ifndef __linux__
-#include <sys/systm.h>
-#endif /* __linux__ */
-#include <sys/param.h>
-#endif /* _WIN32 */
-
-#ifdef _KERNEL
-#include <sys/kmem.h>
-#else
-#include <string.h>
-#endif
-#include "ec.h"
-#include "ecl-curve.h"
-#include "ecc_impl.h"
-
-#define MAX_ECKEY_LEN           72
-#define SEC_ASN1_OBJECT_ID      0x06
-
-/*
- * Initializes a SECItem from a hexadecimal string
- *
- * Warning: This function ignores leading 00's, so any leading 00's
- * in the hexadecimal string must be optional.
- */
-static SECItem *
-hexString2SECItem(PRArenaPool *arena, SECItem *item, const char *str,
-    int kmflag)
-{
-    int i = 0;
-    int byteval = 0;
-    int tmp = strlen(str);
-
-    if ((tmp % 2) != 0) return NULL;
-
-    /* skip leading 00's unless the hex string is "00" */
-    while ((tmp > 2) && (str[0] == '0') && (str[1] == '0')) {
-        str += 2;
-        tmp -= 2;
-    }
-
-    item->data = (unsigned char *) PORT_ArenaAlloc(arena, tmp/2, kmflag);
-    if (item->data == NULL) return NULL;
-    item->len = tmp/2;
-
-    while (str[i]) {
-        if ((str[i] >= '0') && (str[i] <= '9'))
-            tmp = str[i] - '0';
-        else if ((str[i] >= 'a') && (str[i] <= 'f'))
-            tmp = str[i] - 'a' + 10;
-        else if ((str[i] >= 'A') && (str[i] <= 'F'))
-            tmp = str[i] - 'A' + 10;
-        else
-            return NULL;
-
-        byteval = byteval * 16 + tmp;
-        if ((i % 2) != 0) {
-            item->data[i/2] = byteval;
-            byteval = 0;
-        }
-        i++;
-    }
-
-    return item;
-}
-
-static SECStatus
-gf_populate_params(ECCurveName name, ECFieldType field_type, ECParams *params,
-    int kmflag)
-{
-    SECStatus rv = SECFailure;
-    const ECCurveParams *curveParams;
-    /* 2 ['0'+'4'] + MAX_ECKEY_LEN * 2 [x,y] * 2 [hex string] + 1 ['\0'] */
-    char genenc[3 + 2 * 2 * MAX_ECKEY_LEN];
-
-    if ((name < ECCurve_noName) || (name > ECCurve_pastLastCurve)) goto cleanup;
-    params->name = name;
-    curveParams = ecCurve_map[params->name];
-    CHECK_OK(curveParams);
-    params->fieldID.size = curveParams->size;
-    params->fieldID.type = field_type;
-    if (field_type == ec_field_GFp) {
-        CHECK_OK(hexString2SECItem(NULL, &params->fieldID.u.prime,
-            curveParams->irr, kmflag));
-    } else {
-        CHECK_OK(hexString2SECItem(NULL, &params->fieldID.u.poly,
-            curveParams->irr, kmflag));
-    }
-    CHECK_OK(hexString2SECItem(NULL, &params->curve.a,
-        curveParams->curvea, kmflag));
-    CHECK_OK(hexString2SECItem(NULL, &params->curve.b,
-        curveParams->curveb, kmflag));
-    genenc[0] = '0';
-    genenc[1] = '4';
-    genenc[2] = '\0';
-    strcat(genenc, curveParams->genx);
-    strcat(genenc, curveParams->geny);
-    CHECK_OK(hexString2SECItem(NULL, &params->base, genenc, kmflag));
-    CHECK_OK(hexString2SECItem(NULL, &params->order,
-        curveParams->order, kmflag));
-    params->cofactor = curveParams->cofactor;
-
-    rv = SECSuccess;
-
-cleanup:
-    return rv;
-}
-
-ECCurveName SECOID_FindOIDTag(const SECItem *);
-
-SECStatus
-EC_FillParams(PRArenaPool *arena, const SECItem *encodedParams,
-    ECParams *params, int kmflag)
-{
-    SECStatus rv = SECFailure;
-    ECCurveName tag;
-    SECItem oid = { siBuffer, NULL, 0};
-
-#if EC_DEBUG
-    int i;
-
-    printf("Encoded params in EC_DecodeParams: ");
-    for (i = 0; i < encodedParams->len; i++) {
-            printf("%02x:", encodedParams->data[i]);
-    }
-    printf("\n");
-#endif
-
-    if ((encodedParams->len != ANSI_X962_CURVE_OID_TOTAL_LEN) &&
-        (encodedParams->len != SECG_CURVE_OID_TOTAL_LEN)) {
-            PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
-            return SECFailure;
-    };
-
-    oid.len = encodedParams->len - 2;
-    oid.data = encodedParams->data + 2;
-    if ((encodedParams->data[0] != SEC_ASN1_OBJECT_ID) ||
-        ((tag = SECOID_FindOIDTag(&oid)) == ECCurve_noName)) {
-            PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
-            return SECFailure;
-    }
-
-    params->arena = arena;
-    params->cofactor = 0;
-    params->type = ec_params_named;
-    params->name = ECCurve_noName;
-
-    /* For named curves, fill out curveOID */
-    params->curveOID.len = oid.len;
-    params->curveOID.data = (unsigned char *) PORT_ArenaAlloc(NULL, oid.len,
-        kmflag);
-    if (params->curveOID.data == NULL) goto cleanup;
-    memcpy(params->curveOID.data, oid.data, oid.len);
-
-#if EC_DEBUG
-#ifndef SECOID_FindOIDTagDescription
-    printf("Curve: %s\n", ecCurve_map[tag]->text);
-#else
-    printf("Curve: %s\n", SECOID_FindOIDTagDescription(tag));
-#endif
-#endif
-
-    switch (tag) {
-
-    /* Binary curves */
-
-    case ECCurve_X9_62_CHAR2_PNB163V1:
-        /* Populate params for c2pnb163v1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB163V1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_PNB163V2:
-        /* Populate params for c2pnb163v2 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB163V2, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_PNB163V3:
-        /* Populate params for c2pnb163v3 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB163V3, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_PNB176V1:
-        /* Populate params for c2pnb176v1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB176V1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_TNB191V1:
-        /* Populate params for c2tnb191v1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB191V1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_TNB191V2:
-        /* Populate params for c2tnb191v2 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB191V2, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_TNB191V3:
-        /* Populate params for c2tnb191v3 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB191V3, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_PNB208W1:
-        /* Populate params for c2pnb208w1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB208W1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_TNB239V1:
-        /* Populate params for c2tnb239v1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB239V1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_TNB239V2:
-        /* Populate params for c2tnb239v2 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB239V2, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_TNB239V3:
-        /* Populate params for c2tnb239v3 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB239V3, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_PNB272W1:
-        /* Populate params for c2pnb272w1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB272W1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_PNB304W1:
-        /* Populate params for c2pnb304w1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB304W1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_TNB359V1:
-        /* Populate params for c2tnb359v1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB359V1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_PNB368W1:
-        /* Populate params for c2pnb368w1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB368W1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_CHAR2_TNB431R1:
-        /* Populate params for c2tnb431r1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB431R1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_113R1:
-        /* Populate params for sect113r1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_113R1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_113R2:
-        /* Populate params for sect113r2 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_113R2, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_131R1:
-        /* Populate params for sect131r1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_131R1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_131R2:
-        /* Populate params for sect131r2 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_131R2, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_163K1:
-        /* Populate params for sect163k1
-         * (the NIST K-163 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_163K1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_163R1:
-        /* Populate params for sect163r1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_163R1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_163R2:
-        /* Populate params for sect163r2
-         * (the NIST B-163 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_163R2, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_193R1:
-        /* Populate params for sect193r1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_193R1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_193R2:
-        /* Populate params for sect193r2 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_193R2, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_233K1:
-        /* Populate params for sect233k1
-         * (the NIST K-233 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_233K1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_233R1:
-        /* Populate params for sect233r1
-         * (the NIST B-233 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_233R1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_239K1:
-        /* Populate params for sect239k1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_239K1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_283K1:
-        /* Populate params for sect283k1
-         * (the NIST K-283 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_283K1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_283R1:
-        /* Populate params for sect283r1
-         * (the NIST B-283 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_283R1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_409K1:
-        /* Populate params for sect409k1
-         * (the NIST K-409 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_409K1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_409R1:
-        /* Populate params for sect409r1
-         * (the NIST B-409 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_409R1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_571K1:
-        /* Populate params for sect571k1
-         * (the NIST K-571 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_571K1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_CHAR2_571R1:
-        /* Populate params for sect571r1
-         * (the NIST B-571 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_571R1, ec_field_GF2m,
-            params, kmflag) );
-        break;
-
-    /* Prime curves */
-
-    case ECCurve_X9_62_PRIME_192V1:
-        /* Populate params for prime192v1 aka secp192r1
-         * (the NIST P-192 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_192V1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_PRIME_192V2:
-        /* Populate params for prime192v2 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_192V2, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_PRIME_192V3:
-        /* Populate params for prime192v3 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_192V3, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_PRIME_239V1:
-        /* Populate params for prime239v1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_239V1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_PRIME_239V2:
-        /* Populate params for prime239v2 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_239V2, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_PRIME_239V3:
-        /* Populate params for prime239v3 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_239V3, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_X9_62_PRIME_256V1:
-        /* Populate params for prime256v1 aka secp256r1
-         * (the NIST P-256 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_256V1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_112R1:
-        /* Populate params for secp112r1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_112R1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_112R2:
-        /* Populate params for secp112r2 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_112R2, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_128R1:
-        /* Populate params for secp128r1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_128R1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_128R2:
-        /* Populate params for secp128r2 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_128R2, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_160K1:
-        /* Populate params for secp160k1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_160K1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_160R1:
-        /* Populate params for secp160r1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_160R1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_160R2:
-        /* Populate params for secp160r1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_160R2, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_192K1:
-        /* Populate params for secp192k1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_192K1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_224K1:
-        /* Populate params for secp224k1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_224K1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_224R1:
-        /* Populate params for secp224r1
-         * (the NIST P-224 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_224R1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_256K1:
-        /* Populate params for secp256k1 */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_256K1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_384R1:
-        /* Populate params for secp384r1
-         * (the NIST P-384 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_384R1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    case ECCurve_SECG_PRIME_521R1:
-        /* Populate params for secp521r1
-         * (the NIST P-521 curve)
-         */
-        CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_521R1, ec_field_GFp,
-            params, kmflag) );
-        break;
-
-    default:
-        break;
-    };
-
-cleanup:
-    if (!params->cofactor) {
-        PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
-#if EC_DEBUG
-        printf("Unrecognized curve, returning NULL params\n");
-#endif
-    }
-
-    return rv;
-}
-
-SECStatus
-EC_DecodeParams(const SECItem *encodedParams, ECParams **ecparams, int kmflag)
-{
-    PRArenaPool *arena;
-    ECParams *params;
-    SECStatus rv = SECFailure;
-
-    /* Initialize an arena for the ECParams structure */
-    if (!(arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE)))
-        return SECFailure;
-
-    params = (ECParams *)PORT_ArenaZAlloc(NULL, sizeof(ECParams), kmflag);
-    if (!params) {
-        PORT_FreeArena(NULL, B_TRUE);
-        return SECFailure;
-    }
-
-    /* Copy the encoded params */
-    SECITEM_AllocItem(arena, &(params->DEREncoding), encodedParams->len,
-        kmflag);
-    memcpy(params->DEREncoding.data, encodedParams->data, encodedParams->len);
-
-    /* Fill out the rest of the ECParams structure based on
-     * the encoded params
-     */
-    rv = EC_FillParams(NULL, encodedParams, params, kmflag);
-    if (rv == SECFailure) {
-        PORT_FreeArena(NULL, B_TRUE);
-        return SECFailure;
-    } else {
-        *ecparams = params;;
-        return SECSuccess;
-    }
-}
--- a/jdk/src/share/native/sun/security/ec/ecl-curve.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,710 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _ECL_CURVE_H
-#define _ECL_CURVE_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecl-exp.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* NIST prime curves */
-static const ECCurveParams ecCurve_NIST_P192 = {
-        "NIST-P192", ECField_GFp, 192,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF",
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC",
-        "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1",
-        "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012",
-        "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811",
-        "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", 1
-};
-
-static const ECCurveParams ecCurve_NIST_P224 = {
-        "NIST-P224", ECField_GFp, 224,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001",
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE",
-        "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4",
-        "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21",
-        "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34",
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D", 1
-};
-
-static const ECCurveParams ecCurve_NIST_P256 = {
-        "NIST-P256", ECField_GFp, 256,
-        "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF",
-        "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC",
-        "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B",
-        "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296",
-        "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5",
-        "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", 1
-};
-
-static const ECCurveParams ecCurve_NIST_P384 = {
-        "NIST-P384", ECField_GFp, 384,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF",
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC",
-        "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF",
-        "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B9859F741E082542A385502F25DBF55296C3A545E3872760AB7",
-        "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147CE9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F",
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973",
-        1
-};
-
-static const ECCurveParams ecCurve_NIST_P521 = {
-        "NIST-P521", ECField_GFp, 521,
-        "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
-        "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC",
-        "0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00",
-        "00C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66",
-        "011839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650",
-        "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409",
-        1
-};
-
-/* NIST binary curves */
-static const ECCurveParams ecCurve_NIST_K163 = {
-        "NIST-K163", ECField_GF2m, 163,
-        "0800000000000000000000000000000000000000C9",
-        "000000000000000000000000000000000000000001",
-        "000000000000000000000000000000000000000001",
-        "02FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8",
-        "0289070FB05D38FF58321F2E800536D538CCDAA3D9",
-        "04000000000000000000020108A2E0CC0D99F8A5EF", 2
-};
-
-static const ECCurveParams ecCurve_NIST_B163 = {
-        "NIST-B163", ECField_GF2m, 163,
-        "0800000000000000000000000000000000000000C9",
-        "000000000000000000000000000000000000000001",
-        "020A601907B8C953CA1481EB10512F78744A3205FD",
-        "03F0EBA16286A2D57EA0991168D4994637E8343E36",
-        "00D51FBC6C71A0094FA2CDD545B11C5C0C797324F1",
-        "040000000000000000000292FE77E70C12A4234C33", 2
-};
-
-static const ECCurveParams ecCurve_NIST_K233 = {
-        "NIST-K233", ECField_GF2m, 233,
-        "020000000000000000000000000000000000000004000000000000000001",
-        "000000000000000000000000000000000000000000000000000000000000",
-        "000000000000000000000000000000000000000000000000000000000001",
-        "017232BA853A7E731AF129F22FF4149563A419C26BF50A4C9D6EEFAD6126",
-        "01DB537DECE819B7F70F555A67C427A8CD9BF18AEB9B56E0C11056FAE6A3",
-        "008000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF", 4
-};
-
-static const ECCurveParams ecCurve_NIST_B233 = {
-        "NIST-B233", ECField_GF2m, 233,
-        "020000000000000000000000000000000000000004000000000000000001",
-        "000000000000000000000000000000000000000000000000000000000001",
-        "0066647EDE6C332C7F8C0923BB58213B333B20E9CE4281FE115F7D8F90AD",
-        "00FAC9DFCBAC8313BB2139F1BB755FEF65BC391F8B36F8F8EB7371FD558B",
-        "01006A08A41903350678E58528BEBF8A0BEFF867A7CA36716F7E01F81052",
-        "01000000000000000000000000000013E974E72F8A6922031D2603CFE0D7", 2
-};
-
-static const ECCurveParams ecCurve_NIST_K283 = {
-        "NIST-K283", ECField_GF2m, 283,
-        "0800000000000000000000000000000000000000000000000000000000000000000010A1",
-        "000000000000000000000000000000000000000000000000000000000000000000000000",
-        "000000000000000000000000000000000000000000000000000000000000000000000001",
-        "0503213F78CA44883F1A3B8162F188E553CD265F23C1567A16876913B0C2AC2458492836",
-        "01CCDA380F1C9E318D90F95D07E5426FE87E45C0E8184698E45962364E34116177DD2259",
-        "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E061E163C61", 4
-};
-
-static const ECCurveParams ecCurve_NIST_B283 = {
-        "NIST-B283", ECField_GF2m, 283,
-        "0800000000000000000000000000000000000000000000000000000000000000000010A1",
-        "000000000000000000000000000000000000000000000000000000000000000000000001",
-        "027B680AC8B8596DA5A4AF8A19A0303FCA97FD7645309FA2A581485AF6263E313B79A2F5",
-        "05F939258DB7DD90E1934F8C70B0DFEC2EED25B8557EAC9C80E2E198F8CDBECD86B12053",
-        "03676854FE24141CB98FE6D4B20D02B4516FF702350EDDB0826779C813F0DF45BE8112F4",
-        "03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7CEFADB307", 2
-};
-
-static const ECCurveParams ecCurve_NIST_K409 = {
-        "NIST-K409", ECField_GF2m, 409,
-        "02000000000000000000000000000000000000000000000000000000000000000000000000000000008000000000000000000001",
-        "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
-        "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
-        "0060F05F658F49C1AD3AB1890F7184210EFD0987E307C84C27ACCFB8F9F67CC2C460189EB5AAAA62EE222EB1B35540CFE9023746",
-        "01E369050B7C4E42ACBA1DACBF04299C3460782F918EA427E6325165E9EA10E3DA5F6C42E9C55215AA9CA27A5863EC48D8E0286B",
-        "007FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5F83B2D4EA20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF", 4
-};
-
-static const ECCurveParams ecCurve_NIST_B409 = {
-        "NIST-B409", ECField_GF2m, 409,
-        "02000000000000000000000000000000000000000000000000000000000000000000000000000000008000000000000000000001",
-        "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
-        "0021A5C2C8EE9FEB5C4B9A753B7B476B7FD6422EF1F3DD674761FA99D6AC27C8A9A197B272822F6CD57A55AA4F50AE317B13545F",
-        "015D4860D088DDB3496B0C6064756260441CDE4AF1771D4DB01FFE5B34E59703DC255A868A1180515603AEAB60794E54BB7996A7",
-        "0061B1CFAB6BE5F32BBFA78324ED106A7636B9C5A7BD198D0158AA4F5488D08F38514F1FDF4B4F40D2181B3681C364BA0273C706",
-        "010000000000000000000000000000000000000000000000000001E2AAD6A612F33307BE5FA47C3C9E052F838164CD37D9A21173", 2
-};
-
-static const ECCurveParams ecCurve_NIST_K571 = {
-        "NIST-K571", ECField_GF2m, 571,
-        "080000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425",
-        "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
-        "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
-        "026EB7A859923FBC82189631F8103FE4AC9CA2970012D5D46024804801841CA44370958493B205E647DA304DB4CEB08CBBD1BA39494776FB988B47174DCA88C7E2945283A01C8972",
-        "0349DC807F4FBF374F4AEADE3BCA95314DD58CEC9F307A54FFC61EFC006D8A2C9D4979C0AC44AEA74FBEBBB9F772AEDCB620B01A7BA7AF1B320430C8591984F601CD4C143EF1C7A3",
-        "020000000000000000000000000000000000000000000000000000000000000000000000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE778F637C1001", 4
-};
-
-static const ECCurveParams ecCurve_NIST_B571 = {
-        "NIST-B571", ECField_GF2m, 571,
-        "080000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425",
-        "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
-        "02F40E7E2221F295DE297117B7F3D62F5C6A97FFCB8CEFF1CD6BA8CE4A9A18AD84FFABBD8EFA59332BE7AD6756A66E294AFD185A78FF12AA520E4DE739BACA0C7FFEFF7F2955727A",
-        "0303001D34B856296C16C0D40D3CD7750A93D1D2955FA80AA5F40FC8DB7B2ABDBDE53950F4C0D293CDD711A35B67FB1499AE60038614F1394ABFA3B4C850D927E1E7769C8EEC2D19",
-        "037BF27342DA639B6DCCFFFEB73D69D78C6C27A6009CBBCA1980F8533921E8A684423E43BAB08A576291AF8F461BB2A8B3531D2F0485C19B16E2F1516E23DD3C1A4827AF1B8AC15B",
-        "03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47", 2
-};
-
-/* ANSI X9.62 prime curves */
-static const ECCurveParams ecCurve_X9_62_PRIME_192V2 = {
-        "X9.62 P-192V2", ECField_GFp, 192,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF",
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC",
-        "CC22D6DFB95C6B25E49C0D6364A4E5980C393AA21668D953",
-        "EEA2BAE7E1497842F2DE7769CFE9C989C072AD696F48034A",
-        "6574D11D69B6EC7A672BB82A083DF2F2B0847DE970B2DE15",
-        "FFFFFFFFFFFFFFFFFFFFFFFE5FB1A724DC80418648D8DD31", 1
-};
-
-static const ECCurveParams ecCurve_X9_62_PRIME_192V3 = {
-        "X9.62 P-192V3", ECField_GFp, 192,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF",
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC",
-        "22123DC2395A05CAA7423DAECCC94760A7D462256BD56916",
-        "7D29778100C65A1DA1783716588DCE2B8B4AEE8E228F1896",
-        "38A90F22637337334B49DCB66A6DC8F9978ACA7648A943B0",
-        "FFFFFFFFFFFFFFFFFFFFFFFF7A62D031C83F4294F640EC13", 1
-};
-
-static const ECCurveParams ecCurve_X9_62_PRIME_239V1 = {
-        "X9.62 P-239V1", ECField_GFp, 239,
-        "7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF",
-        "7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFC",
-        "6B016C3BDCF18941D0D654921475CA71A9DB2FB27D1D37796185C2942C0A",
-        "0FFA963CDCA8816CCC33B8642BEDF905C3D358573D3F27FBBD3B3CB9AAAF",
-        "7DEBE8E4E90A5DAE6E4054CA530BA04654B36818CE226B39FCCB7B02F1AE",
-        "7FFFFFFFFFFFFFFFFFFFFFFF7FFFFF9E5E9A9F5D9071FBD1522688909D0B", 1
-};
-
-static const ECCurveParams ecCurve_X9_62_PRIME_239V2 = {
-        "X9.62 P-239V2", ECField_GFp, 239,
-        "7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF",
-        "7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFC",
-        "617FAB6832576CBBFED50D99F0249C3FEE58B94BA0038C7AE84C8C832F2C",
-        "38AF09D98727705120C921BB5E9E26296A3CDCF2F35757A0EAFD87B830E7",
-        "5B0125E4DBEA0EC7206DA0FC01D9B081329FB555DE6EF460237DFF8BE4BA",
-        "7FFFFFFFFFFFFFFFFFFFFFFF800000CFA7E8594377D414C03821BC582063", 1
-};
-
-static const ECCurveParams ecCurve_X9_62_PRIME_239V3 = {
-        "X9.62 P-239V3", ECField_GFp, 239,
-        "7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF",
-        "7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFC",
-        "255705FA2A306654B1F4CB03D6A750A30C250102D4988717D9BA15AB6D3E",
-        "6768AE8E18BB92CFCF005C949AA2C6D94853D0E660BBF854B1C9505FE95A",
-        "1607E6898F390C06BC1D552BAD226F3B6FCFE48B6E818499AF18E3ED6CF3",
-        "7FFFFFFFFFFFFFFFFFFFFFFF7FFFFF975DEB41B3A6057C3C432146526551", 1
-};
-
-/* ANSI X9.62 binary curves */
-static const ECCurveParams ecCurve_X9_62_CHAR2_PNB163V1 = {
-        "X9.62 C2-PNB163V1", ECField_GF2m, 163,
-        "080000000000000000000000000000000000000107",
-        "072546B5435234A422E0789675F432C89435DE5242",
-        "00C9517D06D5240D3CFF38C74B20B6CD4D6F9DD4D9",
-        "07AF69989546103D79329FCC3D74880F33BBE803CB",
-        "01EC23211B5966ADEA1D3F87F7EA5848AEF0B7CA9F",
-        "0400000000000000000001E60FC8821CC74DAEAFC1", 2
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_PNB163V2 = {
-        "X9.62 C2-PNB163V2", ECField_GF2m, 163,
-        "080000000000000000000000000000000000000107",
-        "0108B39E77C4B108BED981ED0E890E117C511CF072",
-        "0667ACEB38AF4E488C407433FFAE4F1C811638DF20",
-        "0024266E4EB5106D0A964D92C4860E2671DB9B6CC5",
-        "079F684DDF6684C5CD258B3890021B2386DFD19FC5",
-        "03FFFFFFFFFFFFFFFFFFFDF64DE1151ADBB78F10A7", 2
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_PNB163V3 = {
-        "X9.62 C2-PNB163V3", ECField_GF2m, 163,
-        "080000000000000000000000000000000000000107",
-        "07A526C63D3E25A256A007699F5447E32AE456B50E",
-        "03F7061798EB99E238FD6F1BF95B48FEEB4854252B",
-        "02F9F87B7C574D0BDECF8A22E6524775F98CDEBDCB",
-        "05B935590C155E17EA48EB3FF3718B893DF59A05D0",
-        "03FFFFFFFFFFFFFFFFFFFE1AEE140F110AFF961309", 2
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_PNB176V1 = {
-        "X9.62 C2-PNB176V1", ECField_GF2m, 176,
-        "0100000000000000000000000000000000080000000007",
-        "E4E6DB2995065C407D9D39B8D0967B96704BA8E9C90B",
-        "5DDA470ABE6414DE8EC133AE28E9BBD7FCEC0AE0FFF2",
-        "8D16C2866798B600F9F08BB4A8E860F3298CE04A5798",
-        "6FA4539C2DADDDD6BAB5167D61B436E1D92BB16A562C",
-        "00010092537397ECA4F6145799D62B0A19CE06FE26AD", 0xFF6E
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_TNB191V1 = {
-        "X9.62 C2-TNB191V1", ECField_GF2m, 191,
-        "800000000000000000000000000000000000000000000201",
-        "2866537B676752636A68F56554E12640276B649EF7526267",
-        "2E45EF571F00786F67B0081B9495A3D95462F5DE0AA185EC",
-        "36B3DAF8A23206F9C4F299D7B21A9C369137F2C84AE1AA0D",
-        "765BE73433B3F95E332932E70EA245CA2418EA0EF98018FB",
-        "40000000000000000000000004A20E90C39067C893BBB9A5", 2
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_TNB191V2 = {
-        "X9.62 C2-TNB191V2", ECField_GF2m, 191,
-        "800000000000000000000000000000000000000000000201",
-        "401028774D7777C7B7666D1366EA432071274F89FF01E718",
-        "0620048D28BCBD03B6249C99182B7C8CD19700C362C46A01",
-        "3809B2B7CC1B28CC5A87926AAD83FD28789E81E2C9E3BF10",
-        "17434386626D14F3DBF01760D9213A3E1CF37AEC437D668A",
-        "20000000000000000000000050508CB89F652824E06B8173", 4
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_TNB191V3 = {
-        "X9.62 C2-TNB191V3", ECField_GF2m, 191,
-        "800000000000000000000000000000000000000000000201",
-        "6C01074756099122221056911C77D77E77A777E7E7E77FCB",
-        "71FE1AF926CF847989EFEF8DB459F66394D90F32AD3F15E8",
-        "375D4CE24FDE434489DE8746E71786015009E66E38A926DD",
-        "545A39176196575D985999366E6AD34CE0A77CD7127B06BE",
-        "155555555555555555555555610C0B196812BFB6288A3EA3", 6
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_PNB208W1 = {
-        "X9.62 C2-PNB208W1", ECField_GF2m, 208,
-        "010000000000000000000000000000000800000000000000000007",
-        "0000000000000000000000000000000000000000000000000000",
-        "C8619ED45A62E6212E1160349E2BFA844439FAFC2A3FD1638F9E",
-        "89FDFBE4ABE193DF9559ECF07AC0CE78554E2784EB8C1ED1A57A",
-        "0F55B51A06E78E9AC38A035FF520D8B01781BEB1A6BB08617DE3",
-        "000101BAF95C9723C57B6C21DA2EFF2D5ED588BDD5717E212F9D", 0xFE48
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_TNB239V1 = {
-        "X9.62 C2-TNB239V1", ECField_GF2m, 239,
-        "800000000000000000000000000000000000000000000000001000000001",
-        "32010857077C5431123A46B808906756F543423E8D27877578125778AC76",
-        "790408F2EEDAF392B012EDEFB3392F30F4327C0CA3F31FC383C422AA8C16",
-        "57927098FA932E7C0A96D3FD5B706EF7E5F5C156E16B7E7C86038552E91D",
-        "61D8EE5077C33FECF6F1A16B268DE469C3C7744EA9A971649FC7A9616305",
-        "2000000000000000000000000000000F4D42FFE1492A4993F1CAD666E447", 4
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_TNB239V2 = {
-        "X9.62 C2-TNB239V2", ECField_GF2m, 239,
-        "800000000000000000000000000000000000000000000000001000000001",
-        "4230017757A767FAE42398569B746325D45313AF0766266479B75654E65F",
-        "5037EA654196CFF0CD82B2C14A2FCF2E3FF8775285B545722F03EACDB74B",
-        "28F9D04E900069C8DC47A08534FE76D2B900B7D7EF31F5709F200C4CA205",
-        "5667334C45AFF3B5A03BAD9DD75E2C71A99362567D5453F7FA6E227EC833",
-        "1555555555555555555555555555553C6F2885259C31E3FCDF154624522D", 6
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_TNB239V3 = {
-        "X9.62 C2-TNB239V3", ECField_GF2m, 239,
-        "800000000000000000000000000000000000000000000000001000000001",
-        "01238774666A67766D6676F778E676B66999176666E687666D8766C66A9F",
-        "6A941977BA9F6A435199ACFC51067ED587F519C5ECB541B8E44111DE1D40",
-        "70F6E9D04D289C4E89913CE3530BFDE903977D42B146D539BF1BDE4E9C92",
-        "2E5A0EAF6E5E1305B9004DCE5C0ED7FE59A35608F33837C816D80B79F461",
-        "0CCCCCCCCCCCCCCCCCCCCCCCCCCCCCAC4912D2D9DF903EF9888B8A0E4CFF", 0xA
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_PNB272W1 = {
-        "X9.62 C2-PNB272W1", ECField_GF2m, 272,
-        "010000000000000000000000000000000000000000000000000000010000000000000B",
-        "91A091F03B5FBA4AB2CCF49C4EDD220FB028712D42BE752B2C40094DBACDB586FB20",
-        "7167EFC92BB2E3CE7C8AAAFF34E12A9C557003D7C73A6FAF003F99F6CC8482E540F7",
-        "6108BABB2CEEBCF787058A056CBE0CFE622D7723A289E08A07AE13EF0D10D171DD8D",
-        "10C7695716851EEF6BA7F6872E6142FBD241B830FF5EFCACECCAB05E02005DDE9D23",
-        "000100FAF51354E0E39E4892DF6E319C72C8161603FA45AA7B998A167B8F1E629521",
-        0xFF06
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_PNB304W1 = {
-        "X9.62 C2-PNB304W1", ECField_GF2m, 304,
-        "010000000000000000000000000000000000000000000000000000000000000000000000000807",
-        "FD0D693149A118F651E6DCE6802085377E5F882D1B510B44160074C1288078365A0396C8E681",
-        "BDDB97E555A50A908E43B01C798EA5DAA6788F1EA2794EFCF57166B8C14039601E55827340BE",
-        "197B07845E9BE2D96ADB0F5F3C7F2CFFBD7A3EB8B6FEC35C7FD67F26DDF6285A644F740A2614",
-        "E19FBEB76E0DA171517ECF401B50289BF014103288527A9B416A105E80260B549FDC1B92C03B",
-        "000101D556572AABAC800101D556572AABAC8001022D5C91DD173F8FB561DA6899164443051D", 0xFE2E
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_TNB359V1 = {
-        "X9.62 C2-TNB359V1", ECField_GF2m, 359,
-        "800000000000000000000000000000000000000000000000000000000000000000000000100000000000000001",
-        "5667676A654B20754F356EA92017D946567C46675556F19556A04616B567D223A5E05656FB549016A96656A557",
-        "2472E2D0197C49363F1FE7F5B6DB075D52B6947D135D8CA445805D39BC345626089687742B6329E70680231988",
-        "3C258EF3047767E7EDE0F1FDAA79DAEE3841366A132E163ACED4ED2401DF9C6BDCDE98E8E707C07A2239B1B097",
-        "53D7E08529547048121E9C95F3791DD804963948F34FAE7BF44EA82365DC7868FE57E4AE2DE211305A407104BD",
-        "01AF286BCA1AF286BCA1AF286BCA1AF286BCA1AF286BC9FB8F6B85C556892C20A7EB964FE7719E74F490758D3B", 0x4C
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_PNB368W1 = {
-        "X9.62 C2-PNB368W1", ECField_GF2m, 368,
-        "0100000000000000000000000000000000000000000000000000000000000000000000002000000000000000000007",
-        "E0D2EE25095206F5E2A4F9ED229F1F256E79A0E2B455970D8D0D865BD94778C576D62F0AB7519CCD2A1A906AE30D",
-        "FC1217D4320A90452C760A58EDCD30C8DD069B3C34453837A34ED50CB54917E1C2112D84D164F444F8F74786046A",
-        "1085E2755381DCCCE3C1557AFA10C2F0C0C2825646C5B34A394CBCFA8BC16B22E7E789E927BE216F02E1FB136A5F",
-        "7B3EB1BDDCBA62D5D8B2059B525797FC73822C59059C623A45FF3843CEE8F87CD1855ADAA81E2A0750B80FDA2310",
-        "00010090512DA9AF72B08349D98A5DD4C7B0532ECA51CE03E2D10F3B7AC579BD87E909AE40A6F131E9CFCE5BD967", 0xFF70
-};
-
-static const ECCurveParams ecCurve_X9_62_CHAR2_TNB431R1 = {
-        "X9.62 C2-TNB431R1", ECField_GF2m, 431,
-        "800000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000001",
-        "1A827EF00DD6FC0E234CAF046C6A5D8A85395B236CC4AD2CF32A0CADBDC9DDF620B0EB9906D0957F6C6FEACD615468DF104DE296CD8F",
-        "10D9B4A3D9047D8B154359ABFB1B7F5485B04CEB868237DDC9DEDA982A679A5A919B626D4E50A8DD731B107A9962381FB5D807BF2618",
-        "120FC05D3C67A99DE161D2F4092622FECA701BE4F50F4758714E8A87BBF2A658EF8C21E7C5EFE965361F6C2999C0C247B0DBD70CE6B7",
-        "20D0AF8903A96F8D5FA2C255745D3C451B302C9346D9B7E485E7BCE41F6B591F3E8F6ADDCBB0BC4C2F947A7DE1A89B625D6A598B3760",
-        "0340340340340340340340340340340340340340340340340340340323C313FAB50589703B5EC68D3587FEC60D161CC149C1AD4A91", 0x2760
-};
-
-/* SEC2 prime curves */
-static const ECCurveParams ecCurve_SECG_PRIME_112R1 = {
-        "SECP-112R1", ECField_GFp, 112,
-        "DB7C2ABF62E35E668076BEAD208B",
-        "DB7C2ABF62E35E668076BEAD2088",
-        "659EF8BA043916EEDE8911702B22",
-        "09487239995A5EE76B55F9C2F098",
-        "A89CE5AF8724C0A23E0E0FF77500",
-        "DB7C2ABF62E35E7628DFAC6561C5", 1
-};
-
-static const ECCurveParams ecCurve_SECG_PRIME_112R2 = {
-        "SECP-112R2", ECField_GFp, 112,
-        "DB7C2ABF62E35E668076BEAD208B",
-        "6127C24C05F38A0AAAF65C0EF02C",
-        "51DEF1815DB5ED74FCC34C85D709",
-        "4BA30AB5E892B4E1649DD0928643",
-        "adcd46f5882e3747def36e956e97",
-        "36DF0AAFD8B8D7597CA10520D04B", 4
-};
-
-static const ECCurveParams ecCurve_SECG_PRIME_128R1 = {
-        "SECP-128R1", ECField_GFp, 128,
-        "FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF",
-        "FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFC",
-        "E87579C11079F43DD824993C2CEE5ED3",
-        "161FF7528B899B2D0C28607CA52C5B86",
-        "CF5AC8395BAFEB13C02DA292DDED7A83",
-        "FFFFFFFE0000000075A30D1B9038A115", 1
-};
-
-static const ECCurveParams ecCurve_SECG_PRIME_128R2 = {
-        "SECP-128R2", ECField_GFp, 128,
-        "FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF",
-        "D6031998D1B3BBFEBF59CC9BBFF9AEE1",
-        "5EEEFCA380D02919DC2C6558BB6D8A5D",
-        "7B6AA5D85E572983E6FB32A7CDEBC140",
-        "27B6916A894D3AEE7106FE805FC34B44",
-        "3FFFFFFF7FFFFFFFBE0024720613B5A3", 4
-};
-
-static const ECCurveParams ecCurve_SECG_PRIME_160K1 = {
-        "SECP-160K1", ECField_GFp, 160,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73",
-        "0000000000000000000000000000000000000000",
-        "0000000000000000000000000000000000000007",
-        "3B4C382CE37AA192A4019E763036F4F5DD4D7EBB",
-        "938CF935318FDCED6BC28286531733C3F03C4FEE",
-        "0100000000000000000001B8FA16DFAB9ACA16B6B3", 1
-};
-
-static const ECCurveParams ecCurve_SECG_PRIME_160R1 = {
-        "SECP-160R1", ECField_GFp, 160,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF",
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFC",
-        "1C97BEFC54BD7A8B65ACF89F81D4D4ADC565FA45",
-        "4A96B5688EF573284664698968C38BB913CBFC82",
-        "23A628553168947D59DCC912042351377AC5FB32",
-        "0100000000000000000001F4C8F927AED3CA752257", 1
-};
-
-static const ECCurveParams ecCurve_SECG_PRIME_160R2 = {
-        "SECP-160R2", ECField_GFp, 160,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73",
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC70",
-        "B4E134D3FB59EB8BAB57274904664D5AF50388BA",
-        "52DCB034293A117E1F4FF11B30F7199D3144CE6D",
-        "FEAFFEF2E331F296E071FA0DF9982CFEA7D43F2E",
-        "0100000000000000000000351EE786A818F3A1A16B", 1
-};
-
-static const ECCurveParams ecCurve_SECG_PRIME_192K1 = {
-        "SECP-192K1", ECField_GFp, 192,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37",
-        "000000000000000000000000000000000000000000000000",
-        "000000000000000000000000000000000000000000000003",
-        "DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D",
-        "9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D",
-        "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 1
-};
-
-static const ECCurveParams ecCurve_SECG_PRIME_224K1 = {
-        "SECP-224K1", ECField_GFp, 224,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D",
-        "00000000000000000000000000000000000000000000000000000000",
-        "00000000000000000000000000000000000000000000000000000005",
-        "A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C",
-        "7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5",
-        "010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 1
-};
-
-static const ECCurveParams ecCurve_SECG_PRIME_256K1 = {
-        "SECP-256K1", ECField_GFp, 256,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F",
-        "0000000000000000000000000000000000000000000000000000000000000000",
-        "0000000000000000000000000000000000000000000000000000000000000007",
-        "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
-        "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 1
-};
-
-/* SEC2 binary curves */
-static const ECCurveParams ecCurve_SECG_CHAR2_113R1 = {
-        "SECT-113R1", ECField_GF2m, 113,
-        "020000000000000000000000000201",
-        "003088250CA6E7C7FE649CE85820F7",
-        "00E8BEE4D3E2260744188BE0E9C723",
-        "009D73616F35F4AB1407D73562C10F",
-        "00A52830277958EE84D1315ED31886",
-        "0100000000000000D9CCEC8A39E56F", 2
-};
-
-static const ECCurveParams ecCurve_SECG_CHAR2_113R2 = {
-        "SECT-113R2", ECField_GF2m, 113,
-        "020000000000000000000000000201",
-        "00689918DBEC7E5A0DD6DFC0AA55C7",
-        "0095E9A9EC9B297BD4BF36E059184F",
-        "01A57A6A7B26CA5EF52FCDB8164797",
-        "00B3ADC94ED1FE674C06E695BABA1D",
-        "010000000000000108789B2496AF93", 2
-};
-
-static const ECCurveParams ecCurve_SECG_CHAR2_131R1 = {
-        "SECT-131R1", ECField_GF2m, 131,
-        "080000000000000000000000000000010D",
-        "07A11B09A76B562144418FF3FF8C2570B8",
-        "0217C05610884B63B9C6C7291678F9D341",
-        "0081BAF91FDF9833C40F9C181343638399",
-        "078C6E7EA38C001F73C8134B1B4EF9E150",
-        "0400000000000000023123953A9464B54D", 2
-};
-
-static const ECCurveParams ecCurve_SECG_CHAR2_131R2 = {
-        "SECT-131R2", ECField_GF2m, 131,
-        "080000000000000000000000000000010D",
-        "03E5A88919D7CAFCBF415F07C2176573B2",
-        "04B8266A46C55657AC734CE38F018F2192",
-        "0356DCD8F2F95031AD652D23951BB366A8",
-        "0648F06D867940A5366D9E265DE9EB240F",
-        "0400000000000000016954A233049BA98F", 2
-};
-
-static const ECCurveParams ecCurve_SECG_CHAR2_163R1 = {
-        "SECT-163R1", ECField_GF2m, 163,
-        "0800000000000000000000000000000000000000C9",
-        "07B6882CAAEFA84F9554FF8428BD88E246D2782AE2",
-        "0713612DCDDCB40AAB946BDA29CA91F73AF958AFD9",
-        "0369979697AB43897789566789567F787A7876A654",
-        "00435EDB42EFAFB2989D51FEFCE3C80988F41FF883",
-        "03FFFFFFFFFFFFFFFFFFFF48AAB689C29CA710279B", 2
-};
-
-static const ECCurveParams ecCurve_SECG_CHAR2_193R1 = {
-        "SECT-193R1", ECField_GF2m, 193,
-        "02000000000000000000000000000000000000000000008001",
-        "0017858FEB7A98975169E171F77B4087DE098AC8A911DF7B01",
-        "00FDFB49BFE6C3A89FACADAA7A1E5BBC7CC1C2E5D831478814",
-        "01F481BC5F0FF84A74AD6CDF6FDEF4BF6179625372D8C0C5E1",
-        "0025E399F2903712CCF3EA9E3A1AD17FB0B3201B6AF7CE1B05",
-        "01000000000000000000000000C7F34A778F443ACC920EBA49", 2
-};
-
-static const ECCurveParams ecCurve_SECG_CHAR2_193R2 = {
-        "SECT-193R2", ECField_GF2m, 193,
-        "02000000000000000000000000000000000000000000008001",
-        "0163F35A5137C2CE3EA6ED8667190B0BC43ECD69977702709B",
-        "00C9BB9E8927D4D64C377E2AB2856A5B16E3EFB7F61D4316AE",
-        "00D9B67D192E0367C803F39E1A7E82CA14A651350AAE617E8F",
-        "01CE94335607C304AC29E7DEFBD9CA01F596F927224CDECF6C",
-        "010000000000000000000000015AAB561B005413CCD4EE99D5", 2
-};
-
-static const ECCurveParams ecCurve_SECG_CHAR2_239K1 = {
-        "SECT-239K1", ECField_GF2m, 239,
-        "800000000000000000004000000000000000000000000000000000000001",
-        "000000000000000000000000000000000000000000000000000000000000",
-        "000000000000000000000000000000000000000000000000000000000001",
-        "29A0B6A887A983E9730988A68727A8B2D126C44CC2CC7B2A6555193035DC",
-        "76310804F12E549BDB011C103089E73510ACB275FC312A5DC6B76553F0CA",
-        "2000000000000000000000000000005A79FEC67CB6E91F1C1DA800E478A5", 4
-};
-
-/* WTLS curves */
-static const ECCurveParams ecCurve_WTLS_1 = {
-        "WTLS-1", ECField_GF2m, 113,
-        "020000000000000000000000000201",
-        "000000000000000000000000000001",
-        "000000000000000000000000000001",
-        "01667979A40BA497E5D5C270780617",
-        "00F44B4AF1ECC2630E08785CEBCC15",
-        "00FFFFFFFFFFFFFFFDBF91AF6DEA73", 2
-};
-
-static const ECCurveParams ecCurve_WTLS_8 = {
-        "WTLS-8", ECField_GFp, 112,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFDE7",
-        "0000000000000000000000000000",
-        "0000000000000000000000000003",
-        "0000000000000000000000000001",
-        "0000000000000000000000000002",
-        "0100000000000001ECEA551AD837E9", 1
-};
-
-static const ECCurveParams ecCurve_WTLS_9 = {
-        "WTLS-9", ECField_GFp, 160,
-        "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC808F",
-        "0000000000000000000000000000000000000000",
-        "0000000000000000000000000000000000000003",
-        "0000000000000000000000000000000000000001",
-        "0000000000000000000000000000000000000002",
-        "0100000000000000000001CDC98AE0E2DE574ABF33", 1
-};
-
-/* mapping between ECCurveName enum and pointers to ECCurveParams */
-static const ECCurveParams *ecCurve_map[] = {
-    NULL,                               /* ECCurve_noName */
-    &ecCurve_NIST_P192,                 /* ECCurve_NIST_P192 */
-    &ecCurve_NIST_P224,                 /* ECCurve_NIST_P224 */
-    &ecCurve_NIST_P256,                 /* ECCurve_NIST_P256 */
-    &ecCurve_NIST_P384,                 /* ECCurve_NIST_P384 */
-    &ecCurve_NIST_P521,                 /* ECCurve_NIST_P521 */
-    &ecCurve_NIST_K163,                 /* ECCurve_NIST_K163 */
-    &ecCurve_NIST_B163,                 /* ECCurve_NIST_B163 */
-    &ecCurve_NIST_K233,                 /* ECCurve_NIST_K233 */
-    &ecCurve_NIST_B233,                 /* ECCurve_NIST_B233 */
-    &ecCurve_NIST_K283,                 /* ECCurve_NIST_K283 */
-    &ecCurve_NIST_B283,                 /* ECCurve_NIST_B283 */
-    &ecCurve_NIST_K409,                 /* ECCurve_NIST_K409 */
-    &ecCurve_NIST_B409,                 /* ECCurve_NIST_B409 */
-    &ecCurve_NIST_K571,                 /* ECCurve_NIST_K571 */
-    &ecCurve_NIST_B571,                 /* ECCurve_NIST_B571 */
-    &ecCurve_X9_62_PRIME_192V2,         /* ECCurve_X9_62_PRIME_192V2 */
-    &ecCurve_X9_62_PRIME_192V3,         /* ECCurve_X9_62_PRIME_192V3 */
-    &ecCurve_X9_62_PRIME_239V1,         /* ECCurve_X9_62_PRIME_239V1 */
-    &ecCurve_X9_62_PRIME_239V2,         /* ECCurve_X9_62_PRIME_239V2 */
-    &ecCurve_X9_62_PRIME_239V3,         /* ECCurve_X9_62_PRIME_239V3 */
-    &ecCurve_X9_62_CHAR2_PNB163V1,      /* ECCurve_X9_62_CHAR2_PNB163V1 */
-    &ecCurve_X9_62_CHAR2_PNB163V2,      /* ECCurve_X9_62_CHAR2_PNB163V2 */
-    &ecCurve_X9_62_CHAR2_PNB163V3,      /* ECCurve_X9_62_CHAR2_PNB163V3 */
-    &ecCurve_X9_62_CHAR2_PNB176V1,      /* ECCurve_X9_62_CHAR2_PNB176V1 */
-    &ecCurve_X9_62_CHAR2_TNB191V1,      /* ECCurve_X9_62_CHAR2_TNB191V1 */
-    &ecCurve_X9_62_CHAR2_TNB191V2,      /* ECCurve_X9_62_CHAR2_TNB191V2 */
-    &ecCurve_X9_62_CHAR2_TNB191V3,      /* ECCurve_X9_62_CHAR2_TNB191V3 */
-    &ecCurve_X9_62_CHAR2_PNB208W1,      /* ECCurve_X9_62_CHAR2_PNB208W1 */
-    &ecCurve_X9_62_CHAR2_TNB239V1,      /* ECCurve_X9_62_CHAR2_TNB239V1 */
-    &ecCurve_X9_62_CHAR2_TNB239V2,      /* ECCurve_X9_62_CHAR2_TNB239V2 */
-    &ecCurve_X9_62_CHAR2_TNB239V3,      /* ECCurve_X9_62_CHAR2_TNB239V3 */
-    &ecCurve_X9_62_CHAR2_PNB272W1,      /* ECCurve_X9_62_CHAR2_PNB272W1 */
-    &ecCurve_X9_62_CHAR2_PNB304W1,      /* ECCurve_X9_62_CHAR2_PNB304W1 */
-    &ecCurve_X9_62_CHAR2_TNB359V1,      /* ECCurve_X9_62_CHAR2_TNB359V1 */
-    &ecCurve_X9_62_CHAR2_PNB368W1,      /* ECCurve_X9_62_CHAR2_PNB368W1 */
-    &ecCurve_X9_62_CHAR2_TNB431R1,      /* ECCurve_X9_62_CHAR2_TNB431R1 */
-    &ecCurve_SECG_PRIME_112R1,          /* ECCurve_SECG_PRIME_112R1 */
-    &ecCurve_SECG_PRIME_112R2,          /* ECCurve_SECG_PRIME_112R2 */
-    &ecCurve_SECG_PRIME_128R1,          /* ECCurve_SECG_PRIME_128R1 */
-    &ecCurve_SECG_PRIME_128R2,          /* ECCurve_SECG_PRIME_128R2 */
-    &ecCurve_SECG_PRIME_160K1,          /* ECCurve_SECG_PRIME_160K1 */
-    &ecCurve_SECG_PRIME_160R1,          /* ECCurve_SECG_PRIME_160R1 */
-    &ecCurve_SECG_PRIME_160R2,          /* ECCurve_SECG_PRIME_160R2 */
-    &ecCurve_SECG_PRIME_192K1,          /* ECCurve_SECG_PRIME_192K1 */
-    &ecCurve_SECG_PRIME_224K1,          /* ECCurve_SECG_PRIME_224K1 */
-    &ecCurve_SECG_PRIME_256K1,          /* ECCurve_SECG_PRIME_256K1 */
-    &ecCurve_SECG_CHAR2_113R1,          /* ECCurve_SECG_CHAR2_113R1 */
-    &ecCurve_SECG_CHAR2_113R2,          /* ECCurve_SECG_CHAR2_113R2 */
-    &ecCurve_SECG_CHAR2_131R1,          /* ECCurve_SECG_CHAR2_131R1 */
-    &ecCurve_SECG_CHAR2_131R2,          /* ECCurve_SECG_CHAR2_131R2 */
-    &ecCurve_SECG_CHAR2_163R1,          /* ECCurve_SECG_CHAR2_163R1 */
-    &ecCurve_SECG_CHAR2_193R1,          /* ECCurve_SECG_CHAR2_193R1 */
-    &ecCurve_SECG_CHAR2_193R2,          /* ECCurve_SECG_CHAR2_193R2 */
-    &ecCurve_SECG_CHAR2_239K1,          /* ECCurve_SECG_CHAR2_239K1 */
-    &ecCurve_WTLS_1,                    /* ECCurve_WTLS_1 */
-    &ecCurve_WTLS_8,                    /* ECCurve_WTLS_8 */
-    &ecCurve_WTLS_9,                    /* ECCurve_WTLS_9 */
-    NULL                                /* ECCurve_pastLastCurve */
-};
-
-#endif /* _ECL_CURVE_H */
--- a/jdk/src/share/native/sun/security/ec/ecl-exp.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,216 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _ECL_EXP_H
-#define _ECL_EXP_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/* Curve field type */
-typedef enum {
-        ECField_GFp,
-        ECField_GF2m
-} ECField;
-
-/* Hexadecimal encoding of curve parameters */
-struct ECCurveParamsStr {
-        char *text;
-        ECField field;
-        unsigned int size;
-        char *irr;
-        char *curvea;
-        char *curveb;
-        char *genx;
-        char *geny;
-        char *order;
-        int cofactor;
-};
-typedef struct ECCurveParamsStr ECCurveParams;
-
-/* Named curve parameters */
-typedef enum {
-
-        ECCurve_noName = 0,
-
-        /* NIST prime curves */
-        ECCurve_NIST_P192,
-        ECCurve_NIST_P224,
-        ECCurve_NIST_P256,
-        ECCurve_NIST_P384,
-        ECCurve_NIST_P521,
-
-        /* NIST binary curves */
-        ECCurve_NIST_K163,
-        ECCurve_NIST_B163,
-        ECCurve_NIST_K233,
-        ECCurve_NIST_B233,
-        ECCurve_NIST_K283,
-        ECCurve_NIST_B283,
-        ECCurve_NIST_K409,
-        ECCurve_NIST_B409,
-        ECCurve_NIST_K571,
-        ECCurve_NIST_B571,
-
-        /* ANSI X9.62 prime curves */
-        /* ECCurve_X9_62_PRIME_192V1 == ECCurve_NIST_P192 */
-        ECCurve_X9_62_PRIME_192V2,
-        ECCurve_X9_62_PRIME_192V3,
-        ECCurve_X9_62_PRIME_239V1,
-        ECCurve_X9_62_PRIME_239V2,
-        ECCurve_X9_62_PRIME_239V3,
-        /* ECCurve_X9_62_PRIME_256V1 == ECCurve_NIST_P256 */
-
-        /* ANSI X9.62 binary curves */
-        ECCurve_X9_62_CHAR2_PNB163V1,
-        ECCurve_X9_62_CHAR2_PNB163V2,
-        ECCurve_X9_62_CHAR2_PNB163V3,
-        ECCurve_X9_62_CHAR2_PNB176V1,
-        ECCurve_X9_62_CHAR2_TNB191V1,
-        ECCurve_X9_62_CHAR2_TNB191V2,
-        ECCurve_X9_62_CHAR2_TNB191V3,
-        ECCurve_X9_62_CHAR2_PNB208W1,
-        ECCurve_X9_62_CHAR2_TNB239V1,
-        ECCurve_X9_62_CHAR2_TNB239V2,
-        ECCurve_X9_62_CHAR2_TNB239V3,
-        ECCurve_X9_62_CHAR2_PNB272W1,
-        ECCurve_X9_62_CHAR2_PNB304W1,
-        ECCurve_X9_62_CHAR2_TNB359V1,
-        ECCurve_X9_62_CHAR2_PNB368W1,
-        ECCurve_X9_62_CHAR2_TNB431R1,
-
-        /* SEC2 prime curves */
-        ECCurve_SECG_PRIME_112R1,
-        ECCurve_SECG_PRIME_112R2,
-        ECCurve_SECG_PRIME_128R1,
-        ECCurve_SECG_PRIME_128R2,
-        ECCurve_SECG_PRIME_160K1,
-        ECCurve_SECG_PRIME_160R1,
-        ECCurve_SECG_PRIME_160R2,
-        ECCurve_SECG_PRIME_192K1,
-        /* ECCurve_SECG_PRIME_192R1 == ECCurve_NIST_P192 */
-        ECCurve_SECG_PRIME_224K1,
-        /* ECCurve_SECG_PRIME_224R1 == ECCurve_NIST_P224 */
-        ECCurve_SECG_PRIME_256K1,
-        /* ECCurve_SECG_PRIME_256R1 == ECCurve_NIST_P256 */
-        /* ECCurve_SECG_PRIME_384R1 == ECCurve_NIST_P384 */
-        /* ECCurve_SECG_PRIME_521R1 == ECCurve_NIST_P521 */
-
-        /* SEC2 binary curves */
-        ECCurve_SECG_CHAR2_113R1,
-        ECCurve_SECG_CHAR2_113R2,
-        ECCurve_SECG_CHAR2_131R1,
-        ECCurve_SECG_CHAR2_131R2,
-        /* ECCurve_SECG_CHAR2_163K1 == ECCurve_NIST_K163 */
-        ECCurve_SECG_CHAR2_163R1,
-        /* ECCurve_SECG_CHAR2_163R2 == ECCurve_NIST_B163 */
-        ECCurve_SECG_CHAR2_193R1,
-        ECCurve_SECG_CHAR2_193R2,
-        /* ECCurve_SECG_CHAR2_233K1 == ECCurve_NIST_K233 */
-        /* ECCurve_SECG_CHAR2_233R1 == ECCurve_NIST_B233 */
-        ECCurve_SECG_CHAR2_239K1,
-        /* ECCurve_SECG_CHAR2_283K1 == ECCurve_NIST_K283 */
-        /* ECCurve_SECG_CHAR2_283R1 == ECCurve_NIST_B283 */
-        /* ECCurve_SECG_CHAR2_409K1 == ECCurve_NIST_K409 */
-        /* ECCurve_SECG_CHAR2_409R1 == ECCurve_NIST_B409 */
-        /* ECCurve_SECG_CHAR2_571K1 == ECCurve_NIST_K571 */
-        /* ECCurve_SECG_CHAR2_571R1 == ECCurve_NIST_B571 */
-
-        /* WTLS curves */
-        ECCurve_WTLS_1,
-        /* there is no WTLS 2 curve */
-        /* ECCurve_WTLS_3 == ECCurve_NIST_K163 */
-        /* ECCurve_WTLS_4 == ECCurve_SECG_CHAR2_113R1 */
-        /* ECCurve_WTLS_5 == ECCurve_X9_62_CHAR2_PNB163V1 */
-        /* ECCurve_WTLS_6 == ECCurve_SECG_PRIME_112R1 */
-        /* ECCurve_WTLS_7 == ECCurve_SECG_PRIME_160R1 */
-        ECCurve_WTLS_8,
-        ECCurve_WTLS_9,
-        /* ECCurve_WTLS_10 == ECCurve_NIST_K233 */
-        /* ECCurve_WTLS_11 == ECCurve_NIST_B233 */
-        /* ECCurve_WTLS_12 == ECCurve_NIST_P224 */
-
-        ECCurve_pastLastCurve
-} ECCurveName;
-
-/* Aliased named curves */
-
-#define ECCurve_X9_62_PRIME_192V1 ECCurve_NIST_P192
-#define ECCurve_X9_62_PRIME_256V1 ECCurve_NIST_P256
-#define ECCurve_SECG_PRIME_192R1 ECCurve_NIST_P192
-#define ECCurve_SECG_PRIME_224R1 ECCurve_NIST_P224
-#define ECCurve_SECG_PRIME_256R1 ECCurve_NIST_P256
-#define ECCurve_SECG_PRIME_384R1 ECCurve_NIST_P384
-#define ECCurve_SECG_PRIME_521R1 ECCurve_NIST_P521
-#define ECCurve_SECG_CHAR2_163K1 ECCurve_NIST_K163
-#define ECCurve_SECG_CHAR2_163R2 ECCurve_NIST_B163
-#define ECCurve_SECG_CHAR2_233K1 ECCurve_NIST_K233
-#define ECCurve_SECG_CHAR2_233R1 ECCurve_NIST_B233
-#define ECCurve_SECG_CHAR2_283K1 ECCurve_NIST_K283
-#define ECCurve_SECG_CHAR2_283R1 ECCurve_NIST_B283
-#define ECCurve_SECG_CHAR2_409K1 ECCurve_NIST_K409
-#define ECCurve_SECG_CHAR2_409R1 ECCurve_NIST_B409
-#define ECCurve_SECG_CHAR2_571K1 ECCurve_NIST_K571
-#define ECCurve_SECG_CHAR2_571R1 ECCurve_NIST_B571
-#define ECCurve_WTLS_3 ECCurve_NIST_K163
-#define ECCurve_WTLS_4 ECCurve_SECG_CHAR2_113R1
-#define ECCurve_WTLS_5 ECCurve_X9_62_CHAR2_PNB163V1
-#define ECCurve_WTLS_6 ECCurve_SECG_PRIME_112R1
-#define ECCurve_WTLS_7 ECCurve_SECG_PRIME_160R1
-#define ECCurve_WTLS_10 ECCurve_NIST_K233
-#define ECCurve_WTLS_11 ECCurve_NIST_B233
-#define ECCurve_WTLS_12 ECCurve_NIST_P224
-
-#endif /* _ECL_EXP_H */
--- a/jdk/src/share/native/sun/security/ec/ecl-priv.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,304 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Stephen Fung <fungstep@hotmail.com> and
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _ECL_PRIV_H
-#define _ECL_PRIV_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecl.h"
-#include "mpi.h"
-#include "mplogic.h"
-
-/* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */
-/* the following needs to go away... */
-#if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT)
-#define ECL_SIXTY_FOUR_BIT
-#else
-#define ECL_THIRTY_TWO_BIT
-#endif
-
-#define ECL_CURVE_DIGITS(curve_size_in_bits) \
-        (((curve_size_in_bits)+(sizeof(mp_digit)*8-1))/(sizeof(mp_digit)*8))
-#define ECL_BITS (sizeof(mp_digit)*8)
-#define ECL_MAX_FIELD_SIZE_DIGITS (80/sizeof(mp_digit))
-
-/* Gets the i'th bit in the binary representation of a. If i >= length(a),
- * then return 0. (The above behaviour differs from mpl_get_bit, which
- * causes an error if i >= length(a).) */
-#define MP_GET_BIT(a, i) \
-        ((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))
-
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-#define MP_ADD_CARRY(a1, a2, s, cin, cout)   \
-    { mp_word w; \
-    w = ((mp_word)(cin)) + (a1) + (a2); \
-    s = ACCUM(w); \
-    cout = CARRYOUT(w); }
-
-#define MP_SUB_BORROW(a1, a2, s, bin, bout)   \
-    { mp_word w; \
-    w = ((mp_word)(a1)) - (a2) - (bin); \
-    s = ACCUM(w); \
-    bout = (w >> MP_DIGIT_BIT) & 1; }
-
-#else
-/* NOTE,
- * cin and cout could be the same variable.
- * bin and bout could be the same variable.
- * a1 or a2 and s could be the same variable.
- * don't trash those outputs until their respective inputs have
- * been read. */
-#define MP_ADD_CARRY(a1, a2, s, cin, cout)   \
-    { mp_digit tmp,sum; \
-    tmp = (a1); \
-    sum = tmp + (a2); \
-    tmp = (sum < tmp);                     /* detect overflow */ \
-    s = sum += (cin); \
-    cout = tmp + (sum < (cin)); }
-
-#define MP_SUB_BORROW(a1, a2, s, bin, bout)   \
-    { mp_digit tmp; \
-    tmp = (a1); \
-    s = tmp - (a2); \
-    tmp = (s > tmp);                    /* detect borrow */ \
-    if ((bin) && !s--) tmp++;   \
-    bout = tmp; }
-#endif
-
-
-struct GFMethodStr;
-typedef struct GFMethodStr GFMethod;
-struct GFMethodStr {
-        /* Indicates whether the structure was constructed from dynamic memory
-         * or statically created. */
-        int constructed;
-        /* Irreducible that defines the field. For prime fields, this is the
-         * prime p. For binary polynomial fields, this is the bitstring
-         * representation of the irreducible polynomial. */
-        mp_int irr;
-        /* For prime fields, the value irr_arr[0] is the number of bits in the
-         * field. For binary polynomial fields, the irreducible polynomial
-         * f(t) is represented as an array of unsigned int[], where f(t) is
-         * of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0]
-         * > p[1] > ... > p[4] = 0. */
-        unsigned int irr_arr[5];
-        /* Field arithmetic methods. All methods (except field_enc and
-         * field_dec) are assumed to take field-encoded parameters and return
-         * field-encoded values. All methods (except field_enc and field_dec)
-         * are required to be implemented. */
-        mp_err (*field_add) (const mp_int *a, const mp_int *b, mp_int *r,
-                                                 const GFMethod *meth);
-        mp_err (*field_neg) (const mp_int *a, mp_int *r, const GFMethod *meth);
-        mp_err (*field_sub) (const mp_int *a, const mp_int *b, mp_int *r,
-                                                 const GFMethod *meth);
-        mp_err (*field_mod) (const mp_int *a, mp_int *r, const GFMethod *meth);
-        mp_err (*field_mul) (const mp_int *a, const mp_int *b, mp_int *r,
-                                                 const GFMethod *meth);
-        mp_err (*field_sqr) (const mp_int *a, mp_int *r, const GFMethod *meth);
-        mp_err (*field_div) (const mp_int *a, const mp_int *b, mp_int *r,
-                                                 const GFMethod *meth);
-        mp_err (*field_enc) (const mp_int *a, mp_int *r, const GFMethod *meth);
-        mp_err (*field_dec) (const mp_int *a, mp_int *r, const GFMethod *meth);
-        /* Extra storage for implementation-specific data.  Any memory
-         * allocated to these extra fields will be cleared by extra_free. */
-        void *extra1;
-        void *extra2;
-        void (*extra_free) (GFMethod *meth);
-};
-
-/* Construct generic GFMethods. */
-GFMethod *GFMethod_consGFp(const mp_int *irr);
-GFMethod *GFMethod_consGFp_mont(const mp_int *irr);
-GFMethod *GFMethod_consGF2m(const mp_int *irr,
-                                                        const unsigned int irr_arr[5]);
-/* Free the memory allocated (if any) to a GFMethod object. */
-void GFMethod_free(GFMethod *meth);
-
-struct ECGroupStr {
-        /* Indicates whether the structure was constructed from dynamic memory
-         * or statically created. */
-        int constructed;
-        /* Field definition and arithmetic. */
-        GFMethod *meth;
-        /* Textual representation of curve name, if any. */
-        char *text;
-#ifdef _KERNEL
-        int text_len;
-#endif
-        /* Curve parameters, field-encoded. */
-        mp_int curvea, curveb;
-        /* x and y coordinates of the base point, field-encoded. */
-        mp_int genx, geny;
-        /* Order and cofactor of the base point. */
-        mp_int order;
-        int cofactor;
-        /* Point arithmetic methods. All methods are assumed to take
-         * field-encoded parameters and return field-encoded values. All
-         * methods (except base_point_mul and points_mul) are required to be
-         * implemented. */
-        mp_err (*point_add) (const mp_int *px, const mp_int *py,
-                                                 const mp_int *qx, const mp_int *qy, mp_int *rx,
-                                                 mp_int *ry, const ECGroup *group);
-        mp_err (*point_sub) (const mp_int *px, const mp_int *py,
-                                                 const mp_int *qx, const mp_int *qy, mp_int *rx,
-                                                 mp_int *ry, const ECGroup *group);
-        mp_err (*point_dbl) (const mp_int *px, const mp_int *py, mp_int *rx,
-                                                 mp_int *ry, const ECGroup *group);
-        mp_err (*point_mul) (const mp_int *n, const mp_int *px,
-                                                 const mp_int *py, mp_int *rx, mp_int *ry,
-                                                 const ECGroup *group);
-        mp_err (*base_point_mul) (const mp_int *n, mp_int *rx, mp_int *ry,
-                                                          const ECGroup *group);
-        mp_err (*points_mul) (const mp_int *k1, const mp_int *k2,
-                                                  const mp_int *px, const mp_int *py, mp_int *rx,
-                                                  mp_int *ry, const ECGroup *group);
-        mp_err (*validate_point) (const mp_int *px, const mp_int *py, const ECGroup *group);
-        /* Extra storage for implementation-specific data.  Any memory
-         * allocated to these extra fields will be cleared by extra_free. */
-        void *extra1;
-        void *extra2;
-        void (*extra_free) (ECGroup *group);
-};
-
-/* Wrapper functions for generic prime field arithmetic. */
-mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
-mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-
-/* fixed length in-line adds. Count is in words */
-mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-
-mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
-mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
-mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
-                                  const GFMethod *meth);
-/* Wrapper functions for generic binary polynomial field arithmetic. */
-mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r,
-                                   const GFMethod *meth);
-mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
-mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
-mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                                   const GFMethod *meth);
-mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
-mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
-                                   const GFMethod *meth);
-
-/* Montgomery prime field arithmetic. */
-mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
-                                           const GFMethod *meth);
-mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
-mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
-                                           const GFMethod *meth);
-mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
-mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
-void ec_GFp_extra_free_mont(GFMethod *meth);
-
-/* point multiplication */
-mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2,
-                                                const mp_int *px, const mp_int *py, mp_int *rx,
-                                                mp_int *ry, const ECGroup *group);
-mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2,
-                                                   const mp_int *px, const mp_int *py, mp_int *rx,
-                                                   mp_int *ry, const ECGroup *group);
-
-/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
- * be an array of signed char's to output to, bitsize should be the number
- * of bits of out, in is the original scalar, and w is the window size.
- * NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
- * Menezes, "Software implementation of elliptic curve cryptography over
- * binary fields", Proc. CHES 2000. */
-mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in,
-                                           int w);
-
-/* Optimized field arithmetic */
-mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName);
-mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName);
-mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName);
-mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName);
-mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName);
-mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name);
-mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name);
-mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name);
-
-/* Optimized floating-point arithmetic */
-#ifdef ECL_USE_FP
-mp_err ec_group_set_secp160r1_fp(ECGroup *group);
-mp_err ec_group_set_nistp192_fp(ECGroup *group);
-mp_err ec_group_set_nistp224_fp(ECGroup *group);
-#endif
-
-#endif /* _ECL_PRIV_H */
--- a/jdk/src/share/native/sun/security/ec/ecl.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,475 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "mpi.h"
-#include "mplogic.h"
-#include "ecl.h"
-#include "ecl-priv.h"
-#include "ec2.h"
-#include "ecp.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#include <string.h>
-#endif
-
-/* Allocate memory for a new ECGroup object. */
-ECGroup *
-ECGroup_new(int kmflag)
-{
-        mp_err res = MP_OKAY;
-        ECGroup *group;
-#ifdef _KERNEL
-        group = (ECGroup *) kmem_alloc(sizeof(ECGroup), kmflag);
-#else
-        group = (ECGroup *) malloc(sizeof(ECGroup));
-#endif
-        if (group == NULL)
-                return NULL;
-        group->constructed = MP_YES;
-        group->meth = NULL;
-        group->text = NULL;
-        MP_DIGITS(&group->curvea) = 0;
-        MP_DIGITS(&group->curveb) = 0;
-        MP_DIGITS(&group->genx) = 0;
-        MP_DIGITS(&group->geny) = 0;
-        MP_DIGITS(&group->order) = 0;
-        group->base_point_mul = NULL;
-        group->points_mul = NULL;
-        group->validate_point = NULL;
-        group->extra1 = NULL;
-        group->extra2 = NULL;
-        group->extra_free = NULL;
-        MP_CHECKOK(mp_init(&group->curvea, kmflag));
-        MP_CHECKOK(mp_init(&group->curveb, kmflag));
-        MP_CHECKOK(mp_init(&group->genx, kmflag));
-        MP_CHECKOK(mp_init(&group->geny, kmflag));
-        MP_CHECKOK(mp_init(&group->order, kmflag));
-
-  CLEANUP:
-        if (res != MP_OKAY) {
-                ECGroup_free(group);
-                return NULL;
-        }
-        return group;
-}
-
-/* Construct a generic ECGroup for elliptic curves over prime fields. */
-ECGroup *
-ECGroup_consGFp(const mp_int *irr, const mp_int *curvea,
-                                const mp_int *curveb, const mp_int *genx,
-                                const mp_int *geny, const mp_int *order, int cofactor)
-{
-        mp_err res = MP_OKAY;
-        ECGroup *group = NULL;
-
-        group = ECGroup_new(FLAG(irr));
-        if (group == NULL)
-                return NULL;
-
-        group->meth = GFMethod_consGFp(irr);
-        if (group->meth == NULL) {
-                res = MP_MEM;
-                goto CLEANUP;
-        }
-        MP_CHECKOK(mp_copy(curvea, &group->curvea));
-        MP_CHECKOK(mp_copy(curveb, &group->curveb));
-        MP_CHECKOK(mp_copy(genx, &group->genx));
-        MP_CHECKOK(mp_copy(geny, &group->geny));
-        MP_CHECKOK(mp_copy(order, &group->order));
-        group->cofactor = cofactor;
-        group->point_add = &ec_GFp_pt_add_aff;
-        group->point_sub = &ec_GFp_pt_sub_aff;
-        group->point_dbl = &ec_GFp_pt_dbl_aff;
-        group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
-        group->base_point_mul = NULL;
-        group->points_mul = &ec_GFp_pts_mul_jac;
-        group->validate_point = &ec_GFp_validate_point;
-
-  CLEANUP:
-        if (res != MP_OKAY) {
-                ECGroup_free(group);
-                return NULL;
-        }
-        return group;
-}
-
-/* Construct a generic ECGroup for elliptic curves over prime fields with
- * field arithmetic implemented in Montgomery coordinates. */
-ECGroup *
-ECGroup_consGFp_mont(const mp_int *irr, const mp_int *curvea,
-                                         const mp_int *curveb, const mp_int *genx,
-                                         const mp_int *geny, const mp_int *order, int cofactor)
-{
-        mp_err res = MP_OKAY;
-        ECGroup *group = NULL;
-
-        group = ECGroup_new(FLAG(irr));
-        if (group == NULL)
-                return NULL;
-
-        group->meth = GFMethod_consGFp_mont(irr);
-        if (group->meth == NULL) {
-                res = MP_MEM;
-                goto CLEANUP;
-        }
-        MP_CHECKOK(group->meth->
-                           field_enc(curvea, &group->curvea, group->meth));
-        MP_CHECKOK(group->meth->
-                           field_enc(curveb, &group->curveb, group->meth));
-        MP_CHECKOK(group->meth->field_enc(genx, &group->genx, group->meth));
-        MP_CHECKOK(group->meth->field_enc(geny, &group->geny, group->meth));
-        MP_CHECKOK(mp_copy(order, &group->order));
-        group->cofactor = cofactor;
-        group->point_add = &ec_GFp_pt_add_aff;
-        group->point_sub = &ec_GFp_pt_sub_aff;
-        group->point_dbl = &ec_GFp_pt_dbl_aff;
-        group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
-        group->base_point_mul = NULL;
-        group->points_mul = &ec_GFp_pts_mul_jac;
-        group->validate_point = &ec_GFp_validate_point;
-
-  CLEANUP:
-        if (res != MP_OKAY) {
-                ECGroup_free(group);
-                return NULL;
-        }
-        return group;
-}
-
-#ifdef NSS_ECC_MORE_THAN_SUITE_B
-/* Construct a generic ECGroup for elliptic curves over binary polynomial
- * fields. */
-ECGroup *
-ECGroup_consGF2m(const mp_int *irr, const unsigned int irr_arr[5],
-                                 const mp_int *curvea, const mp_int *curveb,
-                                 const mp_int *genx, const mp_int *geny,
-                                 const mp_int *order, int cofactor)
-{
-        mp_err res = MP_OKAY;
-        ECGroup *group = NULL;
-
-        group = ECGroup_new(FLAG(irr));
-        if (group == NULL)
-                return NULL;
-
-        group->meth = GFMethod_consGF2m(irr, irr_arr);
-        if (group->meth == NULL) {
-                res = MP_MEM;
-                goto CLEANUP;
-        }
-        MP_CHECKOK(mp_copy(curvea, &group->curvea));
-        MP_CHECKOK(mp_copy(curveb, &group->curveb));
-        MP_CHECKOK(mp_copy(genx, &group->genx));
-        MP_CHECKOK(mp_copy(geny, &group->geny));
-        MP_CHECKOK(mp_copy(order, &group->order));
-        group->cofactor = cofactor;
-        group->point_add = &ec_GF2m_pt_add_aff;
-        group->point_sub = &ec_GF2m_pt_sub_aff;
-        group->point_dbl = &ec_GF2m_pt_dbl_aff;
-        group->point_mul = &ec_GF2m_pt_mul_mont;
-        group->base_point_mul = NULL;
-        group->points_mul = &ec_pts_mul_basic;
-        group->validate_point = &ec_GF2m_validate_point;
-
-  CLEANUP:
-        if (res != MP_OKAY) {
-                ECGroup_free(group);
-                return NULL;
-        }
-        return group;
-}
-#endif
-
-/* Construct ECGroup from hex parameters and name, if any. Called by
- * ECGroup_fromHex and ECGroup_fromName. */
-ECGroup *
-ecgroup_fromNameAndHex(const ECCurveName name,
-                                   const ECCurveParams * params, int kmflag)
-{
-        mp_int irr, curvea, curveb, genx, geny, order;
-        int bits;
-        ECGroup *group = NULL;
-        mp_err res = MP_OKAY;
-
-        /* initialize values */
-        MP_DIGITS(&irr) = 0;
-        MP_DIGITS(&curvea) = 0;
-        MP_DIGITS(&curveb) = 0;
-        MP_DIGITS(&genx) = 0;
-        MP_DIGITS(&geny) = 0;
-        MP_DIGITS(&order) = 0;
-        MP_CHECKOK(mp_init(&irr, kmflag));
-        MP_CHECKOK(mp_init(&curvea, kmflag));
-        MP_CHECKOK(mp_init(&curveb, kmflag));
-        MP_CHECKOK(mp_init(&genx, kmflag));
-        MP_CHECKOK(mp_init(&geny, kmflag));
-        MP_CHECKOK(mp_init(&order, kmflag));
-        MP_CHECKOK(mp_read_radix(&irr, params->irr, 16));
-        MP_CHECKOK(mp_read_radix(&curvea, params->curvea, 16));
-        MP_CHECKOK(mp_read_radix(&curveb, params->curveb, 16));
-        MP_CHECKOK(mp_read_radix(&genx, params->genx, 16));
-        MP_CHECKOK(mp_read_radix(&geny, params->geny, 16));
-        MP_CHECKOK(mp_read_radix(&order, params->order, 16));
-
-        /* determine number of bits */
-        bits = mpl_significant_bits(&irr) - 1;
-        if (bits < MP_OKAY) {
-                res = bits;
-                goto CLEANUP;
-        }
-
-        /* determine which optimizations (if any) to use */
-        if (params->field == ECField_GFp) {
-#ifdef NSS_ECC_MORE_THAN_SUITE_B
-            switch (name) {
-#ifdef ECL_USE_FP
-                case ECCurve_SECG_PRIME_160R1:
-                        group =
-                                ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
-                                                                &order, params->cofactor);
-                        if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
-                        MP_CHECKOK(ec_group_set_secp160r1_fp(group));
-                        break;
-#endif
-                case ECCurve_SECG_PRIME_192R1:
-#ifdef ECL_USE_FP
-                        group =
-                                ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
-                                                                &order, params->cofactor);
-                        if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
-                        MP_CHECKOK(ec_group_set_nistp192_fp(group));
-#else
-                        group =
-                                ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
-                                                                &order, params->cofactor);
-                        if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
-                        MP_CHECKOK(ec_group_set_gfp192(group, name));
-#endif
-                        break;
-                case ECCurve_SECG_PRIME_224R1:
-#ifdef ECL_USE_FP
-                        group =
-                                ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
-                                                                &order, params->cofactor);
-                        if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
-                        MP_CHECKOK(ec_group_set_nistp224_fp(group));
-#else
-                        group =
-                                ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
-                                                                &order, params->cofactor);
-                        if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
-                        MP_CHECKOK(ec_group_set_gfp224(group, name));
-#endif
-                        break;
-                case ECCurve_SECG_PRIME_256R1:
-                        group =
-                                ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
-                                                                &order, params->cofactor);
-                        if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
-                        MP_CHECKOK(ec_group_set_gfp256(group, name));
-                        break;
-                case ECCurve_SECG_PRIME_521R1:
-                        group =
-                                ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
-                                                                &order, params->cofactor);
-                        if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
-                        MP_CHECKOK(ec_group_set_gfp521(group, name));
-                        break;
-                default:
-                        /* use generic arithmetic */
-#endif
-                        group =
-                                ECGroup_consGFp_mont(&irr, &curvea, &curveb, &genx, &geny,
-                                                                         &order, params->cofactor);
-                        if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
-#ifdef NSS_ECC_MORE_THAN_SUITE_B
-                }
-        } else if (params->field == ECField_GF2m) {
-                group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &geny, &order, params->cofactor);
-                if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
-                if ((name == ECCurve_NIST_K163) ||
-                    (name == ECCurve_NIST_B163) ||
-                    (name == ECCurve_SECG_CHAR2_163R1)) {
-                        MP_CHECKOK(ec_group_set_gf2m163(group, name));
-                } else if ((name == ECCurve_SECG_CHAR2_193R1) ||
-                           (name == ECCurve_SECG_CHAR2_193R2)) {
-                        MP_CHECKOK(ec_group_set_gf2m193(group, name));
-                } else if ((name == ECCurve_NIST_K233) ||
-                           (name == ECCurve_NIST_B233)) {
-                        MP_CHECKOK(ec_group_set_gf2m233(group, name));
-                }
-#endif
-        } else {
-                res = MP_UNDEF;
-                goto CLEANUP;
-        }
-
-        /* set name, if any */
-        if ((group != NULL) && (params->text != NULL)) {
-#ifdef _KERNEL
-                int n = strlen(params->text) + 1;
-
-                group->text = kmem_alloc(n, kmflag);
-                if (group->text == NULL) {
-                        res = MP_MEM;
-                        goto CLEANUP;
-                }
-                bcopy(params->text, group->text, n);
-                group->text_len = n;
-#else
-                group->text = strdup(params->text);
-                if (group->text == NULL) {
-                        res = MP_MEM;
-                }
-#endif
-        }
-
-  CLEANUP:
-        mp_clear(&irr);
-        mp_clear(&curvea);
-        mp_clear(&curveb);
-        mp_clear(&genx);
-        mp_clear(&geny);
-        mp_clear(&order);
-        if (res != MP_OKAY) {
-                ECGroup_free(group);
-                return NULL;
-        }
-        return group;
-}
-
-/* Construct ECGroup from hexadecimal representations of parameters. */
-ECGroup *
-ECGroup_fromHex(const ECCurveParams * params, int kmflag)
-{
-        return ecgroup_fromNameAndHex(ECCurve_noName, params, kmflag);
-}
-
-/* Construct ECGroup from named parameters. */
-ECGroup *
-ECGroup_fromName(const ECCurveName name, int kmflag)
-{
-        ECGroup *group = NULL;
-        ECCurveParams *params = NULL;
-        mp_err res = MP_OKAY;
-
-        params = EC_GetNamedCurveParams(name, kmflag);
-        if (params == NULL) {
-                res = MP_UNDEF;
-                goto CLEANUP;
-        }
-
-        /* construct actual group */
-        group = ecgroup_fromNameAndHex(name, params, kmflag);
-        if (group == NULL) {
-                res = MP_UNDEF;
-                goto CLEANUP;
-        }
-
-  CLEANUP:
-        EC_FreeCurveParams(params);
-        if (res != MP_OKAY) {
-                ECGroup_free(group);
-                return NULL;
-        }
-        return group;
-}
-
-/* Validates an EC public key as described in Section 5.2.2 of X9.62. */
-mp_err ECPoint_validate(const ECGroup *group, const mp_int *px, const
-                                        mp_int *py)
-{
-    /* 1: Verify that publicValue is not the point at infinity */
-    /* 2: Verify that the coordinates of publicValue are elements
-     *    of the field.
-     */
-    /* 3: Verify that publicValue is on the curve. */
-    /* 4: Verify that the order of the curve times the publicValue
-     *    is the point at infinity.
-     */
-        return group->validate_point(px, py, group);
-}
-
-/* Free the memory allocated (if any) to an ECGroup object. */
-void
-ECGroup_free(ECGroup *group)
-{
-        if (group == NULL)
-                return;
-        GFMethod_free(group->meth);
-        if (group->constructed == MP_NO)
-                return;
-        mp_clear(&group->curvea);
-        mp_clear(&group->curveb);
-        mp_clear(&group->genx);
-        mp_clear(&group->geny);
-        mp_clear(&group->order);
-        if (group->text != NULL)
-#ifdef _KERNEL
-                kmem_free(group->text, group->text_len);
-#else
-                free(group->text);
-#endif
-        if (group->extra_free != NULL)
-                group->extra_free(group);
-#ifdef _KERNEL
-        kmem_free(group, sizeof (ECGroup));
-#else
-        free(group);
-#endif
-}
--- a/jdk/src/share/native/sun/security/ec/ecl.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,111 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _ECL_H
-#define _ECL_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/* Although this is not an exported header file, code which uses elliptic
- * curve point operations will need to include it. */
-
-#include "ecl-exp.h"
-#include "mpi.h"
-
-struct ECGroupStr;
-typedef struct ECGroupStr ECGroup;
-
-/* Construct ECGroup from hexadecimal representations of parameters. */
-ECGroup *ECGroup_fromHex(const ECCurveParams * params, int kmflag);
-
-/* Construct ECGroup from named parameters. */
-ECGroup *ECGroup_fromName(const ECCurveName name, int kmflag);
-
-/* Free an allocated ECGroup. */
-void ECGroup_free(ECGroup *group);
-
-/* Construct ECCurveParams from an ECCurveName */
-ECCurveParams *EC_GetNamedCurveParams(const ECCurveName name, int kmflag);
-
-/* Duplicates an ECCurveParams */
-ECCurveParams *ECCurveParams_dup(const ECCurveParams * params, int kmflag);
-
-/* Free an allocated ECCurveParams */
-void EC_FreeCurveParams(ECCurveParams * params);
-
-/* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k * P(x,
- * y).  If x, y = NULL, then P is assumed to be the generator (base point)
- * of the group of points on the elliptic curve. Input and output values
- * are assumed to be NOT field-encoded. */
-mp_err ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
-                                   const mp_int *py, mp_int *qx, mp_int *qy);
-
-/* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k1 * G +
- * k2 * P(x, y), where G is the generator (base point) of the group of
- * points on the elliptic curve. Input and output values are assumed to
- * be NOT field-encoded. */
-mp_err ECPoints_mul(const ECGroup *group, const mp_int *k1,
-                                        const mp_int *k2, const mp_int *px, const mp_int *py,
-                                        mp_int *qx, mp_int *qy);
-
-/* Validates an EC public key as described in Section 5.2.2 of X9.62.
- * Returns MP_YES if the public key is valid, MP_NO if the public key
- * is invalid, or an error code if the validation could not be
- * performed. */
-mp_err ECPoint_validate(const ECGroup *group, const mp_int *px, const
-                                        mp_int *py);
-
-#endif /* _ECL_H */
--- a/jdk/src/share/native/sun/security/ec/ecl_curve.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,216 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecl.h"
-#include "ecl-curve.h"
-#include "ecl-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#include <string.h>
-#endif
-
-#define CHECK(func) if ((func) == NULL) { res = 0; goto CLEANUP; }
-
-/* Duplicates an ECCurveParams */
-ECCurveParams *
-ECCurveParams_dup(const ECCurveParams * params, int kmflag)
-{
-        int res = 1;
-        ECCurveParams *ret = NULL;
-
-#ifdef _KERNEL
-        ret = (ECCurveParams *) kmem_zalloc(sizeof(ECCurveParams), kmflag);
-#else
-        CHECK(ret = (ECCurveParams *) calloc(1, sizeof(ECCurveParams)));
-#endif
-        if (params->text != NULL) {
-#ifdef _KERNEL
-                ret->text = kmem_alloc(strlen(params->text) + 1, kmflag);
-                bcopy(params->text, ret->text, strlen(params->text) + 1);
-#else
-                CHECK(ret->text = strdup(params->text));
-#endif
-        }
-        ret->field = params->field;
-        ret->size = params->size;
-        if (params->irr != NULL) {
-#ifdef _KERNEL
-                ret->irr = kmem_alloc(strlen(params->irr) + 1, kmflag);
-                bcopy(params->irr, ret->irr, strlen(params->irr) + 1);
-#else
-                CHECK(ret->irr = strdup(params->irr));
-#endif
-        }
-        if (params->curvea != NULL) {
-#ifdef _KERNEL
-                ret->curvea = kmem_alloc(strlen(params->curvea) + 1, kmflag);
-                bcopy(params->curvea, ret->curvea, strlen(params->curvea) + 1);
-#else
-                CHECK(ret->curvea = strdup(params->curvea));
-#endif
-        }
-        if (params->curveb != NULL) {
-#ifdef _KERNEL
-                ret->curveb = kmem_alloc(strlen(params->curveb) + 1, kmflag);
-                bcopy(params->curveb, ret->curveb, strlen(params->curveb) + 1);
-#else
-                CHECK(ret->curveb = strdup(params->curveb));
-#endif
-        }
-        if (params->genx != NULL) {
-#ifdef _KERNEL
-                ret->genx = kmem_alloc(strlen(params->genx) + 1, kmflag);
-                bcopy(params->genx, ret->genx, strlen(params->genx) + 1);
-#else
-                CHECK(ret->genx = strdup(params->genx));
-#endif
-        }
-        if (params->geny != NULL) {
-#ifdef _KERNEL
-                ret->geny = kmem_alloc(strlen(params->geny) + 1, kmflag);
-                bcopy(params->geny, ret->geny, strlen(params->geny) + 1);
-#else
-                CHECK(ret->geny = strdup(params->geny));
-#endif
-        }
-        if (params->order != NULL) {
-#ifdef _KERNEL
-                ret->order = kmem_alloc(strlen(params->order) + 1, kmflag);
-                bcopy(params->order, ret->order, strlen(params->order) + 1);
-#else
-                CHECK(ret->order = strdup(params->order));
-#endif
-        }
-        ret->cofactor = params->cofactor;
-
-  CLEANUP:
-        if (res != 1) {
-                EC_FreeCurveParams(ret);
-                return NULL;
-        }
-        return ret;
-}
-
-#undef CHECK
-
-/* Construct ECCurveParams from an ECCurveName */
-ECCurveParams *
-EC_GetNamedCurveParams(const ECCurveName name, int kmflag)
-{
-        if ((name <= ECCurve_noName) || (ECCurve_pastLastCurve <= name) ||
-                                        (ecCurve_map[name] == NULL)) {
-                return NULL;
-        } else {
-                return ECCurveParams_dup(ecCurve_map[name], kmflag);
-        }
-}
-
-/* Free the memory allocated (if any) to an ECCurveParams object. */
-void
-EC_FreeCurveParams(ECCurveParams * params)
-{
-        if (params == NULL)
-                return;
-        if (params->text != NULL)
-#ifdef _KERNEL
-                kmem_free(params->text, strlen(params->text) + 1);
-#else
-                free(params->text);
-#endif
-        if (params->irr != NULL)
-#ifdef _KERNEL
-                kmem_free(params->irr, strlen(params->irr) + 1);
-#else
-                free(params->irr);
-#endif
-        if (params->curvea != NULL)
-#ifdef _KERNEL
-                kmem_free(params->curvea, strlen(params->curvea) + 1);
-#else
-                free(params->curvea);
-#endif
-        if (params->curveb != NULL)
-#ifdef _KERNEL
-                kmem_free(params->curveb, strlen(params->curveb) + 1);
-#else
-                free(params->curveb);
-#endif
-        if (params->genx != NULL)
-#ifdef _KERNEL
-                kmem_free(params->genx, strlen(params->genx) + 1);
-#else
-                free(params->genx);
-#endif
-        if (params->geny != NULL)
-#ifdef _KERNEL
-                kmem_free(params->geny, strlen(params->geny) + 1);
-#else
-                free(params->geny);
-#endif
-        if (params->order != NULL)
-#ifdef _KERNEL
-                kmem_free(params->order, strlen(params->order) + 1);
-#else
-                free(params->order);
-#endif
-#ifdef _KERNEL
-        kmem_free(params, sizeof(ECCurveParams));
-#else
-        free(params);
-#endif
-}
--- a/jdk/src/share/native/sun/security/ec/ecl_gf.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1062 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Stephen Fung <fungstep@hotmail.com> and
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "mpi.h"
-#include "mp_gf2m.h"
-#include "ecl-priv.h"
-#include "mpi-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* Allocate memory for a new GFMethod object. */
-GFMethod *
-GFMethod_new(int kmflag)
-{
-        mp_err res = MP_OKAY;
-        GFMethod *meth;
-#ifdef _KERNEL
-        meth = (GFMethod *) kmem_alloc(sizeof(GFMethod), kmflag);
-#else
-        meth = (GFMethod *) malloc(sizeof(GFMethod));
-        if (meth == NULL)
-                return NULL;
-#endif
-        meth->constructed = MP_YES;
-        MP_DIGITS(&meth->irr) = 0;
-        meth->extra_free = NULL;
-        MP_CHECKOK(mp_init(&meth->irr, kmflag));
-
-  CLEANUP:
-        if (res != MP_OKAY) {
-                GFMethod_free(meth);
-                return NULL;
-        }
-        return meth;
-}
-
-/* Construct a generic GFMethod for arithmetic over prime fields with
- * irreducible irr. */
-GFMethod *
-GFMethod_consGFp(const mp_int *irr)
-{
-        mp_err res = MP_OKAY;
-        GFMethod *meth = NULL;
-
-        meth = GFMethod_new(FLAG(irr));
-        if (meth == NULL)
-                return NULL;
-
-        MP_CHECKOK(mp_copy(irr, &meth->irr));
-        meth->irr_arr[0] = mpl_significant_bits(irr);
-        meth->irr_arr[1] = meth->irr_arr[2] = meth->irr_arr[3] =
-                meth->irr_arr[4] = 0;
-        switch(MP_USED(&meth->irr)) {
-        /* maybe we need 1 and 2 words here as well?*/
-        case 3:
-                meth->field_add = &ec_GFp_add_3;
-                meth->field_sub = &ec_GFp_sub_3;
-                break;
-        case 4:
-                meth->field_add = &ec_GFp_add_4;
-                meth->field_sub = &ec_GFp_sub_4;
-                break;
-        case 5:
-                meth->field_add = &ec_GFp_add_5;
-                meth->field_sub = &ec_GFp_sub_5;
-                break;
-        case 6:
-                meth->field_add = &ec_GFp_add_6;
-                meth->field_sub = &ec_GFp_sub_6;
-                break;
-        default:
-                meth->field_add = &ec_GFp_add;
-                meth->field_sub = &ec_GFp_sub;
-        }
-        meth->field_neg = &ec_GFp_neg;
-        meth->field_mod = &ec_GFp_mod;
-        meth->field_mul = &ec_GFp_mul;
-        meth->field_sqr = &ec_GFp_sqr;
-        meth->field_div = &ec_GFp_div;
-        meth->field_enc = NULL;
-        meth->field_dec = NULL;
-        meth->extra1 = NULL;
-        meth->extra2 = NULL;
-        meth->extra_free = NULL;
-
-  CLEANUP:
-        if (res != MP_OKAY) {
-                GFMethod_free(meth);
-                return NULL;
-        }
-        return meth;
-}
-
-/* Construct a generic GFMethod for arithmetic over binary polynomial
- * fields with irreducible irr that has array representation irr_arr (see
- * ecl-priv.h for description of the representation).  If irr_arr is NULL,
- * then it is constructed from the bitstring representation. */
-GFMethod *
-GFMethod_consGF2m(const mp_int *irr, const unsigned int irr_arr[5])
-{
-        mp_err res = MP_OKAY;
-        int ret;
-        GFMethod *meth = NULL;
-
-        meth = GFMethod_new(FLAG(irr));
-        if (meth == NULL)
-                return NULL;
-
-        MP_CHECKOK(mp_copy(irr, &meth->irr));
-        if (irr_arr != NULL) {
-                /* Irreducible polynomials are either trinomials or pentanomials. */
-                meth->irr_arr[0] = irr_arr[0];
-                meth->irr_arr[1] = irr_arr[1];
-                meth->irr_arr[2] = irr_arr[2];
-                if (irr_arr[2] > 0) {
-                        meth->irr_arr[3] = irr_arr[3];
-                        meth->irr_arr[4] = irr_arr[4];
-                } else {
-                        meth->irr_arr[3] = meth->irr_arr[4] = 0;
-                }
-        } else {
-                ret = mp_bpoly2arr(irr, meth->irr_arr, 5);
-                /* Irreducible polynomials are either trinomials or pentanomials. */
-                if ((ret != 5) && (ret != 3)) {
-                        res = MP_UNDEF;
-                        goto CLEANUP;
-                }
-        }
-        meth->field_add = &ec_GF2m_add;
-        meth->field_neg = &ec_GF2m_neg;
-        meth->field_sub = &ec_GF2m_add;
-        meth->field_mod = &ec_GF2m_mod;
-        meth->field_mul = &ec_GF2m_mul;
-        meth->field_sqr = &ec_GF2m_sqr;
-        meth->field_div = &ec_GF2m_div;
-        meth->field_enc = NULL;
-        meth->field_dec = NULL;
-        meth->extra1 = NULL;
-        meth->extra2 = NULL;
-        meth->extra_free = NULL;
-
-  CLEANUP:
-        if (res != MP_OKAY) {
-                GFMethod_free(meth);
-                return NULL;
-        }
-        return meth;
-}
-
-/* Free the memory allocated (if any) to a GFMethod object. */
-void
-GFMethod_free(GFMethod *meth)
-{
-        if (meth == NULL)
-                return;
-        if (meth->constructed == MP_NO)
-                return;
-        mp_clear(&meth->irr);
-        if (meth->extra_free != NULL)
-                meth->extra_free(meth);
-#ifdef _KERNEL
-        kmem_free(meth, sizeof(GFMethod));
-#else
-        free(meth);
-#endif
-}
-
-/* Wrapper functions for generic prime field arithmetic. */
-
-/* Add two field elements.  Assumes that 0 <= a, b < meth->irr */
-mp_err
-ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r,
-                   const GFMethod *meth)
-{
-        /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a + b (mod p) */
-        mp_err res;
-
-        if ((res = mp_add(a, b, r)) != MP_OKAY) {
-                return res;
-        }
-        if (mp_cmp(r, &meth->irr) >= 0) {
-                return mp_sub(r, &meth->irr, r);
-        }
-        return res;
-}
-
-/* Negates a field element.  Assumes that 0 <= a < meth->irr */
-mp_err
-ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        /* PRE: 0 <= a < p = meth->irr POST: 0 <= r < p, r = -a (mod p) */
-
-        if (mp_cmp_z(a) == 0) {
-                mp_zero(r);
-                return MP_OKAY;
-        }
-        return mp_sub(&meth->irr, a, r);
-}
-
-/* Subtracts two field elements.  Assumes that 0 <= a, b < meth->irr */
-mp_err
-ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
-                   const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        /* PRE: 0 <= a, b < p = meth->irr POST: 0 <= r < p, r = a - b (mod p) */
-        res = mp_sub(a, b, r);
-        if (res == MP_RANGE) {
-                MP_CHECKOK(mp_sub(b, a, r));
-                if (mp_cmp_z(r) < 0) {
-                        MP_CHECKOK(mp_add(r, &meth->irr, r));
-                }
-                MP_CHECKOK(ec_GFp_neg(r, r, meth));
-        }
-        if (mp_cmp_z(r) < 0) {
-                MP_CHECKOK(mp_add(r, &meth->irr, r));
-        }
-  CLEANUP:
-        return res;
-}
-/*
- * Inline adds for small curve lengths.
- */
-/* 3 words */
-mp_err
-ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit a0 = 0, a1 = 0, a2 = 0;
-        mp_digit r0 = 0, r1 = 0, r2 = 0;
-        mp_digit carry;
-
-        switch(MP_USED(a)) {
-        case 3:
-                a2 = MP_DIGIT(a,2);
-        case 2:
-                a1 = MP_DIGIT(a,1);
-        case 1:
-                a0 = MP_DIGIT(a,0);
-        }
-        switch(MP_USED(b)) {
-        case 3:
-                r2 = MP_DIGIT(b,2);
-        case 2:
-                r1 = MP_DIGIT(b,1);
-        case 1:
-                r0 = MP_DIGIT(b,0);
-        }
-
-#ifndef MPI_AMD64_ADD
-        MP_ADD_CARRY(a0, r0, r0, 0,     carry);
-        MP_ADD_CARRY(a1, r1, r1, carry, carry);
-        MP_ADD_CARRY(a2, r2, r2, carry, carry);
-#else
-        __asm__ (
-                "xorq   %3,%3           \n\t"
-                "addq   %4,%0           \n\t"
-                "adcq   %5,%1           \n\t"
-                "adcq   %6,%2           \n\t"
-                "adcq   $0,%3           \n\t"
-                : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(carry)
-                : "r" (a0), "r" (a1), "r" (a2),
-                  "0" (r0), "1" (r1), "2" (r2)
-                : "%cc" );
-#endif
-
-        MP_CHECKOK(s_mp_pad(r, 3));
-        MP_DIGIT(r, 2) = r2;
-        MP_DIGIT(r, 1) = r1;
-        MP_DIGIT(r, 0) = r0;
-        MP_SIGN(r) = MP_ZPOS;
-        MP_USED(r) = 3;
-
-        /* Do quick 'subract' if we've gone over
-         * (add the 2's complement of the curve field) */
-         a2 = MP_DIGIT(&meth->irr,2);
-        if (carry ||  r2 >  a2 ||
-                ((r2 == a2) && mp_cmp(r,&meth->irr) != MP_LT)) {
-                a1 = MP_DIGIT(&meth->irr,1);
-                a0 = MP_DIGIT(&meth->irr,0);
-#ifndef MPI_AMD64_ADD
-                MP_SUB_BORROW(r0, a0, r0, 0,     carry);
-                MP_SUB_BORROW(r1, a1, r1, carry, carry);
-                MP_SUB_BORROW(r2, a2, r2, carry, carry);
-#else
-                __asm__ (
-                        "subq   %3,%0           \n\t"
-                        "sbbq   %4,%1           \n\t"
-                        "sbbq   %5,%2           \n\t"
-                        : "=r"(r0), "=r"(r1), "=r"(r2)
-                        : "r" (a0), "r" (a1), "r" (a2),
-                          "0" (r0), "1" (r1), "2" (r2)
-                        : "%cc" );
-#endif
-                MP_DIGIT(r, 2) = r2;
-                MP_DIGIT(r, 1) = r1;
-                MP_DIGIT(r, 0) = r0;
-        }
-
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-/* 4 words */
-mp_err
-ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0;
-        mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0;
-        mp_digit carry;
-
-        switch(MP_USED(a)) {
-        case 4:
-                a3 = MP_DIGIT(a,3);
-        case 3:
-                a2 = MP_DIGIT(a,2);
-        case 2:
-                a1 = MP_DIGIT(a,1);
-        case 1:
-                a0 = MP_DIGIT(a,0);
-        }
-        switch(MP_USED(b)) {
-        case 4:
-                r3 = MP_DIGIT(b,3);
-        case 3:
-                r2 = MP_DIGIT(b,2);
-        case 2:
-                r1 = MP_DIGIT(b,1);
-        case 1:
-                r0 = MP_DIGIT(b,0);
-        }
-
-#ifndef MPI_AMD64_ADD
-        MP_ADD_CARRY(a0, r0, r0, 0,     carry);
-        MP_ADD_CARRY(a1, r1, r1, carry, carry);
-        MP_ADD_CARRY(a2, r2, r2, carry, carry);
-        MP_ADD_CARRY(a3, r3, r3, carry, carry);
-#else
-        __asm__ (
-                "xorq   %4,%4           \n\t"
-                "addq   %5,%0           \n\t"
-                "adcq   %6,%1           \n\t"
-                "adcq   %7,%2           \n\t"
-                "adcq   %8,%3           \n\t"
-                "adcq   $0,%4           \n\t"
-                : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(carry)
-                : "r" (a0), "r" (a1), "r" (a2), "r" (a3),
-                  "0" (r0), "1" (r1), "2" (r2), "3" (r3)
-                : "%cc" );
-#endif
-
-        MP_CHECKOK(s_mp_pad(r, 4));
-        MP_DIGIT(r, 3) = r3;
-        MP_DIGIT(r, 2) = r2;
-        MP_DIGIT(r, 1) = r1;
-        MP_DIGIT(r, 0) = r0;
-        MP_SIGN(r) = MP_ZPOS;
-        MP_USED(r) = 4;
-
-        /* Do quick 'subract' if we've gone over
-         * (add the 2's complement of the curve field) */
-         a3 = MP_DIGIT(&meth->irr,3);
-        if (carry ||  r3 >  a3 ||
-                ((r3 == a3) && mp_cmp(r,&meth->irr) != MP_LT)) {
-                a2 = MP_DIGIT(&meth->irr,2);
-                a1 = MP_DIGIT(&meth->irr,1);
-                a0 = MP_DIGIT(&meth->irr,0);
-#ifndef MPI_AMD64_ADD
-                MP_SUB_BORROW(r0, a0, r0, 0,     carry);
-                MP_SUB_BORROW(r1, a1, r1, carry, carry);
-                MP_SUB_BORROW(r2, a2, r2, carry, carry);
-                MP_SUB_BORROW(r3, a3, r3, carry, carry);
-#else
-                __asm__ (
-                        "subq   %4,%0           \n\t"
-                        "sbbq   %5,%1           \n\t"
-                        "sbbq   %6,%2           \n\t"
-                        "sbbq   %7,%3           \n\t"
-                        : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3)
-                        : "r" (a0), "r" (a1), "r" (a2), "r" (a3),
-                          "0" (r0), "1" (r1), "2" (r2), "3" (r3)
-                        : "%cc" );
-#endif
-                MP_DIGIT(r, 3) = r3;
-                MP_DIGIT(r, 2) = r2;
-                MP_DIGIT(r, 1) = r1;
-                MP_DIGIT(r, 0) = r0;
-        }
-
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-/* 5 words */
-mp_err
-ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0;
-        mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0;
-        mp_digit carry;
-
-        switch(MP_USED(a)) {
-        case 5:
-                a4 = MP_DIGIT(a,4);
-        case 4:
-                a3 = MP_DIGIT(a,3);
-        case 3:
-                a2 = MP_DIGIT(a,2);
-        case 2:
-                a1 = MP_DIGIT(a,1);
-        case 1:
-                a0 = MP_DIGIT(a,0);
-        }
-        switch(MP_USED(b)) {
-        case 5:
-                r4 = MP_DIGIT(b,4);
-        case 4:
-                r3 = MP_DIGIT(b,3);
-        case 3:
-                r2 = MP_DIGIT(b,2);
-        case 2:
-                r1 = MP_DIGIT(b,1);
-        case 1:
-                r0 = MP_DIGIT(b,0);
-        }
-
-        MP_ADD_CARRY(a0, r0, r0, 0,     carry);
-        MP_ADD_CARRY(a1, r1, r1, carry, carry);
-        MP_ADD_CARRY(a2, r2, r2, carry, carry);
-        MP_ADD_CARRY(a3, r3, r3, carry, carry);
-        MP_ADD_CARRY(a4, r4, r4, carry, carry);
-
-        MP_CHECKOK(s_mp_pad(r, 5));
-        MP_DIGIT(r, 4) = r4;
-        MP_DIGIT(r, 3) = r3;
-        MP_DIGIT(r, 2) = r2;
-        MP_DIGIT(r, 1) = r1;
-        MP_DIGIT(r, 0) = r0;
-        MP_SIGN(r) = MP_ZPOS;
-        MP_USED(r) = 5;
-
-        /* Do quick 'subract' if we've gone over
-         * (add the 2's complement of the curve field) */
-         a4 = MP_DIGIT(&meth->irr,4);
-        if (carry ||  r4 >  a4 ||
-                ((r4 == a4) && mp_cmp(r,&meth->irr) != MP_LT)) {
-                a3 = MP_DIGIT(&meth->irr,3);
-                a2 = MP_DIGIT(&meth->irr,2);
-                a1 = MP_DIGIT(&meth->irr,1);
-                a0 = MP_DIGIT(&meth->irr,0);
-                MP_SUB_BORROW(r0, a0, r0, 0,     carry);
-                MP_SUB_BORROW(r1, a1, r1, carry, carry);
-                MP_SUB_BORROW(r2, a2, r2, carry, carry);
-                MP_SUB_BORROW(r3, a3, r3, carry, carry);
-                MP_SUB_BORROW(r4, a4, r4, carry, carry);
-                MP_DIGIT(r, 4) = r4;
-                MP_DIGIT(r, 3) = r3;
-                MP_DIGIT(r, 2) = r2;
-                MP_DIGIT(r, 1) = r1;
-                MP_DIGIT(r, 0) = r0;
-        }
-
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-/* 6 words */
-mp_err
-ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit a0 = 0, a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 0;
-        mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0;
-        mp_digit carry;
-
-        switch(MP_USED(a)) {
-        case 6:
-                a5 = MP_DIGIT(a,5);
-        case 5:
-                a4 = MP_DIGIT(a,4);
-        case 4:
-                a3 = MP_DIGIT(a,3);
-        case 3:
-                a2 = MP_DIGIT(a,2);
-        case 2:
-                a1 = MP_DIGIT(a,1);
-        case 1:
-                a0 = MP_DIGIT(a,0);
-        }
-        switch(MP_USED(b)) {
-        case 6:
-                r5 = MP_DIGIT(b,5);
-        case 5:
-                r4 = MP_DIGIT(b,4);
-        case 4:
-                r3 = MP_DIGIT(b,3);
-        case 3:
-                r2 = MP_DIGIT(b,2);
-        case 2:
-                r1 = MP_DIGIT(b,1);
-        case 1:
-                r0 = MP_DIGIT(b,0);
-        }
-
-        MP_ADD_CARRY(a0, r0, r0, 0,     carry);
-        MP_ADD_CARRY(a1, r1, r1, carry, carry);
-        MP_ADD_CARRY(a2, r2, r2, carry, carry);
-        MP_ADD_CARRY(a3, r3, r3, carry, carry);
-        MP_ADD_CARRY(a4, r4, r4, carry, carry);
-        MP_ADD_CARRY(a5, r5, r5, carry, carry);
-
-        MP_CHECKOK(s_mp_pad(r, 6));
-        MP_DIGIT(r, 5) = r5;
-        MP_DIGIT(r, 4) = r4;
-        MP_DIGIT(r, 3) = r3;
-        MP_DIGIT(r, 2) = r2;
-        MP_DIGIT(r, 1) = r1;
-        MP_DIGIT(r, 0) = r0;
-        MP_SIGN(r) = MP_ZPOS;
-        MP_USED(r) = 6;
-
-        /* Do quick 'subract' if we've gone over
-         * (add the 2's complement of the curve field) */
-        a5 = MP_DIGIT(&meth->irr,5);
-        if (carry ||  r5 >  a5 ||
-                ((r5 == a5) && mp_cmp(r,&meth->irr) != MP_LT)) {
-                a4 = MP_DIGIT(&meth->irr,4);
-                a3 = MP_DIGIT(&meth->irr,3);
-                a2 = MP_DIGIT(&meth->irr,2);
-                a1 = MP_DIGIT(&meth->irr,1);
-                a0 = MP_DIGIT(&meth->irr,0);
-                MP_SUB_BORROW(r0, a0, r0, 0,     carry);
-                MP_SUB_BORROW(r1, a1, r1, carry, carry);
-                MP_SUB_BORROW(r2, a2, r2, carry, carry);
-                MP_SUB_BORROW(r3, a3, r3, carry, carry);
-                MP_SUB_BORROW(r4, a4, r4, carry, carry);
-                MP_SUB_BORROW(r5, a5, r5, carry, carry);
-                MP_DIGIT(r, 5) = r5;
-                MP_DIGIT(r, 4) = r4;
-                MP_DIGIT(r, 3) = r3;
-                MP_DIGIT(r, 2) = r2;
-                MP_DIGIT(r, 1) = r1;
-                MP_DIGIT(r, 0) = r0;
-        }
-
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-/*
- * The following subraction functions do in-line subractions based
- * on our curve size.
- *
- * ... 3 words
- */
-mp_err
-ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit b0 = 0, b1 = 0, b2 = 0;
-        mp_digit r0 = 0, r1 = 0, r2 = 0;
-        mp_digit borrow;
-
-        switch(MP_USED(a)) {
-        case 3:
-                r2 = MP_DIGIT(a,2);
-        case 2:
-                r1 = MP_DIGIT(a,1);
-        case 1:
-                r0 = MP_DIGIT(a,0);
-        }
-        switch(MP_USED(b)) {
-        case 3:
-                b2 = MP_DIGIT(b,2);
-        case 2:
-                b1 = MP_DIGIT(b,1);
-        case 1:
-                b0 = MP_DIGIT(b,0);
-        }
-
-#ifndef MPI_AMD64_ADD
-        MP_SUB_BORROW(r0, b0, r0, 0,     borrow);
-        MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
-        MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
-#else
-        __asm__ (
-                "xorq   %3,%3           \n\t"
-                "subq   %4,%0           \n\t"
-                "sbbq   %5,%1           \n\t"
-                "sbbq   %6,%2           \n\t"
-                "adcq   $0,%3           \n\t"
-                : "=r"(r0), "=r"(r1), "=r"(r2), "=r" (borrow)
-                : "r" (b0), "r" (b1), "r" (b2),
-                  "0" (r0), "1" (r1), "2" (r2)
-                : "%cc" );
-#endif
-
-        /* Do quick 'add' if we've gone under 0
-         * (subtract the 2's complement of the curve field) */
-        if (borrow) {
-                b2 = MP_DIGIT(&meth->irr,2);
-                b1 = MP_DIGIT(&meth->irr,1);
-                b0 = MP_DIGIT(&meth->irr,0);
-#ifndef MPI_AMD64_ADD
-                MP_ADD_CARRY(b0, r0, r0, 0,      borrow);
-                MP_ADD_CARRY(b1, r1, r1, borrow, borrow);
-                MP_ADD_CARRY(b2, r2, r2, borrow, borrow);
-#else
-                __asm__ (
-                        "addq   %3,%0           \n\t"
-                        "adcq   %4,%1           \n\t"
-                        "adcq   %5,%2           \n\t"
-                        : "=r"(r0), "=r"(r1), "=r"(r2)
-                        : "r" (b0), "r" (b1), "r" (b2),
-                          "0" (r0), "1" (r1), "2" (r2)
-                        : "%cc" );
-#endif
-        }
-
-#ifdef MPI_AMD64_ADD
-        /* compiler fakeout? */
-        if ((r2 == b0) && (r1 == b0) && (r0 == b0)) {
-                MP_CHECKOK(s_mp_pad(r, 4));
-        }
-#endif
-        MP_CHECKOK(s_mp_pad(r, 3));
-        MP_DIGIT(r, 2) = r2;
-        MP_DIGIT(r, 1) = r1;
-        MP_DIGIT(r, 0) = r0;
-        MP_SIGN(r) = MP_ZPOS;
-        MP_USED(r) = 3;
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-/* 4 words */
-mp_err
-ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0;
-        mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0;
-        mp_digit borrow;
-
-        switch(MP_USED(a)) {
-        case 4:
-                r3 = MP_DIGIT(a,3);
-        case 3:
-                r2 = MP_DIGIT(a,2);
-        case 2:
-                r1 = MP_DIGIT(a,1);
-        case 1:
-                r0 = MP_DIGIT(a,0);
-        }
-        switch(MP_USED(b)) {
-        case 4:
-                b3 = MP_DIGIT(b,3);
-        case 3:
-                b2 = MP_DIGIT(b,2);
-        case 2:
-                b1 = MP_DIGIT(b,1);
-        case 1:
-                b0 = MP_DIGIT(b,0);
-        }
-
-#ifndef MPI_AMD64_ADD
-        MP_SUB_BORROW(r0, b0, r0, 0,     borrow);
-        MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
-        MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
-        MP_SUB_BORROW(r3, b3, r3, borrow, borrow);
-#else
-        __asm__ (
-                "xorq   %4,%4           \n\t"
-                "subq   %5,%0           \n\t"
-                "sbbq   %6,%1           \n\t"
-                "sbbq   %7,%2           \n\t"
-                "sbbq   %8,%3           \n\t"
-                "adcq   $0,%4           \n\t"
-                : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r" (borrow)
-                : "r" (b0), "r" (b1), "r" (b2), "r" (b3),
-                  "0" (r0), "1" (r1), "2" (r2), "3" (r3)
-                : "%cc" );
-#endif
-
-        /* Do quick 'add' if we've gone under 0
-         * (subtract the 2's complement of the curve field) */
-        if (borrow) {
-                b3 = MP_DIGIT(&meth->irr,3);
-                b2 = MP_DIGIT(&meth->irr,2);
-                b1 = MP_DIGIT(&meth->irr,1);
-                b0 = MP_DIGIT(&meth->irr,0);
-#ifndef MPI_AMD64_ADD
-                MP_ADD_CARRY(b0, r0, r0, 0,      borrow);
-                MP_ADD_CARRY(b1, r1, r1, borrow, borrow);
-                MP_ADD_CARRY(b2, r2, r2, borrow, borrow);
-                MP_ADD_CARRY(b3, r3, r3, borrow, borrow);
-#else
-                __asm__ (
-                        "addq   %4,%0           \n\t"
-                        "adcq   %5,%1           \n\t"
-                        "adcq   %6,%2           \n\t"
-                        "adcq   %7,%3           \n\t"
-                        : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3)
-                        : "r" (b0), "r" (b1), "r" (b2), "r" (b3),
-                          "0" (r0), "1" (r1), "2" (r2), "3" (r3)
-                        : "%cc" );
-#endif
-        }
-#ifdef MPI_AMD64_ADD
-        /* compiler fakeout? */
-        if ((r3 == b0) && (r1 == b0) && (r0 == b0)) {
-                MP_CHECKOK(s_mp_pad(r, 4));
-        }
-#endif
-        MP_CHECKOK(s_mp_pad(r, 4));
-        MP_DIGIT(r, 3) = r3;
-        MP_DIGIT(r, 2) = r2;
-        MP_DIGIT(r, 1) = r1;
-        MP_DIGIT(r, 0) = r0;
-        MP_SIGN(r) = MP_ZPOS;
-        MP_USED(r) = 4;
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-/* 5 words */
-mp_err
-ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0;
-        mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0;
-        mp_digit borrow;
-
-        switch(MP_USED(a)) {
-        case 5:
-                r4 = MP_DIGIT(a,4);
-        case 4:
-                r3 = MP_DIGIT(a,3);
-        case 3:
-                r2 = MP_DIGIT(a,2);
-        case 2:
-                r1 = MP_DIGIT(a,1);
-        case 1:
-                r0 = MP_DIGIT(a,0);
-        }
-        switch(MP_USED(b)) {
-        case 5:
-                b4 = MP_DIGIT(b,4);
-        case 4:
-                b3 = MP_DIGIT(b,3);
-        case 3:
-                b2 = MP_DIGIT(b,2);
-        case 2:
-                b1 = MP_DIGIT(b,1);
-        case 1:
-                b0 = MP_DIGIT(b,0);
-        }
-
-        MP_SUB_BORROW(r0, b0, r0, 0,     borrow);
-        MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
-        MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
-        MP_SUB_BORROW(r3, b3, r3, borrow, borrow);
-        MP_SUB_BORROW(r4, b4, r4, borrow, borrow);
-
-        /* Do quick 'add' if we've gone under 0
-         * (subtract the 2's complement of the curve field) */
-        if (borrow) {
-                b4 = MP_DIGIT(&meth->irr,4);
-                b3 = MP_DIGIT(&meth->irr,3);
-                b2 = MP_DIGIT(&meth->irr,2);
-                b1 = MP_DIGIT(&meth->irr,1);
-                b0 = MP_DIGIT(&meth->irr,0);
-                MP_ADD_CARRY(b0, r0, r0, 0,      borrow);
-                MP_ADD_CARRY(b1, r1, r1, borrow, borrow);
-                MP_ADD_CARRY(b2, r2, r2, borrow, borrow);
-                MP_ADD_CARRY(b3, r3, r3, borrow, borrow);
-        }
-        MP_CHECKOK(s_mp_pad(r, 5));
-        MP_DIGIT(r, 4) = r4;
-        MP_DIGIT(r, 3) = r3;
-        MP_DIGIT(r, 2) = r2;
-        MP_DIGIT(r, 1) = r1;
-        MP_DIGIT(r, 0) = r0;
-        MP_SIGN(r) = MP_ZPOS;
-        MP_USED(r) = 5;
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-/* 6 words */
-mp_err
-ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0;
-        mp_digit r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0;
-        mp_digit borrow;
-
-        switch(MP_USED(a)) {
-        case 6:
-                r5 = MP_DIGIT(a,5);
-        case 5:
-                r4 = MP_DIGIT(a,4);
-        case 4:
-                r3 = MP_DIGIT(a,3);
-        case 3:
-                r2 = MP_DIGIT(a,2);
-        case 2:
-                r1 = MP_DIGIT(a,1);
-        case 1:
-                r0 = MP_DIGIT(a,0);
-        }
-        switch(MP_USED(b)) {
-        case 6:
-                b5 = MP_DIGIT(b,5);
-        case 5:
-                b4 = MP_DIGIT(b,4);
-        case 4:
-                b3 = MP_DIGIT(b,3);
-        case 3:
-                b2 = MP_DIGIT(b,2);
-        case 2:
-                b1 = MP_DIGIT(b,1);
-        case 1:
-                b0 = MP_DIGIT(b,0);
-        }
-
-        MP_SUB_BORROW(r0, b0, r0, 0,     borrow);
-        MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
-        MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
-        MP_SUB_BORROW(r3, b3, r3, borrow, borrow);
-        MP_SUB_BORROW(r4, b4, r4, borrow, borrow);
-        MP_SUB_BORROW(r5, b5, r5, borrow, borrow);
-
-        /* Do quick 'add' if we've gone under 0
-         * (subtract the 2's complement of the curve field) */
-        if (borrow) {
-                b5 = MP_DIGIT(&meth->irr,5);
-                b4 = MP_DIGIT(&meth->irr,4);
-                b3 = MP_DIGIT(&meth->irr,3);
-                b2 = MP_DIGIT(&meth->irr,2);
-                b1 = MP_DIGIT(&meth->irr,1);
-                b0 = MP_DIGIT(&meth->irr,0);
-                MP_ADD_CARRY(b0, r0, r0, 0,      borrow);
-                MP_ADD_CARRY(b1, r1, r1, borrow, borrow);
-                MP_ADD_CARRY(b2, r2, r2, borrow, borrow);
-                MP_ADD_CARRY(b3, r3, r3, borrow, borrow);
-                MP_ADD_CARRY(b4, r4, r4, borrow, borrow);
-        }
-
-        MP_CHECKOK(s_mp_pad(r, 6));
-        MP_DIGIT(r, 5) = r5;
-        MP_DIGIT(r, 4) = r4;
-        MP_DIGIT(r, 3) = r3;
-        MP_DIGIT(r, 2) = r2;
-        MP_DIGIT(r, 1) = r1;
-        MP_DIGIT(r, 0) = r0;
-        MP_SIGN(r) = MP_ZPOS;
-        MP_USED(r) = 6;
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-
-/* Reduces an integer to a field element. */
-mp_err
-ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        return mp_mod(a, &meth->irr, r);
-}
-
-/* Multiplies two field elements. */
-mp_err
-ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                   const GFMethod *meth)
-{
-        return mp_mulmod(a, b, &meth->irr, r);
-}
-
-/* Squares a field element. */
-mp_err
-ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        return mp_sqrmod(a, &meth->irr, r);
-}
-
-/* Divides two field elements. If a is NULL, then returns the inverse of
- * b. */
-mp_err
-ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
-                   const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_int t;
-
-        /* If a is NULL, then return the inverse of b, otherwise return a/b. */
-        if (a == NULL) {
-                return mp_invmod(b, &meth->irr, r);
-        } else {
-                /* MPI doesn't support divmod, so we implement it using invmod and
-                 * mulmod. */
-                MP_CHECKOK(mp_init(&t, FLAG(b)));
-                MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
-                MP_CHECKOK(mp_mulmod(a, &t, &meth->irr, r));
-          CLEANUP:
-                mp_clear(&t);
-                return res;
-        }
-}
-
-/* Wrapper functions for generic binary polynomial field arithmetic. */
-
-/* Adds two field elements. */
-mp_err
-ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        return mp_badd(a, b, r);
-}
-
-/* Negates a field element. Note that for binary polynomial fields, the
- * negation of a field element is the field element itself. */
-mp_err
-ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        if (a == r) {
-                return MP_OKAY;
-        } else {
-                return mp_copy(a, r);
-        }
-}
-
-/* Reduces a binary polynomial to a field element. */
-mp_err
-ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        return mp_bmod(a, meth->irr_arr, r);
-}
-
-/* Multiplies two field elements. */
-mp_err
-ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        return mp_bmulmod(a, b, meth->irr_arr, r);
-}
-
-/* Squares a field element. */
-mp_err
-ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        return mp_bsqrmod(a, meth->irr_arr, r);
-}
-
-/* Divides two field elements. If a is NULL, then returns the inverse of
- * b. */
-mp_err
-ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_int t;
-
-        /* If a is NULL, then return the inverse of b, otherwise return a/b. */
-        if (a == NULL) {
-                /* The GF(2^m) portion of MPI doesn't support invmod, so we
-                 * compute 1/b. */
-                MP_CHECKOK(mp_init(&t, FLAG(b)));
-                MP_CHECKOK(mp_set_int(&t, 1));
-                MP_CHECKOK(mp_bdivmod(&t, b, &meth->irr, meth->irr_arr, r));
-          CLEANUP:
-                mp_clear(&t);
-                return res;
-        } else {
-                return mp_bdivmod(a, b, &meth->irr, meth->irr_arr, r);
-        }
-}
--- a/jdk/src/share/native/sun/security/ec/ecl_mult.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,378 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "mpi.h"
-#include "mplogic.h"
-#include "ecl.h"
-#include "ecl-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
- * y).  If x, y = NULL, then P is assumed to be the generator (base point)
- * of the group of points on the elliptic curve. Input and output values
- * are assumed to be NOT field-encoded. */
-mp_err
-ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
-                        const mp_int *py, mp_int *rx, mp_int *ry)
-{
-        mp_err res = MP_OKAY;
-        mp_int kt;
-
-        ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
-        MP_DIGITS(&kt) = 0;
-
-        /* want scalar to be less than or equal to group order */
-        if (mp_cmp(k, &group->order) > 0) {
-                MP_CHECKOK(mp_init(&kt, FLAG(k)));
-                MP_CHECKOK(mp_mod(k, &group->order, &kt));
-        } else {
-                MP_SIGN(&kt) = MP_ZPOS;
-                MP_USED(&kt) = MP_USED(k);
-                MP_ALLOC(&kt) = MP_ALLOC(k);
-                MP_DIGITS(&kt) = MP_DIGITS(k);
-        }
-
-        if ((px == NULL) || (py == NULL)) {
-                if (group->base_point_mul) {
-                        MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
-                } else {
-                        MP_CHECKOK(group->
-                                           point_mul(&kt, &group->genx, &group->geny, rx, ry,
-                                                                 group));
-                }
-        } else {
-                if (group->meth->field_enc) {
-                        MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
-                        MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
-                        MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
-                } else {
-                        MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
-                }
-        }
-        if (group->meth->field_dec) {
-                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
-                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
-        }
-
-  CLEANUP:
-        if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
-                mp_clear(&kt);
-        }
-        return res;
-}
-
-/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
- * k2 * P(x, y), where G is the generator (base point) of the group of
- * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
- * Input and output values are assumed to be NOT field-encoded. */
-mp_err
-ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
-                                 const mp_int *py, mp_int *rx, mp_int *ry,
-                                 const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int sx, sy;
-
-        ARGCHK(group != NULL, MP_BADARG);
-        ARGCHK(!((k1 == NULL)
-                         && ((k2 == NULL) || (px == NULL)
-                                 || (py == NULL))), MP_BADARG);
-
-        /* if some arguments are not defined used ECPoint_mul */
-        if (k1 == NULL) {
-                return ECPoint_mul(group, k2, px, py, rx, ry);
-        } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
-                return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
-        }
-
-        MP_DIGITS(&sx) = 0;
-        MP_DIGITS(&sy) = 0;
-        MP_CHECKOK(mp_init(&sx, FLAG(k1)));
-        MP_CHECKOK(mp_init(&sy, FLAG(k1)));
-
-        MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
-        MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
-
-        if (group->meth->field_enc) {
-                MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
-                MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
-                MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
-                MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
-        }
-
-        MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
-
-        if (group->meth->field_dec) {
-                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
-                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
-        }
-
-  CLEANUP:
-        mp_clear(&sx);
-        mp_clear(&sy);
-        return res;
-}
-
-/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
- * k2 * P(x, y), where G is the generator (base point) of the group of
- * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
- * Input and output values are assumed to be NOT field-encoded. Uses
- * algorithm 15 (simultaneous multiple point multiplication) from Brown,
- * Hankerson, Lopez, Menezes. Software Implementation of the NIST
- * Elliptic Curves over Prime Fields. */
-mp_err
-ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
-                                        const mp_int *py, mp_int *rx, mp_int *ry,
-                                        const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int precomp[4][4][2];
-        const mp_int *a, *b;
-        int i, j;
-        int ai, bi, d;
-
-        ARGCHK(group != NULL, MP_BADARG);
-        ARGCHK(!((k1 == NULL)
-                         && ((k2 == NULL) || (px == NULL)
-                                 || (py == NULL))), MP_BADARG);
-
-        /* if some arguments are not defined used ECPoint_mul */
-        if (k1 == NULL) {
-                return ECPoint_mul(group, k2, px, py, rx, ry);
-        } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
-                return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
-        }
-
-        /* initialize precomputation table */
-        for (i = 0; i < 4; i++) {
-                for (j = 0; j < 4; j++) {
-                        MP_DIGITS(&precomp[i][j][0]) = 0;
-                        MP_DIGITS(&precomp[i][j][1]) = 0;
-                }
-        }
-        for (i = 0; i < 4; i++) {
-                for (j = 0; j < 4; j++) {
-                         MP_CHECKOK( mp_init_size(&precomp[i][j][0],
-                                         ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
-                         MP_CHECKOK( mp_init_size(&precomp[i][j][1],
-                                         ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
-                }
-        }
-
-        /* fill precomputation table */
-        /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
-        if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
-                a = k2;
-                b = k1;
-                if (group->meth->field_enc) {
-                        MP_CHECKOK(group->meth->
-                                           field_enc(px, &precomp[1][0][0], group->meth));
-                        MP_CHECKOK(group->meth->
-                                           field_enc(py, &precomp[1][0][1], group->meth));
-                } else {
-                        MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
-                        MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
-                }
-                MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
-                MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
-        } else {
-                a = k1;
-                b = k2;
-                MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
-                MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
-                if (group->meth->field_enc) {
-                        MP_CHECKOK(group->meth->
-                                           field_enc(px, &precomp[0][1][0], group->meth));
-                        MP_CHECKOK(group->meth->
-                                           field_enc(py, &precomp[0][1][1], group->meth));
-                } else {
-                        MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
-                        MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
-                }
-        }
-        /* precompute [*][0][*] */
-        mp_zero(&precomp[0][0][0]);
-        mp_zero(&precomp[0][0][1]);
-        MP_CHECKOK(group->
-                           point_dbl(&precomp[1][0][0], &precomp[1][0][1],
-                                                 &precomp[2][0][0], &precomp[2][0][1], group));
-        MP_CHECKOK(group->
-                           point_add(&precomp[1][0][0], &precomp[1][0][1],
-                                                 &precomp[2][0][0], &precomp[2][0][1],
-                                                 &precomp[3][0][0], &precomp[3][0][1], group));
-        /* precompute [*][1][*] */
-        for (i = 1; i < 4; i++) {
-                MP_CHECKOK(group->
-                                   point_add(&precomp[0][1][0], &precomp[0][1][1],
-                                                         &precomp[i][0][0], &precomp[i][0][1],
-                                                         &precomp[i][1][0], &precomp[i][1][1], group));
-        }
-        /* precompute [*][2][*] */
-        MP_CHECKOK(group->
-                           point_dbl(&precomp[0][1][0], &precomp[0][1][1],
-                                                 &precomp[0][2][0], &precomp[0][2][1], group));
-        for (i = 1; i < 4; i++) {
-                MP_CHECKOK(group->
-                                   point_add(&precomp[0][2][0], &precomp[0][2][1],
-                                                         &precomp[i][0][0], &precomp[i][0][1],
-                                                         &precomp[i][2][0], &precomp[i][2][1], group));
-        }
-        /* precompute [*][3][*] */
-        MP_CHECKOK(group->
-                           point_add(&precomp[0][1][0], &precomp[0][1][1],
-                                                 &precomp[0][2][0], &precomp[0][2][1],
-                                                 &precomp[0][3][0], &precomp[0][3][1], group));
-        for (i = 1; i < 4; i++) {
-                MP_CHECKOK(group->
-                                   point_add(&precomp[0][3][0], &precomp[0][3][1],
-                                                         &precomp[i][0][0], &precomp[i][0][1],
-                                                         &precomp[i][3][0], &precomp[i][3][1], group));
-        }
-
-        d = (mpl_significant_bits(a) + 1) / 2;
-
-        /* R = inf */
-        mp_zero(rx);
-        mp_zero(ry);
-
-        for (i = d - 1; i >= 0; i--) {
-                ai = MP_GET_BIT(a, 2 * i + 1);
-                ai <<= 1;
-                ai |= MP_GET_BIT(a, 2 * i);
-                bi = MP_GET_BIT(b, 2 * i + 1);
-                bi <<= 1;
-                bi |= MP_GET_BIT(b, 2 * i);
-                /* R = 2^2 * R */
-                MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
-                MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
-                /* R = R + (ai * A + bi * B) */
-                MP_CHECKOK(group->
-                                   point_add(rx, ry, &precomp[ai][bi][0],
-                                                         &precomp[ai][bi][1], rx, ry, group));
-        }
-
-        if (group->meth->field_dec) {
-                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
-                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
-        }
-
-  CLEANUP:
-        for (i = 0; i < 4; i++) {
-                for (j = 0; j < 4; j++) {
-                        mp_clear(&precomp[i][j][0]);
-                        mp_clear(&precomp[i][j][1]);
-                }
-        }
-        return res;
-}
-
-/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
- * k2 * P(x, y), where G is the generator (base point) of the group of
- * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
- * Input and output values are assumed to be NOT field-encoded. */
-mp_err
-ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
-                         const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
-{
-        mp_err res = MP_OKAY;
-        mp_int k1t, k2t;
-        const mp_int *k1p, *k2p;
-
-        MP_DIGITS(&k1t) = 0;
-        MP_DIGITS(&k2t) = 0;
-
-        ARGCHK(group != NULL, MP_BADARG);
-
-        /* want scalar to be less than or equal to group order */
-        if (k1 != NULL) {
-                if (mp_cmp(k1, &group->order) >= 0) {
-                        MP_CHECKOK(mp_init(&k1t, FLAG(k1)));
-                        MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
-                        k1p = &k1t;
-                } else {
-                        k1p = k1;
-                }
-        } else {
-                k1p = k1;
-        }
-        if (k2 != NULL) {
-                if (mp_cmp(k2, &group->order) >= 0) {
-                        MP_CHECKOK(mp_init(&k2t, FLAG(k2)));
-                        MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
-                        k2p = &k2t;
-                } else {
-                        k2p = k2;
-                }
-        } else {
-                k2p = k2;
-        }
-
-        /* if points_mul is defined, then use it */
-        if (group->points_mul) {
-                res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
-        } else {
-                res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
-        }
-
-  CLEANUP:
-        mp_clear(&k1t);
-        mp_clear(&k2t);
-        return res;
-}
--- a/jdk/src/share/native/sun/security/ec/ecp.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,160 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for prime field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _ECP_H
-#define _ECP_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecl-priv.h"
-
-/* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
-mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
-
-/* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
-mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
-
-/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
- * qy). Uses affine coordinates. */
-mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
-                                                 const mp_int *qx, const mp_int *qy, mp_int *rx,
-                                                 mp_int *ry, const ECGroup *group);
-
-/* Computes R = P - Q.  Uses affine coordinates. */
-mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
-                                                 const mp_int *qx, const mp_int *qy, mp_int *rx,
-                                                 mp_int *ry, const ECGroup *group);
-
-/* Computes R = 2P.  Uses affine coordinates. */
-mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
-                                                 mp_int *ry, const ECGroup *group);
-
-/* Validates a point on a GFp curve. */
-mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
-
-#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
-/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
- * a, b and p are the elliptic curve coefficients and the prime that
- * determines the field GFp.  Uses affine coordinates. */
-mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
-                                                 const mp_int *py, mp_int *rx, mp_int *ry,
-                                                 const ECGroup *group);
-#endif
-
-/* Converts a point P(px, py) from affine coordinates to Jacobian
- * projective coordinates R(rx, ry, rz). */
-mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
-                                                 mp_int *ry, mp_int *rz, const ECGroup *group);
-
-/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
- * affine coordinates R(rx, ry). */
-mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
-                                                 const mp_int *pz, mp_int *rx, mp_int *ry,
-                                                 const ECGroup *group);
-
-/* Checks if point P(px, py, pz) is at infinity.  Uses Jacobian
- * coordinates. */
-mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
-                                                        const mp_int *pz);
-
-/* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
- * coordinates. */
-mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
-
-/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
- * (qx, qy, qz).  Uses Jacobian coordinates. */
-mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
-                                                         const mp_int *pz, const mp_int *qx,
-                                                         const mp_int *qy, mp_int *rx, mp_int *ry,
-                                                         mp_int *rz, const ECGroup *group);
-
-/* Computes R = 2P.  Uses Jacobian coordinates. */
-mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
-                                                 const mp_int *pz, mp_int *rx, mp_int *ry,
-                                                 mp_int *rz, const ECGroup *group);
-
-#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
-/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
- * a, b and p are the elliptic curve coefficients and the prime that
- * determines the field GFp.  Uses Jacobian coordinates. */
-mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
-                                                 const mp_int *py, mp_int *rx, mp_int *ry,
-                                                 const ECGroup *group);
-#endif
-
-/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
- * (base point) of the group of points on the elliptic curve. Allows k1 =
- * NULL or { k2, P } = NULL.  Implemented using mixed Jacobian-affine
- * coordinates. Input and output values are assumed to be NOT
- * field-encoded and are in affine form. */
-mp_err
- ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
-                                        const mp_int *py, mp_int *rx, mp_int *ry,
-                                        const ECGroup *group);
-
-/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
- * curve points P and R can be identical. Uses mixed Modified-Jacobian
- * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
- * additions. Assumes input is already field-encoded using field_enc, and
- * returns output that is still field-encoded. Uses 5-bit window NAF
- * method (algorithm 11) for scalar-point multiplication from Brown,
- * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
- * Curves Over Prime Fields. */
-mp_err
- ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
-                                           mp_int *rx, mp_int *ry, const ECGroup *group);
-
-#endif /* _ECP_H */
--- a/jdk/src/share/native/sun/security/ec/ecp_192.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,538 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for prime field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecp.h"
-#include "mpi.h"
-#include "mplogic.h"
-#include "mpi-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-#define ECP192_DIGITS ECL_CURVE_DIGITS(192)
-
-/* Fast modular reduction for p192 = 2^192 - 2^64 - 1.  a can be r. Uses
- * algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
- * Implementation of the NIST Elliptic Curves over Prime Fields. */
-mp_err
-ec_GFp_nistp192_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_size a_used = MP_USED(a);
-        mp_digit r3;
-#ifndef MPI_AMD64_ADD
-        mp_digit carry;
-#endif
-#ifdef ECL_THIRTY_TWO_BIT
-        mp_digit a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0;
-        mp_digit r0a, r0b, r1a, r1b, r2a, r2b;
-#else
-        mp_digit a5 = 0, a4 = 0, a3 = 0;
-        mp_digit r0, r1, r2;
-#endif
-
-        /* reduction not needed if a is not larger than field size */
-        if (a_used < ECP192_DIGITS) {
-                if (a == r) {
-                        return MP_OKAY;
-                }
-                return mp_copy(a, r);
-        }
-
-        /* for polynomials larger than twice the field size, use regular
-         * reduction */
-        if (a_used > ECP192_DIGITS*2) {
-                MP_CHECKOK(mp_mod(a, &meth->irr, r));
-        } else {
-                /* copy out upper words of a */
-
-#ifdef ECL_THIRTY_TWO_BIT
-
-                /* in all the math below,
-                 * nXb is most signifiant, nXa is least significant */
-                switch (a_used) {
-                case 12:
-                        a5b = MP_DIGIT(a, 11);
-                case 11:
-                        a5a = MP_DIGIT(a, 10);
-                case 10:
-                        a4b = MP_DIGIT(a, 9);
-                case 9:
-                        a4a = MP_DIGIT(a, 8);
-                case 8:
-                        a3b = MP_DIGIT(a, 7);
-                case 7:
-                        a3a = MP_DIGIT(a, 6);
-                }
-
-
-                r2b= MP_DIGIT(a, 5);
-                r2a= MP_DIGIT(a, 4);
-                r1b = MP_DIGIT(a, 3);
-                r1a = MP_DIGIT(a, 2);
-                r0b = MP_DIGIT(a, 1);
-                r0a = MP_DIGIT(a, 0);
-
-                /* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */
-                MP_ADD_CARRY(r0a, a3a, r0a, 0,    carry);
-                MP_ADD_CARRY(r0b, a3b, r0b, carry, carry);
-                MP_ADD_CARRY(r1a, a3a, r1a, carry, carry);
-                MP_ADD_CARRY(r1b, a3b, r1b, carry, carry);
-                MP_ADD_CARRY(r2a, a4a, r2a, carry, carry);
-                MP_ADD_CARRY(r2b, a4b, r2b, carry, carry);
-                r3 = carry; carry = 0;
-                MP_ADD_CARRY(r0a, a5a, r0a, 0,     carry);
-                MP_ADD_CARRY(r0b, a5b, r0b, carry, carry);
-                MP_ADD_CARRY(r1a, a5a, r1a, carry, carry);
-                MP_ADD_CARRY(r1b, a5b, r1b, carry, carry);
-                MP_ADD_CARRY(r2a, a5a, r2a, carry, carry);
-                MP_ADD_CARRY(r2b, a5b, r2b, carry, carry);
-                r3 += carry;
-                MP_ADD_CARRY(r1a, a4a, r1a, 0,     carry);
-                MP_ADD_CARRY(r1b, a4b, r1b, carry, carry);
-                MP_ADD_CARRY(r2a,   0, r2a, carry, carry);
-                MP_ADD_CARRY(r2b,   0, r2b, carry, carry);
-                r3 += carry;
-
-                /* reduce out the carry */
-                while (r3) {
-                        MP_ADD_CARRY(r0a, r3, r0a, 0,     carry);
-                        MP_ADD_CARRY(r0b,  0, r0b, carry, carry);
-                        MP_ADD_CARRY(r1a, r3, r1a, carry, carry);
-                        MP_ADD_CARRY(r1b,  0, r1b, carry, carry);
-                        MP_ADD_CARRY(r2a,  0, r2a, carry, carry);
-                        MP_ADD_CARRY(r2b,  0, r2b, carry, carry);
-                        r3 = carry;
-                }
-
-                /* check for final reduction */
-                /*
-                 * our field is 0xffffffffffffffff, 0xfffffffffffffffe,
-                 * 0xffffffffffffffff. That means we can only be over and need
-                 * one more reduction
-                 *  if r2 == 0xffffffffffffffffff (same as r2+1 == 0)
-                 *     and
-                 *     r1 == 0xffffffffffffffffff   or
-                 *     r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff
-                 * In all cases, we subtract the field (or add the 2's
-                 * complement value (1,1,0)).  (r0, r1, r2)
-                 */
-                if (((r2b == 0xffffffff) && (r2a == 0xffffffff)
-                        && (r1b == 0xffffffff) ) &&
-                           ((r1a == 0xffffffff) ||
-                            (r1a == 0xfffffffe) && (r0a == 0xffffffff) &&
-                                        (r0b == 0xffffffff)) ) {
-                        /* do a quick subtract */
-                        MP_ADD_CARRY(r0a, 1, r0a, 0, carry);
-                        r0b += carry;
-                        r1a = r1b = r2a = r2b = 0;
-                }
-
-                /* set the lower words of r */
-                if (a != r) {
-                        MP_CHECKOK(s_mp_pad(r, 6));
-                }
-                MP_DIGIT(r, 5) = r2b;
-                MP_DIGIT(r, 4) = r2a;
-                MP_DIGIT(r, 3) = r1b;
-                MP_DIGIT(r, 2) = r1a;
-                MP_DIGIT(r, 1) = r0b;
-                MP_DIGIT(r, 0) = r0a;
-                MP_USED(r) = 6;
-#else
-                switch (a_used) {
-                case 6:
-                        a5 = MP_DIGIT(a, 5);
-                case 5:
-                        a4 = MP_DIGIT(a, 4);
-                case 4:
-                        a3 = MP_DIGIT(a, 3);
-                }
-
-                r2 = MP_DIGIT(a, 2);
-                r1 = MP_DIGIT(a, 1);
-                r0 = MP_DIGIT(a, 0);
-
-                /* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */
-#ifndef MPI_AMD64_ADD
-                MP_ADD_CARRY(r0, a3, r0, 0,     carry);
-                MP_ADD_CARRY(r1, a3, r1, carry, carry);
-                MP_ADD_CARRY(r2, a4, r2, carry, carry);
-                r3 = carry;
-                MP_ADD_CARRY(r0, a5, r0, 0,     carry);
-                MP_ADD_CARRY(r1, a5, r1, carry, carry);
-                MP_ADD_CARRY(r2, a5, r2, carry, carry);
-                r3 += carry;
-                MP_ADD_CARRY(r1, a4, r1, 0,     carry);
-                MP_ADD_CARRY(r2,  0, r2, carry, carry);
-                r3 += carry;
-
-#else
-                r2 = MP_DIGIT(a, 2);
-                r1 = MP_DIGIT(a, 1);
-                r0 = MP_DIGIT(a, 0);
-
-                /* set the lower words of r */
-                __asm__ (
-                "xorq   %3,%3           \n\t"
-                "addq   %4,%0           \n\t"
-                "adcq   %4,%1           \n\t"
-                "adcq   %5,%2           \n\t"
-                "adcq   $0,%3           \n\t"
-                "addq   %6,%0           \n\t"
-                "adcq   %6,%1           \n\t"
-                "adcq   %6,%2           \n\t"
-                "adcq   $0,%3           \n\t"
-                "addq   %5,%1           \n\t"
-                "adcq   $0,%2           \n\t"
-                "adcq   $0,%3           \n\t"
-                : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(a3),
-                  "=r"(a4), "=r"(a5)
-                : "0" (r0), "1" (r1), "2" (r2), "3" (r3),
-                  "4" (a3), "5" (a4), "6"(a5)
-                : "%cc" );
-#endif
-
-                /* reduce out the carry */
-                while (r3) {
-#ifndef MPI_AMD64_ADD
-                        MP_ADD_CARRY(r0, r3, r0, 0,     carry);
-                        MP_ADD_CARRY(r1, r3, r1, carry, carry);
-                        MP_ADD_CARRY(r2,  0, r2, carry, carry);
-                        r3 = carry;
-#else
-                        a3=r3;
-                        __asm__ (
-                        "xorq   %3,%3           \n\t"
-                        "addq   %4,%0           \n\t"
-                        "adcq   %4,%1           \n\t"
-                        "adcq   $0,%2           \n\t"
-                        "adcq   $0,%3           \n\t"
-                        : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(a3)
-                        : "0" (r0), "1" (r1), "2" (r2), "3" (r3), "4"(a3)
-                        : "%cc" );
-#endif
-                }
-
-                /* check for final reduction */
-                /*
-                 * our field is 0xffffffffffffffff, 0xfffffffffffffffe,
-                 * 0xffffffffffffffff. That means we can only be over and need
-                 * one more reduction
-                 *  if r2 == 0xffffffffffffffffff (same as r2+1 == 0)
-                 *     and
-                 *     r1 == 0xffffffffffffffffff   or
-                 *     r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff
-                 * In all cases, we subtract the field (or add the 2's
-                 * complement value (1,1,0)).  (r0, r1, r2)
-                 */
-                if (r3 || ((r2 == MP_DIGIT_MAX) &&
-                      ((r1 == MP_DIGIT_MAX) ||
-                        ((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) {
-                        /* do a quick subtract */
-                        r0++;
-                        r1 = r2 = 0;
-                }
-                /* set the lower words of r */
-                if (a != r) {
-                        MP_CHECKOK(s_mp_pad(r, 3));
-                }
-                MP_DIGIT(r, 2) = r2;
-                MP_DIGIT(r, 1) = r1;
-                MP_DIGIT(r, 0) = r0;
-                MP_USED(r) = 3;
-#endif
-        }
-
-  CLEANUP:
-        return res;
-}
-
-#ifndef ECL_THIRTY_TWO_BIT
-/* Compute the sum of 192 bit curves. Do the work in-line since the
- * number of words are so small, we don't want to overhead of mp function
- * calls.  Uses optimized modular reduction for p192.
- */
-mp_err
-ec_GFp_nistp192_add(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit a0 = 0, a1 = 0, a2 = 0;
-        mp_digit r0 = 0, r1 = 0, r2 = 0;
-        mp_digit carry;
-
-        switch(MP_USED(a)) {
-        case 3:
-                a2 = MP_DIGIT(a,2);
-        case 2:
-                a1 = MP_DIGIT(a,1);
-        case 1:
-                a0 = MP_DIGIT(a,0);
-        }
-        switch(MP_USED(b)) {
-        case 3:
-                r2 = MP_DIGIT(b,2);
-        case 2:
-                r1 = MP_DIGIT(b,1);
-        case 1:
-                r0 = MP_DIGIT(b,0);
-        }
-
-#ifndef MPI_AMD64_ADD
-        MP_ADD_CARRY(a0, r0, r0, 0,     carry);
-        MP_ADD_CARRY(a1, r1, r1, carry, carry);
-        MP_ADD_CARRY(a2, r2, r2, carry, carry);
-#else
-        __asm__ (
-                "xorq   %3,%3           \n\t"
-                "addq   %4,%0           \n\t"
-                "adcq   %5,%1           \n\t"
-                "adcq   %6,%2           \n\t"
-                "adcq   $0,%3           \n\t"
-                : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(carry)
-                : "r" (a0), "r" (a1), "r" (a2), "0" (r0),
-                  "1" (r1), "2" (r2)
-                : "%cc" );
-#endif
-
-        /* Do quick 'subract' if we've gone over
-         * (add the 2's complement of the curve field) */
-        if (carry || ((r2 == MP_DIGIT_MAX) &&
-                      ((r1 == MP_DIGIT_MAX) ||
-                        ((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) {
-#ifndef MPI_AMD64_ADD
-                MP_ADD_CARRY(r0, 1, r0, 0,     carry);
-                MP_ADD_CARRY(r1, 1, r1, carry, carry);
-                MP_ADD_CARRY(r2, 0, r2, carry, carry);
-#else
-                __asm__ (
-                        "addq   $1,%0           \n\t"
-                        "adcq   $1,%1           \n\t"
-                        "adcq   $0,%2           \n\t"
-                        : "=r"(r0), "=r"(r1), "=r"(r2)
-                        : "0" (r0), "1" (r1), "2" (r2)
-                        : "%cc" );
-#endif
-        }
-
-
-        MP_CHECKOK(s_mp_pad(r, 3));
-        MP_DIGIT(r, 2) = r2;
-        MP_DIGIT(r, 1) = r1;
-        MP_DIGIT(r, 0) = r0;
-        MP_SIGN(r) = MP_ZPOS;
-        MP_USED(r) = 3;
-        s_mp_clamp(r);
-
-
-  CLEANUP:
-        return res;
-}
-
-/* Compute the diff of 192 bit curves. Do the work in-line since the
- * number of words are so small, we don't want to overhead of mp function
- * calls.  Uses optimized modular reduction for p192.
- */
-mp_err
-ec_GFp_nistp192_sub(const mp_int *a, const mp_int *b, mp_int *r,
-                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_digit b0 = 0, b1 = 0, b2 = 0;
-        mp_digit r0 = 0, r1 = 0, r2 = 0;
-        mp_digit borrow;
-
-        switch(MP_USED(a)) {
-        case 3:
-                r2 = MP_DIGIT(a,2);
-        case 2:
-                r1 = MP_DIGIT(a,1);
-        case 1:
-                r0 = MP_DIGIT(a,0);
-        }
-
-        switch(MP_USED(b)) {
-        case 3:
-                b2 = MP_DIGIT(b,2);
-        case 2:
-                b1 = MP_DIGIT(b,1);
-        case 1:
-                b0 = MP_DIGIT(b,0);
-        }
-
-#ifndef MPI_AMD64_ADD
-        MP_SUB_BORROW(r0, b0, r0, 0,     borrow);
-        MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
-        MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
-#else
-        __asm__ (
-                "xorq   %3,%3           \n\t"
-                "subq   %4,%0           \n\t"
-                "sbbq   %5,%1           \n\t"
-                "sbbq   %6,%2           \n\t"
-                "adcq   $0,%3           \n\t"
-                : "=r"(r0), "=r"(r1), "=r"(r2), "=r"(borrow)
-                : "r" (b0), "r" (b1), "r" (b2), "0" (r0),
-                  "1" (r1), "2" (r2)
-                : "%cc" );
-#endif
-
-        /* Do quick 'add' if we've gone under 0
-         * (subtract the 2's complement of the curve field) */
-        if (borrow) {
-#ifndef MPI_AMD64_ADD
-                MP_SUB_BORROW(r0, 1, r0, 0,     borrow);
-                MP_SUB_BORROW(r1, 1, r1, borrow, borrow);
-                MP_SUB_BORROW(r2,  0, r2, borrow, borrow);
-#else
-                __asm__ (
-                        "subq   $1,%0           \n\t"
-                        "sbbq   $1,%1           \n\t"
-                        "sbbq   $0,%2           \n\t"
-                        : "=r"(r0), "=r"(r1), "=r"(r2)
-                        : "0" (r0), "1" (r1), "2" (r2)
-                        : "%cc" );
-#endif
-        }
-
-        MP_CHECKOK(s_mp_pad(r, 3));
-        MP_DIGIT(r, 2) = r2;
-        MP_DIGIT(r, 1) = r1;
-        MP_DIGIT(r, 0) = r0;
-        MP_SIGN(r) = MP_ZPOS;
-        MP_USED(r) = 3;
-        s_mp_clamp(r);
-
-  CLEANUP:
-        return res;
-}
-
-#endif
-
-/* Compute the square of polynomial a, reduce modulo p192. Store the
- * result in r.  r could be a.  Uses optimized modular reduction for p192.
- */
-mp_err
-ec_GFp_nistp192_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        MP_CHECKOK(mp_sqr(a, r));
-        MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth));
-  CLEANUP:
-        return res;
-}
-
-/* Compute the product of two polynomials a and b, reduce modulo p192.
- * Store the result in r.  r could be a or b; a could be b.  Uses
- * optimized modular reduction for p192. */
-mp_err
-ec_GFp_nistp192_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        MP_CHECKOK(mp_mul(a, b, r));
-        MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth));
-  CLEANUP:
-        return res;
-}
-
-/* Divides two field elements. If a is NULL, then returns the inverse of
- * b. */
-mp_err
-ec_GFp_nistp192_div(const mp_int *a, const mp_int *b, mp_int *r,
-                   const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_int t;
-
-        /* If a is NULL, then return the inverse of b, otherwise return a/b. */
-        if (a == NULL) {
-                return  mp_invmod(b, &meth->irr, r);
-        } else {
-                /* MPI doesn't support divmod, so we implement it using invmod and
-                 * mulmod. */
-                MP_CHECKOK(mp_init(&t, FLAG(b)));
-                MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
-                MP_CHECKOK(mp_mul(a, &t, r));
-                MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth));
-          CLEANUP:
-                mp_clear(&t);
-                return res;
-        }
-}
-
-/* Wire in fast field arithmetic and precomputation of base point for
- * named curves. */
-mp_err
-ec_group_set_gfp192(ECGroup *group, ECCurveName name)
-{
-        if (name == ECCurve_NIST_P192) {
-                group->meth->field_mod = &ec_GFp_nistp192_mod;
-                group->meth->field_mul = &ec_GFp_nistp192_mul;
-                group->meth->field_sqr = &ec_GFp_nistp192_sqr;
-                group->meth->field_div = &ec_GFp_nistp192_div;
-#ifndef ECL_THIRTY_TWO_BIT
-                group->meth->field_add = &ec_GFp_nistp192_add;
-                group->meth->field_sub = &ec_GFp_nistp192_sub;
-#endif
-        }
-        return MP_OKAY;
-}
--- a/jdk/src/share/native/sun/security/ec/ecp_224.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,394 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for prime field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecp.h"
-#include "mpi.h"
-#include "mplogic.h"
-#include "mpi-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-#define ECP224_DIGITS ECL_CURVE_DIGITS(224)
-
-/* Fast modular reduction for p224 = 2^224 - 2^96 + 1.  a can be r. Uses
- * algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
- * Implementation of the NIST Elliptic Curves over Prime Fields. */
-mp_err
-ec_GFp_nistp224_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_size a_used = MP_USED(a);
-
-        int    r3b;
-        mp_digit carry;
-#ifdef ECL_THIRTY_TWO_BIT
-        mp_digit a6a = 0, a6b = 0,
-                a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0;
-        mp_digit r0a, r0b, r1a, r1b, r2a, r2b, r3a;
-#else
-        mp_digit a6 = 0, a5 = 0, a4 = 0, a3b = 0, a5a = 0;
-        mp_digit a6b = 0, a6a_a5b = 0, a5b = 0, a5a_a4b = 0, a4a_a3b = 0;
-        mp_digit r0, r1, r2, r3;
-#endif
-
-        /* reduction not needed if a is not larger than field size */
-        if (a_used < ECP224_DIGITS) {
-                if (a == r) return MP_OKAY;
-                return mp_copy(a, r);
-        }
-        /* for polynomials larger than twice the field size, use regular
-         * reduction */
-        if (a_used > ECL_CURVE_DIGITS(224*2)) {
-                MP_CHECKOK(mp_mod(a, &meth->irr, r));
-        } else {
-#ifdef ECL_THIRTY_TWO_BIT
-                /* copy out upper words of a */
-                switch (a_used) {
-                case 14:
-                        a6b = MP_DIGIT(a, 13);
-                case 13:
-                        a6a = MP_DIGIT(a, 12);
-                case 12:
-                        a5b = MP_DIGIT(a, 11);
-                case 11:
-                        a5a = MP_DIGIT(a, 10);
-                case 10:
-                        a4b = MP_DIGIT(a, 9);
-                case 9:
-                        a4a = MP_DIGIT(a, 8);
-                case 8:
-                        a3b = MP_DIGIT(a, 7);
-                }
-                r3a = MP_DIGIT(a, 6);
-                r2b= MP_DIGIT(a, 5);
-                r2a= MP_DIGIT(a, 4);
-                r1b = MP_DIGIT(a, 3);
-                r1a = MP_DIGIT(a, 2);
-                r0b = MP_DIGIT(a, 1);
-                r0a = MP_DIGIT(a, 0);
-
-
-                /* implement r = (a3a,a2,a1,a0)
-                        +(a5a, a4,a3b,  0)
-                        +(  0, a6,a5b,  0)
-                        -(  0    0,    0|a6b, a6a|a5b )
-                        -(  a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
-                MP_ADD_CARRY (r1b, a3b, r1b, 0,     carry);
-                MP_ADD_CARRY (r2a, a4a, r2a, carry, carry);
-                MP_ADD_CARRY (r2b, a4b, r2b, carry, carry);
-                MP_ADD_CARRY (r3a, a5a, r3a, carry, carry);
-                r3b = carry;
-                MP_ADD_CARRY (r1b, a5b, r1b, 0,     carry);
-                MP_ADD_CARRY (r2a, a6a, r2a, carry, carry);
-                MP_ADD_CARRY (r2b, a6b, r2b, carry, carry);
-                MP_ADD_CARRY (r3a,   0, r3a, carry, carry);
-                r3b += carry;
-                MP_SUB_BORROW(r0a, a3b, r0a, 0,     carry);
-                MP_SUB_BORROW(r0b, a4a, r0b, carry, carry);
-                MP_SUB_BORROW(r1a, a4b, r1a, carry, carry);
-                MP_SUB_BORROW(r1b, a5a, r1b, carry, carry);
-                MP_SUB_BORROW(r2a, a5b, r2a, carry, carry);
-                MP_SUB_BORROW(r2b, a6a, r2b, carry, carry);
-                MP_SUB_BORROW(r3a, a6b, r3a, carry, carry);
-                r3b -= carry;
-                MP_SUB_BORROW(r0a, a5b, r0a, 0,     carry);
-                MP_SUB_BORROW(r0b, a6a, r0b, carry, carry);
-                MP_SUB_BORROW(r1a, a6b, r1a, carry, carry);
-                if (carry) {
-                        MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
-                        MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
-                        MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
-                        MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
-                        r3b -= carry;
-                }
-
-                while (r3b > 0) {
-                        int tmp;
-                        MP_ADD_CARRY(r1b, r3b, r1b, 0,     carry);
-                        if (carry) {
-                                MP_ADD_CARRY(r2a,  0, r2a, carry, carry);
-                                MP_ADD_CARRY(r2b,  0, r2b, carry, carry);
-                                MP_ADD_CARRY(r3a,  0, r3a, carry, carry);
-                        }
-                        tmp = carry;
-                        MP_SUB_BORROW(r0a, r3b, r0a, 0,     carry);
-                        if (carry) {
-                                MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
-                                MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
-                                MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
-                                MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
-                                MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
-                                MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
-                                tmp -= carry;
-                        }
-                        r3b = tmp;
-                }
-
-                while (r3b < 0) {
-                        mp_digit maxInt = MP_DIGIT_MAX;
-                        MP_ADD_CARRY (r0a, 1, r0a, 0,     carry);
-                        MP_ADD_CARRY (r0b, 0, r0b, carry, carry);
-                        MP_ADD_CARRY (r1a, 0, r1a, carry, carry);
-                        MP_ADD_CARRY (r1b, maxInt, r1b, carry, carry);
-                        MP_ADD_CARRY (r2a, maxInt, r2a, carry, carry);
-                        MP_ADD_CARRY (r2b, maxInt, r2b, carry, carry);
-                        MP_ADD_CARRY (r3a, maxInt, r3a, carry, carry);
-                        r3b += carry;
-                }
-                /* check for final reduction */
-                /* now the only way we are over is if the top 4 words are all ones */
-                if ((r3a == MP_DIGIT_MAX) && (r2b == MP_DIGIT_MAX)
-                        && (r2a == MP_DIGIT_MAX) && (r1b == MP_DIGIT_MAX) &&
-                         ((r1a != 0) || (r0b != 0) || (r0a != 0)) ) {
-                        /* one last subraction */
-                        MP_SUB_BORROW(r0a, 1, r0a, 0,     carry);
-                        MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
-                        MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
-                        r1b = r2a = r2b = r3a = 0;
-                }
-
-
-                if (a != r) {
-                        MP_CHECKOK(s_mp_pad(r, 7));
-                }
-                /* set the lower words of r */
-                MP_SIGN(r) = MP_ZPOS;
-                MP_USED(r) = 7;
-                MP_DIGIT(r, 6) = r3a;
-                MP_DIGIT(r, 5) = r2b;
-                MP_DIGIT(r, 4) = r2a;
-                MP_DIGIT(r, 3) = r1b;
-                MP_DIGIT(r, 2) = r1a;
-                MP_DIGIT(r, 1) = r0b;
-                MP_DIGIT(r, 0) = r0a;
-#else
-                /* copy out upper words of a */
-                switch (a_used) {
-                case 7:
-                        a6 = MP_DIGIT(a, 6);
-                        a6b = a6 >> 32;
-                        a6a_a5b = a6 << 32;
-                case 6:
-                        a5 = MP_DIGIT(a, 5);
-                        a5b = a5 >> 32;
-                        a6a_a5b |= a5b;
-                        a5b = a5b << 32;
-                        a5a_a4b = a5 << 32;
-                        a5a = a5 & 0xffffffff;
-                case 5:
-                        a4 = MP_DIGIT(a, 4);
-                        a5a_a4b |= a4 >> 32;
-                        a4a_a3b = a4 << 32;
-                case 4:
-                        a3b = MP_DIGIT(a, 3) >> 32;
-                        a4a_a3b |= a3b;
-                        a3b = a3b << 32;
-                }
-
-                r3 = MP_DIGIT(a, 3) & 0xffffffff;
-                r2 = MP_DIGIT(a, 2);
-                r1 = MP_DIGIT(a, 1);
-                r0 = MP_DIGIT(a, 0);
-
-                /* implement r = (a3a,a2,a1,a0)
-                        +(a5a, a4,a3b,  0)
-                        +(  0, a6,a5b,  0)
-                        -(  0    0,    0|a6b, a6a|a5b )
-                        -(  a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
-                MP_ADD_CARRY (r1, a3b, r1, 0,     carry);
-                MP_ADD_CARRY (r2, a4 , r2, carry, carry);
-                MP_ADD_CARRY (r3, a5a, r3, carry, carry);
-                MP_ADD_CARRY (r1, a5b, r1, 0,     carry);
-                MP_ADD_CARRY (r2, a6 , r2, carry, carry);
-                MP_ADD_CARRY (r3,   0, r3, carry, carry);
-
-                MP_SUB_BORROW(r0, a4a_a3b, r0, 0,     carry);
-                MP_SUB_BORROW(r1, a5a_a4b, r1, carry, carry);
-                MP_SUB_BORROW(r2, a6a_a5b, r2, carry, carry);
-                MP_SUB_BORROW(r3, a6b    , r3, carry, carry);
-                MP_SUB_BORROW(r0, a6a_a5b, r0, 0,     carry);
-                MP_SUB_BORROW(r1, a6b    , r1, carry, carry);
-                if (carry) {
-                        MP_SUB_BORROW(r2, 0, r2, carry, carry);
-                        MP_SUB_BORROW(r3, 0, r3, carry, carry);
-                }
-
-
-                /* if the value is negative, r3 has a 2's complement
-                 * high value */
-                r3b = (int)(r3 >>32);
-                while (r3b > 0) {
-                        r3 &= 0xffffffff;
-                        MP_ADD_CARRY(r1,((mp_digit)r3b) << 32, r1, 0, carry);
-                        if (carry) {
-                                MP_ADD_CARRY(r2,  0, r2, carry, carry);
-                                MP_ADD_CARRY(r3,  0, r3, carry, carry);
-                        }
-                        MP_SUB_BORROW(r0, r3b, r0, 0, carry);
-                        if (carry) {
-                                MP_SUB_BORROW(r1, 0, r1, carry, carry);
-                                MP_SUB_BORROW(r2, 0, r2, carry, carry);
-                                MP_SUB_BORROW(r3, 0, r3, carry, carry);
-                        }
-                        r3b = (int)(r3 >>32);
-                }
-
-                while (r3b < 0) {
-                        MP_ADD_CARRY (r0, 1, r0, 0,     carry);
-                        MP_ADD_CARRY (r1, MP_DIGIT_MAX <<32, r1, carry, carry);
-                        MP_ADD_CARRY (r2, MP_DIGIT_MAX, r2, carry, carry);
-                        MP_ADD_CARRY (r3, MP_DIGIT_MAX >> 32, r3, carry, carry);
-                        r3b = (int)(r3 >>32);
-                }
-                /* check for final reduction */
-                /* now the only way we are over is if the top 4 words are all ones */
-                if ((r3 == (MP_DIGIT_MAX >> 32)) && (r2 == MP_DIGIT_MAX)
-                        && ((r1 & MP_DIGIT_MAX << 32)== MP_DIGIT_MAX << 32) &&
-                         ((r1 != MP_DIGIT_MAX << 32 ) || (r0 != 0)) ) {
-                        /* one last subraction */
-                        MP_SUB_BORROW(r0, 1, r0, 0,     carry);
-                        MP_SUB_BORROW(r1, 0, r1, carry, carry);
-                        r2 = r3 = 0;
-                }
-
-
-                if (a != r) {
-                        MP_CHECKOK(s_mp_pad(r, 4));
-                }
-                /* set the lower words of r */
-                MP_SIGN(r) = MP_ZPOS;
-                MP_USED(r) = 4;
-                MP_DIGIT(r, 3) = r3;
-                MP_DIGIT(r, 2) = r2;
-                MP_DIGIT(r, 1) = r1;
-                MP_DIGIT(r, 0) = r0;
-#endif
-        }
-
-  CLEANUP:
-        return res;
-}
-
-/* Compute the square of polynomial a, reduce modulo p224. Store the
- * result in r.  r could be a.  Uses optimized modular reduction for p224.
- */
-mp_err
-ec_GFp_nistp224_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        MP_CHECKOK(mp_sqr(a, r));
-        MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
-  CLEANUP:
-        return res;
-}
-
-/* Compute the product of two polynomials a and b, reduce modulo p224.
- * Store the result in r.  r could be a or b; a could be b.  Uses
- * optimized modular reduction for p224. */
-mp_err
-ec_GFp_nistp224_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        MP_CHECKOK(mp_mul(a, b, r));
-        MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
-  CLEANUP:
-        return res;
-}
-
-/* Divides two field elements. If a is NULL, then returns the inverse of
- * b. */
-mp_err
-ec_GFp_nistp224_div(const mp_int *a, const mp_int *b, mp_int *r,
-                   const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_int t;
-
-        /* If a is NULL, then return the inverse of b, otherwise return a/b. */
-        if (a == NULL) {
-                return  mp_invmod(b, &meth->irr, r);
-        } else {
-                /* MPI doesn't support divmod, so we implement it using invmod and
-                 * mulmod. */
-                MP_CHECKOK(mp_init(&t, FLAG(b)));
-                MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
-                MP_CHECKOK(mp_mul(a, &t, r));
-                MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
-          CLEANUP:
-                mp_clear(&t);
-                return res;
-        }
-}
-
-/* Wire in fast field arithmetic and precomputation of base point for
- * named curves. */
-mp_err
-ec_group_set_gfp224(ECGroup *group, ECCurveName name)
-{
-        if (name == ECCurve_NIST_P224) {
-                group->meth->field_mod = &ec_GFp_nistp224_mod;
-                group->meth->field_mul = &ec_GFp_nistp224_mul;
-                group->meth->field_sqr = &ec_GFp_nistp224_sqr;
-                group->meth->field_div = &ec_GFp_nistp224_div;
-        }
-        return MP_OKAY;
-}
--- a/jdk/src/share/native/sun/security/ec/ecp_256.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,451 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for prime field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecp.h"
-#include "mpi.h"
-#include "mplogic.h"
-#include "mpi-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* Fast modular reduction for p256 = 2^256 - 2^224 + 2^192+ 2^96 - 1.  a can be r.
- * Uses algorithm 2.29 from Hankerson, Menezes, Vanstone. Guide to
- * Elliptic Curve Cryptography. */
-mp_err
-ec_GFp_nistp256_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_size a_used = MP_USED(a);
-        int a_bits = mpl_significant_bits(a);
-        mp_digit carry;
-
-#ifdef ECL_THIRTY_TWO_BIT
-        mp_digit a8=0, a9=0, a10=0, a11=0, a12=0, a13=0, a14=0, a15=0;
-        mp_digit r0, r1, r2, r3, r4, r5, r6, r7;
-        int r8; /* must be a signed value ! */
-#else
-        mp_digit a4=0, a5=0, a6=0, a7=0;
-        mp_digit a4h, a4l, a5h, a5l, a6h, a6l, a7h, a7l;
-        mp_digit r0, r1, r2, r3;
-        int r4; /* must be a signed value ! */
-#endif
-        /* for polynomials larger than twice the field size
-         * use regular reduction */
-        if (a_bits < 256) {
-                if (a == r) return MP_OKAY;
-                return mp_copy(a,r);
-        }
-        if (a_bits > 512)  {
-                MP_CHECKOK(mp_mod(a, &meth->irr, r));
-        } else {
-
-#ifdef ECL_THIRTY_TWO_BIT
-                switch (a_used) {
-                case 16:
-                        a15 = MP_DIGIT(a,15);
-                case 15:
-                        a14 = MP_DIGIT(a,14);
-                case 14:
-                        a13 = MP_DIGIT(a,13);
-                case 13:
-                        a12 = MP_DIGIT(a,12);
-                case 12:
-                        a11 = MP_DIGIT(a,11);
-                case 11:
-                        a10 = MP_DIGIT(a,10);
-                case 10:
-                        a9 = MP_DIGIT(a,9);
-                case 9:
-                        a8 = MP_DIGIT(a,8);
-                }
-
-                r0 = MP_DIGIT(a,0);
-                r1 = MP_DIGIT(a,1);
-                r2 = MP_DIGIT(a,2);
-                r3 = MP_DIGIT(a,3);
-                r4 = MP_DIGIT(a,4);
-                r5 = MP_DIGIT(a,5);
-                r6 = MP_DIGIT(a,6);
-                r7 = MP_DIGIT(a,7);
-
-                /* sum 1 */
-                MP_ADD_CARRY(r3, a11, r3, 0,     carry);
-                MP_ADD_CARRY(r4, a12, r4, carry, carry);
-                MP_ADD_CARRY(r5, a13, r5, carry, carry);
-                MP_ADD_CARRY(r6, a14, r6, carry, carry);
-                MP_ADD_CARRY(r7, a15, r7, carry, carry);
-                r8 = carry;
-                MP_ADD_CARRY(r3, a11, r3, 0,     carry);
-                MP_ADD_CARRY(r4, a12, r4, carry, carry);
-                MP_ADD_CARRY(r5, a13, r5, carry, carry);
-                MP_ADD_CARRY(r6, a14, r6, carry, carry);
-                MP_ADD_CARRY(r7, a15, r7, carry, carry);
-                r8 += carry;
-                /* sum 2 */
-                MP_ADD_CARRY(r3, a12, r3, 0,     carry);
-                MP_ADD_CARRY(r4, a13, r4, carry, carry);
-                MP_ADD_CARRY(r5, a14, r5, carry, carry);
-                MP_ADD_CARRY(r6, a15, r6, carry, carry);
-                MP_ADD_CARRY(r7,   0, r7, carry, carry);
-                r8 += carry;
-                /* combine last bottom of sum 3 with second sum 2 */
-                MP_ADD_CARRY(r0, a8,  r0, 0,     carry);
-                MP_ADD_CARRY(r1, a9,  r1, carry, carry);
-                MP_ADD_CARRY(r2, a10, r2, carry, carry);
-                MP_ADD_CARRY(r3, a12, r3, carry, carry);
-                MP_ADD_CARRY(r4, a13, r4, carry, carry);
-                MP_ADD_CARRY(r5, a14, r5, carry, carry);
-                MP_ADD_CARRY(r6, a15, r6, carry, carry);
-                MP_ADD_CARRY(r7, a15, r7, carry, carry); /* from sum 3 */
-                r8 += carry;
-                /* sum 3 (rest of it)*/
-                MP_ADD_CARRY(r6, a14, r6, 0,     carry);
-                MP_ADD_CARRY(r7,   0, r7, carry, carry);
-                r8 += carry;
-                /* sum 4 (rest of it)*/
-                MP_ADD_CARRY(r0, a9,  r0, 0,     carry);
-                MP_ADD_CARRY(r1, a10, r1, carry, carry);
-                MP_ADD_CARRY(r2, a11, r2, carry, carry);
-                MP_ADD_CARRY(r3, a13, r3, carry, carry);
-                MP_ADD_CARRY(r4, a14, r4, carry, carry);
-                MP_ADD_CARRY(r5, a15, r5, carry, carry);
-                MP_ADD_CARRY(r6, a13, r6, carry, carry);
-                MP_ADD_CARRY(r7, a8,  r7, carry, carry);
-                r8 += carry;
-                /* diff 5 */
-                MP_SUB_BORROW(r0, a11, r0, 0,     carry);
-                MP_SUB_BORROW(r1, a12, r1, carry, carry);
-                MP_SUB_BORROW(r2, a13, r2, carry, carry);
-                MP_SUB_BORROW(r3,   0, r3, carry, carry);
-                MP_SUB_BORROW(r4,   0, r4, carry, carry);
-                MP_SUB_BORROW(r5,   0, r5, carry, carry);
-                MP_SUB_BORROW(r6, a8,  r6, carry, carry);
-                MP_SUB_BORROW(r7, a10, r7, carry, carry);
-                r8 -= carry;
-                /* diff 6 */
-                MP_SUB_BORROW(r0, a12, r0, 0,     carry);
-                MP_SUB_BORROW(r1, a13, r1, carry, carry);
-                MP_SUB_BORROW(r2, a14, r2, carry, carry);
-                MP_SUB_BORROW(r3, a15, r3, carry, carry);
-                MP_SUB_BORROW(r4,   0, r4, carry, carry);
-                MP_SUB_BORROW(r5,   0, r5, carry, carry);
-                MP_SUB_BORROW(r6, a9,  r6, carry, carry);
-                MP_SUB_BORROW(r7, a11, r7, carry, carry);
-                r8 -= carry;
-                /* diff 7 */
-                MP_SUB_BORROW(r0, a13, r0, 0,     carry);
-                MP_SUB_BORROW(r1, a14, r1, carry, carry);
-                MP_SUB_BORROW(r2, a15, r2, carry, carry);
-                MP_SUB_BORROW(r3, a8,  r3, carry, carry);
-                MP_SUB_BORROW(r4, a9,  r4, carry, carry);
-                MP_SUB_BORROW(r5, a10, r5, carry, carry);
-                MP_SUB_BORROW(r6, 0,   r6, carry, carry);
-                MP_SUB_BORROW(r7, a12, r7, carry, carry);
-                r8 -= carry;
-                /* diff 8 */
-                MP_SUB_BORROW(r0, a14, r0, 0,     carry);
-                MP_SUB_BORROW(r1, a15, r1, carry, carry);
-                MP_SUB_BORROW(r2, 0,   r2, carry, carry);
-                MP_SUB_BORROW(r3, a9,  r3, carry, carry);
-                MP_SUB_BORROW(r4, a10, r4, carry, carry);
-                MP_SUB_BORROW(r5, a11, r5, carry, carry);
-                MP_SUB_BORROW(r6, 0,   r6, carry, carry);
-                MP_SUB_BORROW(r7, a13, r7, carry, carry);
-                r8 -= carry;
-
-                /* reduce the overflows */
-                while (r8 > 0) {
-                        mp_digit r8_d = r8;
-                        MP_ADD_CARRY(r0, r8_d,         r0, 0,     carry);
-                        MP_ADD_CARRY(r1, 0,            r1, carry, carry);
-                        MP_ADD_CARRY(r2, 0,            r2, carry, carry);
-                        MP_ADD_CARRY(r3, -r8_d,        r3, carry, carry);
-                        MP_ADD_CARRY(r4, MP_DIGIT_MAX, r4, carry, carry);
-                        MP_ADD_CARRY(r5, MP_DIGIT_MAX, r5, carry, carry);
-                        MP_ADD_CARRY(r6, -(r8_d+1),    r6, carry, carry);
-                        MP_ADD_CARRY(r7, (r8_d-1),     r7, carry, carry);
-                        r8 = carry;
-                }
-
-                /* reduce the underflows */
-                while (r8 < 0) {
-                        mp_digit r8_d = -r8;
-                        MP_SUB_BORROW(r0, r8_d,         r0, 0,     carry);
-                        MP_SUB_BORROW(r1, 0,            r1, carry, carry);
-                        MP_SUB_BORROW(r2, 0,            r2, carry, carry);
-                        MP_SUB_BORROW(r3, -r8_d,        r3, carry, carry);
-                        MP_SUB_BORROW(r4, MP_DIGIT_MAX, r4, carry, carry);
-                        MP_SUB_BORROW(r5, MP_DIGIT_MAX, r5, carry, carry);
-                        MP_SUB_BORROW(r6, -(r8_d+1),    r6, carry, carry);
-                        MP_SUB_BORROW(r7, (r8_d-1),     r7, carry, carry);
-                        r8 = -carry;
-                }
-                if (a != r) {
-                        MP_CHECKOK(s_mp_pad(r,8));
-                }
-                MP_SIGN(r) = MP_ZPOS;
-                MP_USED(r) = 8;
-
-                MP_DIGIT(r,7) = r7;
-                MP_DIGIT(r,6) = r6;
-                MP_DIGIT(r,5) = r5;
-                MP_DIGIT(r,4) = r4;
-                MP_DIGIT(r,3) = r3;
-                MP_DIGIT(r,2) = r2;
-                MP_DIGIT(r,1) = r1;
-                MP_DIGIT(r,0) = r0;
-
-                /* final reduction if necessary */
-                if ((r7 == MP_DIGIT_MAX) &&
-                        ((r6 > 1) || ((r6 == 1) &&
-                        (r5 || r4 || r3 ||
-                                ((r2 == MP_DIGIT_MAX) && (r1 == MP_DIGIT_MAX)
-                                  && (r0 == MP_DIGIT_MAX)))))) {
-                        MP_CHECKOK(mp_sub(r, &meth->irr, r));
-                }
-#ifdef notdef
-
-
-                /* smooth the negatives */
-                while (MP_SIGN(r) != MP_ZPOS) {
-                        MP_CHECKOK(mp_add(r, &meth->irr, r));
-                }
-                while (MP_USED(r) > 8) {
-                        MP_CHECKOK(mp_sub(r, &meth->irr, r));
-                }
-
-                /* final reduction if necessary */
-                if (MP_DIGIT(r,7) >= MP_DIGIT(&meth->irr,7)) {
-                    if (mp_cmp(r,&meth->irr) != MP_LT) {
-                        MP_CHECKOK(mp_sub(r, &meth->irr, r));
-                    }
-                }
-#endif
-                s_mp_clamp(r);
-#else
-                switch (a_used) {
-                case 8:
-                        a7 = MP_DIGIT(a,7);
-                case 7:
-                        a6 = MP_DIGIT(a,6);
-                case 6:
-                        a5 = MP_DIGIT(a,5);
-                case 5:
-                        a4 = MP_DIGIT(a,4);
-                }
-                a7l = a7 << 32;
-                a7h = a7 >> 32;
-                a6l = a6 << 32;
-                a6h = a6 >> 32;
-                a5l = a5 << 32;
-                a5h = a5 >> 32;
-                a4l = a4 << 32;
-                a4h = a4 >> 32;
-                r3 = MP_DIGIT(a,3);
-                r2 = MP_DIGIT(a,2);
-                r1 = MP_DIGIT(a,1);
-                r0 = MP_DIGIT(a,0);
-
-                /* sum 1 */
-                MP_ADD_CARRY(r1, a5h << 32, r1, 0,     carry);
-                MP_ADD_CARRY(r2, a6,        r2, carry, carry);
-                MP_ADD_CARRY(r3, a7,        r3, carry, carry);
-                r4 = carry;
-                MP_ADD_CARRY(r1, a5h << 32, r1, 0,     carry);
-                MP_ADD_CARRY(r2, a6,        r2, carry, carry);
-                MP_ADD_CARRY(r3, a7,        r3, carry, carry);
-                r4 += carry;
-                /* sum 2 */
-                MP_ADD_CARRY(r1, a6l,       r1, 0,     carry);
-                MP_ADD_CARRY(r2, a6h | a7l, r2, carry, carry);
-                MP_ADD_CARRY(r3, a7h,       r3, carry, carry);
-                r4 += carry;
-                MP_ADD_CARRY(r1, a6l,       r1, 0,     carry);
-                MP_ADD_CARRY(r2, a6h | a7l, r2, carry, carry);
-                MP_ADD_CARRY(r3, a7h,       r3, carry, carry);
-                r4 += carry;
-
-                /* sum 3 */
-                MP_ADD_CARRY(r0, a4,        r0, 0,     carry);
-                MP_ADD_CARRY(r1, a5l >> 32, r1, carry, carry);
-                MP_ADD_CARRY(r2, 0,         r2, carry, carry);
-                MP_ADD_CARRY(r3, a7,        r3, carry, carry);
-                r4 += carry;
-                /* sum 4 */
-                MP_ADD_CARRY(r0, a4h | a5l,     r0, 0,     carry);
-                MP_ADD_CARRY(r1, a5h|(a6h<<32), r1, carry, carry);
-                MP_ADD_CARRY(r2, a7,            r2, carry, carry);
-                MP_ADD_CARRY(r3, a6h | a4l,     r3, carry, carry);
-                r4 += carry;
-                /* diff 5 */
-                MP_SUB_BORROW(r0, a5h | a6l,    r0, 0,     carry);
-                MP_SUB_BORROW(r1, a6h,          r1, carry, carry);
-                MP_SUB_BORROW(r2, 0,            r2, carry, carry);
-                MP_SUB_BORROW(r3, (a4l>>32)|a5l,r3, carry, carry);
-                r4 -= carry;
-                /* diff 6 */
-                MP_SUB_BORROW(r0, a6,           r0, 0,     carry);
-                MP_SUB_BORROW(r1, a7,           r1, carry, carry);
-                MP_SUB_BORROW(r2, 0,            r2, carry, carry);
-                MP_SUB_BORROW(r3, a4h|(a5h<<32),r3, carry, carry);
-                r4 -= carry;
-                /* diff 7 */
-                MP_SUB_BORROW(r0, a6h|a7l,      r0, 0,     carry);
-                MP_SUB_BORROW(r1, a7h|a4l,      r1, carry, carry);
-                MP_SUB_BORROW(r2, a4h|a5l,      r2, carry, carry);
-                MP_SUB_BORROW(r3, a6l,          r3, carry, carry);
-                r4 -= carry;
-                /* diff 8 */
-                MP_SUB_BORROW(r0, a7,           r0, 0,     carry);
-                MP_SUB_BORROW(r1, a4h<<32,      r1, carry, carry);
-                MP_SUB_BORROW(r2, a5,           r2, carry, carry);
-                MP_SUB_BORROW(r3, a6h<<32,      r3, carry, carry);
-                r4 -= carry;
-
-                /* reduce the overflows */
-                while (r4 > 0) {
-                        mp_digit r4_long = r4;
-                        mp_digit r4l = (r4_long << 32);
-                        MP_ADD_CARRY(r0, r4_long,      r0, 0,     carry);
-                        MP_ADD_CARRY(r1, -r4l,         r1, carry, carry);
-                        MP_ADD_CARRY(r2, MP_DIGIT_MAX, r2, carry, carry);
-                        MP_ADD_CARRY(r3, r4l-r4_long-1,r3, carry, carry);
-                        r4 = carry;
-                }
-
-                /* reduce the underflows */
-                while (r4 < 0) {
-                        mp_digit r4_long = -r4;
-                        mp_digit r4l = (r4_long << 32);
-                        MP_SUB_BORROW(r0, r4_long,      r0, 0,     carry);
-                        MP_SUB_BORROW(r1, -r4l,         r1, carry, carry);
-                        MP_SUB_BORROW(r2, MP_DIGIT_MAX, r2, carry, carry);
-                        MP_SUB_BORROW(r3, r4l-r4_long-1,r3, carry, carry);
-                        r4 = -carry;
-                }
-
-                if (a != r) {
-                        MP_CHECKOK(s_mp_pad(r,4));
-                }
-                MP_SIGN(r) = MP_ZPOS;
-                MP_USED(r) = 4;
-
-                MP_DIGIT(r,3) = r3;
-                MP_DIGIT(r,2) = r2;
-                MP_DIGIT(r,1) = r1;
-                MP_DIGIT(r,0) = r0;
-
-                /* final reduction if necessary */
-                if ((r3 > 0xFFFFFFFF00000001ULL) ||
-                        ((r3 == 0xFFFFFFFF00000001ULL) &&
-                        (r2 || (r1 >> 32)||
-                               (r1 == 0xFFFFFFFFULL && r0 == MP_DIGIT_MAX)))) {
-                        /* very rare, just use mp_sub */
-                        MP_CHECKOK(mp_sub(r, &meth->irr, r));
-                }
-
-                s_mp_clamp(r);
-#endif
-        }
-
-  CLEANUP:
-        return res;
-}
-
-/* Compute the square of polynomial a, reduce modulo p256. Store the
- * result in r.  r could be a.  Uses optimized modular reduction for p256.
- */
-mp_err
-ec_GFp_nistp256_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        MP_CHECKOK(mp_sqr(a, r));
-        MP_CHECKOK(ec_GFp_nistp256_mod(r, r, meth));
-  CLEANUP:
-        return res;
-}
-
-/* Compute the product of two polynomials a and b, reduce modulo p256.
- * Store the result in r.  r could be a or b; a could be b.  Uses
- * optimized modular reduction for p256. */
-mp_err
-ec_GFp_nistp256_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        MP_CHECKOK(mp_mul(a, b, r));
-        MP_CHECKOK(ec_GFp_nistp256_mod(r, r, meth));
-  CLEANUP:
-        return res;
-}
-
-/* Wire in fast field arithmetic and precomputation of base point for
- * named curves. */
-mp_err
-ec_group_set_gfp256(ECGroup *group, ECCurveName name)
-{
-        if (name == ECCurve_NIST_P256) {
-                group->meth->field_mod = &ec_GFp_nistp256_mod;
-                group->meth->field_mul = &ec_GFp_nistp256_mul;
-                group->meth->field_sqr = &ec_GFp_nistp256_sqr;
-        }
-        return MP_OKAY;
-}
--- a/jdk/src/share/native/sun/security/ec/ecp_384.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,315 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for prime field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecp.h"
-#include "mpi.h"
-#include "mplogic.h"
-#include "mpi-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1.  a can be r.
- * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to
- * Elliptic Curve Cryptography. */
-mp_err
-ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        int a_bits = mpl_significant_bits(a);
-        int i;
-
-        /* m1, m2 are statically-allocated mp_int of exactly the size we need */
-        mp_int m[10];
-
-#ifdef ECL_THIRTY_TWO_BIT
-        mp_digit s[10][12];
-        for (i = 0; i < 10; i++) {
-                MP_SIGN(&m[i]) = MP_ZPOS;
-                MP_ALLOC(&m[i]) = 12;
-                MP_USED(&m[i]) = 12;
-                MP_DIGITS(&m[i]) = s[i];
-        }
-#else
-        mp_digit s[10][6];
-        for (i = 0; i < 10; i++) {
-                MP_SIGN(&m[i]) = MP_ZPOS;
-                MP_ALLOC(&m[i]) = 6;
-                MP_USED(&m[i]) = 6;
-                MP_DIGITS(&m[i]) = s[i];
-        }
-#endif
-
-#ifdef ECL_THIRTY_TWO_BIT
-        /* for polynomials larger than twice the field size or polynomials
-         * not using all words, use regular reduction */
-        if ((a_bits > 768) || (a_bits <= 736)) {
-                MP_CHECKOK(mp_mod(a, &meth->irr, r));
-        } else {
-                for (i = 0; i < 12; i++) {
-                        s[0][i] = MP_DIGIT(a, i);
-                }
-                s[1][0] = 0;
-                s[1][1] = 0;
-                s[1][2] = 0;
-                s[1][3] = 0;
-                s[1][4] = MP_DIGIT(a, 21);
-                s[1][5] = MP_DIGIT(a, 22);
-                s[1][6] = MP_DIGIT(a, 23);
-                s[1][7] = 0;
-                s[1][8] = 0;
-                s[1][9] = 0;
-                s[1][10] = 0;
-                s[1][11] = 0;
-                for (i = 0; i < 12; i++) {
-                        s[2][i] = MP_DIGIT(a, i+12);
-                }
-                s[3][0] = MP_DIGIT(a, 21);
-                s[3][1] = MP_DIGIT(a, 22);
-                s[3][2] = MP_DIGIT(a, 23);
-                for (i = 3; i < 12; i++) {
-                        s[3][i] = MP_DIGIT(a, i+9);
-                }
-                s[4][0] = 0;
-                s[4][1] = MP_DIGIT(a, 23);
-                s[4][2] = 0;
-                s[4][3] = MP_DIGIT(a, 20);
-                for (i = 4; i < 12; i++) {
-                        s[4][i] = MP_DIGIT(a, i+8);
-                }
-                s[5][0] = 0;
-                s[5][1] = 0;
-                s[5][2] = 0;
-                s[5][3] = 0;
-                s[5][4] = MP_DIGIT(a, 20);
-                s[5][5] = MP_DIGIT(a, 21);
-                s[5][6] = MP_DIGIT(a, 22);
-                s[5][7] = MP_DIGIT(a, 23);
-                s[5][8] = 0;
-                s[5][9] = 0;
-                s[5][10] = 0;
-                s[5][11] = 0;
-                s[6][0] = MP_DIGIT(a, 20);
-                s[6][1] = 0;
-                s[6][2] = 0;
-                s[6][3] = MP_DIGIT(a, 21);
-                s[6][4] = MP_DIGIT(a, 22);
-                s[6][5] = MP_DIGIT(a, 23);
-                s[6][6] = 0;
-                s[6][7] = 0;
-                s[6][8] = 0;
-                s[6][9] = 0;
-                s[6][10] = 0;
-                s[6][11] = 0;
-                s[7][0] = MP_DIGIT(a, 23);
-                for (i = 1; i < 12; i++) {
-                        s[7][i] = MP_DIGIT(a, i+11);
-                }
-                s[8][0] = 0;
-                s[8][1] = MP_DIGIT(a, 20);
-                s[8][2] = MP_DIGIT(a, 21);
-                s[8][3] = MP_DIGIT(a, 22);
-                s[8][4] = MP_DIGIT(a, 23);
-                s[8][5] = 0;
-                s[8][6] = 0;
-                s[8][7] = 0;
-                s[8][8] = 0;
-                s[8][9] = 0;
-                s[8][10] = 0;
-                s[8][11] = 0;
-                s[9][0] = 0;
-                s[9][1] = 0;
-                s[9][2] = 0;
-                s[9][3] = MP_DIGIT(a, 23);
-                s[9][4] = MP_DIGIT(a, 23);
-                s[9][5] = 0;
-                s[9][6] = 0;
-                s[9][7] = 0;
-                s[9][8] = 0;
-                s[9][9] = 0;
-                s[9][10] = 0;
-                s[9][11] = 0;
-
-                MP_CHECKOK(mp_add(&m[0], &m[1], r));
-                MP_CHECKOK(mp_add(r, &m[1], r));
-                MP_CHECKOK(mp_add(r, &m[2], r));
-                MP_CHECKOK(mp_add(r, &m[3], r));
-                MP_CHECKOK(mp_add(r, &m[4], r));
-                MP_CHECKOK(mp_add(r, &m[5], r));
-                MP_CHECKOK(mp_add(r, &m[6], r));
-                MP_CHECKOK(mp_sub(r, &m[7], r));
-                MP_CHECKOK(mp_sub(r, &m[8], r));
-                MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
-                s_mp_clamp(r);
-        }
-#else
-        /* for polynomials larger than twice the field size or polynomials
-         * not using all words, use regular reduction */
-        if ((a_bits > 768) || (a_bits <= 736)) {
-                MP_CHECKOK(mp_mod(a, &meth->irr, r));
-        } else {
-                for (i = 0; i < 6; i++) {
-                        s[0][i] = MP_DIGIT(a, i);
-                }
-                s[1][0] = 0;
-                s[1][1] = 0;
-                s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
-                s[1][3] = MP_DIGIT(a, 11) >> 32;
-                s[1][4] = 0;
-                s[1][5] = 0;
-                for (i = 0; i < 6; i++) {
-                        s[2][i] = MP_DIGIT(a, i+6);
-                }
-                s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
-                s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
-                for (i = 2; i < 6; i++) {
-                        s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
-                }
-                s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
-                s[4][1] = MP_DIGIT(a, 10) << 32;
-                for (i = 2; i < 6; i++) {
-                        s[4][i] = MP_DIGIT(a, i+4);
-                }
-                s[5][0] = 0;
-                s[5][1] = 0;
-                s[5][2] = MP_DIGIT(a, 10);
-                s[5][3] = MP_DIGIT(a, 11);
-                s[5][4] = 0;
-                s[5][5] = 0;
-                s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
-                s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
-                s[6][2] = MP_DIGIT(a, 11);
-                s[6][3] = 0;
-                s[6][4] = 0;
-                s[6][5] = 0;
-                s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
-                for (i = 1; i < 6; i++) {
-                        s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
-                }
-                s[8][0] = MP_DIGIT(a, 10) << 32;
-                s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
-                s[8][2] = MP_DIGIT(a, 11) >> 32;
-                s[8][3] = 0;
-                s[8][4] = 0;
-                s[8][5] = 0;
-                s[9][0] = 0;
-                s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
-                s[9][2] = MP_DIGIT(a, 11) >> 32;
-                s[9][3] = 0;
-                s[9][4] = 0;
-                s[9][5] = 0;
-
-                MP_CHECKOK(mp_add(&m[0], &m[1], r));
-                MP_CHECKOK(mp_add(r, &m[1], r));
-                MP_CHECKOK(mp_add(r, &m[2], r));
-                MP_CHECKOK(mp_add(r, &m[3], r));
-                MP_CHECKOK(mp_add(r, &m[4], r));
-                MP_CHECKOK(mp_add(r, &m[5], r));
-                MP_CHECKOK(mp_add(r, &m[6], r));
-                MP_CHECKOK(mp_sub(r, &m[7], r));
-                MP_CHECKOK(mp_sub(r, &m[8], r));
-                MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
-                s_mp_clamp(r);
-        }
-#endif
-
-  CLEANUP:
-        return res;
-}
-
-/* Compute the square of polynomial a, reduce modulo p384. Store the
- * result in r.  r could be a.  Uses optimized modular reduction for p384.
- */
-mp_err
-ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        MP_CHECKOK(mp_sqr(a, r));
-        MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
-  CLEANUP:
-        return res;
-}
-
-/* Compute the product of two polynomials a and b, reduce modulo p384.
- * Store the result in r.  r could be a or b; a could be b.  Uses
- * optimized modular reduction for p384. */
-mp_err
-ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        MP_CHECKOK(mp_mul(a, b, r));
-        MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
-  CLEANUP:
-        return res;
-}
-
-/* Wire in fast field arithmetic and precomputation of base point for
- * named curves. */
-mp_err
-ec_group_set_gfp384(ECGroup *group, ECCurveName name)
-{
-        if (name == ECCurve_NIST_P384) {
-                group->meth->field_mod = &ec_GFp_nistp384_mod;
-                group->meth->field_mul = &ec_GFp_nistp384_mul;
-                group->meth->field_sqr = &ec_GFp_nistp384_sqr;
-        }
-        return MP_OKAY;
-}
--- a/jdk/src/share/native/sun/security/ec/ecp_521.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,192 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for prime field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecp.h"
-#include "mpi.h"
-#include "mplogic.h"
-#include "mpi-priv.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-#define ECP521_DIGITS ECL_CURVE_DIGITS(521)
-
-/* Fast modular reduction for p521 = 2^521 - 1.  a can be r. Uses
- * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to
- * Elliptic Curve Cryptography. */
-mp_err
-ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        int a_bits = mpl_significant_bits(a);
-        int i;
-
-        /* m1, m2 are statically-allocated mp_int of exactly the size we need */
-        mp_int m1;
-
-        mp_digit s1[ECP521_DIGITS] = { 0 };
-
-        MP_SIGN(&m1) = MP_ZPOS;
-        MP_ALLOC(&m1) = ECP521_DIGITS;
-        MP_USED(&m1) = ECP521_DIGITS;
-        MP_DIGITS(&m1) = s1;
-
-        if (a_bits < 521) {
-                if (a==r) return MP_OKAY;
-                return mp_copy(a, r);
-        }
-        /* for polynomials larger than twice the field size or polynomials
-         * not using all words, use regular reduction */
-        if (a_bits > (521*2)) {
-                MP_CHECKOK(mp_mod(a, &meth->irr, r));
-        } else {
-#define FIRST_DIGIT (ECP521_DIGITS-1)
-                for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) {
-                        s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9)
-                                | (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9));
-                }
-                s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9;
-
-                if ( a != r ) {
-                        MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS));
-                        for (i = 0; i < ECP521_DIGITS; i++) {
-                                MP_DIGIT(r,i) = MP_DIGIT(a, i);
-                        }
-                }
-                MP_USED(r) = ECP521_DIGITS;
-                MP_DIGIT(r,FIRST_DIGIT) &=  0x1FF;
-
-                MP_CHECKOK(s_mp_add(r, &m1));
-                if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) {
-                        MP_CHECKOK(s_mp_add_d(r,1));
-                        MP_DIGIT(r,FIRST_DIGIT) &=  0x1FF;
-                }
-                s_mp_clamp(r);
-        }
-
-  CLEANUP:
-        return res;
-}
-
-/* Compute the square of polynomial a, reduce modulo p521. Store the
- * result in r.  r could be a.  Uses optimized modular reduction for p521.
- */
-mp_err
-ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        MP_CHECKOK(mp_sqr(a, r));
-        MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
-  CLEANUP:
-        return res;
-}
-
-/* Compute the product of two polynomials a and b, reduce modulo p521.
- * Store the result in r.  r could be a or b; a could be b.  Uses
- * optimized modular reduction for p521. */
-mp_err
-ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r,
-                                        const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        MP_CHECKOK(mp_mul(a, b, r));
-        MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
-  CLEANUP:
-        return res;
-}
-
-/* Divides two field elements. If a is NULL, then returns the inverse of
- * b. */
-mp_err
-ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r,
-                   const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-        mp_int t;
-
-        /* If a is NULL, then return the inverse of b, otherwise return a/b. */
-        if (a == NULL) {
-                return mp_invmod(b, &meth->irr, r);
-        } else {
-                /* MPI doesn't support divmod, so we implement it using invmod and
-                 * mulmod. */
-                MP_CHECKOK(mp_init(&t, FLAG(b)));
-                MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
-                MP_CHECKOK(mp_mul(a, &t, r));
-                MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
-          CLEANUP:
-                mp_clear(&t);
-                return res;
-        }
-}
-
-/* Wire in fast field arithmetic and precomputation of base point for
- * named curves. */
-mp_err
-ec_group_set_gfp521(ECGroup *group, ECCurveName name)
-{
-        if (name == ECCurve_NIST_P521) {
-                group->meth->field_mod = &ec_GFp_nistp521_mod;
-                group->meth->field_mul = &ec_GFp_nistp521_mul;
-                group->meth->field_sqr = &ec_GFp_nistp521_sqr;
-                group->meth->field_div = &ec_GFp_nistp521_div;
-        }
-        return MP_OKAY;
-}
--- a/jdk/src/share/native/sun/security/ec/ecp_aff.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,379 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for prime field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
- *   Stephen Fung <fungstep@hotmail.com>, and
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
- *   Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
- *   Nils Larsch <nla@trustcenter.de>, and
- *   Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecp.h"
-#include "mplogic.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-/* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
-mp_err
-ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
-{
-
-        if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
-                return MP_YES;
-        } else {
-                return MP_NO;
-        }
-
-}
-
-/* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
-mp_err
-ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
-{
-        mp_zero(px);
-        mp_zero(py);
-        return MP_OKAY;
-}
-
-/* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
- * Q, and R can all be identical. Uses affine coordinates. Assumes input
- * is already field-encoded using field_enc, and returns output that is
- * still field-encoded. */
-mp_err
-ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
-                                  const mp_int *qy, mp_int *rx, mp_int *ry,
-                                  const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int lambda, temp, tempx, tempy;
-
-        MP_DIGITS(&lambda) = 0;
-        MP_DIGITS(&temp) = 0;
-        MP_DIGITS(&tempx) = 0;
-        MP_DIGITS(&tempy) = 0;
-        MP_CHECKOK(mp_init(&lambda, FLAG(px)));
-        MP_CHECKOK(mp_init(&temp, FLAG(px)));
-        MP_CHECKOK(mp_init(&tempx, FLAG(px)));
-        MP_CHECKOK(mp_init(&tempy, FLAG(px)));
-        /* if P = inf, then R = Q */
-        if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
-                MP_CHECKOK(mp_copy(qx, rx));
-                MP_CHECKOK(mp_copy(qy, ry));
-                res = MP_OKAY;
-                goto CLEANUP;
-        }
-        /* if Q = inf, then R = P */
-        if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
-                MP_CHECKOK(mp_copy(px, rx));
-                MP_CHECKOK(mp_copy(py, ry));
-                res = MP_OKAY;
-                goto CLEANUP;
-        }
-        /* if px != qx, then lambda = (py-qy) / (px-qx) */
-        if (mp_cmp(px, qx) != 0) {
-                MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
-                MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_div(&tempy, &tempx, &lambda, group->meth));
-        } else {
-                /* if py != qy or qy = 0, then R = inf */
-                if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
-                        mp_zero(rx);
-                        mp_zero(ry);
-                        res = MP_OKAY;
-                        goto CLEANUP;
-                }
-                /* lambda = (3qx^2+a) / (2qy) */
-                MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
-                MP_CHECKOK(mp_set_int(&temp, 3));
-                if (group->meth->field_enc) {
-                        MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
-                }
-                MP_CHECKOK(group->meth->
-                                   field_mul(&tempx, &temp, &tempx, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_add(&tempx, &group->curvea, &tempx, group->meth));
-                MP_CHECKOK(mp_set_int(&temp, 2));
-                if (group->meth->field_enc) {
-                        MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
-                }
-                MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_div(&tempx, &tempy, &lambda, group->meth));
-        }
-        /* rx = lambda^2 - px - qx */
-        MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
-        MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
-        MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
-        /* ry = (x1-x2) * lambda - y1 */
-        MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
-        MP_CHECKOK(group->meth->
-                           field_mul(&tempy, &lambda, &tempy, group->meth));
-        MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
-        MP_CHECKOK(mp_copy(&tempx, rx));
-        MP_CHECKOK(mp_copy(&tempy, ry));
-
-  CLEANUP:
-        mp_clear(&lambda);
-        mp_clear(&temp);
-        mp_clear(&tempx);
-        mp_clear(&tempy);
-        return res;
-}
-
-/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
- * identical. Uses affine coordinates. Assumes input is already
- * field-encoded using field_enc, and returns output that is still
- * field-encoded. */
-mp_err
-ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
-                                  const mp_int *qy, mp_int *rx, mp_int *ry,
-                                  const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int nqy;
-
-        MP_DIGITS(&nqy) = 0;
-        MP_CHECKOK(mp_init(&nqy, FLAG(px)));
-        /* nqy = -qy */
-        MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
-        res = group->point_add(px, py, qx, &nqy, rx, ry, group);
-  CLEANUP:
-        mp_clear(&nqy);
-        return res;
-}
-
-/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
- * affine coordinates. Assumes input is already field-encoded using
- * field_enc, and returns output that is still field-encoded. */
-mp_err
-ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
-                                  mp_int *ry, const ECGroup *group)
-{
-        return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
-}
-
-/* by default, this routine is unused and thus doesn't need to be compiled */
-#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
-/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
- * R can be identical. Uses affine coordinates. Assumes input is already
- * field-encoded using field_enc, and returns output that is still
- * field-encoded. */
-mp_err
-ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
-                                  mp_int *rx, mp_int *ry, const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int k, k3, qx, qy, sx, sy;
-        int b1, b3, i, l;
-
-        MP_DIGITS(&k) = 0;
-        MP_DIGITS(&k3) = 0;
-        MP_DIGITS(&qx) = 0;
-        MP_DIGITS(&qy) = 0;
-        MP_DIGITS(&sx) = 0;
-        MP_DIGITS(&sy) = 0;
-        MP_CHECKOK(mp_init(&k));
-        MP_CHECKOK(mp_init(&k3));
-        MP_CHECKOK(mp_init(&qx));
-        MP_CHECKOK(mp_init(&qy));
-        MP_CHECKOK(mp_init(&sx));
-        MP_CHECKOK(mp_init(&sy));
-
-        /* if n = 0 then r = inf */
-        if (mp_cmp_z(n) == 0) {
-                mp_zero(rx);
-                mp_zero(ry);
-                res = MP_OKAY;
-                goto CLEANUP;
-        }
-        /* Q = P, k = n */
-        MP_CHECKOK(mp_copy(px, &qx));
-        MP_CHECKOK(mp_copy(py, &qy));
-        MP_CHECKOK(mp_copy(n, &k));
-        /* if n < 0 then Q = -Q, k = -k */
-        if (mp_cmp_z(n) < 0) {
-                MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
-                MP_CHECKOK(mp_neg(&k, &k));
-        }
-#ifdef ECL_DEBUG                                /* basic double and add method */
-        l = mpl_significant_bits(&k) - 1;
-        MP_CHECKOK(mp_copy(&qx, &sx));
-        MP_CHECKOK(mp_copy(&qy, &sy));
-        for (i = l - 1; i >= 0; i--) {
-                /* S = 2S */
-                MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
-                /* if k_i = 1, then S = S + Q */
-                if (mpl_get_bit(&k, i) != 0) {
-                        MP_CHECKOK(group->
-                                           point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
-                }
-        }
-#else                                                   /* double and add/subtract method from
-                                                                 * standard */
-        /* k3 = 3 * k */
-        MP_CHECKOK(mp_set_int(&k3, 3));
-        MP_CHECKOK(mp_mul(&k, &k3, &k3));
-        /* S = Q */
-        MP_CHECKOK(mp_copy(&qx, &sx));
-        MP_CHECKOK(mp_copy(&qy, &sy));
-        /* l = index of high order bit in binary representation of 3*k */
-        l = mpl_significant_bits(&k3) - 1;
-        /* for i = l-1 downto 1 */
-        for (i = l - 1; i >= 1; i--) {
-                /* S = 2S */
-                MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
-                b3 = MP_GET_BIT(&k3, i);
-                b1 = MP_GET_BIT(&k, i);
-                /* if k3_i = 1 and k_i = 0, then S = S + Q */
-                if ((b3 == 1) && (b1 == 0)) {
-                        MP_CHECKOK(group->
-                                           point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
-                        /* if k3_i = 0 and k_i = 1, then S = S - Q */
-                } else if ((b3 == 0) && (b1 == 1)) {
-                        MP_CHECKOK(group->
-                                           point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
-                }
-        }
-#endif
-        /* output S */
-        MP_CHECKOK(mp_copy(&sx, rx));
-        MP_CHECKOK(mp_copy(&sy, ry));
-
-  CLEANUP:
-        mp_clear(&k);
-        mp_clear(&k3);
-        mp_clear(&qx);
-        mp_clear(&qy);
-        mp_clear(&sx);
-        mp_clear(&sy);
-        return res;
-}
-#endif
-
-/* Validates a point on a GFp curve. */
-mp_err
-ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
-{
-        mp_err res = MP_NO;
-        mp_int accl, accr, tmp, pxt, pyt;
-
-        MP_DIGITS(&accl) = 0;
-        MP_DIGITS(&accr) = 0;
-        MP_DIGITS(&tmp) = 0;
-        MP_DIGITS(&pxt) = 0;
-        MP_DIGITS(&pyt) = 0;
-        MP_CHECKOK(mp_init(&accl, FLAG(px)));
-        MP_CHECKOK(mp_init(&accr, FLAG(px)));
-        MP_CHECKOK(mp_init(&tmp, FLAG(px)));
-        MP_CHECKOK(mp_init(&pxt, FLAG(px)));
-        MP_CHECKOK(mp_init(&pyt, FLAG(px)));
-
-    /* 1: Verify that publicValue is not the point at infinity */
-        if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
-                res = MP_NO;
-                goto CLEANUP;
-        }
-    /* 2: Verify that the coordinates of publicValue are elements
-     *    of the field.
-     */
-        if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
-                (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
-                res = MP_NO;
-                goto CLEANUP;
-        }
-    /* 3: Verify that publicValue is on the curve. */
-        if (group->meth->field_enc) {
-                group->meth->field_enc(px, &pxt, group->meth);
-                group->meth->field_enc(py, &pyt, group->meth);
-        } else {
-                mp_copy(px, &pxt);
-                mp_copy(py, &pyt);
-        }
-        /* left-hand side: y^2  */
-        MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
-        /* right-hand side: x^3 + a*x + b */
-        MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
-        MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
-        MP_CHECKOK( group->meth->field_mul(&group->curvea, &pxt, &tmp, group->meth) );
-        MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
-        MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
-        /* check LHS - RHS == 0 */
-        MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) );
-        if (mp_cmp_z(&accr) != 0) {
-                res = MP_NO;
-                goto CLEANUP;
-        }
-    /* 4: Verify that the order of the curve times the publicValue
-     *    is the point at infinity.
-     */
-        MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
-        if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
-                res = MP_NO;
-                goto CLEANUP;
-        }
-
-        res = MP_YES;
-
-CLEANUP:
-        mp_clear(&accl);
-        mp_clear(&accr);
-        mp_clear(&tmp);
-        mp_clear(&pxt);
-        mp_clear(&pyt);
-        return res;
-}
--- a/jdk/src/share/native/sun/security/ec/ecp_jac.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,575 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for prime field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
- *   Stephen Fung <fungstep@hotmail.com>, and
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
- *   Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
- *   Nils Larsch <nla@trustcenter.de>, and
- *   Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecp.h"
-#include "mplogic.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-#ifdef ECL_DEBUG
-#include <assert.h>
-#endif
-
-/* Converts a point P(px, py) from affine coordinates to Jacobian
- * projective coordinates R(rx, ry, rz). Assumes input is already
- * field-encoded using field_enc, and returns output that is still
- * field-encoded. */
-mp_err
-ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
-                                  mp_int *ry, mp_int *rz, const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-
-        if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
-                MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
-        } else {
-                MP_CHECKOK(mp_copy(px, rx));
-                MP_CHECKOK(mp_copy(py, ry));
-                MP_CHECKOK(mp_set_int(rz, 1));
-                if (group->meth->field_enc) {
-                        MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
-                }
-        }
-  CLEANUP:
-        return res;
-}
-
-/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
- * affine coordinates R(rx, ry).  P and R can share x and y coordinates.
- * Assumes input is already field-encoded using field_enc, and returns
- * output that is still field-encoded. */
-mp_err
-ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
-                                  mp_int *rx, mp_int *ry, const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int z1, z2, z3;
-
-        MP_DIGITS(&z1) = 0;
-        MP_DIGITS(&z2) = 0;
-        MP_DIGITS(&z3) = 0;
-        MP_CHECKOK(mp_init(&z1, FLAG(px)));
-        MP_CHECKOK(mp_init(&z2, FLAG(px)));
-        MP_CHECKOK(mp_init(&z3, FLAG(px)));
-
-        /* if point at infinity, then set point at infinity and exit */
-        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
-                MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
-                goto CLEANUP;
-        }
-
-        /* transform (px, py, pz) into (px / pz^2, py / pz^3) */
-        if (mp_cmp_d(pz, 1) == 0) {
-                MP_CHECKOK(mp_copy(px, rx));
-                MP_CHECKOK(mp_copy(py, ry));
-        } else {
-                MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
-                MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
-                MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
-                MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
-                MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
-        }
-
-  CLEANUP:
-        mp_clear(&z1);
-        mp_clear(&z2);
-        mp_clear(&z3);
-        return res;
-}
-
-/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
- * coordinates. */
-mp_err
-ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
-{
-        return mp_cmp_z(pz);
-}
-
-/* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
- * coordinates. */
-mp_err
-ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
-{
-        mp_zero(pz);
-        return MP_OKAY;
-}
-
-/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
- * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
- * Uses mixed Jacobian-affine coordinates. Assumes input is already
- * field-encoded using field_enc, and returns output that is still
- * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
- * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
- * Fields. */
-mp_err
-ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
-                                          const mp_int *qx, const mp_int *qy, mp_int *rx,
-                                          mp_int *ry, mp_int *rz, const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int A, B, C, D, C2, C3;
-
-        MP_DIGITS(&A) = 0;
-        MP_DIGITS(&B) = 0;
-        MP_DIGITS(&C) = 0;
-        MP_DIGITS(&D) = 0;
-        MP_DIGITS(&C2) = 0;
-        MP_DIGITS(&C3) = 0;
-        MP_CHECKOK(mp_init(&A, FLAG(px)));
-        MP_CHECKOK(mp_init(&B, FLAG(px)));
-        MP_CHECKOK(mp_init(&C, FLAG(px)));
-        MP_CHECKOK(mp_init(&D, FLAG(px)));
-        MP_CHECKOK(mp_init(&C2, FLAG(px)));
-        MP_CHECKOK(mp_init(&C3, FLAG(px)));
-
-        /* If either P or Q is the point at infinity, then return the other
-         * point */
-        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
-                MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
-                goto CLEANUP;
-        }
-        if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
-                MP_CHECKOK(mp_copy(px, rx));
-                MP_CHECKOK(mp_copy(py, ry));
-                MP_CHECKOK(mp_copy(pz, rz));
-                goto CLEANUP;
-        }
-
-        /* A = qx * pz^2, B = qy * pz^3 */
-        MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
-        MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
-        MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
-        MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
-
-        /* C = A - px, D = B - py */
-        MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
-        MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
-
-        /* C2 = C^2, C3 = C^3 */
-        MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
-        MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
-
-        /* rz = pz * C */
-        MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
-
-        /* C = px * C^2 */
-        MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
-        /* A = D^2 */
-        MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
-
-        /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
-        MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
-        MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
-        MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
-
-        /* C3 = py * C^3 */
-        MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
-
-        /* ry = D * (px * C^2 - rx) - py * C^3 */
-        MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
-        MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
-        MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
-
-  CLEANUP:
-        mp_clear(&A);
-        mp_clear(&B);
-        mp_clear(&C);
-        mp_clear(&D);
-        mp_clear(&C2);
-        mp_clear(&C3);
-        return res;
-}
-
-/* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses
- * Jacobian coordinates.
- *
- * Assumes input is already field-encoded using field_enc, and returns
- * output that is still field-encoded.
- *
- * This routine implements Point Doubling in the Jacobian Projective
- * space as described in the paper "Efficient elliptic curve exponentiation
- * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
- */
-mp_err
-ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
-                                  mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int t0, t1, M, S;
-
-        MP_DIGITS(&t0) = 0;
-        MP_DIGITS(&t1) = 0;
-        MP_DIGITS(&M) = 0;
-        MP_DIGITS(&S) = 0;
-        MP_CHECKOK(mp_init(&t0, FLAG(px)));
-        MP_CHECKOK(mp_init(&t1, FLAG(px)));
-        MP_CHECKOK(mp_init(&M, FLAG(px)));
-        MP_CHECKOK(mp_init(&S, FLAG(px)));
-
-        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
-                MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
-                goto CLEANUP;
-        }
-
-        if (mp_cmp_d(pz, 1) == 0) {
-                /* M = 3 * px^2 + a */
-                MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
-                MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
-                MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_add(&t0, &group->curvea, &M, group->meth));
-        } else if (mp_cmp_int(&group->curvea, -3, FLAG(px)) == 0) {
-                /* M = 3 * (px + pz^2) * (px - pz^2) */
-                MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
-                MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
-                MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
-                MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
-                MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
-                MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
-        } else {
-                /* M = 3 * (px^2) + a * (pz^4) */
-                MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
-                MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
-                MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
-                MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
-                MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_mul(&M, &group->curvea, &M, group->meth));
-                MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
-        }
-
-        /* rz = 2 * py * pz */
-        /* t0 = 4 * py^2 */
-        if (mp_cmp_d(pz, 1) == 0) {
-                MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
-                MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
-        } else {
-                MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
-                MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
-                MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
-        }
-
-        /* S = 4 * px * py^2 = px * (2 * py)^2 */
-        MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
-
-        /* rx = M^2 - 2 * S */
-        MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
-        MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
-        MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
-
-        /* ry = M * (S - rx) - 8 * py^4 */
-        MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
-        if (mp_isodd(&t1)) {
-                MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
-        }
-        MP_CHECKOK(mp_div_2(&t1, &t1));
-        MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
-        MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
-        MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
-
-  CLEANUP:
-        mp_clear(&t0);
-        mp_clear(&t1);
-        mp_clear(&M);
-        mp_clear(&S);
-        return res;
-}
-
-/* by default, this routine is unused and thus doesn't need to be compiled */
-#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
-/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
- * a, b and p are the elliptic curve coefficients and the prime that
- * determines the field GFp.  Elliptic curve points P and R can be
- * identical.  Uses mixed Jacobian-affine coordinates. Assumes input is
- * already field-encoded using field_enc, and returns output that is still
- * field-encoded. Uses 4-bit window method. */
-mp_err
-ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
-                                  mp_int *rx, mp_int *ry, const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int precomp[16][2], rz;
-        int i, ni, d;
-
-        MP_DIGITS(&rz) = 0;
-        for (i = 0; i < 16; i++) {
-                MP_DIGITS(&precomp[i][0]) = 0;
-                MP_DIGITS(&precomp[i][1]) = 0;
-        }
-
-        ARGCHK(group != NULL, MP_BADARG);
-        ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
-
-        /* initialize precomputation table */
-        for (i = 0; i < 16; i++) {
-                MP_CHECKOK(mp_init(&precomp[i][0]));
-                MP_CHECKOK(mp_init(&precomp[i][1]));
-        }
-
-        /* fill precomputation table */
-        mp_zero(&precomp[0][0]);
-        mp_zero(&precomp[0][1]);
-        MP_CHECKOK(mp_copy(px, &precomp[1][0]));
-        MP_CHECKOK(mp_copy(py, &precomp[1][1]));
-        for (i = 2; i < 16; i++) {
-                MP_CHECKOK(group->
-                                   point_add(&precomp[1][0], &precomp[1][1],
-                                                         &precomp[i - 1][0], &precomp[i - 1][1],
-                                                         &precomp[i][0], &precomp[i][1], group));
-        }
-
-        d = (mpl_significant_bits(n) + 3) / 4;
-
-        /* R = inf */
-        MP_CHECKOK(mp_init(&rz));
-        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
-
-        for (i = d - 1; i >= 0; i--) {
-                /* compute window ni */
-                ni = MP_GET_BIT(n, 4 * i + 3);
-                ni <<= 1;
-                ni |= MP_GET_BIT(n, 4 * i + 2);
-                ni <<= 1;
-                ni |= MP_GET_BIT(n, 4 * i + 1);
-                ni <<= 1;
-                ni |= MP_GET_BIT(n, 4 * i);
-                /* R = 2^4 * R */
-                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
-                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
-                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
-                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
-                /* R = R + (ni * P) */
-                MP_CHECKOK(ec_GFp_pt_add_jac_aff
-                                   (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
-                                        &rz, group));
-        }
-
-        /* convert result S to affine coordinates */
-        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
-
-  CLEANUP:
-        mp_clear(&rz);
-        for (i = 0; i < 16; i++) {
-                mp_clear(&precomp[i][0]);
-                mp_clear(&precomp[i][1]);
-        }
-        return res;
-}
-#endif
-
-/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
- * k2 * P(x, y), where G is the generator (base point) of the group of
- * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
- * Uses mixed Jacobian-affine coordinates. Input and output values are
- * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
- * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
- * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
-mp_err
-ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
-                                   const mp_int *py, mp_int *rx, mp_int *ry,
-                                   const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int precomp[4][4][2];
-        mp_int rz;
-        const mp_int *a, *b;
-        int i, j;
-        int ai, bi, d;
-
-        for (i = 0; i < 4; i++) {
-                for (j = 0; j < 4; j++) {
-                        MP_DIGITS(&precomp[i][j][0]) = 0;
-                        MP_DIGITS(&precomp[i][j][1]) = 0;
-                }
-        }
-        MP_DIGITS(&rz) = 0;
-
-        ARGCHK(group != NULL, MP_BADARG);
-        ARGCHK(!((k1 == NULL)
-                         && ((k2 == NULL) || (px == NULL)
-                                 || (py == NULL))), MP_BADARG);
-
-        /* if some arguments are not defined used ECPoint_mul */
-        if (k1 == NULL) {
-                return ECPoint_mul(group, k2, px, py, rx, ry);
-        } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
-                return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
-        }
-
-        /* initialize precomputation table */
-        for (i = 0; i < 4; i++) {
-                for (j = 0; j < 4; j++) {
-                        MP_CHECKOK(mp_init(&precomp[i][j][0], FLAG(k1)));
-                        MP_CHECKOK(mp_init(&precomp[i][j][1], FLAG(k1)));
-                }
-        }
-
-        /* fill precomputation table */
-        /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
-        if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
-                a = k2;
-                b = k1;
-                if (group->meth->field_enc) {
-                        MP_CHECKOK(group->meth->
-                                           field_enc(px, &precomp[1][0][0], group->meth));
-                        MP_CHECKOK(group->meth->
-                                           field_enc(py, &precomp[1][0][1], group->meth));
-                } else {
-                        MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
-                        MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
-                }
-                MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
-                MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
-        } else {
-                a = k1;
-                b = k2;
-                MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
-                MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
-                if (group->meth->field_enc) {
-                        MP_CHECKOK(group->meth->
-                                           field_enc(px, &precomp[0][1][0], group->meth));
-                        MP_CHECKOK(group->meth->
-                                           field_enc(py, &precomp[0][1][1], group->meth));
-                } else {
-                        MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
-                        MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
-                }
-        }
-        /* precompute [*][0][*] */
-        mp_zero(&precomp[0][0][0]);
-        mp_zero(&precomp[0][0][1]);
-        MP_CHECKOK(group->
-                           point_dbl(&precomp[1][0][0], &precomp[1][0][1],
-                                                 &precomp[2][0][0], &precomp[2][0][1], group));
-        MP_CHECKOK(group->
-                           point_add(&precomp[1][0][0], &precomp[1][0][1],
-                                                 &precomp[2][0][0], &precomp[2][0][1],
-                                                 &precomp[3][0][0], &precomp[3][0][1], group));
-        /* precompute [*][1][*] */
-        for (i = 1; i < 4; i++) {
-                MP_CHECKOK(group->
-                                   point_add(&precomp[0][1][0], &precomp[0][1][1],
-                                                         &precomp[i][0][0], &precomp[i][0][1],
-                                                         &precomp[i][1][0], &precomp[i][1][1], group));
-        }
-        /* precompute [*][2][*] */
-        MP_CHECKOK(group->
-                           point_dbl(&precomp[0][1][0], &precomp[0][1][1],
-                                                 &precomp[0][2][0], &precomp[0][2][1], group));
-        for (i = 1; i < 4; i++) {
-                MP_CHECKOK(group->
-                                   point_add(&precomp[0][2][0], &precomp[0][2][1],
-                                                         &precomp[i][0][0], &precomp[i][0][1],
-                                                         &precomp[i][2][0], &precomp[i][2][1], group));
-        }
-        /* precompute [*][3][*] */
-        MP_CHECKOK(group->
-                           point_add(&precomp[0][1][0], &precomp[0][1][1],
-                                                 &precomp[0][2][0], &precomp[0][2][1],
-                                                 &precomp[0][3][0], &precomp[0][3][1], group));
-        for (i = 1; i < 4; i++) {
-                MP_CHECKOK(group->
-                                   point_add(&precomp[0][3][0], &precomp[0][3][1],
-                                                         &precomp[i][0][0], &precomp[i][0][1],
-                                                         &precomp[i][3][0], &precomp[i][3][1], group));
-        }
-
-        d = (mpl_significant_bits(a) + 1) / 2;
-
-        /* R = inf */
-        MP_CHECKOK(mp_init(&rz, FLAG(k1)));
-        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
-
-        for (i = d - 1; i >= 0; i--) {
-                ai = MP_GET_BIT(a, 2 * i + 1);
-                ai <<= 1;
-                ai |= MP_GET_BIT(a, 2 * i);
-                bi = MP_GET_BIT(b, 2 * i + 1);
-                bi <<= 1;
-                bi |= MP_GET_BIT(b, 2 * i);
-                /* R = 2^2 * R */
-                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
-                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
-                /* R = R + (ai * A + bi * B) */
-                MP_CHECKOK(ec_GFp_pt_add_jac_aff
-                                   (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
-                                        rx, ry, &rz, group));
-        }
-
-        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
-
-        if (group->meth->field_dec) {
-                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
-                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
-        }
-
-  CLEANUP:
-        mp_clear(&rz);
-        for (i = 0; i < 4; i++) {
-                for (j = 0; j < 4; j++) {
-                        mp_clear(&precomp[i][j][0]);
-                        mp_clear(&precomp[i][j][1]);
-                }
-        }
-        return res;
-}
--- a/jdk/src/share/native/sun/security/ec/ecp_jm.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,353 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library for prime field curves.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "ecp.h"
-#include "ecl-priv.h"
-#include "mplogic.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#endif
-
-#define MAX_SCRATCH 6
-
-/* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses
- * Modified Jacobian coordinates.
- *
- * Assumes input is already field-encoded using field_enc, and returns
- * output that is still field-encoded.
- *
- */
-mp_err
-ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
-                                 const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
-                                 mp_int *raz4, mp_int scratch[], const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int *t0, *t1, *M, *S;
-
-        t0 = &scratch[0];
-        t1 = &scratch[1];
-        M = &scratch[2];
-        S = &scratch[3];
-
-#if MAX_SCRATCH < 4
-#error "Scratch array defined too small "
-#endif
-
-        /* Check for point at infinity */
-        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
-                /* Set r = pt at infinity by setting rz = 0 */
-
-                MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
-                goto CLEANUP;
-        }
-
-        /* M = 3 (px^2) + a*(pz^4) */
-        MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
-        MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
-        MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
-        MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));
-
-        /* rz = 2 * py * pz */
-        MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
-        MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));
-
-        /* t0 = 2y^2 , t1 = 8y^4 */
-        MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
-        MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
-        MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
-        MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));
-
-        /* S = 4 * px * py^2 = 2 * px * t0 */
-        MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
-        MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));
-
-
-        /* rx = M^2 - 2S */
-        MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
-        MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
-        MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
-
-        /* ry = M * (S - rx) - t1 */
-        MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
-        MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
-        MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));
-
-        /* ra*z^4 = 2*t1*(apz4) */
-        MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
-        MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));
-
-
-  CLEANUP:
-        return res;
-}
-
-/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
- * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
- * Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
- * already field-encoded using field_enc, and returns output that is still
- * field-encoded. */
-mp_err
-ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
-                                         const mp_int *paz4, const mp_int *qx,
-                                         const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
-                                         mp_int *raz4, mp_int scratch[], const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int *A, *B, *C, *D, *C2, *C3;
-
-        A = &scratch[0];
-        B = &scratch[1];
-        C = &scratch[2];
-        D = &scratch[3];
-        C2 = &scratch[4];
-        C3 = &scratch[5];
-
-#if MAX_SCRATCH < 6
-#error "Scratch array defined too small "
-#endif
-
-        /* If either P or Q is the point at infinity, then return the other
-         * point */
-        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
-                MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
-                MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
-                MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
-                MP_CHECKOK(group->meth->
-                                   field_mul(raz4, &group->curvea, raz4, group->meth));
-                goto CLEANUP;
-        }
-        if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
-                MP_CHECKOK(mp_copy(px, rx));
-                MP_CHECKOK(mp_copy(py, ry));
-                MP_CHECKOK(mp_copy(pz, rz));
-                MP_CHECKOK(mp_copy(paz4, raz4));
-                goto CLEANUP;
-        }
-
-        /* A = qx * pz^2, B = qy * pz^3 */
-        MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
-        MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
-        MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
-        MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));
-
-        /* C = A - px, D = B - py */
-        MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
-        MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));
-
-        /* C2 = C^2, C3 = C^3 */
-        MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
-        MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));
-
-        /* rz = pz * C */
-        MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));
-
-        /* C = px * C^2 */
-        MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
-        /* A = D^2 */
-        MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));
-
-        /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
-        MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
-        MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
-        MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));
-
-        /* C3 = py * C^3 */
-        MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));
-
-        /* ry = D * (px * C^2 - rx) - py * C^3 */
-        MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
-        MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
-        MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));
-
-        /* raz4 = a * rz^4 */
-        MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
-        MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
-        MP_CHECKOK(group->meth->
-                           field_mul(raz4, &group->curvea, raz4, group->meth));
-CLEANUP:
-        return res;
-}
-
-/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
- * curve points P and R can be identical. Uses mixed Modified-Jacobian
- * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
- * additions. Assumes input is already field-encoded using field_enc, and
- * returns output that is still field-encoded. Uses 5-bit window NAF
- * method (algorithm 11) for scalar-point multiplication from Brown,
- * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
- * Curves Over Prime Fields. */
-mp_err
-ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
-                                          mp_int *rx, mp_int *ry, const ECGroup *group)
-{
-        mp_err res = MP_OKAY;
-        mp_int precomp[16][2], rz, tpx, tpy;
-        mp_int raz4;
-        mp_int scratch[MAX_SCRATCH];
-        signed char *naf = NULL;
-        int i, orderBitSize;
-
-        MP_DIGITS(&rz) = 0;
-        MP_DIGITS(&raz4) = 0;
-        MP_DIGITS(&tpx) = 0;
-        MP_DIGITS(&tpy) = 0;
-        for (i = 0; i < 16; i++) {
-                MP_DIGITS(&precomp[i][0]) = 0;
-                MP_DIGITS(&precomp[i][1]) = 0;
-        }
-        for (i = 0; i < MAX_SCRATCH; i++) {
-                MP_DIGITS(&scratch[i]) = 0;
-        }
-
-        ARGCHK(group != NULL, MP_BADARG);
-        ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
-
-        /* initialize precomputation table */
-        MP_CHECKOK(mp_init(&tpx, FLAG(n)));
-        MP_CHECKOK(mp_init(&tpy, FLAG(n)));;
-        MP_CHECKOK(mp_init(&rz, FLAG(n)));
-        MP_CHECKOK(mp_init(&raz4, FLAG(n)));
-
-        for (i = 0; i < 16; i++) {
-                MP_CHECKOK(mp_init(&precomp[i][0], FLAG(n)));
-                MP_CHECKOK(mp_init(&precomp[i][1], FLAG(n)));
-        }
-        for (i = 0; i < MAX_SCRATCH; i++) {
-                MP_CHECKOK(mp_init(&scratch[i], FLAG(n)));
-        }
-
-        /* Set out[8] = P */
-        MP_CHECKOK(mp_copy(px, &precomp[8][0]));
-        MP_CHECKOK(mp_copy(py, &precomp[8][1]));
-
-        /* Set (tpx, tpy) = 2P */
-        MP_CHECKOK(group->
-                           point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
-                                                 group));
-
-        /* Set 3P, 5P, ..., 15P */
-        for (i = 8; i < 15; i++) {
-                MP_CHECKOK(group->
-                                   point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
-                                                         &precomp[i + 1][0], &precomp[i + 1][1],
-                                                         group));
-        }
-
-        /* Set -15P, -13P, ..., -P */
-        for (i = 0; i < 8; i++) {
-                MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
-                MP_CHECKOK(group->meth->
-                                   field_neg(&precomp[15 - i][1], &precomp[i][1],
-                                                         group->meth));
-        }
-
-        /* R = inf */
-        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
-
-        orderBitSize = mpl_significant_bits(&group->order);
-
-        /* Allocate memory for NAF */
-#ifdef _KERNEL
-        naf = (signed char *) kmem_alloc((orderBitSize + 1), FLAG(n));
-#else
-        naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
-        if (naf == NULL) {
-                res = MP_MEM;
-                goto CLEANUP;
-        }
-#endif
-
-        /* Compute 5NAF */
-        ec_compute_wNAF(naf, orderBitSize, n, 5);
-
-        /* wNAF method */
-        for (i = orderBitSize; i >= 0; i--) {
-                /* R = 2R */
-                ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz,
-                                             &raz4, scratch, group);
-                if (naf[i] != 0) {
-                        ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
-                                                                 &precomp[(naf[i] + 15) / 2][0],
-                                                                 &precomp[(naf[i] + 15) / 2][1], rx, ry,
-                                                                 &rz, &raz4, scratch, group);
-                }
-        }
-
-        /* convert result S to affine coordinates */
-        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
-
-  CLEANUP:
-        for (i = 0; i < MAX_SCRATCH; i++) {
-                mp_clear(&scratch[i]);
-        }
-        for (i = 0; i < 16; i++) {
-                mp_clear(&precomp[i][0]);
-                mp_clear(&precomp[i][1]);
-        }
-        mp_clear(&tpx);
-        mp_clear(&tpy);
-        mp_clear(&rz);
-        mp_clear(&raz4);
-#ifdef _KERNEL
-        kmem_free(naf, (orderBitSize + 1));
-#else
-        free(naf);
-#endif
-        return res;
-}
--- a/jdk/src/share/native/sun/security/ec/ecp_mont.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,223 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the elliptic curve math library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/* Uses Montgomery reduction for field arithmetic.  See mpi/mpmontg.c for
- * code implementation. */
-
-#include "mpi.h"
-#include "mplogic.h"
-#include "mpi-priv.h"
-#include "ecl-priv.h"
-#include "ecp.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#include <stdio.h>
-#endif
-
-/* Construct a generic GFMethod for arithmetic over prime fields with
- * irreducible irr. */
-GFMethod *
-GFMethod_consGFp_mont(const mp_int *irr)
-{
-        mp_err res = MP_OKAY;
-        int i;
-        GFMethod *meth = NULL;
-        mp_mont_modulus *mmm;
-
-        meth = GFMethod_consGFp(irr);
-        if (meth == NULL)
-                return NULL;
-
-#ifdef _KERNEL
-        mmm = (mp_mont_modulus *) kmem_alloc(sizeof(mp_mont_modulus),
-            FLAG(irr));
-#else
-        mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus));
-#endif
-        if (mmm == NULL) {
-                res = MP_MEM;
-                goto CLEANUP;
-        }
-
-        meth->field_mul = &ec_GFp_mul_mont;
-        meth->field_sqr = &ec_GFp_sqr_mont;
-        meth->field_div = &ec_GFp_div_mont;
-        meth->field_enc = &ec_GFp_enc_mont;
-        meth->field_dec = &ec_GFp_dec_mont;
-        meth->extra1 = mmm;
-        meth->extra2 = NULL;
-        meth->extra_free = &ec_GFp_extra_free_mont;
-
-        mmm->N = meth->irr;
-        i = mpl_significant_bits(&meth->irr);
-        i += MP_DIGIT_BIT - 1;
-        mmm->b = i - i % MP_DIGIT_BIT;
-        mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0));
-
-  CLEANUP:
-        if (res != MP_OKAY) {
-                GFMethod_free(meth);
-                return NULL;
-        }
-        return meth;
-}
-
-/* Wrapper functions for generic prime field arithmetic. */
-
-/* Field multiplication using Montgomery reduction. */
-mp_err
-ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
-                                const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-#ifdef MP_MONT_USE_MP_MUL
-        /* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
-         * is not implemented and we have to use mp_mul and s_mp_redc directly
-         */
-        MP_CHECKOK(mp_mul(a, b, r));
-        MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
-#else
-        mp_int s;
-
-        MP_DIGITS(&s) = 0;
-        /* s_mp_mul_mont doesn't allow source and destination to be the same */
-        if ((a == r) || (b == r)) {
-                MP_CHECKOK(mp_init(&s, FLAG(a)));
-                MP_CHECKOK(s_mp_mul_mont
-                                   (a, b, &s, (mp_mont_modulus *) meth->extra1));
-                MP_CHECKOK(mp_copy(&s, r));
-                mp_clear(&s);
-        } else {
-                return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1);
-        }
-#endif
-  CLEANUP:
-        return res;
-}
-
-/* Field squaring using Montgomery reduction. */
-mp_err
-ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        return ec_GFp_mul_mont(a, a, r, meth);
-}
-
-/* Field division using Montgomery reduction. */
-mp_err
-ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
-                                const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        /* if A=aZ represents a encoded in montgomery coordinates with Z and #
-         * and \ respectively represent multiplication and division in
-         * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
-         * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
-        MP_CHECKOK(ec_GFp_div(a, b, r, meth));
-        MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
-        if (a == NULL) {
-                MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
-        }
-  CLEANUP:
-        return res;
-}
-
-/* Encode a field element in Montgomery form. See s_mp_to_mont in
- * mpi/mpmontg.c */
-mp_err
-ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_mont_modulus *mmm;
-        mp_err res = MP_OKAY;
-
-        mmm = (mp_mont_modulus *) meth->extra1;
-        MP_CHECKOK(mpl_lsh(a, r, mmm->b));
-        MP_CHECKOK(mp_mod(r, &mmm->N, r));
-  CLEANUP:
-        return res;
-}
-
-/* Decode a field element from Montgomery form. */
-mp_err
-ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
-{
-        mp_err res = MP_OKAY;
-
-        if (a != r) {
-                MP_CHECKOK(mp_copy(a, r));
-        }
-        MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
-  CLEANUP:
-        return res;
-}
-
-/* Free the memory allocated to the extra fields of Montgomery GFMethod
- * object. */
-void
-ec_GFp_extra_free_mont(GFMethod *meth)
-{
-        if (meth->extra1 != NULL) {
-#ifdef _KERNEL
-                kmem_free(meth->extra1, sizeof(mp_mont_modulus));
-#else
-                free(meth->extra1);
-#endif
-                meth->extra1 = NULL;
-        }
-}
--- a/jdk/src/share/native/sun/security/ec/logtab.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,82 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is
- * Netscape Communications Corporation.
- * Portions created by the Initial Developer are Copyright (C) 1994-2000
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _LOGTAB_H
-#define _LOGTAB_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-const float s_logv_2[] = {
-   0.000000000f, 0.000000000f, 1.000000000f, 0.630929754f,  /*  0  1  2  3 */
-   0.500000000f, 0.430676558f, 0.386852807f, 0.356207187f,  /*  4  5  6  7 */
-   0.333333333f, 0.315464877f, 0.301029996f, 0.289064826f,  /*  8  9 10 11 */
-   0.278942946f, 0.270238154f, 0.262649535f, 0.255958025f,  /* 12 13 14 15 */
-   0.250000000f, 0.244650542f, 0.239812467f, 0.235408913f,  /* 16 17 18 19 */
-   0.231378213f, 0.227670249f, 0.224243824f, 0.221064729f,  /* 20 21 22 23 */
-   0.218104292f, 0.215338279f, 0.212746054f, 0.210309918f,  /* 24 25 26 27 */
-   0.208014598f, 0.205846832f, 0.203795047f, 0.201849087f,  /* 28 29 30 31 */
-   0.200000000f, 0.198239863f, 0.196561632f, 0.194959022f,  /* 32 33 34 35 */
-   0.193426404f, 0.191958720f, 0.190551412f, 0.189200360f,  /* 36 37 38 39 */
-   0.187901825f, 0.186652411f, 0.185449023f, 0.184288833f,  /* 40 41 42 43 */
-   0.183169251f, 0.182087900f, 0.181042597f, 0.180031327f,  /* 44 45 46 47 */
-   0.179052232f, 0.178103594f, 0.177183820f, 0.176291434f,  /* 48 49 50 51 */
-   0.175425064f, 0.174583430f, 0.173765343f, 0.172969690f,  /* 52 53 54 55 */
-   0.172195434f, 0.171441601f, 0.170707280f, 0.169991616f,  /* 56 57 58 59 */
-   0.169293808f, 0.168613099f, 0.167948779f, 0.167300179f,  /* 60 61 62 63 */
-   0.166666667f
-};
-
-#endif /* _LOGTAB_H */
--- a/jdk/src/share/native/sun/security/ec/mp_gf2m-priv.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,122 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Sheueling Chang Shantz <sheueling.chang@sun.com> and
- *   Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _MP_GF2M_PRIV_H_
-#define _MP_GF2M_PRIV_H_
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "mpi-priv.h"
-
-extern const mp_digit mp_gf2m_sqr_tb[16];
-
-#if defined(MP_USE_UINT_DIGIT)
-#define MP_DIGIT_BITS 32
-#else
-#define MP_DIGIT_BITS 64
-#endif
-
-/* Platform-specific macros for fast binary polynomial squaring. */
-#if MP_DIGIT_BITS == 32
-#define gf2m_SQR1(w) \
-    mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 16 | \
-    mp_gf2m_sqr_tb[(w) >> 20 & 0xF] <<  8 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF]
-#define gf2m_SQR0(w) \
-    mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >>  8 & 0xF] << 16 | \
-    mp_gf2m_sqr_tb[(w) >>  4 & 0xF] <<  8 | mp_gf2m_sqr_tb[(w)       & 0xF]
-#else
-#define gf2m_SQR1(w) \
-    mp_gf2m_sqr_tb[(w) >> 60 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 56 & 0xF] << 48 | \
-    mp_gf2m_sqr_tb[(w) >> 52 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 48 & 0xF] << 32 | \
-    mp_gf2m_sqr_tb[(w) >> 44 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 40 & 0xF] << 16 | \
-    mp_gf2m_sqr_tb[(w) >> 36 & 0xF] <<  8 | mp_gf2m_sqr_tb[(w) >> 32 & 0xF]
-#define gf2m_SQR0(w) \
-    mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 48 | \
-    mp_gf2m_sqr_tb[(w) >> 20 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF] << 32 | \
-    mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >>  8 & 0xF] << 16 | \
-    mp_gf2m_sqr_tb[(w) >>  4 & 0xF] <<  8 | mp_gf2m_sqr_tb[(w)       & 0xF]
-#endif
-
-/* Multiply two binary polynomials mp_digits a, b.
- * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
- * Output in two mp_digits rh, rl.
- */
-void s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b);
-
-/* Compute xor-multiply of two binary polynomials  (a1, a0) x (b1, b0)
- * result is a binary polynomial in 4 mp_digits r[4].
- * The caller MUST ensure that r has the right amount of space allocated.
- */
-void s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
-        const mp_digit b0);
-
-/* Compute xor-multiply of two binary polynomials  (a2, a1, a0) x (b2, b1, b0)
- * result is a binary polynomial in 6 mp_digits r[6].
- * The caller MUST ensure that r has the right amount of space allocated.
- */
-void s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
-        const mp_digit b2, const mp_digit b1, const mp_digit b0);
-
-/* Compute xor-multiply of two binary polynomials  (a3, a2, a1, a0) x (b3, b2, b1, b0)
- * result is a binary polynomial in 8 mp_digits r[8].
- * The caller MUST ensure that r has the right amount of space allocated.
- */
-void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
-        const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
-        const mp_digit b0);
-
-#endif /* _MP_GF2M_PRIV_H_ */
--- a/jdk/src/share/native/sun/security/ec/mp_gf2m.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,624 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Sheueling Chang Shantz <sheueling.chang@sun.com> and
- *   Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "mp_gf2m.h"
-#include "mp_gf2m-priv.h"
-#include "mplogic.h"
-#include "mpi-priv.h"
-
-const mp_digit mp_gf2m_sqr_tb[16] =
-{
-      0,     1,     4,     5,    16,    17,    20,    21,
-     64,    65,    68,    69,    80,    81,    84,    85
-};
-
-/* Multiply two binary polynomials mp_digits a, b.
- * Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
- * Output in two mp_digits rh, rl.
- */
-#if MP_DIGIT_BITS == 32
-void
-s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
-{
-    register mp_digit h, l, s;
-    mp_digit tab[8], top2b = a >> 30;
-    register mp_digit a1, a2, a4;
-
-    a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
-
-    tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
-    tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
-
-    s = tab[b       & 0x7]; l  = s;
-    s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
-    s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
-    s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
-    s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
-    s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
-    s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
-    s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
-    s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
-    s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
-    s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
-
-    /* compensate for the top two bits of a */
-
-    if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
-    if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
-
-    *rh = h; *rl = l;
-}
-#else
-void
-s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
-{
-    register mp_digit h, l, s;
-    mp_digit tab[16], top3b = a >> 61;
-    register mp_digit a1, a2, a4, a8;
-
-    a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1;
-    a4 = a2 << 1; a8 = a4 << 1;
-    tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
-    tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
-    tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
-    tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
-
-    s = tab[b       & 0xF]; l  = s;
-    s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
-    s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
-    s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
-    s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
-    s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
-    s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
-    s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
-    s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
-    s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
-    s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
-    s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
-    s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
-    s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
-    s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
-    s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
-
-    /* compensate for the top three bits of a */
-
-    if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
-    if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
-    if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
-
-    *rh = h; *rl = l;
-}
-#endif
-
-/* Compute xor-multiply of two binary polynomials  (a1, a0) x (b1, b0)
- * result is a binary polynomial in 4 mp_digits r[4].
- * The caller MUST ensure that r has the right amount of space allocated.
- */
-void
-s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
-           const mp_digit b0)
-{
-    mp_digit m1, m0;
-    /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
-    s_bmul_1x1(r+3, r+2, a1, b1);
-    s_bmul_1x1(r+1, r, a0, b0);
-    s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
-    /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
-    r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
-    r[1]  = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
-}
-
-/* Compute xor-multiply of two binary polynomials  (a2, a1, a0) x (b2, b1, b0)
- * result is a binary polynomial in 6 mp_digits r[6].
- * The caller MUST ensure that r has the right amount of space allocated.
- */
-void
-s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
-        const mp_digit b2, const mp_digit b1, const mp_digit b0)
-{
-        mp_digit zm[4];
-
-        s_bmul_1x1(r+5, r+4, a2, b2);         /* fill top 2 words */
-        s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */
-        s_bmul_2x2(r, a1, a0, b1, b0);        /* fill bottom 4 words */
-
-        zm[3] ^= r[3];
-        zm[2] ^= r[2];
-        zm[1] ^= r[1] ^ r[5];
-        zm[0] ^= r[0] ^ r[4];
-
-        r[5]  ^= zm[3];
-        r[4]  ^= zm[2];
-        r[3]  ^= zm[1];
-        r[2]  ^= zm[0];
-}
-
-/* Compute xor-multiply of two binary polynomials  (a3, a2, a1, a0) x (b3, b2, b1, b0)
- * result is a binary polynomial in 8 mp_digits r[8].
- * The caller MUST ensure that r has the right amount of space allocated.
- */
-void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
-        const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
-        const mp_digit b0)
-{
-        mp_digit zm[4];
-
-        s_bmul_2x2(r+4, a3, a2, b3, b2);            /* fill top 4 words */
-        s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */
-        s_bmul_2x2(r, a1, a0, b1, b0);              /* fill bottom 4 words */
-
-        zm[3] ^= r[3] ^ r[7];
-        zm[2] ^= r[2] ^ r[6];
-        zm[1] ^= r[1] ^ r[5];
-        zm[0] ^= r[0] ^ r[4];
-
-        r[5]  ^= zm[3];
-        r[4]  ^= zm[2];
-        r[3]  ^= zm[1];
-        r[2]  ^= zm[0];
-}
-
-/* Compute addition of two binary polynomials a and b,
- * store result in c; c could be a or b, a and b could be equal;
- * c is the bitwise XOR of a and b.
- */
-mp_err
-mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
-{
-    mp_digit *pa, *pb, *pc;
-    mp_size ix;
-    mp_size used_pa, used_pb;
-    mp_err res = MP_OKAY;
-
-    /* Add all digits up to the precision of b.  If b had more
-     * precision than a initially, swap a, b first
-     */
-    if (MP_USED(a) >= MP_USED(b)) {
-        pa = MP_DIGITS(a);
-        pb = MP_DIGITS(b);
-        used_pa = MP_USED(a);
-        used_pb = MP_USED(b);
-    } else {
-        pa = MP_DIGITS(b);
-        pb = MP_DIGITS(a);
-        used_pa = MP_USED(b);
-        used_pb = MP_USED(a);
-    }
-
-    /* Make sure c has enough precision for the output value */
-    MP_CHECKOK( s_mp_pad(c, used_pa) );
-
-    /* Do word-by-word xor */
-    pc = MP_DIGITS(c);
-    for (ix = 0; ix < used_pb; ix++) {
-        (*pc++) = (*pa++) ^ (*pb++);
-    }
-
-    /* Finish the rest of digits until we're actually done */
-    for (; ix < used_pa; ++ix) {
-        *pc++ = *pa++;
-    }
-
-    MP_USED(c) = used_pa;
-    MP_SIGN(c) = ZPOS;
-    s_mp_clamp(c);
-
-CLEANUP:
-    return res;
-}
-
-#define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) );
-
-/* Compute binary polynomial multiply d = a * b */
-static void
-s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
-{
-    mp_digit a_i, a0b0, a1b1, carry = 0;
-    while (a_len--) {
-        a_i = *a++;
-        s_bmul_1x1(&a1b1, &a0b0, a_i, b);
-        *d++ = a0b0 ^ carry;
-        carry = a1b1;
-    }
-    *d = carry;
-}
-
-/* Compute binary polynomial xor multiply accumulate d ^= a * b */
-static void
-s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
-{
-    mp_digit a_i, a0b0, a1b1, carry = 0;
-    while (a_len--) {
-        a_i = *a++;
-        s_bmul_1x1(&a1b1, &a0b0, a_i, b);
-        *d++ ^= a0b0 ^ carry;
-        carry = a1b1;
-    }
-    *d ^= carry;
-}
-
-/* Compute binary polynomial xor multiply c = a * b.
- * All parameters may be identical.
- */
-mp_err
-mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
-{
-    mp_digit *pb, b_i;
-    mp_int tmp;
-    mp_size ib, a_used, b_used;
-    mp_err res = MP_OKAY;
-
-    MP_DIGITS(&tmp) = 0;
-
-    ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-    if (a == c) {
-        MP_CHECKOK( mp_init_copy(&tmp, a) );
-        if (a == b)
-            b = &tmp;
-        a = &tmp;
-    } else if (b == c) {
-        MP_CHECKOK( mp_init_copy(&tmp, b) );
-        b = &tmp;
-    }
-
-    if (MP_USED(a) < MP_USED(b)) {
-        const mp_int *xch = b;      /* switch a and b if b longer */
-        b = a;
-        a = xch;
-    }
-
-    MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
-    MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) );
-
-    pb = MP_DIGITS(b);
-    s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
-
-    /* Outer loop:  Digits of b */
-    a_used = MP_USED(a);
-    b_used = MP_USED(b);
-        MP_USED(c) = a_used + b_used;
-    for (ib = 1; ib < b_used; ib++) {
-        b_i = *pb++;
-
-        /* Inner product:  Digits of a */
-        if (b_i)
-            s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
-        else
-            MP_DIGIT(c, ib + a_used) = b_i;
-    }
-
-    s_mp_clamp(c);
-
-    SIGN(c) = ZPOS;
-
-CLEANUP:
-    mp_clear(&tmp);
-    return res;
-}
-
-
-/* Compute modular reduction of a and store result in r.
- * r could be a.
- * For modular arithmetic, the irreducible polynomial f(t) is represented
- * as an array of int[], where f(t) is of the form:
- *     f(t) = t^p[0] + t^p[1] + ... + t^p[k]
- * where m = p[0] > p[1] > ... > p[k] = 0.
- */
-mp_err
-mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
-{
-    int j, k;
-    int n, dN, d0, d1;
-    mp_digit zz, *z, tmp;
-    mp_size used;
-    mp_err res = MP_OKAY;
-
-    /* The algorithm does the reduction in place in r,
-     * if a != r, copy a into r first so reduction can be done in r
-     */
-    if (a != r) {
-        MP_CHECKOK( mp_copy(a, r) );
-    }
-    z = MP_DIGITS(r);
-
-    /* start reduction */
-    dN = p[0] / MP_DIGIT_BITS;
-    used = MP_USED(r);
-
-    for (j = used - 1; j > dN;) {
-
-        zz = z[j];
-        if (zz == 0) {
-            j--; continue;
-        }
-        z[j] = 0;
-
-        for (k = 1; p[k] > 0; k++) {
-            /* reducing component t^p[k] */
-            n = p[0] - p[k];
-            d0 = n % MP_DIGIT_BITS;
-            d1 = MP_DIGIT_BITS - d0;
-            n /= MP_DIGIT_BITS;
-            z[j-n] ^= (zz>>d0);
-            if (d0)
-                z[j-n-1] ^= (zz<<d1);
-        }
-
-        /* reducing component t^0 */
-        n = dN;
-        d0 = p[0] % MP_DIGIT_BITS;
-        d1 = MP_DIGIT_BITS - d0;
-        z[j-n] ^= (zz >> d0);
-        if (d0)
-            z[j-n-1] ^= (zz << d1);
-
-    }
-
-    /* final round of reduction */
-    while (j == dN) {
-
-        d0 = p[0] % MP_DIGIT_BITS;
-        zz = z[dN] >> d0;
-        if (zz == 0) break;
-        d1 = MP_DIGIT_BITS - d0;
-
-        /* clear up the top d1 bits */
-        if (d0) z[dN] = (z[dN] << d1) >> d1;
-        *z ^= zz; /* reduction t^0 component */
-
-        for (k = 1; p[k] > 0; k++) {
-            /* reducing component t^p[k]*/
-            n = p[k] / MP_DIGIT_BITS;
-            d0 = p[k] % MP_DIGIT_BITS;
-            d1 = MP_DIGIT_BITS - d0;
-            z[n] ^= (zz << d0);
-            tmp = zz >> d1;
-            if (d0 && tmp)
-                z[n+1] ^= tmp;
-        }
-    }
-
-    s_mp_clamp(r);
-CLEANUP:
-    return res;
-}
-
-/* Compute the product of two polynomials a and b, reduce modulo p,
- * Store the result in r.  r could be a or b; a could be b.
- */
-mp_err
-mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
-{
-    mp_err res;
-
-    if (a == b) return mp_bsqrmod(a, p, r);
-    if ((res = mp_bmul(a, b, r) ) != MP_OKAY)
-        return res;
-    return mp_bmod(r, p, r);
-}
-
-/* Compute binary polynomial squaring c = a*a mod p .
- * Parameter r and a can be identical.
- */
-
-mp_err
-mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
-{
-    mp_digit *pa, *pr, a_i;
-    mp_int tmp;
-    mp_size ia, a_used;
-    mp_err res;
-
-    ARGCHK(a != NULL && r != NULL, MP_BADARG);
-    MP_DIGITS(&tmp) = 0;
-
-    if (a == r) {
-        MP_CHECKOK( mp_init_copy(&tmp, a) );
-        a = &tmp;
-    }
-
-    MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
-    MP_CHECKOK( s_mp_pad(r, 2*USED(a)) );
-
-    pa = MP_DIGITS(a);
-    pr = MP_DIGITS(r);
-    a_used = MP_USED(a);
-        MP_USED(r) = 2 * a_used;
-
-    for (ia = 0; ia < a_used; ia++) {
-        a_i = *pa++;
-        *pr++ = gf2m_SQR0(a_i);
-        *pr++ = gf2m_SQR1(a_i);
-    }
-
-    MP_CHECKOK( mp_bmod(r, p, r) );
-    s_mp_clamp(r);
-    SIGN(r) = ZPOS;
-
-CLEANUP:
-    mp_clear(&tmp);
-    return res;
-}
-
-/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
- * Store the result in r. r could be x or y, and x could equal y.
- * Uses algorithm Modular_Division_GF(2^m) from
- *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
- *     the Great Divide".
- */
-int
-mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
-    const unsigned int p[], mp_int *r)
-{
-    mp_int aa, bb, uu;
-    mp_int *a, *b, *u, *v;
-    mp_err res = MP_OKAY;
-
-    MP_DIGITS(&aa) = 0;
-    MP_DIGITS(&bb) = 0;
-    MP_DIGITS(&uu) = 0;
-
-    MP_CHECKOK( mp_init_copy(&aa, x) );
-    MP_CHECKOK( mp_init_copy(&uu, y) );
-    MP_CHECKOK( mp_init_copy(&bb, pp) );
-    MP_CHECKOK( s_mp_pad(r, USED(pp)) );
-    MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
-
-    a = &aa; b= &bb; u=&uu; v=r;
-    /* reduce x and y mod p */
-    MP_CHECKOK( mp_bmod(a, p, a) );
-    MP_CHECKOK( mp_bmod(u, p, u) );
-
-    while (!mp_isodd(a)) {
-        s_mp_div2(a);
-        if (mp_isodd(u)) {
-            MP_CHECKOK( mp_badd(u, pp, u) );
-        }
-        s_mp_div2(u);
-    }
-
-    do {
-        if (mp_cmp_mag(b, a) > 0) {
-            MP_CHECKOK( mp_badd(b, a, b) );
-            MP_CHECKOK( mp_badd(v, u, v) );
-            do {
-                s_mp_div2(b);
-                if (mp_isodd(v)) {
-                    MP_CHECKOK( mp_badd(v, pp, v) );
-                }
-                s_mp_div2(v);
-            } while (!mp_isodd(b));
-        }
-        else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1))
-            break;
-        else {
-            MP_CHECKOK( mp_badd(a, b, a) );
-            MP_CHECKOK( mp_badd(u, v, u) );
-            do {
-                s_mp_div2(a);
-                if (mp_isodd(u)) {
-                    MP_CHECKOK( mp_badd(u, pp, u) );
-                }
-                s_mp_div2(u);
-            } while (!mp_isodd(a));
-        }
-    } while (1);
-
-    MP_CHECKOK( mp_copy(u, r) );
-
-CLEANUP:
-    /* XXX this appears to be a memory leak in the NSS code */
-    mp_clear(&aa);
-    mp_clear(&bb);
-    mp_clear(&uu);
-    return res;
-
-}
-
-/* Convert the bit-string representation of a polynomial a into an array
- * of integers corresponding to the bits with non-zero coefficient.
- * Up to max elements of the array will be filled.  Return value is total
- * number of coefficients that would be extracted if array was large enough.
- */
-int
-mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
-{
-    int i, j, k;
-    mp_digit top_bit, mask;
-
-    top_bit = 1;
-    top_bit <<= MP_DIGIT_BIT - 1;
-
-    for (k = 0; k < max; k++) p[k] = 0;
-    k = 0;
-
-    for (i = MP_USED(a) - 1; i >= 0; i--) {
-        mask = top_bit;
-        for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
-            if (MP_DIGITS(a)[i] & mask) {
-                if (k < max) p[k] = MP_DIGIT_BIT * i + j;
-                k++;
-            }
-            mask >>= 1;
-        }
-    }
-
-    return k;
-}
-
-/* Convert the coefficient array representation of a polynomial to a
- * bit-string.  The array must be terminated by 0.
- */
-mp_err
-mp_barr2poly(const unsigned int p[], mp_int *a)
-{
-
-    mp_err res = MP_OKAY;
-    int i;
-
-    mp_zero(a);
-    for (i = 0; p[i] > 0; i++) {
-        MP_CHECKOK( mpl_set_bit(a, p[i], 1) );
-    }
-    MP_CHECKOK( mpl_set_bit(a, 0, 1) );
-
-CLEANUP:
-    return res;
-}
--- a/jdk/src/share/native/sun/security/ec/mp_gf2m.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,83 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
- *
- * The Initial Developer of the Original Code is
- * Sun Microsystems, Inc.
- * Portions created by the Initial Developer are Copyright (C) 2003
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Sheueling Chang Shantz <sheueling.chang@sun.com> and
- *   Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _MP_GF2M_H_
-#define _MP_GF2M_H_
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "mpi.h"
-
-mp_err mp_badd(const mp_int *a, const mp_int *b, mp_int *c);
-mp_err mp_bmul(const mp_int *a, const mp_int *b, mp_int *c);
-
-/* For modular arithmetic, the irreducible polynomial f(t) is represented
- * as an array of int[], where f(t) is of the form:
- *     f(t) = t^p[0] + t^p[1] + ... + t^p[k]
- * where m = p[0] > p[1] > ... > p[k] = 0.
- */
-mp_err mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r);
-mp_err mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[],
-    mp_int *r);
-mp_err mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r);
-mp_err mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
-    const unsigned int p[], mp_int *r);
-
-int mp_bpoly2arr(const mp_int *a, unsigned int p[], int max);
-mp_err mp_barr2poly(const unsigned int p[], mp_int *a);
-
-#endif /* _MP_GF2M_H_ */
--- a/jdk/src/share/native/sun/security/ec/mpi-config.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,130 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
- *
- * The Initial Developer of the Original Code is
- * Michael J. Fromberger.
- * Portions created by the Initial Developer are Copyright (C) 1997
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Netscape Communications Corporation
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _MPI_CONFIG_H
-#define _MPI_CONFIG_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/* $Id: mpi-config.h,v 1.5 2004/04/25 15:03:10 gerv%gerv.net Exp $ */
-
-/*
-  For boolean options,
-  0 = no
-  1 = yes
-
-  Other options are documented individually.
-
- */
-
-#ifndef MP_IOFUNC
-#define MP_IOFUNC     0  /* include mp_print() ?                */
-#endif
-
-#ifndef MP_MODARITH
-#define MP_MODARITH   1  /* include modular arithmetic ?        */
-#endif
-
-#ifndef MP_NUMTH
-#define MP_NUMTH      1  /* include number theoretic functions? */
-#endif
-
-#ifndef MP_LOGTAB
-#define MP_LOGTAB     1  /* use table of logs instead of log()? */
-#endif
-
-#ifndef MP_MEMSET
-#define MP_MEMSET     1  /* use memset() to zero buffers?       */
-#endif
-
-#ifndef MP_MEMCPY
-#define MP_MEMCPY     1  /* use memcpy() to copy buffers?       */
-#endif
-
-#ifndef MP_CRYPTO
-#define MP_CRYPTO     1  /* erase memory on free?               */
-#endif
-
-#ifndef MP_ARGCHK
-/*
-  0 = no parameter checks
-  1 = runtime checks, continue execution and return an error to caller
-  2 = assertions; dump core on parameter errors
- */
-#ifdef DEBUG
-#define MP_ARGCHK     2  /* how to check input arguments        */
-#else
-#define MP_ARGCHK     1  /* how to check input arguments        */
-#endif
-#endif
-
-#ifndef MP_DEBUG
-#define MP_DEBUG      0  /* print diagnostic output?            */
-#endif
-
-#ifndef MP_DEFPREC
-#define MP_DEFPREC    64 /* default precision, in digits        */
-#endif
-
-#ifndef MP_MACRO
-#define MP_MACRO      0  /* use macros for frequent calls?      */
-#endif
-
-#ifndef MP_SQUARE
-#define MP_SQUARE     1  /* use separate squaring code?         */
-#endif
-
-#endif /* _MPI_CONFIG_H */
--- a/jdk/src/share/native/sun/security/ec/mpi-priv.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,340 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- *  Arbitrary precision integer arithmetic library
- *
- *  NOTE WELL: the content of this header file is NOT part of the "public"
- *  API for the MPI library, and may change at any time.
- *  Application programs that use libmpi should NOT include this header file.
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
- *
- * The Initial Developer of the Original Code is
- * Michael J. Fromberger.
- * Portions created by the Initial Developer are Copyright (C) 1998
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Netscape Communications Corporation
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _MPI_PRIV_H
-#define _MPI_PRIV_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/* $Id: mpi-priv.h,v 1.20 2005/11/22 07:16:43 relyea%netscape.com Exp $ */
-
-#include "mpi.h"
-#ifndef _KERNEL
-#include <stdlib.h>
-#include <string.h>
-#include <ctype.h>
-#endif /* _KERNEL */
-
-#if MP_DEBUG
-#include <stdio.h>
-
-#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
-#else
-#define DIAG(T,V)
-#endif
-
-/* If we aren't using a wired-in logarithm table, we need to include
-   the math library to get the log() function
- */
-
-/* {{{ s_logv_2[] - log table for 2 in various bases */
-
-#if MP_LOGTAB
-/*
-  A table of the logs of 2 for various bases (the 0 and 1 entries of
-  this table are meaningless and should not be referenced).
-
-  This table is used to compute output lengths for the mp_toradix()
-  function.  Since a number n in radix r takes up about log_r(n)
-  digits, we estimate the output size by taking the least integer
-  greater than log_r(n), where:
-
-  log_r(n) = log_2(n) * log_r(2)
-
-  This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
-  which are the output bases supported.
- */
-
-extern const float s_logv_2[];
-#define LOG_V_2(R)  s_logv_2[(R)]
-
-#else
-
-/*
-   If MP_LOGTAB is not defined, use the math library to compute the
-   logarithms on the fly.  Otherwise, use the table.
-   Pick which works best for your system.
- */
-
-#include <math.h>
-#define LOG_V_2(R)  (log(2.0)/log(R))
-
-#endif /* if MP_LOGTAB */
-
-/* }}} */
-
-/* {{{ Digit arithmetic macros */
-
-/*
-  When adding and multiplying digits, the results can be larger than
-  can be contained in an mp_digit.  Thus, an mp_word is used.  These
-  macros mask off the upper and lower digits of the mp_word (the
-  mp_word may be more than 2 mp_digits wide, but we only concern
-  ourselves with the low-order 2 mp_digits)
- */
-
-#define  CARRYOUT(W)  (mp_digit)((W)>>DIGIT_BIT)
-#define  ACCUM(W)     (mp_digit)(W)
-
-#define MP_MIN(a,b)   (((a) < (b)) ? (a) : (b))
-#define MP_MAX(a,b)   (((a) > (b)) ? (a) : (b))
-#define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
-#define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))
-
-/* }}} */
-
-/* {{{ Comparison constants */
-
-#define  MP_LT       -1
-#define  MP_EQ        0
-#define  MP_GT        1
-
-/* }}} */
-
-/* {{{ private function declarations */
-
-/*
-   If MP_MACRO is false, these will be defined as actual functions;
-   otherwise, suitable macro definitions will be used.  This works
-   around the fact that ANSI C89 doesn't support an 'inline' keyword
-   (although I hear C9x will ... about bloody time).  At present, the
-   macro definitions are identical to the function bodies, but they'll
-   expand in place, instead of generating a function call.
-
-   I chose these particular functions to be made into macros because
-   some profiling showed they are called a lot on a typical workload,
-   and yet they are primarily housekeeping.
- */
-#if MP_MACRO == 0
- void     s_mp_setz(mp_digit *dp, mp_size count); /* zero digits           */
- void     s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
- void    *s_mp_alloc(size_t nb, size_t ni, int flag); /* general allocator    */
- void     s_mp_free(void *ptr, mp_size);          /* general free function */
-extern unsigned long mp_allocs;
-extern unsigned long mp_frees;
-extern unsigned long mp_copies;
-#else
-
- /* Even if these are defined as macros, we need to respect the settings
-    of the MP_MEMSET and MP_MEMCPY configuration options...
-  */
- #if MP_MEMSET == 0
-  #define  s_mp_setz(dp, count) \
-       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
- #else
-  #define  s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
- #endif /* MP_MEMSET */
-
- #if MP_MEMCPY == 0
-  #define  s_mp_copy(sp, dp, count) \
-       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
- #else
-  #define  s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
- #endif /* MP_MEMCPY */
-
- #define  s_mp_alloc(nb, ni)  calloc(nb, ni)
- #define  s_mp_free(ptr) {if(ptr) free(ptr);}
-#endif /* MP_MACRO */
-
-mp_err   s_mp_grow(mp_int *mp, mp_size min);   /* increase allocated size */
-mp_err   s_mp_pad(mp_int *mp, mp_size min);    /* left pad with zeroes    */
-
-#if MP_MACRO == 0
- void     s_mp_clamp(mp_int *mp);               /* clip leading zeroes     */
-#else
- #define  s_mp_clamp(mp)\
-  { mp_size used = MP_USED(mp); \
-    while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \
-    MP_USED(mp) = used; \
-  }
-#endif /* MP_MACRO */
-
-void     s_mp_exch(mp_int *a, mp_int *b);      /* swap a and b in place   */
-
-mp_err   s_mp_lshd(mp_int *mp, mp_size p);     /* left-shift by p digits  */
-void     s_mp_rshd(mp_int *mp, mp_size p);     /* right-shift by p digits */
-mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d);  /* multiply by 2^d in place */
-void     s_mp_div_2d(mp_int *mp, mp_digit d);  /* divide by 2^d in place  */
-void     s_mp_mod_2d(mp_int *mp, mp_digit d);  /* modulo 2^d in place     */
-void     s_mp_div_2(mp_int *mp);               /* divide by 2 in place    */
-mp_err   s_mp_mul_2(mp_int *mp);               /* multiply by 2 in place  */
-mp_err   s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
-                                               /* normalize for division  */
-mp_err   s_mp_add_d(mp_int *mp, mp_digit d);   /* unsigned digit addition */
-mp_err   s_mp_sub_d(mp_int *mp, mp_digit d);   /* unsigned digit subtract */
-mp_err   s_mp_mul_d(mp_int *mp, mp_digit d);   /* unsigned digit multiply */
-mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
-                                               /* unsigned digit divide   */
-mp_err   s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
-                                               /* Barrett reduction       */
-mp_err   s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition      */
-mp_err   s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
-mp_err   s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract      */
-mp_err   s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
-mp_err   s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
-                                               /* a += b * RADIX^offset   */
-mp_err   s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply      */
-#if MP_SQUARE
-mp_err   s_mp_sqr(mp_int *a);                  /* magnitude square        */
-#else
-#define  s_mp_sqr(a) s_mp_mul(a, a)
-#endif
-mp_err   s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
-mp_err   s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
-mp_err   s_mp_2expt(mp_int *a, mp_digit k);    /* a = 2^k                 */
-int      s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
-int      s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
-int      s_mp_ispow2(const mp_int *v);         /* is v a power of 2?      */
-int      s_mp_ispow2d(mp_digit d);             /* is d a power of 2?      */
-
-int      s_mp_tovalue(char ch, int r);          /* convert ch to value    */
-char     s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
-int      s_mp_outlen(int bits, int r);          /* output length in bytes */
-mp_digit s_mp_invmod_radix(mp_digit P);   /* returns (P ** -1) mod RADIX */
-mp_err   s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
-mp_err   s_mp_invmod_2d(    const mp_int *a, mp_size k,       mp_int *c);
-mp_err   s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
-
-#ifdef NSS_USE_COMBA
-
-#define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))
-
-void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
-void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
-void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
-void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);
-
-void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
-void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
-void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
-void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);
-
-#endif /* end NSS_USE_COMBA */
-
-/* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
-#if defined (__OS2__) && defined (__IBMC__)
-#define MPI_ASM_DECL __cdecl
-#else
-#define MPI_ASM_DECL
-#endif
-
-#ifdef MPI_AMD64
-
-mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit);
-mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit);
-
-/* c = a * b */
-#define s_mpv_mul_d(a, a_len, b, c) \
-        ((unsigned long*)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)
-
-/* c += a * b */
-#define s_mpv_mul_d_add(a, a_len, b, c) \
-        ((unsigned long*)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)
-
-#else
-
-void     MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
-                                        mp_digit b, mp_digit *c);
-void     MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
-                                            mp_digit b, mp_digit *c);
-
-#endif
-
-void     MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
-                                                mp_size a_len, mp_digit b,
-                                                mp_digit *c);
-void     MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
-                                                mp_size a_len,
-                                                mp_digit *sqrs);
-
-mp_err   MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
-                            mp_digit divisor, mp_digit *quot, mp_digit *rem);
-
-/* c += a * b * (MP_RADIX ** offset);  */
-#define s_mp_mul_d_add_offset(a, b, c, off) \
-(s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)
-
-typedef struct {
-  mp_int       N;       /* modulus N */
-  mp_digit     n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
-  mp_size      b;       /* R == 2 ** b,  also b = # significant bits in N */
-} mp_mont_modulus;
-
-mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
-                       mp_mont_modulus *mmm);
-mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
-
-/*
- * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
- * if a cache exists, or zero if there is no cache. If more than one
- * cache line exists, it should return the smallest line size (which is
- * usually the L1 cache).
- *
- * mp_modexp uses this information to make sure that private key information
- * isn't being leaked through the cache.
- *
- * see mpcpucache.c for the implementation.
- */
-unsigned long s_mpi_getProcessorLineSize();
-
-/* }}} */
-#endif /* _MPI_PRIV_H */
--- a/jdk/src/share/native/sun/security/ec/mpi.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,4886 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- *
- *  Arbitrary precision integer arithmetic library
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
- *
- * The Initial Developer of the Original Code is
- * Michael J. Fromberger.
- * Portions created by the Initial Developer are Copyright (C) 1998
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Netscape Communications Corporation
- *   Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/* $Id: mpi.c,v 1.45 2006/09/29 20:12:21 alexei.volkov.bugs%sun.com Exp $ */
-
-#include "mpi-priv.h"
-#if defined(OSF1)
-#include <c_asm.h>
-#endif
-
-#if MP_LOGTAB
-/*
-  A table of the logs of 2 for various bases (the 0 and 1 entries of
-  this table are meaningless and should not be referenced).
-
-  This table is used to compute output lengths for the mp_toradix()
-  function.  Since a number n in radix r takes up about log_r(n)
-  digits, we estimate the output size by taking the least integer
-  greater than log_r(n), where:
-
-  log_r(n) = log_2(n) * log_r(2)
-
-  This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
-  which are the output bases supported.
- */
-#include "logtab.h"
-#endif
-
-/* {{{ Constant strings */
-
-/* Constant strings returned by mp_strerror() */
-static const char *mp_err_string[] = {
-  "unknown result code",     /* say what?            */
-  "boolean true",            /* MP_OKAY, MP_YES      */
-  "boolean false",           /* MP_NO                */
-  "out of memory",           /* MP_MEM               */
-  "argument out of range",   /* MP_RANGE             */
-  "invalid input parameter", /* MP_BADARG            */
-  "result is undefined"      /* MP_UNDEF             */
-};
-
-/* Value to digit maps for radix conversion   */
-
-/* s_dmap_1 - standard digits and letters */
-static const char *s_dmap_1 =
-  "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
-
-/* }}} */
-
-unsigned long mp_allocs;
-unsigned long mp_frees;
-unsigned long mp_copies;
-
-/* {{{ Default precision manipulation */
-
-/* Default precision for newly created mp_int's      */
-static mp_size s_mp_defprec = MP_DEFPREC;
-
-mp_size mp_get_prec(void)
-{
-  return s_mp_defprec;
-
-} /* end mp_get_prec() */
-
-void         mp_set_prec(mp_size prec)
-{
-  if(prec == 0)
-    s_mp_defprec = MP_DEFPREC;
-  else
-    s_mp_defprec = prec;
-
-} /* end mp_set_prec() */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ mp_init(mp, kmflag) */
-
-/*
-  mp_init(mp, kmflag)
-
-  Initialize a new zero-valued mp_int.  Returns MP_OKAY if successful,
-  MP_MEM if memory could not be allocated for the structure.
- */
-
-mp_err mp_init(mp_int *mp, int kmflag)
-{
-  return mp_init_size(mp, s_mp_defprec, kmflag);
-
-} /* end mp_init() */
-
-/* }}} */
-
-/* {{{ mp_init_size(mp, prec, kmflag) */
-
-/*
-  mp_init_size(mp, prec, kmflag)
-
-  Initialize a new zero-valued mp_int with at least the given
-  precision; returns MP_OKAY if successful, or MP_MEM if memory could
-  not be allocated for the structure.
- */
-
-mp_err mp_init_size(mp_int *mp, mp_size prec, int kmflag)
-{
-  ARGCHK(mp != NULL && prec > 0, MP_BADARG);
-
-  prec = MP_ROUNDUP(prec, s_mp_defprec);
-  if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit), kmflag)) == NULL)
-    return MP_MEM;
-
-  SIGN(mp) = ZPOS;
-  USED(mp) = 1;
-  ALLOC(mp) = prec;
-
-  return MP_OKAY;
-
-} /* end mp_init_size() */
-
-/* }}} */
-
-/* {{{ mp_init_copy(mp, from) */
-
-/*
-  mp_init_copy(mp, from)
-
-  Initialize mp as an exact copy of from.  Returns MP_OKAY if
-  successful, MP_MEM if memory could not be allocated for the new
-  structure.
- */
-
-mp_err mp_init_copy(mp_int *mp, const mp_int *from)
-{
-  ARGCHK(mp != NULL && from != NULL, MP_BADARG);
-
-  if(mp == from)
-    return MP_OKAY;
-
-  if((DIGITS(mp) = s_mp_alloc(ALLOC(from), sizeof(mp_digit), FLAG(from))) == NULL)
-    return MP_MEM;
-
-  s_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
-  USED(mp) = USED(from);
-  ALLOC(mp) = ALLOC(from);
-  SIGN(mp) = SIGN(from);
-
-#ifndef _WIN32
-  FLAG(mp) = FLAG(from);
-#endif /* _WIN32 */
-
-  return MP_OKAY;
-
-} /* end mp_init_copy() */
-
-/* }}} */
-
-/* {{{ mp_copy(from, to) */
-
-/*
-  mp_copy(from, to)
-
-  Copies the mp_int 'from' to the mp_int 'to'.  It is presumed that
-  'to' has already been initialized (if not, use mp_init_copy()
-  instead). If 'from' and 'to' are identical, nothing happens.
- */
-
-mp_err mp_copy(const mp_int *from, mp_int *to)
-{
-  ARGCHK(from != NULL && to != NULL, MP_BADARG);
-
-  if(from == to)
-    return MP_OKAY;
-
-  ++mp_copies;
-  { /* copy */
-    mp_digit   *tmp;
-
-    /*
-      If the allocated buffer in 'to' already has enough space to hold
-      all the used digits of 'from', we'll re-use it to avoid hitting
-      the memory allocater more than necessary; otherwise, we'd have
-      to grow anyway, so we just allocate a hunk and make the copy as
-      usual
-     */
-    if(ALLOC(to) >= USED(from)) {
-      s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
-      s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
-
-    } else {
-      if((tmp = s_mp_alloc(ALLOC(from), sizeof(mp_digit), FLAG(from))) == NULL)
-        return MP_MEM;
-
-      s_mp_copy(DIGITS(from), tmp, USED(from));
-
-      if(DIGITS(to) != NULL) {
-#if MP_CRYPTO
-        s_mp_setz(DIGITS(to), ALLOC(to));
-#endif
-        s_mp_free(DIGITS(to), ALLOC(to));
-      }
-
-      DIGITS(to) = tmp;
-      ALLOC(to) = ALLOC(from);
-    }
-
-    /* Copy the precision and sign from the original */
-    USED(to) = USED(from);
-    SIGN(to) = SIGN(from);
-  } /* end copy */
-
-  return MP_OKAY;
-
-} /* end mp_copy() */
-
-/* }}} */
-
-/* {{{ mp_exch(mp1, mp2) */
-
-/*
-  mp_exch(mp1, mp2)
-
-  Exchange mp1 and mp2 without allocating any intermediate memory
-  (well, unless you count the stack space needed for this call and the
-  locals it creates...).  This cannot fail.
- */
-
-void mp_exch(mp_int *mp1, mp_int *mp2)
-{
-#if MP_ARGCHK == 2
-  assert(mp1 != NULL && mp2 != NULL);
-#else
-  if(mp1 == NULL || mp2 == NULL)
-    return;
-#endif
-
-  s_mp_exch(mp1, mp2);
-
-} /* end mp_exch() */
-
-/* }}} */
-
-/* {{{ mp_clear(mp) */
-
-/*
-  mp_clear(mp)
-
-  Release the storage used by an mp_int, and void its fields so that
-  if someone calls mp_clear() again for the same int later, we won't
-  get tollchocked.
- */
-
-void   mp_clear(mp_int *mp)
-{
-  if(mp == NULL)
-    return;
-
-  if(DIGITS(mp) != NULL) {
-#if MP_CRYPTO
-    s_mp_setz(DIGITS(mp), ALLOC(mp));
-#endif
-    s_mp_free(DIGITS(mp), ALLOC(mp));
-    DIGITS(mp) = NULL;
-  }
-
-  USED(mp) = 0;
-  ALLOC(mp) = 0;
-
-} /* end mp_clear() */
-
-/* }}} */
-
-/* {{{ mp_zero(mp) */
-
-/*
-  mp_zero(mp)
-
-  Set mp to zero.  Does not change the allocated size of the structure,
-  and therefore cannot fail (except on a bad argument, which we ignore)
- */
-void   mp_zero(mp_int *mp)
-{
-  if(mp == NULL)
-    return;
-
-  s_mp_setz(DIGITS(mp), ALLOC(mp));
-  USED(mp) = 1;
-  SIGN(mp) = ZPOS;
-
-} /* end mp_zero() */
-
-/* }}} */
-
-/* {{{ mp_set(mp, d) */
-
-void   mp_set(mp_int *mp, mp_digit d)
-{
-  if(mp == NULL)
-    return;
-
-  mp_zero(mp);
-  DIGIT(mp, 0) = d;
-
-} /* end mp_set() */
-
-/* }}} */
-
-/* {{{ mp_set_int(mp, z) */
-
-mp_err mp_set_int(mp_int *mp, long z)
-{
-  int            ix;
-  unsigned long  v = labs(z);
-  mp_err         res;
-
-  ARGCHK(mp != NULL, MP_BADARG);
-
-  mp_zero(mp);
-  if(z == 0)
-    return MP_OKAY;  /* shortcut for zero */
-
-  if (sizeof v <= sizeof(mp_digit)) {
-    DIGIT(mp,0) = v;
-  } else {
-    for (ix = sizeof(long) - 1; ix >= 0; ix--) {
-      if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY)
-        return res;
-
-      res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
-      if (res != MP_OKAY)
-        return res;
-    }
-  }
-  if(z < 0)
-    SIGN(mp) = NEG;
-
-  return MP_OKAY;
-
-} /* end mp_set_int() */
-
-/* }}} */
-
-/* {{{ mp_set_ulong(mp, z) */
-
-mp_err mp_set_ulong(mp_int *mp, unsigned long z)
-{
-  int            ix;
-  mp_err         res;
-
-  ARGCHK(mp != NULL, MP_BADARG);
-
-  mp_zero(mp);
-  if(z == 0)
-    return MP_OKAY;  /* shortcut for zero */
-
-  if (sizeof z <= sizeof(mp_digit)) {
-    DIGIT(mp,0) = z;
-  } else {
-    for (ix = sizeof(long) - 1; ix >= 0; ix--) {
-      if ((res = s_mp_mul_d(mp, (UCHAR_MAX + 1))) != MP_OKAY)
-        return res;
-
-      res = s_mp_add_d(mp, (mp_digit)((z >> (ix * CHAR_BIT)) & UCHAR_MAX));
-      if (res != MP_OKAY)
-        return res;
-    }
-  }
-  return MP_OKAY;
-} /* end mp_set_ulong() */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ Digit arithmetic */
-
-/* {{{ mp_add_d(a, d, b) */
-
-/*
-  mp_add_d(a, d, b)
-
-  Compute the sum b = a + d, for a single digit d.  Respects the sign of
-  its primary addend (single digits are unsigned anyway).
- */
-
-mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b)
-{
-  mp_int   tmp;
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
-    return res;
-
-  if(SIGN(&tmp) == ZPOS) {
-    if((res = s_mp_add_d(&tmp, d)) != MP_OKAY)
-      goto CLEANUP;
-  } else if(s_mp_cmp_d(&tmp, d) >= 0) {
-    if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY)
-      goto CLEANUP;
-  } else {
-    mp_neg(&tmp, &tmp);
-
-    DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0);
-  }
-
-  if(s_mp_cmp_d(&tmp, 0) == 0)
-    SIGN(&tmp) = ZPOS;
-
-  s_mp_exch(&tmp, b);
-
-CLEANUP:
-  mp_clear(&tmp);
-  return res;
-
-} /* end mp_add_d() */
-
-/* }}} */
-
-/* {{{ mp_sub_d(a, d, b) */
-
-/*
-  mp_sub_d(a, d, b)
-
-  Compute the difference b = a - d, for a single digit d.  Respects the
-  sign of its subtrahend (single digits are unsigned anyway).
- */
-
-mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b)
-{
-  mp_int   tmp;
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
-    return res;
-
-  if(SIGN(&tmp) == NEG) {
-    if((res = s_mp_add_d(&tmp, d)) != MP_OKAY)
-      goto CLEANUP;
-  } else if(s_mp_cmp_d(&tmp, d) >= 0) {
-    if((res = s_mp_sub_d(&tmp, d)) != MP_OKAY)
-      goto CLEANUP;
-  } else {
-    mp_neg(&tmp, &tmp);
-
-    DIGIT(&tmp, 0) = d - DIGIT(&tmp, 0);
-    SIGN(&tmp) = NEG;
-  }
-
-  if(s_mp_cmp_d(&tmp, 0) == 0)
-    SIGN(&tmp) = ZPOS;
-
-  s_mp_exch(&tmp, b);
-
-CLEANUP:
-  mp_clear(&tmp);
-  return res;
-
-} /* end mp_sub_d() */
-
-/* }}} */
-
-/* {{{ mp_mul_d(a, d, b) */
-
-/*
-  mp_mul_d(a, d, b)
-
-  Compute the product b = a * d, for a single digit d.  Respects the sign
-  of its multiplicand (single digits are unsigned anyway)
- */
-
-mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if(d == 0) {
-    mp_zero(b);
-    return MP_OKAY;
-  }
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  res = s_mp_mul_d(b, d);
-
-  return res;
-
-} /* end mp_mul_d() */
-
-/* }}} */
-
-/* {{{ mp_mul_2(a, c) */
-
-mp_err mp_mul_2(const mp_int *a, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, c)) != MP_OKAY)
-    return res;
-
-  return s_mp_mul_2(c);
-
-} /* end mp_mul_2() */
-
-/* }}} */
-
-/* {{{ mp_div_d(a, d, q, r) */
-
-/*
-  mp_div_d(a, d, q, r)
-
-  Compute the quotient q = a / d and remainder r = a mod d, for a
-  single digit d.  Respects the sign of its divisor (single digits are
-  unsigned anyway).
- */
-
-mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r)
-{
-  mp_err   res;
-  mp_int   qp;
-  mp_digit rem;
-  int      pow;
-
-  ARGCHK(a != NULL, MP_BADARG);
-
-  if(d == 0)
-    return MP_RANGE;
-
-  /* Shortcut for powers of two ... */
-  if((pow = s_mp_ispow2d(d)) >= 0) {
-    mp_digit  mask;
-
-    mask = ((mp_digit)1 << pow) - 1;
-    rem = DIGIT(a, 0) & mask;
-
-    if(q) {
-      mp_copy(a, q);
-      s_mp_div_2d(q, pow);
-    }
-
-    if(r)
-      *r = rem;
-
-    return MP_OKAY;
-  }
-
-  if((res = mp_init_copy(&qp, a)) != MP_OKAY)
-    return res;
-
-  res = s_mp_div_d(&qp, d, &rem);
-
-  if(s_mp_cmp_d(&qp, 0) == 0)
-    SIGN(q) = ZPOS;
-
-  if(r)
-    *r = rem;
-
-  if(q)
-    s_mp_exch(&qp, q);
-
-  mp_clear(&qp);
-  return res;
-
-} /* end mp_div_d() */
-
-/* }}} */
-
-/* {{{ mp_div_2(a, c) */
-
-/*
-  mp_div_2(a, c)
-
-  Compute c = a / 2, disregarding the remainder.
- */
-
-mp_err mp_div_2(const mp_int *a, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, c)) != MP_OKAY)
-    return res;
-
-  s_mp_div_2(c);
-
-  return MP_OKAY;
-
-} /* end mp_div_2() */
-
-/* }}} */
-
-/* {{{ mp_expt_d(a, d, b) */
-
-mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c)
-{
-  mp_int   s, x;
-  mp_err   res;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_init(&s, FLAG(a))) != MP_OKAY)
-    return res;
-  if((res = mp_init_copy(&x, a)) != MP_OKAY)
-    goto X;
-
-  DIGIT(&s, 0) = 1;
-
-  while(d != 0) {
-    if(d & 1) {
-      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
-        goto CLEANUP;
-    }
-
-    d /= 2;
-
-    if((res = s_mp_sqr(&x)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  s_mp_exch(&s, c);
-
-CLEANUP:
-  mp_clear(&x);
-X:
-  mp_clear(&s);
-
-  return res;
-
-} /* end mp_expt_d() */
-
-/* }}} */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ Full arithmetic */
-
-/* {{{ mp_abs(a, b) */
-
-/*
-  mp_abs(a, b)
-
-  Compute b = |a|.  'a' and 'b' may be identical.
- */
-
-mp_err mp_abs(const mp_int *a, mp_int *b)
-{
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  SIGN(b) = ZPOS;
-
-  return MP_OKAY;
-
-} /* end mp_abs() */
-
-/* }}} */
-
-/* {{{ mp_neg(a, b) */
-
-/*
-  mp_neg(a, b)
-
-  Compute b = -a.  'a' and 'b' may be identical.
- */
-
-mp_err mp_neg(const mp_int *a, mp_int *b)
-{
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  if(s_mp_cmp_d(b, 0) == MP_EQ)
-    SIGN(b) = ZPOS;
-  else
-    SIGN(b) = (SIGN(b) == NEG) ? ZPOS : NEG;
-
-  return MP_OKAY;
-
-} /* end mp_neg() */
-
-/* }}} */
-
-/* {{{ mp_add(a, b, c) */
-
-/*
-  mp_add(a, b, c)
-
-  Compute c = a + b.  All parameters may be identical.
- */
-
-mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if(SIGN(a) == SIGN(b)) { /* same sign:  add values, keep sign */
-    MP_CHECKOK( s_mp_add_3arg(a, b, c) );
-  } else if(s_mp_cmp(a, b) >= 0) {  /* different sign: |a| >= |b|   */
-    MP_CHECKOK( s_mp_sub_3arg(a, b, c) );
-  } else {                          /* different sign: |a|  < |b|   */
-    MP_CHECKOK( s_mp_sub_3arg(b, a, c) );
-  }
-
-  if (s_mp_cmp_d(c, 0) == MP_EQ)
-    SIGN(c) = ZPOS;
-
-CLEANUP:
-  return res;
-
-} /* end mp_add() */
-
-/* }}} */
-
-/* {{{ mp_sub(a, b, c) */
-
-/*
-  mp_sub(a, b, c)
-
-  Compute c = a - b.  All parameters may be identical.
- */
-
-mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
-{
-  mp_err  res;
-  int     magDiff;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if (a == b) {
-    mp_zero(c);
-    return MP_OKAY;
-  }
-
-  if (MP_SIGN(a) != MP_SIGN(b)) {
-    MP_CHECKOK( s_mp_add_3arg(a, b, c) );
-  } else if (!(magDiff = s_mp_cmp(a, b))) {
-    mp_zero(c);
-    res = MP_OKAY;
-  } else if (magDiff > 0) {
-    MP_CHECKOK( s_mp_sub_3arg(a, b, c) );
-  } else {
-    MP_CHECKOK( s_mp_sub_3arg(b, a, c) );
-    MP_SIGN(c) = !MP_SIGN(a);
-  }
-
-  if (s_mp_cmp_d(c, 0) == MP_EQ)
-    MP_SIGN(c) = MP_ZPOS;
-
-CLEANUP:
-  return res;
-
-} /* end mp_sub() */
-
-/* }}} */
-
-/* {{{ mp_mul(a, b, c) */
-
-/*
-  mp_mul(a, b, c)
-
-  Compute c = a * b.  All parameters may be identical.
- */
-mp_err   mp_mul(const mp_int *a, const mp_int *b, mp_int * c)
-{
-  mp_digit *pb;
-  mp_int   tmp;
-  mp_err   res;
-  mp_size  ib;
-  mp_size  useda, usedb;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if (a == c) {
-    if ((res = mp_init_copy(&tmp, a)) != MP_OKAY)
-      return res;
-    if (a == b)
-      b = &tmp;
-    a = &tmp;
-  } else if (b == c) {
-    if ((res = mp_init_copy(&tmp, b)) != MP_OKAY)
-      return res;
-    b = &tmp;
-  } else {
-    MP_DIGITS(&tmp) = 0;
-  }
-
-  if (MP_USED(a) < MP_USED(b)) {
-    const mp_int *xch = b;      /* switch a and b, to do fewer outer loops */
-    b = a;
-    a = xch;
-  }
-
-  MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
-  if((res = s_mp_pad(c, USED(a) + USED(b))) != MP_OKAY)
-    goto CLEANUP;
-
-#ifdef NSS_USE_COMBA
-  if ((MP_USED(a) == MP_USED(b)) && IS_POWER_OF_2(MP_USED(b))) {
-      if (MP_USED(a) == 4) {
-          s_mp_mul_comba_4(a, b, c);
-          goto CLEANUP;
-      }
-      if (MP_USED(a) == 8) {
-          s_mp_mul_comba_8(a, b, c);
-          goto CLEANUP;
-      }
-      if (MP_USED(a) == 16) {
-          s_mp_mul_comba_16(a, b, c);
-          goto CLEANUP;
-      }
-      if (MP_USED(a) == 32) {
-          s_mp_mul_comba_32(a, b, c);
-          goto CLEANUP;
-      }
-  }
-#endif
-
-  pb = MP_DIGITS(b);
-  s_mpv_mul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
-
-  /* Outer loop:  Digits of b */
-  useda = MP_USED(a);
-  usedb = MP_USED(b);
-  for (ib = 1; ib < usedb; ib++) {
-    mp_digit b_i    = *pb++;
-
-    /* Inner product:  Digits of a */
-    if (b_i)
-      s_mpv_mul_d_add(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
-    else
-      MP_DIGIT(c, ib + useda) = b_i;
-  }
-
-  s_mp_clamp(c);
-
-  if(SIGN(a) == SIGN(b) || s_mp_cmp_d(c, 0) == MP_EQ)
-    SIGN(c) = ZPOS;
-  else
-    SIGN(c) = NEG;
-
-CLEANUP:
-  mp_clear(&tmp);
-  return res;
-} /* end mp_mul() */
-
-/* }}} */
-
-/* {{{ mp_sqr(a, sqr) */
-
-#if MP_SQUARE
-/*
-  Computes the square of a.  This can be done more
-  efficiently than a general multiplication, because many of the
-  computation steps are redundant when squaring.  The inner product
-  step is a bit more complicated, but we save a fair number of
-  iterations of the multiplication loop.
- */
-
-/* sqr = a^2;   Caller provides both a and tmp; */
-mp_err   mp_sqr(const mp_int *a, mp_int *sqr)
-{
-  mp_digit *pa;
-  mp_digit d;
-  mp_err   res;
-  mp_size  ix;
-  mp_int   tmp;
-  int      count;
-
-  ARGCHK(a != NULL && sqr != NULL, MP_BADARG);
-
-  if (a == sqr) {
-    if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
-      return res;
-    a = &tmp;
-  } else {
-    DIGITS(&tmp) = 0;
-    res = MP_OKAY;
-  }
-
-  ix = 2 * MP_USED(a);
-  if (ix > MP_ALLOC(sqr)) {
-    MP_USED(sqr) = 1;
-    MP_CHECKOK( s_mp_grow(sqr, ix) );
-  }
-  MP_USED(sqr) = ix;
-  MP_DIGIT(sqr, 0) = 0;
-
-#ifdef NSS_USE_COMBA
-  if (IS_POWER_OF_2(MP_USED(a))) {
-      if (MP_USED(a) == 4) {
-          s_mp_sqr_comba_4(a, sqr);
-          goto CLEANUP;
-      }
-      if (MP_USED(a) == 8) {
-          s_mp_sqr_comba_8(a, sqr);
-          goto CLEANUP;
-      }
-      if (MP_USED(a) == 16) {
-          s_mp_sqr_comba_16(a, sqr);
-          goto CLEANUP;
-      }
-      if (MP_USED(a) == 32) {
-          s_mp_sqr_comba_32(a, sqr);
-          goto CLEANUP;
-      }
-  }
-#endif
-
-  pa = MP_DIGITS(a);
-  count = MP_USED(a) - 1;
-  if (count > 0) {
-    d = *pa++;
-    s_mpv_mul_d(pa, count, d, MP_DIGITS(sqr) + 1);
-    for (ix = 3; --count > 0; ix += 2) {
-      d = *pa++;
-      s_mpv_mul_d_add(pa, count, d, MP_DIGITS(sqr) + ix);
-    } /* for(ix ...) */
-    MP_DIGIT(sqr, MP_USED(sqr)-1) = 0; /* above loop stopped short of this. */
-
-    /* now sqr *= 2 */
-    s_mp_mul_2(sqr);
-  } else {
-    MP_DIGIT(sqr, 1) = 0;
-  }
-
-  /* now add the squares of the digits of a to sqr. */
-  s_mpv_sqr_add_prop(MP_DIGITS(a), MP_USED(a), MP_DIGITS(sqr));
-
-  SIGN(sqr) = ZPOS;
-  s_mp_clamp(sqr);
-
-CLEANUP:
-  mp_clear(&tmp);
-  return res;
-
-} /* end mp_sqr() */
-#endif
-
-/* }}} */
-
-/* {{{ mp_div(a, b, q, r) */
-
-/*
-  mp_div(a, b, q, r)
-
-  Compute q = a / b and r = a mod b.  Input parameters may be re-used
-  as output parameters.  If q or r is NULL, that portion of the
-  computation will be discarded (although it will still be computed)
- */
-mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r)
-{
-  mp_err   res;
-  mp_int   *pQ, *pR;
-  mp_int   qtmp, rtmp, btmp;
-  int      cmp;
-  mp_sign  signA;
-  mp_sign  signB;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  signA = MP_SIGN(a);
-  signB = MP_SIGN(b);
-
-  if(mp_cmp_z(b) == MP_EQ)
-    return MP_RANGE;
-
-  DIGITS(&qtmp) = 0;
-  DIGITS(&rtmp) = 0;
-  DIGITS(&btmp) = 0;
-
-  /* Set up some temporaries... */
-  if (!r || r == a || r == b) {
-    MP_CHECKOK( mp_init_copy(&rtmp, a) );
-    pR = &rtmp;
-  } else {
-    MP_CHECKOK( mp_copy(a, r) );
-    pR = r;
-  }
-
-  if (!q || q == a || q == b) {
-    MP_CHECKOK( mp_init_size(&qtmp, MP_USED(a), FLAG(a)) );
-    pQ = &qtmp;
-  } else {
-    MP_CHECKOK( s_mp_pad(q, MP_USED(a)) );
-    pQ = q;
-    mp_zero(pQ);
-  }
-
-  /*
-    If |a| <= |b|, we can compute the solution without division;
-    otherwise, we actually do the work required.
-   */
-  if ((cmp = s_mp_cmp(a, b)) <= 0) {
-    if (cmp) {
-      /* r was set to a above. */
-      mp_zero(pQ);
-    } else {
-      mp_set(pQ, 1);
-      mp_zero(pR);
-    }
-  } else {
-    MP_CHECKOK( mp_init_copy(&btmp, b) );
-    MP_CHECKOK( s_mp_div(pR, &btmp, pQ) );
-  }
-
-  /* Compute the signs for the output  */
-  MP_SIGN(pR) = signA;   /* Sr = Sa              */
-  /* Sq = ZPOS if Sa == Sb */ /* Sq = NEG if Sa != Sb */
-  MP_SIGN(pQ) = (signA == signB) ? ZPOS : NEG;
-
-  if(s_mp_cmp_d(pQ, 0) == MP_EQ)
-    SIGN(pQ) = ZPOS;
-  if(s_mp_cmp_d(pR, 0) == MP_EQ)
-    SIGN(pR) = ZPOS;
-
-  /* Copy output, if it is needed      */
-  if(q && q != pQ)
-    s_mp_exch(pQ, q);
-
-  if(r && r != pR)
-    s_mp_exch(pR, r);
-
-CLEANUP:
-  mp_clear(&btmp);
-  mp_clear(&rtmp);
-  mp_clear(&qtmp);
-
-  return res;
-
-} /* end mp_div() */
-
-/* }}} */
-
-/* {{{ mp_div_2d(a, d, q, r) */
-
-mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL, MP_BADARG);
-
-  if(q) {
-    if((res = mp_copy(a, q)) != MP_OKAY)
-      return res;
-  }
-  if(r) {
-    if((res = mp_copy(a, r)) != MP_OKAY)
-      return res;
-  }
-  if(q) {
-    s_mp_div_2d(q, d);
-  }
-  if(r) {
-    s_mp_mod_2d(r, d);
-  }
-
-  return MP_OKAY;
-
-} /* end mp_div_2d() */
-
-/* }}} */
-
-/* {{{ mp_expt(a, b, c) */
-
-/*
-  mp_expt(a, b, c)
-
-  Compute c = a ** b, that is, raise a to the b power.  Uses a
-  standard iterative square-and-multiply technique.
- */
-
-mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
-{
-  mp_int   s, x;
-  mp_err   res;
-  mp_digit d;
-  int      dig, bit;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if(mp_cmp_z(b) < 0)
-    return MP_RANGE;
-
-  if((res = mp_init(&s, FLAG(a))) != MP_OKAY)
-    return res;
-
-  mp_set(&s, 1);
-
-  if((res = mp_init_copy(&x, a)) != MP_OKAY)
-    goto X;
-
-  /* Loop over low-order digits in ascending order */
-  for(dig = 0; dig < (USED(b) - 1); dig++) {
-    d = DIGIT(b, dig);
-
-    /* Loop over bits of each non-maximal digit */
-    for(bit = 0; bit < DIGIT_BIT; bit++) {
-      if(d & 1) {
-        if((res = s_mp_mul(&s, &x)) != MP_OKAY)
-          goto CLEANUP;
-      }
-
-      d >>= 1;
-
-      if((res = s_mp_sqr(&x)) != MP_OKAY)
-        goto CLEANUP;
-    }
-  }
-
-  /* Consider now the last digit... */
-  d = DIGIT(b, dig);
-
-  while(d) {
-    if(d & 1) {
-      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
-        goto CLEANUP;
-    }
-
-    d >>= 1;
-
-    if((res = s_mp_sqr(&x)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  if(mp_iseven(b))
-    SIGN(&s) = SIGN(a);
-
-  res = mp_copy(&s, c);
-
-CLEANUP:
-  mp_clear(&x);
-X:
-  mp_clear(&s);
-
-  return res;
-
-} /* end mp_expt() */
-
-/* }}} */
-
-/* {{{ mp_2expt(a, k) */
-
-/* Compute a = 2^k */
-
-mp_err mp_2expt(mp_int *a, mp_digit k)
-{
-  ARGCHK(a != NULL, MP_BADARG);
-
-  return s_mp_2expt(a, k);
-
-} /* end mp_2expt() */
-
-/* }}} */
-
-/* {{{ mp_mod(a, m, c) */
-
-/*
-  mp_mod(a, m, c)
-
-  Compute c = a (mod m).  Result will always be 0 <= c < m.
- */
-
-mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c)
-{
-  mp_err  res;
-  int     mag;
-
-  ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
-
-  if(SIGN(m) == NEG)
-    return MP_RANGE;
-
-  /*
-     If |a| > m, we need to divide to get the remainder and take the
-     absolute value.
-
-     If |a| < m, we don't need to do any division, just copy and adjust
-     the sign (if a is negative).
-
-     If |a| == m, we can simply set the result to zero.
-
-     This order is intended to minimize the average path length of the
-     comparison chain on common workloads -- the most frequent cases are
-     that |a| != m, so we do those first.
-   */
-  if((mag = s_mp_cmp(a, m)) > 0) {
-    if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
-      return res;
-
-    if(SIGN(c) == NEG) {
-      if((res = mp_add(c, m, c)) != MP_OKAY)
-        return res;
-    }
-
-  } else if(mag < 0) {
-    if((res = mp_copy(a, c)) != MP_OKAY)
-      return res;
-
-    if(mp_cmp_z(a) < 0) {
-      if((res = mp_add(c, m, c)) != MP_OKAY)
-        return res;
-
-    }
-
-  } else {
-    mp_zero(c);
-
-  }
-
-  return MP_OKAY;
-
-} /* end mp_mod() */
-
-/* }}} */
-
-/* {{{ mp_mod_d(a, d, c) */
-
-/*
-  mp_mod_d(a, d, c)
-
-  Compute c = a (mod d).  Result will always be 0 <= c < d
- */
-mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c)
-{
-  mp_err   res;
-  mp_digit rem;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if(s_mp_cmp_d(a, d) > 0) {
-    if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY)
-      return res;
-
-  } else {
-    if(SIGN(a) == NEG)
-      rem = d - DIGIT(a, 0);
-    else
-      rem = DIGIT(a, 0);
-  }
-
-  if(c)
-    *c = rem;
-
-  return MP_OKAY;
-
-} /* end mp_mod_d() */
-
-/* }}} */
-
-/* {{{ mp_sqrt(a, b) */
-
-/*
-  mp_sqrt(a, b)
-
-  Compute the integer square root of a, and store the result in b.
-  Uses an integer-arithmetic version of Newton's iterative linear
-  approximation technique to determine this value; the result has the
-  following two properties:
-
-     b^2 <= a
-     (b+1)^2 >= a
-
-  It is a range error to pass a negative value.
- */
-mp_err mp_sqrt(const mp_int *a, mp_int *b)
-{
-  mp_int   x, t;
-  mp_err   res;
-  mp_size  used;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  /* Cannot take square root of a negative value */
-  if(SIGN(a) == NEG)
-    return MP_RANGE;
-
-  /* Special cases for zero and one, trivial     */
-  if(mp_cmp_d(a, 1) <= 0)
-    return mp_copy(a, b);
-
-  /* Initialize the temporaries we'll use below  */
-  if((res = mp_init_size(&t, USED(a), FLAG(a))) != MP_OKAY)
-    return res;
-
-  /* Compute an initial guess for the iteration as a itself */
-  if((res = mp_init_copy(&x, a)) != MP_OKAY)
-    goto X;
-
-  used = MP_USED(&x);
-  if (used > 1) {
-    s_mp_rshd(&x, used / 2);
-  }
-
-  for(;;) {
-    /* t = (x * x) - a */
-    mp_copy(&x, &t);      /* can't fail, t is big enough for original x */
-    if((res = mp_sqr(&t, &t)) != MP_OKAY ||
-       (res = mp_sub(&t, a, &t)) != MP_OKAY)
-      goto CLEANUP;
-
-    /* t = t / 2x       */
-    s_mp_mul_2(&x);
-    if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY)
-      goto CLEANUP;
-    s_mp_div_2(&x);
-
-    /* Terminate the loop, if the quotient is zero */
-    if(mp_cmp_z(&t) == MP_EQ)
-      break;
-
-    /* x = x - t       */
-    if((res = mp_sub(&x, &t, &x)) != MP_OKAY)
-      goto CLEANUP;
-
-  }
-
-  /* Copy result to output parameter */
-  mp_sub_d(&x, 1, &x);
-  s_mp_exch(&x, b);
-
- CLEANUP:
-  mp_clear(&x);
- X:
-  mp_clear(&t);
-
-  return res;
-
-} /* end mp_sqrt() */
-
-/* }}} */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ Modular arithmetic */
-
-#if MP_MODARITH
-/* {{{ mp_addmod(a, b, m, c) */
-
-/*
-  mp_addmod(a, b, m, c)
-
-  Compute c = (a + b) mod m
- */
-
-mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_add(a, b, c)) != MP_OKAY)
-    return res;
-  if((res = mp_mod(c, m, c)) != MP_OKAY)
-    return res;
-
-  return MP_OKAY;
-
-}
-
-/* }}} */
-
-/* {{{ mp_submod(a, b, m, c) */
-
-/*
-  mp_submod(a, b, m, c)
-
-  Compute c = (a - b) mod m
- */
-
-mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_sub(a, b, c)) != MP_OKAY)
-    return res;
-  if((res = mp_mod(c, m, c)) != MP_OKAY)
-    return res;
-
-  return MP_OKAY;
-
-}
-
-/* }}} */
-
-/* {{{ mp_mulmod(a, b, m, c) */
-
-/*
-  mp_mulmod(a, b, m, c)
-
-  Compute c = (a * b) mod m
- */
-
-mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_mul(a, b, c)) != MP_OKAY)
-    return res;
-  if((res = mp_mod(c, m, c)) != MP_OKAY)
-    return res;
-
-  return MP_OKAY;
-
-}
-
-/* }}} */
-
-/* {{{ mp_sqrmod(a, m, c) */
-
-#if MP_SQUARE
-mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c)
-{
-  mp_err  res;
-
-  ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_sqr(a, c)) != MP_OKAY)
-    return res;
-  if((res = mp_mod(c, m, c)) != MP_OKAY)
-    return res;
-
-  return MP_OKAY;
-
-} /* end mp_sqrmod() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_exptmod(a, b, m, c) */
-
-/*
-  s_mp_exptmod(a, b, m, c)
-
-  Compute c = (a ** b) mod m.  Uses a standard square-and-multiply
-  method with modular reductions at each step. (This is basically the
-  same code as mp_expt(), except for the addition of the reductions)
-
-  The modular reductions are done using Barrett's algorithm (see
-  s_mp_reduce() below for details)
- */
-
-mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c)
-{
-  mp_int   s, x, mu;
-  mp_err   res;
-  mp_digit d;
-  int      dig, bit;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0)
-    return MP_RANGE;
-
-  if((res = mp_init(&s, FLAG(a))) != MP_OKAY)
-    return res;
-  if((res = mp_init_copy(&x, a)) != MP_OKAY ||
-     (res = mp_mod(&x, m, &x)) != MP_OKAY)
-    goto X;
-  if((res = mp_init(&mu, FLAG(a))) != MP_OKAY)
-    goto MU;
-
-  mp_set(&s, 1);
-
-  /* mu = b^2k / m */
-  s_mp_add_d(&mu, 1);
-  s_mp_lshd(&mu, 2 * USED(m));
-  if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
-    goto CLEANUP;
-
-  /* Loop over digits of b in ascending order, except highest order */
-  for(dig = 0; dig < (USED(b) - 1); dig++) {
-    d = DIGIT(b, dig);
-
-    /* Loop over the bits of the lower-order digits */
-    for(bit = 0; bit < DIGIT_BIT; bit++) {
-      if(d & 1) {
-        if((res = s_mp_mul(&s, &x)) != MP_OKAY)
-          goto CLEANUP;
-        if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
-          goto CLEANUP;
-      }
-
-      d >>= 1;
-
-      if((res = s_mp_sqr(&x)) != MP_OKAY)
-        goto CLEANUP;
-      if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
-        goto CLEANUP;
-    }
-  }
-
-  /* Now do the last digit... */
-  d = DIGIT(b, dig);
-
-  while(d) {
-    if(d & 1) {
-      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
-        goto CLEANUP;
-      if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
-        goto CLEANUP;
-    }
-
-    d >>= 1;
-
-    if((res = s_mp_sqr(&x)) != MP_OKAY)
-      goto CLEANUP;
-    if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  s_mp_exch(&s, c);
-
- CLEANUP:
-  mp_clear(&mu);
- MU:
-  mp_clear(&x);
- X:
-  mp_clear(&s);
-
-  return res;
-
-} /* end s_mp_exptmod() */
-
-/* }}} */
-
-/* {{{ mp_exptmod_d(a, d, m, c) */
-
-mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c)
-{
-  mp_int   s, x;
-  mp_err   res;
-
-  ARGCHK(a != NULL && c != NULL, MP_BADARG);
-
-  if((res = mp_init(&s, FLAG(a))) != MP_OKAY)
-    return res;
-  if((res = mp_init_copy(&x, a)) != MP_OKAY)
-    goto X;
-
-  mp_set(&s, 1);
-
-  while(d != 0) {
-    if(d & 1) {
-      if((res = s_mp_mul(&s, &x)) != MP_OKAY ||
-         (res = mp_mod(&s, m, &s)) != MP_OKAY)
-        goto CLEANUP;
-    }
-
-    d /= 2;
-
-    if((res = s_mp_sqr(&x)) != MP_OKAY ||
-       (res = mp_mod(&x, m, &x)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  s_mp_exch(&s, c);
-
-CLEANUP:
-  mp_clear(&x);
-X:
-  mp_clear(&s);
-
-  return res;
-
-} /* end mp_exptmod_d() */
-
-/* }}} */
-#endif /* if MP_MODARITH */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ Comparison functions */
-
-/* {{{ mp_cmp_z(a) */
-
-/*
-  mp_cmp_z(a)
-
-  Compare a <=> 0.  Returns <0 if a<0, 0 if a=0, >0 if a>0.
- */
-
-int    mp_cmp_z(const mp_int *a)
-{
-  if(SIGN(a) == NEG)
-    return MP_LT;
-  else if(USED(a) == 1 && DIGIT(a, 0) == 0)
-    return MP_EQ;
-  else
-    return MP_GT;
-
-} /* end mp_cmp_z() */
-
-/* }}} */
-
-/* {{{ mp_cmp_d(a, d) */
-
-/*
-  mp_cmp_d(a, d)
-
-  Compare a <=> d.  Returns <0 if a<d, 0 if a=d, >0 if a>d
- */
-
-int    mp_cmp_d(const mp_int *a, mp_digit d)
-{
-  ARGCHK(a != NULL, MP_EQ);
-
-  if(SIGN(a) == NEG)
-    return MP_LT;
-
-  return s_mp_cmp_d(a, d);
-
-} /* end mp_cmp_d() */
-
-/* }}} */
-
-/* {{{ mp_cmp(a, b) */
-
-int    mp_cmp(const mp_int *a, const mp_int *b)
-{
-  ARGCHK(a != NULL && b != NULL, MP_EQ);
-
-  if(SIGN(a) == SIGN(b)) {
-    int  mag;
-
-    if((mag = s_mp_cmp(a, b)) == MP_EQ)
-      return MP_EQ;
-
-    if(SIGN(a) == ZPOS)
-      return mag;
-    else
-      return -mag;
-
-  } else if(SIGN(a) == ZPOS) {
-    return MP_GT;
-  } else {
-    return MP_LT;
-  }
-
-} /* end mp_cmp() */
-
-/* }}} */
-
-/* {{{ mp_cmp_mag(a, b) */
-
-/*
-  mp_cmp_mag(a, b)
-
-  Compares |a| <=> |b|, and returns an appropriate comparison result
- */
-
-int    mp_cmp_mag(mp_int *a, mp_int *b)
-{
-  ARGCHK(a != NULL && b != NULL, MP_EQ);
-
-  return s_mp_cmp(a, b);
-
-} /* end mp_cmp_mag() */
-
-/* }}} */
-
-/* {{{ mp_cmp_int(a, z, kmflag) */
-
-/*
-  This just converts z to an mp_int, and uses the existing comparison
-  routines.  This is sort of inefficient, but it's not clear to me how
-  frequently this wil get used anyway.  For small positive constants,
-  you can always use mp_cmp_d(), and for zero, there is mp_cmp_z().
- */
-int    mp_cmp_int(const mp_int *a, long z, int kmflag)
-{
-  mp_int  tmp;
-  int     out;
-
-  ARGCHK(a != NULL, MP_EQ);
-
-  mp_init(&tmp, kmflag); mp_set_int(&tmp, z);
-  out = mp_cmp(a, &tmp);
-  mp_clear(&tmp);
-
-  return out;
-
-} /* end mp_cmp_int() */
-
-/* }}} */
-
-/* {{{ mp_isodd(a) */
-
-/*
-  mp_isodd(a)
-
-  Returns a true (non-zero) value if a is odd, false (zero) otherwise.
- */
-int    mp_isodd(const mp_int *a)
-{
-  ARGCHK(a != NULL, 0);
-
-  return (int)(DIGIT(a, 0) & 1);
-
-} /* end mp_isodd() */
-
-/* }}} */
-
-/* {{{ mp_iseven(a) */
-
-int    mp_iseven(const mp_int *a)
-{
-  return !mp_isodd(a);
-
-} /* end mp_iseven() */
-
-/* }}} */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ Number theoretic functions */
-
-#if MP_NUMTH
-/* {{{ mp_gcd(a, b, c) */
-
-/*
-  Like the old mp_gcd() function, except computes the GCD using the
-  binary algorithm due to Josef Stein in 1961 (via Knuth).
- */
-mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
-{
-  mp_err   res;
-  mp_int   u, v, t;
-  mp_size  k = 0;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ)
-      return MP_RANGE;
-  if(mp_cmp_z(a) == MP_EQ) {
-    return mp_copy(b, c);
-  } else if(mp_cmp_z(b) == MP_EQ) {
-    return mp_copy(a, c);
-  }
-
-  if((res = mp_init(&t, FLAG(a))) != MP_OKAY)
-    return res;
-  if((res = mp_init_copy(&u, a)) != MP_OKAY)
-    goto U;
-  if((res = mp_init_copy(&v, b)) != MP_OKAY)
-    goto V;
-
-  SIGN(&u) = ZPOS;
-  SIGN(&v) = ZPOS;
-
-  /* Divide out common factors of 2 until at least 1 of a, b is even */
-  while(mp_iseven(&u) && mp_iseven(&v)) {
-    s_mp_div_2(&u);
-    s_mp_div_2(&v);
-    ++k;
-  }
-
-  /* Initialize t */
-  if(mp_isodd(&u)) {
-    if((res = mp_copy(&v, &t)) != MP_OKAY)
-      goto CLEANUP;
-
-    /* t = -v */
-    if(SIGN(&v) == ZPOS)
-      SIGN(&t) = NEG;
-    else
-      SIGN(&t) = ZPOS;
-
-  } else {
-    if((res = mp_copy(&u, &t)) != MP_OKAY)
-      goto CLEANUP;
-
-  }
-
-  for(;;) {
-    while(mp_iseven(&t)) {
-      s_mp_div_2(&t);
-    }
-
-    if(mp_cmp_z(&t) == MP_GT) {
-      if((res = mp_copy(&t, &u)) != MP_OKAY)
-        goto CLEANUP;
-
-    } else {
-      if((res = mp_copy(&t, &v)) != MP_OKAY)
-        goto CLEANUP;
-
-      /* v = -t */
-      if(SIGN(&t) == ZPOS)
-        SIGN(&v) = NEG;
-      else
-        SIGN(&v) = ZPOS;
-    }
-
-    if((res = mp_sub(&u, &v, &t)) != MP_OKAY)
-      goto CLEANUP;
-
-    if(s_mp_cmp_d(&t, 0) == MP_EQ)
-      break;
-  }
-
-  s_mp_2expt(&v, k);       /* v = 2^k   */
-  res = mp_mul(&u, &v, c); /* c = u * v */
-
- CLEANUP:
-  mp_clear(&v);
- V:
-  mp_clear(&u);
- U:
-  mp_clear(&t);
-
-  return res;
-
-} /* end mp_gcd() */
-
-/* }}} */
-
-/* {{{ mp_lcm(a, b, c) */
-
-/* We compute the least common multiple using the rule:
-
-   ab = [a, b](a, b)
-
-   ... by computing the product, and dividing out the gcd.
- */
-
-mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c)
-{
-  mp_int  gcd, prod;
-  mp_err  res;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  /* Set up temporaries */
-  if((res = mp_init(&gcd, FLAG(a))) != MP_OKAY)
-    return res;
-  if((res = mp_init(&prod, FLAG(a))) != MP_OKAY)
-    goto GCD;
-
-  if((res = mp_mul(a, b, &prod)) != MP_OKAY)
-    goto CLEANUP;
-  if((res = mp_gcd(a, b, &gcd)) != MP_OKAY)
-    goto CLEANUP;
-
-  res = mp_div(&prod, &gcd, c, NULL);
-
- CLEANUP:
-  mp_clear(&prod);
- GCD:
-  mp_clear(&gcd);
-
-  return res;
-
-} /* end mp_lcm() */
-
-/* }}} */
-
-/* {{{ mp_xgcd(a, b, g, x, y) */
-
-/*
-  mp_xgcd(a, b, g, x, y)
-
-  Compute g = (a, b) and values x and y satisfying Bezout's identity
-  (that is, ax + by = g).  This uses the binary extended GCD algorithm
-  based on the Stein algorithm used for mp_gcd()
-  See algorithm 14.61 in Handbook of Applied Cryptogrpahy.
- */
-
-mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y)
-{
-  mp_int   gx, xc, yc, u, v, A, B, C, D;
-  mp_int  *clean[9];
-  mp_err   res;
-  int      last = -1;
-
-  if(mp_cmp_z(b) == 0)
-    return MP_RANGE;
-
-  /* Initialize all these variables we need */
-  MP_CHECKOK( mp_init(&u, FLAG(a)) );
-  clean[++last] = &u;
-  MP_CHECKOK( mp_init(&v, FLAG(a)) );
-  clean[++last] = &v;
-  MP_CHECKOK( mp_init(&gx, FLAG(a)) );
-  clean[++last] = &gx;
-  MP_CHECKOK( mp_init(&A, FLAG(a)) );
-  clean[++last] = &A;
-  MP_CHECKOK( mp_init(&B, FLAG(a)) );
-  clean[++last] = &B;
-  MP_CHECKOK( mp_init(&C, FLAG(a)) );
-  clean[++last] = &C;
-  MP_CHECKOK( mp_init(&D, FLAG(a)) );
-  clean[++last] = &D;
-  MP_CHECKOK( mp_init_copy(&xc, a) );
-  clean[++last] = &xc;
-  mp_abs(&xc, &xc);
-  MP_CHECKOK( mp_init_copy(&yc, b) );
-  clean[++last] = &yc;
-  mp_abs(&yc, &yc);
-
-  mp_set(&gx, 1);
-
-  /* Divide by two until at least one of them is odd */
-  while(mp_iseven(&xc) && mp_iseven(&yc)) {
-    mp_size nx = mp_trailing_zeros(&xc);
-    mp_size ny = mp_trailing_zeros(&yc);
-    mp_size n  = MP_MIN(nx, ny);
-    s_mp_div_2d(&xc,n);
-    s_mp_div_2d(&yc,n);
-    MP_CHECKOK( s_mp_mul_2d(&gx,n) );
-  }
-
-  mp_copy(&xc, &u);
-  mp_copy(&yc, &v);
-  mp_set(&A, 1); mp_set(&D, 1);
-
-  /* Loop through binary GCD algorithm */
-  do {
-    while(mp_iseven(&u)) {
-      s_mp_div_2(&u);
-
-      if(mp_iseven(&A) && mp_iseven(&B)) {
-        s_mp_div_2(&A); s_mp_div_2(&B);
-      } else {
-        MP_CHECKOK( mp_add(&A, &yc, &A) );
-        s_mp_div_2(&A);
-        MP_CHECKOK( mp_sub(&B, &xc, &B) );
-        s_mp_div_2(&B);
-      }
-    }
-
-    while(mp_iseven(&v)) {
-      s_mp_div_2(&v);
-
-      if(mp_iseven(&C) && mp_iseven(&D)) {
-        s_mp_div_2(&C); s_mp_div_2(&D);
-      } else {
-        MP_CHECKOK( mp_add(&C, &yc, &C) );
-        s_mp_div_2(&C);
-        MP_CHECKOK( mp_sub(&D, &xc, &D) );
-        s_mp_div_2(&D);
-      }
-    }
-
-    if(mp_cmp(&u, &v) >= 0) {
-      MP_CHECKOK( mp_sub(&u, &v, &u) );
-      MP_CHECKOK( mp_sub(&A, &C, &A) );
-      MP_CHECKOK( mp_sub(&B, &D, &B) );
-    } else {
-      MP_CHECKOK( mp_sub(&v, &u, &v) );
-      MP_CHECKOK( mp_sub(&C, &A, &C) );
-      MP_CHECKOK( mp_sub(&D, &B, &D) );
-    }
-  } while (mp_cmp_z(&u) != 0);
-
-  /* copy results to output */
-  if(x)
-    MP_CHECKOK( mp_copy(&C, x) );
-
-  if(y)
-    MP_CHECKOK( mp_copy(&D, y) );
-
-  if(g)
-    MP_CHECKOK( mp_mul(&gx, &v, g) );
-
- CLEANUP:
-  while(last >= 0)
-    mp_clear(clean[last--]);
-
-  return res;
-
-} /* end mp_xgcd() */
-
-/* }}} */
-
-mp_size mp_trailing_zeros(const mp_int *mp)
-{
-  mp_digit d;
-  mp_size  n = 0;
-  int      ix;
-
-  if (!mp || !MP_DIGITS(mp) || !mp_cmp_z(mp))
-    return n;
-
-  for (ix = 0; !(d = MP_DIGIT(mp,ix)) && (ix < MP_USED(mp)); ++ix)
-    n += MP_DIGIT_BIT;
-  if (!d)
-    return 0;   /* shouldn't happen, but ... */
-#if !defined(MP_USE_UINT_DIGIT)
-  if (!(d & 0xffffffffU)) {
-    d >>= 32;
-    n  += 32;
-  }
-#endif
-  if (!(d & 0xffffU)) {
-    d >>= 16;
-    n  += 16;
-  }
-  if (!(d & 0xffU)) {
-    d >>= 8;
-    n  += 8;
-  }
-  if (!(d & 0xfU)) {
-    d >>= 4;
-    n  += 4;
-  }
-  if (!(d & 0x3U)) {
-    d >>= 2;
-    n  += 2;
-  }
-  if (!(d & 0x1U)) {
-    d >>= 1;
-    n  += 1;
-  }
-#if MP_ARGCHK == 2
-  assert(0 != (d & 1));
-#endif
-  return n;
-}
-
-/* Given a and prime p, computes c and k such that a*c == 2**k (mod p).
-** Returns k (positive) or error (negative).
-** This technique from the paper "Fast Modular Reciprocals" (unpublished)
-** by Richard Schroeppel (a.k.a. Captain Nemo).
-*/
-mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c)
-{
-  mp_err res;
-  mp_err k    = 0;
-  mp_int d, f, g;
-
-  ARGCHK(a && p && c, MP_BADARG);
-
-  MP_DIGITS(&d) = 0;
-  MP_DIGITS(&f) = 0;
-  MP_DIGITS(&g) = 0;
-  MP_CHECKOK( mp_init(&d, FLAG(a)) );
-  MP_CHECKOK( mp_init_copy(&f, a) );    /* f = a */
-  MP_CHECKOK( mp_init_copy(&g, p) );    /* g = p */
-
-  mp_set(c, 1);
-  mp_zero(&d);
-
-  if (mp_cmp_z(&f) == 0) {
-    res = MP_UNDEF;
-  } else
-  for (;;) {
-    int diff_sign;
-    while (mp_iseven(&f)) {
-      mp_size n = mp_trailing_zeros(&f);
-      if (!n) {
-        res = MP_UNDEF;
-        goto CLEANUP;
-      }
-      s_mp_div_2d(&f, n);
-      MP_CHECKOK( s_mp_mul_2d(&d, n) );
-      k += n;
-    }
-    if (mp_cmp_d(&f, 1) == MP_EQ) {     /* f == 1 */
-      res = k;
-      break;
-    }
-    diff_sign = mp_cmp(&f, &g);
-    if (diff_sign < 0) {                /* f < g */
-      s_mp_exch(&f, &g);
-      s_mp_exch(c, &d);
-    } else if (diff_sign == 0) {                /* f == g */
-      res = MP_UNDEF;           /* a and p are not relatively prime */
-      break;
-    }
-    if ((MP_DIGIT(&f,0) % 4) == (MP_DIGIT(&g,0) % 4)) {
-      MP_CHECKOK( mp_sub(&f, &g, &f) ); /* f = f - g */
-      MP_CHECKOK( mp_sub(c,  &d,  c) ); /* c = c - d */
-    } else {
-      MP_CHECKOK( mp_add(&f, &g, &f) ); /* f = f + g */
-      MP_CHECKOK( mp_add(c,  &d,  c) ); /* c = c + d */
-    }
-  }
-  if (res >= 0) {
-    while (MP_SIGN(c) != MP_ZPOS) {
-      MP_CHECKOK( mp_add(c, p, c) );
-    }
-    res = k;
-  }
-
-CLEANUP:
-  mp_clear(&d);
-  mp_clear(&f);
-  mp_clear(&g);
-  return res;
-}
-
-/* Compute T = (P ** -1) mod MP_RADIX.  Also works for 16-bit mp_digits.
-** This technique from the paper "Fast Modular Reciprocals" (unpublished)
-** by Richard Schroeppel (a.k.a. Captain Nemo).
-*/
-mp_digit  s_mp_invmod_radix(mp_digit P)
-{
-  mp_digit T = P;
-  T *= 2 - (P * T);
-  T *= 2 - (P * T);
-  T *= 2 - (P * T);
-  T *= 2 - (P * T);
-#if !defined(MP_USE_UINT_DIGIT)
-  T *= 2 - (P * T);
-  T *= 2 - (P * T);
-#endif
-  return T;
-}
-
-/* Given c, k, and prime p, where a*c == 2**k (mod p),
-** Compute x = (a ** -1) mod p.  This is similar to Montgomery reduction.
-** This technique from the paper "Fast Modular Reciprocals" (unpublished)
-** by Richard Schroeppel (a.k.a. Captain Nemo).
-*/
-mp_err  s_mp_fixup_reciprocal(const mp_int *c, const mp_int *p, int k, mp_int *x)
-{
-  int      k_orig = k;
-  mp_digit r;
-  mp_size  ix;
-  mp_err   res;
-
-  if (mp_cmp_z(c) < 0) {                /* c < 0 */
-    MP_CHECKOK( mp_add(c, p, x) );      /* x = c + p */
-  } else {
-    MP_CHECKOK( mp_copy(c, x) );        /* x = c */
-  }
-
-  /* make sure x is large enough */
-  ix = MP_HOWMANY(k, MP_DIGIT_BIT) + MP_USED(p) + 1;
-  ix = MP_MAX(ix, MP_USED(x));
-  MP_CHECKOK( s_mp_pad(x, ix) );
-
-  r = 0 - s_mp_invmod_radix(MP_DIGIT(p,0));
-
-  for (ix = 0; k > 0; ix++) {
-    int      j = MP_MIN(k, MP_DIGIT_BIT);
-    mp_digit v = r * MP_DIGIT(x, ix);
-    if (j < MP_DIGIT_BIT) {
-      v &= ((mp_digit)1 << j) - 1;      /* v = v mod (2 ** j) */
-    }
-    s_mp_mul_d_add_offset(p, v, x, ix); /* x += p * v * (RADIX ** ix) */
-    k -= j;
-  }
-  s_mp_clamp(x);
-  s_mp_div_2d(x, k_orig);
-  res = MP_OKAY;
-
-CLEANUP:
-  return res;
-}
-
-/* compute mod inverse using Schroeppel's method, only if m is odd */
-mp_err s_mp_invmod_odd_m(const mp_int *a, const mp_int *m, mp_int *c)
-{
-  int k;
-  mp_err  res;
-  mp_int  x;
-
-  ARGCHK(a && m && c, MP_BADARG);
-
-  if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
-    return MP_RANGE;
-  if (mp_iseven(m))
-    return MP_UNDEF;
-
-  MP_DIGITS(&x) = 0;
-
-  if (a == c) {
-    if ((res = mp_init_copy(&x, a)) != MP_OKAY)
-      return res;
-    if (a == m)
-      m = &x;
-    a = &x;
-  } else if (m == c) {
-    if ((res = mp_init_copy(&x, m)) != MP_OKAY)
-      return res;
-    m = &x;
-  } else {
-    MP_DIGITS(&x) = 0;
-  }
-
-  MP_CHECKOK( s_mp_almost_inverse(a, m, c) );
-  k = res;
-  MP_CHECKOK( s_mp_fixup_reciprocal(c, m, k, c) );
-CLEANUP:
-  mp_clear(&x);
-  return res;
-}
-
-/* Known good algorithm for computing modular inverse.  But slow. */
-mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c)
-{
-  mp_int  g, x;
-  mp_err  res;
-
-  ARGCHK(a && m && c, MP_BADARG);
-
-  if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
-    return MP_RANGE;
-
-  MP_DIGITS(&g) = 0;
-  MP_DIGITS(&x) = 0;
-  MP_CHECKOK( mp_init(&x, FLAG(a)) );
-  MP_CHECKOK( mp_init(&g, FLAG(a)) );
-
-  MP_CHECKOK( mp_xgcd(a, m, &g, &x, NULL) );
-
-  if (mp_cmp_d(&g, 1) != MP_EQ) {
-    res = MP_UNDEF;
-    goto CLEANUP;
-  }
-
-  res = mp_mod(&x, m, c);
-  SIGN(c) = SIGN(a);
-
-CLEANUP:
-  mp_clear(&x);
-  mp_clear(&g);
-
-  return res;
-}
-
-/* modular inverse where modulus is 2**k. */
-/* c = a**-1 mod 2**k */
-mp_err s_mp_invmod_2d(const mp_int *a, mp_size k, mp_int *c)
-{
-  mp_err res;
-  mp_size ix = k + 4;
-  mp_int t0, t1, val, tmp, two2k;
-
-  static const mp_digit d2 = 2;
-  static const mp_int two = { 0, MP_ZPOS, 1, 1, (mp_digit *)&d2 };
-
-  if (mp_iseven(a))
-    return MP_UNDEF;
-  if (k <= MP_DIGIT_BIT) {
-    mp_digit i = s_mp_invmod_radix(MP_DIGIT(a,0));
-    if (k < MP_DIGIT_BIT)
-      i &= ((mp_digit)1 << k) - (mp_digit)1;
-    mp_set(c, i);
-    return MP_OKAY;
-  }
-  MP_DIGITS(&t0) = 0;
-  MP_DIGITS(&t1) = 0;
-  MP_DIGITS(&val) = 0;
-  MP_DIGITS(&tmp) = 0;
-  MP_DIGITS(&two2k) = 0;
-  MP_CHECKOK( mp_init_copy(&val, a) );
-  s_mp_mod_2d(&val, k);
-  MP_CHECKOK( mp_init_copy(&t0, &val) );
-  MP_CHECKOK( mp_init_copy(&t1, &t0)  );
-  MP_CHECKOK( mp_init(&tmp, FLAG(a)) );
-  MP_CHECKOK( mp_init(&two2k, FLAG(a)) );
-  MP_CHECKOK( s_mp_2expt(&two2k, k) );
-  do {
-    MP_CHECKOK( mp_mul(&val, &t1, &tmp)  );
-    MP_CHECKOK( mp_sub(&two, &tmp, &tmp) );
-    MP_CHECKOK( mp_mul(&t1, &tmp, &t1)   );
-    s_mp_mod_2d(&t1, k);
-    while (MP_SIGN(&t1) != MP_ZPOS) {
-      MP_CHECKOK( mp_add(&t1, &two2k, &t1) );
-    }
-    if (mp_cmp(&t1, &t0) == MP_EQ)
-      break;
-    MP_CHECKOK( mp_copy(&t1, &t0) );
-  } while (--ix > 0);
-  if (!ix) {
-    res = MP_UNDEF;
-  } else {
-    mp_exch(c, &t1);
-  }
-
-CLEANUP:
-  mp_clear(&t0);
-  mp_clear(&t1);
-  mp_clear(&val);
-  mp_clear(&tmp);
-  mp_clear(&two2k);
-  return res;
-}
-
-mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c)
-{
-  mp_err res;
-  mp_size k;
-  mp_int oddFactor, evenFactor; /* factors of the modulus */
-  mp_int oddPart, evenPart;     /* parts to combine via CRT. */
-  mp_int C2, tmp1, tmp2;
-
-  /*static const mp_digit d1 = 1; */
-  /*static const mp_int one = { MP_ZPOS, 1, 1, (mp_digit *)&d1 }; */
-
-  if ((res = s_mp_ispow2(m)) >= 0) {
-    k = res;
-    return s_mp_invmod_2d(a, k, c);
-  }
-  MP_DIGITS(&oddFactor) = 0;
-  MP_DIGITS(&evenFactor) = 0;
-  MP_DIGITS(&oddPart) = 0;
-  MP_DIGITS(&evenPart) = 0;
-  MP_DIGITS(&C2)     = 0;
-  MP_DIGITS(&tmp1)   = 0;
-  MP_DIGITS(&tmp2)   = 0;
-
-  MP_CHECKOK( mp_init_copy(&oddFactor, m) );    /* oddFactor = m */
-  MP_CHECKOK( mp_init(&evenFactor, FLAG(m)) );
-  MP_CHECKOK( mp_init(&oddPart, FLAG(m)) );
-  MP_CHECKOK( mp_init(&evenPart, FLAG(m)) );
-  MP_CHECKOK( mp_init(&C2, FLAG(m))     );
-  MP_CHECKOK( mp_init(&tmp1, FLAG(m))   );
-  MP_CHECKOK( mp_init(&tmp2, FLAG(m))   );
-
-  k = mp_trailing_zeros(m);
-  s_mp_div_2d(&oddFactor, k);
-  MP_CHECKOK( s_mp_2expt(&evenFactor, k) );
-
-  /* compute a**-1 mod oddFactor. */
-  MP_CHECKOK( s_mp_invmod_odd_m(a, &oddFactor, &oddPart) );
-  /* compute a**-1 mod evenFactor, where evenFactor == 2**k. */
-  MP_CHECKOK( s_mp_invmod_2d(   a,       k,    &evenPart) );
-
-  /* Use Chinese Remainer theorem to compute a**-1 mod m. */
-  /* let m1 = oddFactor,  v1 = oddPart,
-   * let m2 = evenFactor, v2 = evenPart.
-   */
-
-  /* Compute C2 = m1**-1 mod m2. */
-  MP_CHECKOK( s_mp_invmod_2d(&oddFactor, k,    &C2) );
-
-  /* compute u = (v2 - v1)*C2 mod m2 */
-  MP_CHECKOK( mp_sub(&evenPart, &oddPart,   &tmp1) );
-  MP_CHECKOK( mp_mul(&tmp1,     &C2,        &tmp2) );
-  s_mp_mod_2d(&tmp2, k);
-  while (MP_SIGN(&tmp2) != MP_ZPOS) {
-    MP_CHECKOK( mp_add(&tmp2, &evenFactor, &tmp2) );
-  }
-
-  /* compute answer = v1 + u*m1 */
-  MP_CHECKOK( mp_mul(&tmp2,     &oddFactor, c) );
-  MP_CHECKOK( mp_add(&oddPart,  c,          c) );
-  /* not sure this is necessary, but it's low cost if not. */
-  MP_CHECKOK( mp_mod(c,         m,          c) );
-
-CLEANUP:
-  mp_clear(&oddFactor);
-  mp_clear(&evenFactor);
-  mp_clear(&oddPart);
-  mp_clear(&evenPart);
-  mp_clear(&C2);
-  mp_clear(&tmp1);
-  mp_clear(&tmp2);
-  return res;
-}
-
-
-/* {{{ mp_invmod(a, m, c) */
-
-/*
-  mp_invmod(a, m, c)
-
-  Compute c = a^-1 (mod m), if there is an inverse for a (mod m).
-  This is equivalent to the question of whether (a, m) = 1.  If not,
-  MP_UNDEF is returned, and there is no inverse.
- */
-
-mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c)
-{
-
-  ARGCHK(a && m && c, MP_BADARG);
-
-  if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
-    return MP_RANGE;
-
-  if (mp_isodd(m)) {
-    return s_mp_invmod_odd_m(a, m, c);
-  }
-  if (mp_iseven(a))
-    return MP_UNDEF;    /* not invertable */
-
-  return s_mp_invmod_even_m(a, m, c);
-
-} /* end mp_invmod() */
-
-/* }}} */
-#endif /* if MP_NUMTH */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ mp_print(mp, ofp) */
-
-#if MP_IOFUNC
-/*
-  mp_print(mp, ofp)
-
-  Print a textual representation of the given mp_int on the output
-  stream 'ofp'.  Output is generated using the internal radix.
- */
-
-void   mp_print(mp_int *mp, FILE *ofp)
-{
-  int   ix;
-
-  if(mp == NULL || ofp == NULL)
-    return;
-
-  fputc((SIGN(mp) == NEG) ? '-' : '+', ofp);
-
-  for(ix = USED(mp) - 1; ix >= 0; ix--) {
-    fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix));
-  }
-
-} /* end mp_print() */
-
-#endif /* if MP_IOFUNC */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* {{{ More I/O Functions */
-
-/* {{{ mp_read_raw(mp, str, len) */
-
-/*
-   mp_read_raw(mp, str, len)
-
-   Read in a raw value (base 256) into the given mp_int
- */
-
-mp_err  mp_read_raw(mp_int *mp, char *str, int len)
-{
-  int            ix;
-  mp_err         res;
-  unsigned char *ustr = (unsigned char *)str;
-
-  ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
-
-  mp_zero(mp);
-
-  /* Get sign from first byte */
-  if(ustr[0])
-    SIGN(mp) = NEG;
-  else
-    SIGN(mp) = ZPOS;
-
-  /* Read the rest of the digits */
-  for(ix = 1; ix < len; ix++) {
-    if((res = mp_mul_d(mp, 256, mp)) != MP_OKAY)
-      return res;
-    if((res = mp_add_d(mp, ustr[ix], mp)) != MP_OKAY)
-      return res;
-  }
-
-  return MP_OKAY;
-
-} /* end mp_read_raw() */
-
-/* }}} */
-
-/* {{{ mp_raw_size(mp) */
-
-int    mp_raw_size(mp_int *mp)
-{
-  ARGCHK(mp != NULL, 0);
-
-  return (USED(mp) * sizeof(mp_digit)) + 1;
-
-} /* end mp_raw_size() */
-
-/* }}} */
-
-/* {{{ mp_toraw(mp, str) */
-
-mp_err mp_toraw(mp_int *mp, char *str)
-{
-  int  ix, jx, pos = 1;
-
-  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
-
-  str[0] = (char)SIGN(mp);
-
-  /* Iterate over each digit... */
-  for(ix = USED(mp) - 1; ix >= 0; ix--) {
-    mp_digit  d = DIGIT(mp, ix);
-
-    /* Unpack digit bytes, high order first */
-    for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
-      str[pos++] = (char)(d >> (jx * CHAR_BIT));
-    }
-  }
-
-  return MP_OKAY;
-
-} /* end mp_toraw() */
-
-/* }}} */
-
-/* {{{ mp_read_radix(mp, str, radix) */
-
-/*
-  mp_read_radix(mp, str, radix)
-
-  Read an integer from the given string, and set mp to the resulting
-  value.  The input is presumed to be in base 10.  Leading non-digit
-  characters are ignored, and the function reads until a non-digit
-  character or the end of the string.
- */
-
-mp_err  mp_read_radix(mp_int *mp, const char *str, int radix)
-{
-  int     ix = 0, val = 0;
-  mp_err  res;
-  mp_sign sig = ZPOS;
-
-  ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
-         MP_BADARG);
-
-  mp_zero(mp);
-
-  /* Skip leading non-digit characters until a digit or '-' or '+' */
-  while(str[ix] &&
-        (s_mp_tovalue(str[ix], radix) < 0) &&
-        str[ix] != '-' &&
-        str[ix] != '+') {
-    ++ix;
-  }
-
-  if(str[ix] == '-') {
-    sig = NEG;
-    ++ix;
-  } else if(str[ix] == '+') {
-    sig = ZPOS; /* this is the default anyway... */
-    ++ix;
-  }
-
-  while((val = s_mp_tovalue(str[ix], radix)) >= 0) {
-    if((res = s_mp_mul_d(mp, radix)) != MP_OKAY)
-      return res;
-    if((res = s_mp_add_d(mp, val)) != MP_OKAY)
-      return res;
-    ++ix;
-  }
-
-  if(s_mp_cmp_d(mp, 0) == MP_EQ)
-    SIGN(mp) = ZPOS;
-  else
-    SIGN(mp) = sig;
-
-  return MP_OKAY;
-
-} /* end mp_read_radix() */
-
-mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix)
-{
-  int     radix = default_radix;
-  int     cx;
-  mp_sign sig   = ZPOS;
-  mp_err  res;
-
-  /* Skip leading non-digit characters until a digit or '-' or '+' */
-  while ((cx = *str) != 0 &&
-        (s_mp_tovalue(cx, radix) < 0) &&
-        cx != '-' &&
-        cx != '+') {
-    ++str;
-  }
-
-  if (cx == '-') {
-    sig = NEG;
-    ++str;
-  } else if (cx == '+') {
-    sig = ZPOS; /* this is the default anyway... */
-    ++str;
-  }
-
-  if (str[0] == '0') {
-    if ((str[1] | 0x20) == 'x') {
-      radix = 16;
-      str += 2;
-    } else {
-      radix = 8;
-      str++;
-    }
-  }
-  res = mp_read_radix(a, str, radix);
-  if (res == MP_OKAY) {
-    MP_SIGN(a) = (s_mp_cmp_d(a, 0) == MP_EQ) ? ZPOS : sig;
-  }
-  return res;
-}
-
-/* }}} */
-
-/* {{{ mp_radix_size(mp, radix) */
-
-int    mp_radix_size(mp_int *mp, int radix)
-{
-  int  bits;
-
-  if(!mp || radix < 2 || radix > MAX_RADIX)
-    return 0;
-
-  bits = USED(mp) * DIGIT_BIT - 1;
-
-  return s_mp_outlen(bits, radix);
-
-} /* end mp_radix_size() */
-
-/* }}} */
-
-/* {{{ mp_toradix(mp, str, radix) */
-
-mp_err mp_toradix(mp_int *mp, char *str, int radix)
-{
-  int  ix, pos = 0;
-
-  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
-  ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE);
-
-  if(mp_cmp_z(mp) == MP_EQ) {
-    str[0] = '0';
-    str[1] = '\0';
-  } else {
-    mp_err   res;
-    mp_int   tmp;
-    mp_sign  sgn;
-    mp_digit rem, rdx = (mp_digit)radix;
-    char     ch;
-
-    if((res = mp_init_copy(&tmp, mp)) != MP_OKAY)
-      return res;
-
-    /* Save sign for later, and take absolute value */
-    sgn = SIGN(&tmp); SIGN(&tmp) = ZPOS;
-
-    /* Generate output digits in reverse order      */
-    while(mp_cmp_z(&tmp) != 0) {
-      if((res = mp_div_d(&tmp, rdx, &tmp, &rem)) != MP_OKAY) {
-        mp_clear(&tmp);
-        return res;
-      }
-
-      /* Generate digits, use capital letters */
-      ch = s_mp_todigit(rem, radix, 0);
-
-      str[pos++] = ch;
-    }
-
-    /* Add - sign if original value was negative */
-    if(sgn == NEG)
-      str[pos++] = '-';
-
-    /* Add trailing NUL to end the string        */
-    str[pos--] = '\0';
-
-    /* Reverse the digits and sign indicator     */
-    ix = 0;
-    while(ix < pos) {
-      char tmp = str[ix];
-
-      str[ix] = str[pos];
-      str[pos] = tmp;
-      ++ix;
-      --pos;
-    }
-
-    mp_clear(&tmp);
-  }
-
-  return MP_OKAY;
-
-} /* end mp_toradix() */
-
-/* }}} */
-
-/* {{{ mp_tovalue(ch, r) */
-
-int    mp_tovalue(char ch, int r)
-{
-  return s_mp_tovalue(ch, r);
-
-} /* end mp_tovalue() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ mp_strerror(ec) */
-
-/*
-  mp_strerror(ec)
-
-  Return a string describing the meaning of error code 'ec'.  The
-  string returned is allocated in static memory, so the caller should
-  not attempt to modify or free the memory associated with this
-  string.
- */
-const char  *mp_strerror(mp_err ec)
-{
-  int   aec = (ec < 0) ? -ec : ec;
-
-  /* Code values are negative, so the senses of these comparisons
-     are accurate */
-  if(ec < MP_LAST_CODE || ec > MP_OKAY) {
-    return mp_err_string[0];  /* unknown error code */
-  } else {
-    return mp_err_string[aec + 1];
-  }
-
-} /* end mp_strerror() */
-
-/* }}} */
-
-/*========================================================================*/
-/*------------------------------------------------------------------------*/
-/* Static function definitions (internal use only)                        */
-
-/* {{{ Memory management */
-
-/* {{{ s_mp_grow(mp, min) */
-
-/* Make sure there are at least 'min' digits allocated to mp              */
-mp_err   s_mp_grow(mp_int *mp, mp_size min)
-{
-  if(min > ALLOC(mp)) {
-    mp_digit   *tmp;
-
-    /* Set min to next nearest default precision block size */
-    min = MP_ROUNDUP(min, s_mp_defprec);
-
-    if((tmp = s_mp_alloc(min, sizeof(mp_digit), FLAG(mp))) == NULL)
-      return MP_MEM;
-
-    s_mp_copy(DIGITS(mp), tmp, USED(mp));
-
-#if MP_CRYPTO
-    s_mp_setz(DIGITS(mp), ALLOC(mp));
-#endif
-    s_mp_free(DIGITS(mp), ALLOC(mp));
-    DIGITS(mp) = tmp;
-    ALLOC(mp) = min;
-  }
-
-  return MP_OKAY;
-
-} /* end s_mp_grow() */
-
-/* }}} */
-
-/* {{{ s_mp_pad(mp, min) */
-
-/* Make sure the used size of mp is at least 'min', growing if needed     */
-mp_err   s_mp_pad(mp_int *mp, mp_size min)
-{
-  if(min > USED(mp)) {
-    mp_err  res;
-
-    /* Make sure there is room to increase precision  */
-    if (min > ALLOC(mp)) {
-      if ((res = s_mp_grow(mp, min)) != MP_OKAY)
-        return res;
-    } else {
-      s_mp_setz(DIGITS(mp) + USED(mp), min - USED(mp));
-    }
-
-    /* Increase precision; should already be 0-filled */
-    USED(mp) = min;
-  }
-
-  return MP_OKAY;
-
-} /* end s_mp_pad() */
-
-/* }}} */
-
-/* {{{ s_mp_setz(dp, count) */
-
-#if MP_MACRO == 0
-/* Set 'count' digits pointed to by dp to be zeroes                       */
-void s_mp_setz(mp_digit *dp, mp_size count)
-{
-#if MP_MEMSET == 0
-  int  ix;
-
-  for(ix = 0; ix < count; ix++)
-    dp[ix] = 0;
-#else
-  memset(dp, 0, count * sizeof(mp_digit));
-#endif
-
-} /* end s_mp_setz() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_copy(sp, dp, count) */
-
-#if MP_MACRO == 0
-/* Copy 'count' digits from sp to dp                                      */
-void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count)
-{
-#if MP_MEMCPY == 0
-  int  ix;
-
-  for(ix = 0; ix < count; ix++)
-    dp[ix] = sp[ix];
-#else
-  memcpy(dp, sp, count * sizeof(mp_digit));
-#endif
-
-} /* end s_mp_copy() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_alloc(nb, ni, kmflag) */
-
-#if MP_MACRO == 0
-/* Allocate ni records of nb bytes each, and return a pointer to that     */
-void    *s_mp_alloc(size_t nb, size_t ni, int kmflag)
-{
-  mp_int *mp;
-  ++mp_allocs;
-#ifdef _KERNEL
-  mp = kmem_zalloc(nb * ni, kmflag);
-  if (mp != NULL)
-    FLAG(mp) = kmflag;
-  return (mp);
-#else
-  return calloc(nb, ni);
-#endif
-
-} /* end s_mp_alloc() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_free(ptr) */
-
-#if MP_MACRO == 0
-/* Free the memory pointed to by ptr                                      */
-void     s_mp_free(void *ptr, mp_size alloc)
-{
-  if(ptr) {
-    ++mp_frees;
-#ifdef _KERNEL
-    kmem_free(ptr, alloc * sizeof (mp_digit));
-#else
-    free(ptr);
-#endif
-  }
-} /* end s_mp_free() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_clamp(mp) */
-
-#if MP_MACRO == 0
-/* Remove leading zeroes from the given value                             */
-void     s_mp_clamp(mp_int *mp)
-{
-  mp_size used = MP_USED(mp);
-  while (used > 1 && DIGIT(mp, used - 1) == 0)
-    --used;
-  MP_USED(mp) = used;
-} /* end s_mp_clamp() */
-#endif
-
-/* }}} */
-
-/* {{{ s_mp_exch(a, b) */
-
-/* Exchange the data for a and b; (b, a) = (a, b)                         */
-void     s_mp_exch(mp_int *a, mp_int *b)
-{
-  mp_int   tmp;
-
-  tmp = *a;
-  *a = *b;
-  *b = tmp;
-
-} /* end s_mp_exch() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ Arithmetic helpers */
-
-/* {{{ s_mp_lshd(mp, p) */
-
-/*
-   Shift mp leftward by p digits, growing if needed, and zero-filling
-   the in-shifted digits at the right end.  This is a convenient
-   alternative to multiplication by powers of the radix
-   The value of USED(mp) must already have been set to the value for
-   the shifted result.
- */
-
-mp_err   s_mp_lshd(mp_int *mp, mp_size p)
-{
-  mp_err  res;
-  mp_size pos;
-  int     ix;
-
-  if(p == 0)
-    return MP_OKAY;
-
-  if (MP_USED(mp) == 1 && MP_DIGIT(mp, 0) == 0)
-    return MP_OKAY;
-
-  if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY)
-    return res;
-
-  pos = USED(mp) - 1;
-
-  /* Shift all the significant figures over as needed */
-  for(ix = pos - p; ix >= 0; ix--)
-    DIGIT(mp, ix + p) = DIGIT(mp, ix);
-
-  /* Fill the bottom digits with zeroes */
-  for(ix = 0; ix < p; ix++)
-    DIGIT(mp, ix) = 0;
-
-  return MP_OKAY;
-
-} /* end s_mp_lshd() */
-
-/* }}} */
-
-/* {{{ s_mp_mul_2d(mp, d) */
-
-/*
-  Multiply the integer by 2^d, where d is a number of bits.  This
-  amounts to a bitwise shift of the value.
- */
-mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d)
-{
-  mp_err   res;
-  mp_digit dshift, bshift;
-  mp_digit mask;
-
-  ARGCHK(mp != NULL,  MP_BADARG);
-
-  dshift = d / MP_DIGIT_BIT;
-  bshift = d % MP_DIGIT_BIT;
-  /* bits to be shifted out of the top word */
-  mask   = ((mp_digit)~0 << (MP_DIGIT_BIT - bshift));
-  mask  &= MP_DIGIT(mp, MP_USED(mp) - 1);
-
-  if (MP_OKAY != (res = s_mp_pad(mp, MP_USED(mp) + dshift + (mask != 0) )))
-    return res;
-
-  if (dshift && MP_OKAY != (res = s_mp_lshd(mp, dshift)))
-    return res;
-
-  if (bshift) {
-    mp_digit *pa = MP_DIGITS(mp);
-    mp_digit *alim = pa + MP_USED(mp);
-    mp_digit  prev = 0;
-
-    for (pa += dshift; pa < alim; ) {
-      mp_digit x = *pa;
-      *pa++ = (x << bshift) | prev;
-      prev = x >> (DIGIT_BIT - bshift);
-    }
-  }
-
-  s_mp_clamp(mp);
-  return MP_OKAY;
-} /* end s_mp_mul_2d() */
-
-/* {{{ s_mp_rshd(mp, p) */
-
-/*
-   Shift mp rightward by p digits.  Maintains the invariant that
-   digits above the precision are all zero.  Digits shifted off the
-   end are lost.  Cannot fail.
- */
-
-void     s_mp_rshd(mp_int *mp, mp_size p)
-{
-  mp_size  ix;
-  mp_digit *src, *dst;
-
-  if(p == 0)
-    return;
-
-  /* Shortcut when all digits are to be shifted off */
-  if(p >= USED(mp)) {
-    s_mp_setz(DIGITS(mp), ALLOC(mp));
-    USED(mp) = 1;
-    SIGN(mp) = ZPOS;
-    return;
-  }
-
-  /* Shift all the significant figures over as needed */
-  dst = MP_DIGITS(mp);
-  src = dst + p;
-  for (ix = USED(mp) - p; ix > 0; ix--)
-    *dst++ = *src++;
-
-  MP_USED(mp) -= p;
-  /* Fill the top digits with zeroes */
-  while (p-- > 0)
-    *dst++ = 0;
-
-#if 0
-  /* Strip off any leading zeroes    */
-  s_mp_clamp(mp);
-#endif
-
-} /* end s_mp_rshd() */
-
-/* }}} */
-
-/* {{{ s_mp_div_2(mp) */
-
-/* Divide by two -- take advantage of radix properties to do it fast      */
-void     s_mp_div_2(mp_int *mp)
-{
-  s_mp_div_2d(mp, 1);
-
-} /* end s_mp_div_2() */
-
-/* }}} */
-
-/* {{{ s_mp_mul_2(mp) */
-
-mp_err s_mp_mul_2(mp_int *mp)
-{
-  mp_digit *pd;
-  int      ix, used;
-  mp_digit kin = 0;
-
-  /* Shift digits leftward by 1 bit */
-  used = MP_USED(mp);
-  pd = MP_DIGITS(mp);
-  for (ix = 0; ix < used; ix++) {
-    mp_digit d = *pd;
-    *pd++ = (d << 1) | kin;
-    kin = (d >> (DIGIT_BIT - 1));
-  }
-
-  /* Deal with rollover from last digit */
-  if (kin) {
-    if (ix >= ALLOC(mp)) {
-      mp_err res;
-      if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY)
-        return res;
-    }
-
-    DIGIT(mp, ix) = kin;
-    USED(mp) += 1;
-  }
-
-  return MP_OKAY;
-
-} /* end s_mp_mul_2() */
-
-/* }}} */
-
-/* {{{ s_mp_mod_2d(mp, d) */
-
-/*
-  Remainder the integer by 2^d, where d is a number of bits.  This
-  amounts to a bitwise AND of the value, and does not require the full
-  division code
- */
-void     s_mp_mod_2d(mp_int *mp, mp_digit d)
-{
-  mp_size  ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT);
-  mp_size  ix;
-  mp_digit dmask;
-
-  if(ndig >= USED(mp))
-    return;
-
-  /* Flush all the bits above 2^d in its digit */
-  dmask = ((mp_digit)1 << nbit) - 1;
-  DIGIT(mp, ndig) &= dmask;
-
-  /* Flush all digits above the one with 2^d in it */
-  for(ix = ndig + 1; ix < USED(mp); ix++)
-    DIGIT(mp, ix) = 0;
-
-  s_mp_clamp(mp);
-
-} /* end s_mp_mod_2d() */
-
-/* }}} */
-
-/* {{{ s_mp_div_2d(mp, d) */
-
-/*
-  Divide the integer by 2^d, where d is a number of bits.  This
-  amounts to a bitwise shift of the value, and does not require the
-  full division code (used in Barrett reduction, see below)
- */
-void     s_mp_div_2d(mp_int *mp, mp_digit d)
-{
-  int       ix;
-  mp_digit  save, next, mask;
-
-  s_mp_rshd(mp, d / DIGIT_BIT);
-  d %= DIGIT_BIT;
-  if (d) {
-    mask = ((mp_digit)1 << d) - 1;
-    save = 0;
-    for(ix = USED(mp) - 1; ix >= 0; ix--) {
-      next = DIGIT(mp, ix) & mask;
-      DIGIT(mp, ix) = (DIGIT(mp, ix) >> d) | (save << (DIGIT_BIT - d));
-      save = next;
-    }
-  }
-  s_mp_clamp(mp);
-
-} /* end s_mp_div_2d() */
-
-/* }}} */
-
-/* {{{ s_mp_norm(a, b, *d) */
-
-/*
-  s_mp_norm(a, b, *d)
-
-  Normalize a and b for division, where b is the divisor.  In order
-  that we might make good guesses for quotient digits, we want the
-  leading digit of b to be at least half the radix, which we
-  accomplish by multiplying a and b by a power of 2.  The exponent
-  (shift count) is placed in *pd, so that the remainder can be shifted
-  back at the end of the division process.
- */
-
-mp_err   s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd)
-{
-  mp_digit  d;
-  mp_digit  mask;
-  mp_digit  b_msd;
-  mp_err    res    = MP_OKAY;
-
-  d = 0;
-  mask  = DIGIT_MAX & ~(DIGIT_MAX >> 1);        /* mask is msb of digit */
-  b_msd = DIGIT(b, USED(b) - 1);
-  while (!(b_msd & mask)) {
-    b_msd <<= 1;
-    ++d;
-  }
-
-  if (d) {
-    MP_CHECKOK( s_mp_mul_2d(a, d) );
-    MP_CHECKOK( s_mp_mul_2d(b, d) );
-  }
-
-  *pd = d;
-CLEANUP:
-  return res;
-
-} /* end s_mp_norm() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ Primitive digit arithmetic */
-
-/* {{{ s_mp_add_d(mp, d) */
-
-/* Add d to |mp| in place                                                 */
-mp_err   s_mp_add_d(mp_int *mp, mp_digit d)    /* unsigned digit addition */
-{
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-  mp_word   w, k = 0;
-  mp_size   ix = 1;
-
-  w = (mp_word)DIGIT(mp, 0) + d;
-  DIGIT(mp, 0) = ACCUM(w);
-  k = CARRYOUT(w);
-
-  while(ix < USED(mp) && k) {
-    w = (mp_word)DIGIT(mp, ix) + k;
-    DIGIT(mp, ix) = ACCUM(w);
-    k = CARRYOUT(w);
-    ++ix;
-  }
-
-  if(k != 0) {
-    mp_err  res;
-
-    if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY)
-      return res;
-
-    DIGIT(mp, ix) = (mp_digit)k;
-  }
-
-  return MP_OKAY;
-#else
-  mp_digit * pmp = MP_DIGITS(mp);
-  mp_digit sum, mp_i, carry = 0;
-  mp_err   res = MP_OKAY;
-  int used = (int)MP_USED(mp);
-
-  mp_i = *pmp;
-  *pmp++ = sum = d + mp_i;
-  carry = (sum < d);
-  while (carry && --used > 0) {
-    mp_i = *pmp;
-    *pmp++ = sum = carry + mp_i;
-    carry = !sum;
-  }
-  if (carry && !used) {
-    /* mp is growing */
-    used = MP_USED(mp);
-    MP_CHECKOK( s_mp_pad(mp, used + 1) );
-    MP_DIGIT(mp, used) = carry;
-  }
-CLEANUP:
-  return res;
-#endif
-} /* end s_mp_add_d() */
-
-/* }}} */
-
-/* {{{ s_mp_sub_d(mp, d) */
-
-/* Subtract d from |mp| in place, assumes |mp| > d                        */
-mp_err   s_mp_sub_d(mp_int *mp, mp_digit d)    /* unsigned digit subtract */
-{
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
-  mp_word   w, b = 0;
-  mp_size   ix = 1;
-
-  /* Compute initial subtraction    */
-  w = (RADIX + (mp_word)DIGIT(mp, 0)) - d;
-  b = CARRYOUT(w) ? 0 : 1;
-  DIGIT(mp, 0) = ACCUM(w);
-
-  /* Propagate borrows leftward     */
-  while(b && ix < USED(mp)) {
-    w = (RADIX + (mp_word)DIGIT(mp, ix)) - b;
-    b = CARRYOUT(w) ? 0 : 1;
-    DIGIT(mp, ix) = ACCUM(w);
-    ++ix;
-  }
-
-  /* Remove leading zeroes          */
-  s_mp_clamp(mp);
-
-  /* If we have a borrow out, it's a violation of the input invariant */
-  if(b)
-    return MP_RANGE;
-  else
-    return MP_OKAY;
-#else
-  mp_digit *pmp = MP_DIGITS(mp);
-  mp_digit mp_i, diff, borrow;
-  mp_size  used = MP_USED(mp);
-
-  mp_i = *pmp;
-  *pmp++ = diff = mp_i - d;
-  borrow = (diff > mp_i);
-  while (borrow && --used) {
-    mp_i = *pmp;
-    *pmp++ = diff = mp_i - borrow;
-    borrow = (diff > mp_i);
-  }
-  s_mp_clamp(mp);
-  return (borrow && !used) ? MP_RANGE : MP_OKAY;
-#endif
-} /* end s_mp_sub_d() */
-
-/* }}} */
-
-/* {{{ s_mp_mul_d(a, d) */
-
-/* Compute a = a * d, single digit multiplication                         */
-mp_err   s_mp_mul_d(mp_int *a, mp_digit d)
-{
-  mp_err  res;
-  mp_size used;
-  int     pow;
-
-  if (!d) {
-    mp_zero(a);
-    return MP_OKAY;
-  }
-  if (d == 1)
-    return MP_OKAY;
-  if (0 <= (pow = s_mp_ispow2d(d))) {
-    return s_mp_mul_2d(a, (mp_digit)pow);
-  }
-
-  used = MP_USED(a);
-  MP_CHECKOK( s_mp_pad(a, used + 1) );
-
-  s_mpv_mul_d(MP_DIGITS(a), used, d, MP_DIGITS(a));
-
-  s_mp_clamp(a);
-
-CLEANUP:
-  return res;
-
-} /* end s_mp_mul_d() */
-
-/* }}} */
-
-/* {{{ s_mp_div_d(mp, d, r) */
-
-/*
-  s_mp_div_d(mp, d, r)
-
-  Compute the quotient mp = mp / d and remainder r = mp mod d, for a
-  single digit d.  If r is null, the remainder will be discarded.
- */
-
-mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r)
-{
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD)
-  mp_word   w = 0, q;
-#else
-  mp_digit  w, q;
-#endif
-  int       ix;
-  mp_err    res;
-  mp_int    quot;
-  mp_int    rem;
-
-  if(d == 0)
-    return MP_RANGE;
-  if (d == 1) {
-    if (r)
-      *r = 0;
-    return MP_OKAY;
-  }
-  /* could check for power of 2 here, but mp_div_d does that. */
-  if (MP_USED(mp) == 1) {
-    mp_digit n   = MP_DIGIT(mp,0);
-    mp_digit rem;
-
-    q   = n / d;
-    rem = n % d;
-    MP_DIGIT(mp,0) = q;
-    if (r)
-      *r = rem;
-    return MP_OKAY;
-  }
-
-  MP_DIGITS(&rem)  = 0;
-  MP_DIGITS(&quot) = 0;
-  /* Make room for the quotient */
-  MP_CHECKOK( mp_init_size(&quot, USED(mp), FLAG(mp)) );
-
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD)
-  for(ix = USED(mp) - 1; ix >= 0; ix--) {
-    w = (w << DIGIT_BIT) | DIGIT(mp, ix);
-
-    if(w >= d) {
-      q = w / d;
-      w = w % d;
-    } else {
-      q = 0;
-    }
-
-    s_mp_lshd(&quot, 1);
-    DIGIT(&quot, 0) = (mp_digit)q;
-  }
-#else
-  {
-    mp_digit p;
-#if !defined(MP_ASSEMBLY_DIV_2DX1D)
-    mp_digit norm;
-#endif
-
-    MP_CHECKOK( mp_init_copy(&rem, mp) );
-
-#if !defined(MP_ASSEMBLY_DIV_2DX1D)
-    MP_DIGIT(&quot, 0) = d;
-    MP_CHECKOK( s_mp_norm(&rem, &quot, &norm) );
-    if (norm)
-      d <<= norm;
-    MP_DIGIT(&quot, 0) = 0;
-#endif
-
-    p = 0;
-    for (ix = USED(&rem) - 1; ix >= 0; ix--) {
-      w = DIGIT(&rem, ix);
-
-      if (p) {
-        MP_CHECKOK( s_mpv_div_2dx1d(p, w, d, &q, &w) );
-      } else if (w >= d) {
-        q = w / d;
-        w = w % d;
-      } else {
-        q = 0;
-      }
-
-      MP_CHECKOK( s_mp_lshd(&quot, 1) );
-      DIGIT(&quot, 0) = q;
-      p = w;
-    }
-#if !defined(MP_ASSEMBLY_DIV_2DX1D)
-    if (norm)
-      w >>= norm;
-#endif
-  }
-#endif
-
-  /* Deliver the remainder, if desired */
-  if(r)
-    *r = (mp_digit)w;
-
-  s_mp_clamp(&quot);
-  mp_exch(&quot, mp);
-CLEANUP:
-  mp_clear(&quot);
-  mp_clear(&rem);
-
-  return res;
-} /* end s_mp_div_d() */
-
-/* }}} */
-
-
-/* }}} */
-
-/* {{{ Primitive full arithmetic */
-
-/* {{{ s_mp_add(a, b) */
-
-/* Compute a = |a| + |b|                                                  */
-mp_err   s_mp_add(mp_int *a, const mp_int *b)  /* magnitude addition      */
-{
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-  mp_word   w = 0;
-#else
-  mp_digit  d, sum, carry = 0;
-#endif
-  mp_digit *pa, *pb;
-  mp_size   ix;
-  mp_size   used;
-  mp_err    res;
-
-  /* Make sure a has enough precision for the output value */
-  if((USED(b) > USED(a)) && (res = s_mp_pad(a, USED(b))) != MP_OKAY)
-    return res;
-
-  /*
-    Add up all digits up to the precision of b.  If b had initially
-    the same precision as a, or greater, we took care of it by the
-    padding step above, so there is no problem.  If b had initially
-    less precision, we'll have to make sure the carry out is duly
-    propagated upward among the higher-order digits of the sum.
-   */
-  pa = MP_DIGITS(a);
-  pb = MP_DIGITS(b);
-  used = MP_USED(b);
-  for(ix = 0; ix < used; ix++) {
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-    w = w + *pa + *pb++;
-    *pa++ = ACCUM(w);
-    w = CARRYOUT(w);
-#else
-    d = *pa;
-    sum = d + *pb++;
-    d = (sum < d);                      /* detect overflow */
-    *pa++ = sum += carry;
-    carry = d + (sum < carry);          /* detect overflow */
-#endif
-  }
-
-  /* If we run out of 'b' digits before we're actually done, make
-     sure the carries get propagated upward...
-   */
-  used = MP_USED(a);
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-  while (w && ix < used) {
-    w = w + *pa;
-    *pa++ = ACCUM(w);
-    w = CARRYOUT(w);
-    ++ix;
-  }
-#else
-  while (carry && ix < used) {
-    sum = carry + *pa;
-    *pa++ = sum;
-    carry = !sum;
-    ++ix;
-  }
-#endif
-
-  /* If there's an overall carry out, increase precision and include
-     it.  We could have done this initially, but why touch the memory
-     allocator unless we're sure we have to?
-   */
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-  if (w) {
-    if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
-      return res;
-
-    DIGIT(a, ix) = (mp_digit)w;
-  }
-#else
-  if (carry) {
-    if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
-      return res;
-
-    DIGIT(a, used) = carry;
-  }
-#endif
-
-  return MP_OKAY;
-} /* end s_mp_add() */
-
-/* }}} */
-
-/* Compute c = |a| + |b|         */ /* magnitude addition      */
-mp_err   s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c)
-{
-  mp_digit *pa, *pb, *pc;
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-  mp_word   w = 0;
-#else
-  mp_digit  sum, carry = 0, d;
-#endif
-  mp_size   ix;
-  mp_size   used;
-  mp_err    res;
-
-  MP_SIGN(c) = MP_SIGN(a);
-  if (MP_USED(a) < MP_USED(b)) {
-    const mp_int *xch = a;
-    a = b;
-    b = xch;
-  }
-
-  /* Make sure a has enough precision for the output value */
-  if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a))))
-    return res;
-
-  /*
-    Add up all digits up to the precision of b.  If b had initially
-    the same precision as a, or greater, we took care of it by the
-    exchange step above, so there is no problem.  If b had initially
-    less precision, we'll have to make sure the carry out is duly
-    propagated upward among the higher-order digits of the sum.
-   */
-  pa = MP_DIGITS(a);
-  pb = MP_DIGITS(b);
-  pc = MP_DIGITS(c);
-  used = MP_USED(b);
-  for (ix = 0; ix < used; ix++) {
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-    w = w + *pa++ + *pb++;
-    *pc++ = ACCUM(w);
-    w = CARRYOUT(w);
-#else
-    d = *pa++;
-    sum = d + *pb++;
-    d = (sum < d);                      /* detect overflow */
-    *pc++ = sum += carry;
-    carry = d + (sum < carry);          /* detect overflow */
-#endif
-  }
-
-  /* If we run out of 'b' digits before we're actually done, make
-     sure the carries get propagated upward...
-   */
-  for (used = MP_USED(a); ix < used; ++ix) {
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-    w = w + *pa++;
-    *pc++ = ACCUM(w);
-    w = CARRYOUT(w);
-#else
-    *pc++ = sum = carry + *pa++;
-    carry = (sum < carry);
-#endif
-  }
-
-  /* If there's an overall carry out, increase precision and include
-     it.  We could have done this initially, but why touch the memory
-     allocator unless we're sure we have to?
-   */
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-  if (w) {
-    if((res = s_mp_pad(c, used + 1)) != MP_OKAY)
-      return res;
-
-    DIGIT(c, used) = (mp_digit)w;
-    ++used;
-  }
-#else
-  if (carry) {
-    if((res = s_mp_pad(c, used + 1)) != MP_OKAY)
-      return res;
-
-    DIGIT(c, used) = carry;
-    ++used;
-  }
-#endif
-  MP_USED(c) = used;
-  return MP_OKAY;
-}
-/* {{{ s_mp_add_offset(a, b, offset) */
-
-/* Compute a = |a| + ( |b| * (RADIX ** offset) )             */
-mp_err   s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset)
-{
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-  mp_word   w, k = 0;
-#else
-  mp_digit  d, sum, carry = 0;
-#endif
-  mp_size   ib;
-  mp_size   ia;
-  mp_size   lim;
-  mp_err    res;
-
-  /* Make sure a has enough precision for the output value */
-  lim = MP_USED(b) + offset;
-  if((lim > USED(a)) && (res = s_mp_pad(a, lim)) != MP_OKAY)
-    return res;
-
-  /*
-    Add up all digits up to the precision of b.  If b had initially
-    the same precision as a, or greater, we took care of it by the
-    padding step above, so there is no problem.  If b had initially
-    less precision, we'll have to make sure the carry out is duly
-    propagated upward among the higher-order digits of the sum.
-   */
-  lim = USED(b);
-  for(ib = 0, ia = offset; ib < lim; ib++, ia++) {
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-    w = (mp_word)DIGIT(a, ia) + DIGIT(b, ib) + k;
-    DIGIT(a, ia) = ACCUM(w);
-    k = CARRYOUT(w);
-#else
-    d = MP_DIGIT(a, ia);
-    sum = d + MP_DIGIT(b, ib);
-    d = (sum < d);
-    MP_DIGIT(a,ia) = sum += carry;
-    carry = d + (sum < carry);
-#endif
-  }
-
-  /* If we run out of 'b' digits before we're actually done, make
-     sure the carries get propagated upward...
-   */
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-  for (lim = MP_USED(a); k && (ia < lim); ++ia) {
-    w = (mp_word)DIGIT(a, ia) + k;
-    DIGIT(a, ia) = ACCUM(w);
-    k = CARRYOUT(w);
-  }
-#else
-  for (lim = MP_USED(a); carry && (ia < lim); ++ia) {
-    d = MP_DIGIT(a, ia);
-    MP_DIGIT(a,ia) = sum = d + carry;
-    carry = (sum < d);
-  }
-#endif
-
-  /* If there's an overall carry out, increase precision and include
-     it.  We could have done this initially, but why touch the memory
-     allocator unless we're sure we have to?
-   */
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
-  if(k) {
-    if((res = s_mp_pad(a, USED(a) + 1)) != MP_OKAY)
-      return res;
-
-    DIGIT(a, ia) = (mp_digit)k;
-  }
-#else
-  if (carry) {
-    if((res = s_mp_pad(a, lim + 1)) != MP_OKAY)
-      return res;
-
-    DIGIT(a, lim) = carry;
-  }
-#endif
-  s_mp_clamp(a);
-
-  return MP_OKAY;
-
-} /* end s_mp_add_offset() */
-
-/* }}} */
-
-/* {{{ s_mp_sub(a, b) */
-
-/* Compute a = |a| - |b|, assumes |a| >= |b|                              */
-mp_err   s_mp_sub(mp_int *a, const mp_int *b)  /* magnitude subtract      */
-{
-  mp_digit *pa, *pb, *limit;
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
-  mp_sword  w = 0;
-#else
-  mp_digit  d, diff, borrow = 0;
-#endif
-
-  /*
-    Subtract and propagate borrow.  Up to the precision of b, this
-    accounts for the digits of b; after that, we just make sure the
-    carries get to the right place.  This saves having to pad b out to
-    the precision of a just to make the loops work right...
-   */
-  pa = MP_DIGITS(a);
-  pb = MP_DIGITS(b);
-  limit = pb + MP_USED(b);
-  while (pb < limit) {
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
-    w = w + *pa - *pb++;
-    *pa++ = ACCUM(w);
-    w >>= MP_DIGIT_BIT;
-#else
-    d = *pa;
-    diff = d - *pb++;
-    d = (diff > d);                             /* detect borrow */
-    if (borrow && --diff == MP_DIGIT_MAX)
-      ++d;
-    *pa++ = diff;
-    borrow = d;
-#endif
-  }
-  limit = MP_DIGITS(a) + MP_USED(a);
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
-  while (w && pa < limit) {
-    w = w + *pa;
-    *pa++ = ACCUM(w);
-    w >>= MP_DIGIT_BIT;
-  }
-#else
-  while (borrow && pa < limit) {
-    d = *pa;
-    *pa++ = diff = d - borrow;
-    borrow = (diff > d);
-  }
-#endif
-
-  /* Clobber any leading zeroes we created    */
-  s_mp_clamp(a);
-
-  /*
-     If there was a borrow out, then |b| > |a| in violation
-     of our input invariant.  We've already done the work,
-     but we'll at least complain about it...
-   */
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
-  return w ? MP_RANGE : MP_OKAY;
-#else
-  return borrow ? MP_RANGE : MP_OKAY;
-#endif
-} /* end s_mp_sub() */
-
-/* }}} */
-
-/* Compute c = |a| - |b|, assumes |a| >= |b| */ /* magnitude subtract      */
-mp_err   s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c)
-{
-  mp_digit *pa, *pb, *pc;
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
-  mp_sword  w = 0;
-#else
-  mp_digit  d, diff, borrow = 0;
-#endif
-  int       ix, limit;
-  mp_err    res;
-
-  MP_SIGN(c) = MP_SIGN(a);
-
-  /* Make sure a has enough precision for the output value */
-  if (MP_OKAY != (res = s_mp_pad(c, MP_USED(a))))
-    return res;
-
-  /*
-    Subtract and propagate borrow.  Up to the precision of b, this
-    accounts for the digits of b; after that, we just make sure the
-    carries get to the right place.  This saves having to pad b out to
-    the precision of a just to make the loops work right...
-   */
-  pa = MP_DIGITS(a);
-  pb = MP_DIGITS(b);
-  pc = MP_DIGITS(c);
-  limit = MP_USED(b);
-  for (ix = 0; ix < limit; ++ix) {
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
-    w = w + *pa++ - *pb++;
-    *pc++ = ACCUM(w);
-    w >>= MP_DIGIT_BIT;
-#else
-    d = *pa++;
-    diff = d - *pb++;
-    d = (diff > d);
-    if (borrow && --diff == MP_DIGIT_MAX)
-      ++d;
-    *pc++ = diff;
-    borrow = d;
-#endif
-  }
-  for (limit = MP_USED(a); ix < limit; ++ix) {
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
-    w = w + *pa++;
-    *pc++ = ACCUM(w);
-    w >>= MP_DIGIT_BIT;
-#else
-    d = *pa++;
-    *pc++ = diff = d - borrow;
-    borrow = (diff > d);
-#endif
-  }
-
-  /* Clobber any leading zeroes we created    */
-  MP_USED(c) = ix;
-  s_mp_clamp(c);
-
-  /*
-     If there was a borrow out, then |b| > |a| in violation
-     of our input invariant.  We've already done the work,
-     but we'll at least complain about it...
-   */
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_SUB_WORD)
-  return w ? MP_RANGE : MP_OKAY;
-#else
-  return borrow ? MP_RANGE : MP_OKAY;
-#endif
-}
-/* {{{ s_mp_mul(a, b) */
-
-/* Compute a = |a| * |b|                                                  */
-mp_err   s_mp_mul(mp_int *a, const mp_int *b)
-{
-  return mp_mul(a, b, a);
-} /* end s_mp_mul() */
-
-/* }}} */
-
-#if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY)
-/* This trick works on Sparc V8 CPUs with the Workshop compilers. */
-#define MP_MUL_DxD(a, b, Phi, Plo) \
-  { unsigned long long product = (unsigned long long)a * b; \
-    Plo = (mp_digit)product; \
-    Phi = (mp_digit)(product >> MP_DIGIT_BIT); }
-#elif defined(OSF1)
-#define MP_MUL_DxD(a, b, Phi, Plo) \
-  { Plo = asm ("mulq %a0, %a1, %v0", a, b);\
-    Phi = asm ("umulh %a0, %a1, %v0", a, b); }
-#else
-#define MP_MUL_DxD(a, b, Phi, Plo) \
-  { mp_digit a0b1, a1b0; \
-    Plo = (a & MP_HALF_DIGIT_MAX) * (b & MP_HALF_DIGIT_MAX); \
-    Phi = (a >> MP_HALF_DIGIT_BIT) * (b >> MP_HALF_DIGIT_BIT); \
-    a0b1 = (a & MP_HALF_DIGIT_MAX) * (b >> MP_HALF_DIGIT_BIT); \
-    a1b0 = (a >> MP_HALF_DIGIT_BIT) * (b & MP_HALF_DIGIT_MAX); \
-    a1b0 += a0b1; \
-    Phi += a1b0 >> MP_HALF_DIGIT_BIT; \
-    if (a1b0 < a0b1)  \
-      Phi += MP_HALF_RADIX; \
-    a1b0 <<= MP_HALF_DIGIT_BIT; \
-    Plo += a1b0; \
-    if (Plo < a1b0) \
-      ++Phi; \
-  }
-#endif
-
-#if !defined(MP_ASSEMBLY_MULTIPLY)
-/* c = a * b */
-void s_mpv_mul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c)
-{
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD)
-  mp_digit   d = 0;
-
-  /* Inner product:  Digits of a */
-  while (a_len--) {
-    mp_word w = ((mp_word)b * *a++) + d;
-    *c++ = ACCUM(w);
-    d = CARRYOUT(w);
-  }
-  *c = d;
-#else
-  mp_digit carry = 0;
-  while (a_len--) {
-    mp_digit a_i = *a++;
-    mp_digit a0b0, a1b1;
-
-    MP_MUL_DxD(a_i, b, a1b1, a0b0);
-
-    a0b0 += carry;
-    if (a0b0 < carry)
-      ++a1b1;
-    *c++ = a0b0;
-    carry = a1b1;
-  }
-  *c = carry;
-#endif
-}
-
-/* c += a * b */
-void s_mpv_mul_d_add(const mp_digit *a, mp_size a_len, mp_digit b,
-                              mp_digit *c)
-{
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD)
-  mp_digit   d = 0;
-
-  /* Inner product:  Digits of a */
-  while (a_len--) {
-    mp_word w = ((mp_word)b * *a++) + *c + d;
-    *c++ = ACCUM(w);
-    d = CARRYOUT(w);
-  }
-  *c = d;
-#else
-  mp_digit carry = 0;
-  while (a_len--) {
-    mp_digit a_i = *a++;
-    mp_digit a0b0, a1b1;
-
-    MP_MUL_DxD(a_i, b, a1b1, a0b0);
-
-    a0b0 += carry;
-    if (a0b0 < carry)
-      ++a1b1;
-    a0b0 += a_i = *c;
-    if (a0b0 < a_i)
-      ++a1b1;
-    *c++ = a0b0;
-    carry = a1b1;
-  }
-  *c = carry;
-#endif
-}
-
-/* Presently, this is only used by the Montgomery arithmetic code. */
-/* c += a * b */
-void s_mpv_mul_d_add_prop(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *c)
-{
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD)
-  mp_digit   d = 0;
-
-  /* Inner product:  Digits of a */
-  while (a_len--) {
-    mp_word w = ((mp_word)b * *a++) + *c + d;
-    *c++ = ACCUM(w);
-    d = CARRYOUT(w);
-  }
-
-  while (d) {
-    mp_word w = (mp_word)*c + d;
-    *c++ = ACCUM(w);
-    d = CARRYOUT(w);
-  }
-#else
-  mp_digit carry = 0;
-  while (a_len--) {
-    mp_digit a_i = *a++;
-    mp_digit a0b0, a1b1;
-
-    MP_MUL_DxD(a_i, b, a1b1, a0b0);
-
-    a0b0 += carry;
-    if (a0b0 < carry)
-      ++a1b1;
-
-    a0b0 += a_i = *c;
-    if (a0b0 < a_i)
-      ++a1b1;
-
-    *c++ = a0b0;
-    carry = a1b1;
-  }
-  while (carry) {
-    mp_digit c_i = *c;
-    carry += c_i;
-    *c++ = carry;
-    carry = carry < c_i;
-  }
-#endif
-}
-#endif
-
-#if defined(MP_USE_UINT_DIGIT) && defined(MP_USE_LONG_LONG_MULTIPLY)
-/* This trick works on Sparc V8 CPUs with the Workshop compilers. */
-#define MP_SQR_D(a, Phi, Plo) \
-  { unsigned long long square = (unsigned long long)a * a; \
-    Plo = (mp_digit)square; \
-    Phi = (mp_digit)(square >> MP_DIGIT_BIT); }
-#elif defined(OSF1)
-#define MP_SQR_D(a, Phi, Plo) \
-  { Plo = asm ("mulq  %a0, %a0, %v0", a);\
-    Phi = asm ("umulh %a0, %a0, %v0", a); }
-#else
-#define MP_SQR_D(a, Phi, Plo) \
-  { mp_digit Pmid; \
-    Plo  = (a  & MP_HALF_DIGIT_MAX) * (a  & MP_HALF_DIGIT_MAX); \
-    Phi  = (a >> MP_HALF_DIGIT_BIT) * (a >> MP_HALF_DIGIT_BIT); \
-    Pmid = (a  & MP_HALF_DIGIT_MAX) * (a >> MP_HALF_DIGIT_BIT); \
-    Phi += Pmid >> (MP_HALF_DIGIT_BIT - 1);  \
-    Pmid <<= (MP_HALF_DIGIT_BIT + 1);  \
-    Plo += Pmid;  \
-    if (Plo < Pmid)  \
-      ++Phi;  \
-  }
-#endif
-
-#if !defined(MP_ASSEMBLY_SQUARE)
-/* Add the squares of the digits of a to the digits of b. */
-void s_mpv_sqr_add_prop(const mp_digit *pa, mp_size a_len, mp_digit *ps)
-{
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_MUL_WORD)
-  mp_word  w;
-  mp_digit d;
-  mp_size  ix;
-
-  w  = 0;
-#define ADD_SQUARE(n) \
-    d = pa[n]; \
-    w += (d * (mp_word)d) + ps[2*n]; \
-    ps[2*n] = ACCUM(w); \
-    w = (w >> DIGIT_BIT) + ps[2*n+1]; \
-    ps[2*n+1] = ACCUM(w); \
-    w = (w >> DIGIT_BIT)
-
-  for (ix = a_len; ix >= 4; ix -= 4) {
-    ADD_SQUARE(0);
-    ADD_SQUARE(1);
-    ADD_SQUARE(2);
-    ADD_SQUARE(3);
-    pa += 4;
-    ps += 8;
-  }
-  if (ix) {
-    ps += 2*ix;
-    pa += ix;
-    switch (ix) {
-    case 3: ADD_SQUARE(-3); /* FALLTHRU */
-    case 2: ADD_SQUARE(-2); /* FALLTHRU */
-    case 1: ADD_SQUARE(-1); /* FALLTHRU */
-    case 0: break;
-    }
-  }
-  while (w) {
-    w += *ps;
-    *ps++ = ACCUM(w);
-    w = (w >> DIGIT_BIT);
-  }
-#else
-  mp_digit carry = 0;
-  while (a_len--) {
-    mp_digit a_i = *pa++;
-    mp_digit a0a0, a1a1;
-
-    MP_SQR_D(a_i, a1a1, a0a0);
-
-    /* here a1a1 and a0a0 constitute a_i ** 2 */
-    a0a0 += carry;
-    if (a0a0 < carry)
-      ++a1a1;
-
-    /* now add to ps */
-    a0a0 += a_i = *ps;
-    if (a0a0 < a_i)
-      ++a1a1;
-    *ps++ = a0a0;
-    a1a1 += a_i = *ps;
-    carry = (a1a1 < a_i);
-    *ps++ = a1a1;
-  }
-  while (carry) {
-    mp_digit s_i = *ps;
-    carry += s_i;
-    *ps++ = carry;
-    carry = carry < s_i;
-  }
-#endif
-}
-#endif
-
-#if (defined(MP_NO_MP_WORD) || defined(MP_NO_DIV_WORD)) \
-&& !defined(MP_ASSEMBLY_DIV_2DX1D)
-/*
-** Divide 64-bit (Nhi,Nlo) by 32-bit divisor, which must be normalized
-** so its high bit is 1.   This code is from NSPR.
-*/
-mp_err s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo, mp_digit divisor,
-                       mp_digit *qp, mp_digit *rp)
-{
-    mp_digit d1, d0, q1, q0;
-    mp_digit r1, r0, m;
-
-    d1 = divisor >> MP_HALF_DIGIT_BIT;
-    d0 = divisor & MP_HALF_DIGIT_MAX;
-    r1 = Nhi % d1;
-    q1 = Nhi / d1;
-    m = q1 * d0;
-    r1 = (r1 << MP_HALF_DIGIT_BIT) | (Nlo >> MP_HALF_DIGIT_BIT);
-    if (r1 < m) {
-        q1--, r1 += divisor;
-        if (r1 >= divisor && r1 < m) {
-            q1--, r1 += divisor;
-        }
-    }
-    r1 -= m;
-    r0 = r1 % d1;
-    q0 = r1 / d1;
-    m = q0 * d0;
-    r0 = (r0 << MP_HALF_DIGIT_BIT) | (Nlo & MP_HALF_DIGIT_MAX);
-    if (r0 < m) {
-        q0--, r0 += divisor;
-        if (r0 >= divisor && r0 < m) {
-            q0--, r0 += divisor;
-        }
-    }
-    if (qp)
-        *qp = (q1 << MP_HALF_DIGIT_BIT) | q0;
-    if (rp)
-        *rp = r0 - m;
-    return MP_OKAY;
-}
-#endif
-
-#if MP_SQUARE
-/* {{{ s_mp_sqr(a) */
-
-mp_err   s_mp_sqr(mp_int *a)
-{
-  mp_err   res;
-  mp_int   tmp;
-
-  if((res = mp_init_size(&tmp, 2 * USED(a), FLAG(a))) != MP_OKAY)
-    return res;
-  res = mp_sqr(a, &tmp);
-  if (res == MP_OKAY) {
-    s_mp_exch(&tmp, a);
-  }
-  mp_clear(&tmp);
-  return res;
-}
-
-/* }}} */
-#endif
-
-/* {{{ s_mp_div(a, b) */
-
-/*
-  s_mp_div(a, b)
-
-  Compute a = a / b and b = a mod b.  Assumes b > a.
- */
-
-mp_err   s_mp_div(mp_int *rem,  /* i: dividend, o: remainder */
-                  mp_int *div,  /* i: divisor                */
-                  mp_int *quot) /* i: 0;        o: quotient  */
-{
-  mp_int   part, t;
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD)
-  mp_word  q_msd;
-#else
-  mp_digit q_msd;
-#endif
-  mp_err   res;
-  mp_digit d;
-  mp_digit div_msd;
-  int      ix;
-
-  if(mp_cmp_z(div) == 0)
-    return MP_RANGE;
-
-  /* Shortcut if divisor is power of two */
-  if((ix = s_mp_ispow2(div)) >= 0) {
-    MP_CHECKOK( mp_copy(rem, quot) );
-    s_mp_div_2d(quot, (mp_digit)ix);
-    s_mp_mod_2d(rem,  (mp_digit)ix);
-
-    return MP_OKAY;
-  }
-
-  DIGITS(&t) = 0;
-  MP_SIGN(rem) = ZPOS;
-  MP_SIGN(div) = ZPOS;
-
-  /* A working temporary for division     */
-  MP_CHECKOK( mp_init_size(&t, MP_ALLOC(rem), FLAG(rem)));
-
-  /* Normalize to optimize guessing       */
-  MP_CHECKOK( s_mp_norm(rem, div, &d) );
-
-  part = *rem;
-
-  /* Perform the division itself...woo!   */
-  MP_USED(quot) = MP_ALLOC(quot);
-
-  /* Find a partial substring of rem which is at least div */
-  /* If we didn't find one, we're finished dividing    */
-  while (MP_USED(rem) > MP_USED(div) || s_mp_cmp(rem, div) >= 0) {
-    int i;
-    int unusedRem;
-
-    unusedRem = MP_USED(rem) - MP_USED(div);
-    MP_DIGITS(&part) = MP_DIGITS(rem) + unusedRem;
-    MP_ALLOC(&part)  = MP_ALLOC(rem)  - unusedRem;
-    MP_USED(&part)   = MP_USED(div);
-    if (s_mp_cmp(&part, div) < 0) {
-      -- unusedRem;
-#if MP_ARGCHK == 2
-      assert(unusedRem >= 0);
-#endif
-      -- MP_DIGITS(&part);
-      ++ MP_USED(&part);
-      ++ MP_ALLOC(&part);
-    }
-
-    /* Compute a guess for the next quotient digit       */
-    q_msd = MP_DIGIT(&part, MP_USED(&part) - 1);
-    div_msd = MP_DIGIT(div, MP_USED(div) - 1);
-    if (q_msd >= div_msd) {
-      q_msd = 1;
-    } else if (MP_USED(&part) > 1) {
-#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_DIV_WORD)
-      q_msd = (q_msd << MP_DIGIT_BIT) | MP_DIGIT(&part, MP_USED(&part) - 2);
-      q_msd /= div_msd;
-      if (q_msd == RADIX)
-        --q_msd;
-#else
-      mp_digit r;
-      MP_CHECKOK( s_mpv_div_2dx1d(q_msd, MP_DIGIT(&part, MP_USED(&part) - 2),
-                                  div_msd, &q_msd, &r) );
-#endif
-    } else {
-      q_msd = 0;
-    }
-#if MP_ARGCHK == 2
-    assert(q_msd > 0); /* This case should never occur any more. */
-#endif
-    if (q_msd <= 0)
-      break;
-
-    /* See what that multiplies out to                   */
-    mp_copy(div, &t);
-    MP_CHECKOK( s_mp_mul_d(&t, (mp_digit)q_msd) );
-
-    /*
-       If it's too big, back it off.  We should not have to do this
-       more than once, or, in rare cases, twice.  Knuth describes a
-       method by which this could be reduced to a maximum of once, but
-       I didn't implement that here.
-     * When using s_mpv_div_2dx1d, we may have to do this 3 times.
-     */
-    for (i = 4; s_mp_cmp(&t, &part) > 0 && i > 0; --i) {
-      --q_msd;
-      s_mp_sub(&t, div);        /* t -= div */
-    }
-    if (i < 0) {
-      res = MP_RANGE;
-      goto CLEANUP;
-    }
-
-    /* At this point, q_msd should be the right next digit   */
-    MP_CHECKOK( s_mp_sub(&part, &t) );  /* part -= t */
-    s_mp_clamp(rem);
-
-    /*
-      Include the digit in the quotient.  We allocated enough memory
-      for any quotient we could ever possibly get, so we should not
-      have to check for failures here
-     */
-    MP_DIGIT(quot, unusedRem) = (mp_digit)q_msd;
-  }
-
-  /* Denormalize remainder                */
-  if (d) {
-    s_mp_div_2d(rem, d);
-  }
-
-  s_mp_clamp(quot);
-
-CLEANUP:
-  mp_clear(&t);
-
-  return res;
-
-} /* end s_mp_div() */
-
-
-/* }}} */
-
-/* {{{ s_mp_2expt(a, k) */
-
-mp_err   s_mp_2expt(mp_int *a, mp_digit k)
-{
-  mp_err    res;
-  mp_size   dig, bit;
-
-  dig = k / DIGIT_BIT;
-  bit = k % DIGIT_BIT;
-
-  mp_zero(a);
-  if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
-    return res;
-
-  DIGIT(a, dig) |= ((mp_digit)1 << bit);
-
-  return MP_OKAY;
-
-} /* end s_mp_2expt() */
-
-/* }}} */
-
-/* {{{ s_mp_reduce(x, m, mu) */
-
-/*
-  Compute Barrett reduction, x (mod m), given a precomputed value for
-  mu = b^2k / m, where b = RADIX and k = #digits(m).  This should be
-  faster than straight division, when many reductions by the same
-  value of m are required (such as in modular exponentiation).  This
-  can nearly halve the time required to do modular exponentiation,
-  as compared to using the full integer divide to reduce.
-
-  This algorithm was derived from the _Handbook of Applied
-  Cryptography_ by Menezes, Oorschot and VanStone, Ch. 14,
-  pp. 603-604.
- */
-
-mp_err   s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu)
-{
-  mp_int   q;
-  mp_err   res;
-
-  if((res = mp_init_copy(&q, x)) != MP_OKAY)
-    return res;
-
-  s_mp_rshd(&q, USED(m) - 1);  /* q1 = x / b^(k-1)  */
-  s_mp_mul(&q, mu);            /* q2 = q1 * mu      */
-  s_mp_rshd(&q, USED(m) + 1);  /* q3 = q2 / b^(k+1) */
-
-  /* x = x mod b^(k+1), quick (no division) */
-  s_mp_mod_2d(x, DIGIT_BIT * (USED(m) + 1));
-
-  /* q = q * m mod b^(k+1), quick (no division) */
-  s_mp_mul(&q, m);
-  s_mp_mod_2d(&q, DIGIT_BIT * (USED(m) + 1));
-
-  /* x = x - q */
-  if((res = mp_sub(x, &q, x)) != MP_OKAY)
-    goto CLEANUP;
-
-  /* If x < 0, add b^(k+1) to it */
-  if(mp_cmp_z(x) < 0) {
-    mp_set(&q, 1);
-    if((res = s_mp_lshd(&q, USED(m) + 1)) != MP_OKAY)
-      goto CLEANUP;
-    if((res = mp_add(x, &q, x)) != MP_OKAY)
-      goto CLEANUP;
-  }
-
-  /* Back off if it's too big */
-  while(mp_cmp(x, m) >= 0) {
-    if((res = s_mp_sub(x, m)) != MP_OKAY)
-      break;
-  }
-
- CLEANUP:
-  mp_clear(&q);
-
-  return res;
-
-} /* end s_mp_reduce() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ Primitive comparisons */
-
-/* {{{ s_mp_cmp(a, b) */
-
-/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b           */
-int      s_mp_cmp(const mp_int *a, const mp_int *b)
-{
-  mp_size used_a = MP_USED(a);
-  {
-    mp_size used_b = MP_USED(b);
-
-    if (used_a > used_b)
-      goto IS_GT;
-    if (used_a < used_b)
-      goto IS_LT;
-  }
-  {
-    mp_digit *pa, *pb;
-    mp_digit da = 0, db = 0;
-
-#define CMP_AB(n) if ((da = pa[n]) != (db = pb[n])) goto done
-
-    pa = MP_DIGITS(a) + used_a;
-    pb = MP_DIGITS(b) + used_a;
-    while (used_a >= 4) {
-      pa     -= 4;
-      pb     -= 4;
-      used_a -= 4;
-      CMP_AB(3);
-      CMP_AB(2);
-      CMP_AB(1);
-      CMP_AB(0);
-    }
-    while (used_a-- > 0 && ((da = *--pa) == (db = *--pb)))
-      /* do nothing */;
-done:
-    if (da > db)
-      goto IS_GT;
-    if (da < db)
-      goto IS_LT;
-  }
-  return MP_EQ;
-IS_LT:
-  return MP_LT;
-IS_GT:
-  return MP_GT;
-} /* end s_mp_cmp() */
-
-/* }}} */
-
-/* {{{ s_mp_cmp_d(a, d) */
-
-/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d             */
-int      s_mp_cmp_d(const mp_int *a, mp_digit d)
-{
-  if(USED(a) > 1)
-    return MP_GT;
-
-  if(DIGIT(a, 0) < d)
-    return MP_LT;
-  else if(DIGIT(a, 0) > d)
-    return MP_GT;
-  else
-    return MP_EQ;
-
-} /* end s_mp_cmp_d() */
-
-/* }}} */
-
-/* {{{ s_mp_ispow2(v) */
-
-/*
-  Returns -1 if the value is not a power of two; otherwise, it returns
-  k such that v = 2^k, i.e. lg(v).
- */
-int      s_mp_ispow2(const mp_int *v)
-{
-  mp_digit d;
-  int      extra = 0, ix;
-
-  ix = MP_USED(v) - 1;
-  d = MP_DIGIT(v, ix); /* most significant digit of v */
-
-  extra = s_mp_ispow2d(d);
-  if (extra < 0 || ix == 0)
-    return extra;
-
-  while (--ix >= 0) {
-    if (DIGIT(v, ix) != 0)
-      return -1; /* not a power of two */
-    extra += MP_DIGIT_BIT;
-  }
-
-  return extra;
-
-} /* end s_mp_ispow2() */
-
-/* }}} */
-
-/* {{{ s_mp_ispow2d(d) */
-
-int      s_mp_ispow2d(mp_digit d)
-{
-  if ((d != 0) && ((d & (d-1)) == 0)) { /* d is a power of 2 */
-    int pow = 0;
-#if defined (MP_USE_UINT_DIGIT)
-    if (d & 0xffff0000U)
-      pow += 16;
-    if (d & 0xff00ff00U)
-      pow += 8;
-    if (d & 0xf0f0f0f0U)
-      pow += 4;
-    if (d & 0xccccccccU)
-      pow += 2;
-    if (d & 0xaaaaaaaaU)
-      pow += 1;
-#elif defined(MP_USE_LONG_LONG_DIGIT)
-    if (d & 0xffffffff00000000ULL)
-      pow += 32;
-    if (d & 0xffff0000ffff0000ULL)
-      pow += 16;
-    if (d & 0xff00ff00ff00ff00ULL)
-      pow += 8;
-    if (d & 0xf0f0f0f0f0f0f0f0ULL)
-      pow += 4;
-    if (d & 0xccccccccccccccccULL)
-      pow += 2;
-    if (d & 0xaaaaaaaaaaaaaaaaULL)
-      pow += 1;
-#elif defined(MP_USE_LONG_DIGIT)
-    if (d & 0xffffffff00000000UL)
-      pow += 32;
-    if (d & 0xffff0000ffff0000UL)
-      pow += 16;
-    if (d & 0xff00ff00ff00ff00UL)
-      pow += 8;
-    if (d & 0xf0f0f0f0f0f0f0f0UL)
-      pow += 4;
-    if (d & 0xccccccccccccccccUL)
-      pow += 2;
-    if (d & 0xaaaaaaaaaaaaaaaaUL)
-      pow += 1;
-#else
-#error "unknown type for mp_digit"
-#endif
-    return pow;
-  }
-  return -1;
-
-} /* end s_mp_ispow2d() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ Primitive I/O helpers */
-
-/* {{{ s_mp_tovalue(ch, r) */
-
-/*
-  Convert the given character to its digit value, in the given radix.
-  If the given character is not understood in the given radix, -1 is
-  returned.  Otherwise the digit's numeric value is returned.
-
-  The results will be odd if you use a radix < 2 or > 62, you are
-  expected to know what you're up to.
- */
-int      s_mp_tovalue(char ch, int r)
-{
-  int    val, xch;
-
-  if(r > 36)
-    xch = ch;
-  else
-    xch = toupper(ch);
-
-  if(isdigit(xch))
-    val = xch - '0';
-  else if(isupper(xch))
-    val = xch - 'A' + 10;
-  else if(islower(xch))
-    val = xch - 'a' + 36;
-  else if(xch == '+')
-    val = 62;
-  else if(xch == '/')
-    val = 63;
-  else
-    return -1;
-
-  if(val < 0 || val >= r)
-    return -1;
-
-  return val;
-
-} /* end s_mp_tovalue() */
-
-/* }}} */
-
-/* {{{ s_mp_todigit(val, r, low) */
-
-/*
-  Convert val to a radix-r digit, if possible.  If val is out of range
-  for r, returns zero.  Otherwise, returns an ASCII character denoting
-  the value in the given radix.
-
-  The results may be odd if you use a radix < 2 or > 64, you are
-  expected to know what you're doing.
- */
-
-char     s_mp_todigit(mp_digit val, int r, int low)
-{
-  char   ch;
-
-  if(val >= r)
-    return 0;
-
-  ch = s_dmap_1[val];
-
-  if(r <= 36 && low)
-    ch = tolower(ch);
-
-  return ch;
-
-} /* end s_mp_todigit() */
-
-/* }}} */
-
-/* {{{ s_mp_outlen(bits, radix) */
-
-/*
-   Return an estimate for how long a string is needed to hold a radix
-   r representation of a number with 'bits' significant bits, plus an
-   extra for a zero terminator (assuming C style strings here)
- */
-int      s_mp_outlen(int bits, int r)
-{
-  return (int)((double)bits * LOG_V_2(r) + 1.5) + 1;
-
-} /* end s_mp_outlen() */
-
-/* }}} */
-
-/* }}} */
-
-/* {{{ mp_read_unsigned_octets(mp, str, len) */
-/* mp_read_unsigned_octets(mp, str, len)
-   Read in a raw value (base 256) into the given mp_int
-   No sign bit, number is positive.  Leading zeros ignored.
- */
-
-mp_err
-mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len)
-{
-  int            count;
-  mp_err         res;
-  mp_digit       d;
-
-  ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
-
-  mp_zero(mp);
-
-  count = len % sizeof(mp_digit);
-  if (count) {
-    for (d = 0; count-- > 0; --len) {
-      d = (d << 8) | *str++;
-    }
-    MP_DIGIT(mp, 0) = d;
-  }
-
-  /* Read the rest of the digits */
-  for(; len > 0; len -= sizeof(mp_digit)) {
-    for (d = 0, count = sizeof(mp_digit); count > 0; --count) {
-      d = (d << 8) | *str++;
-    }
-    if (MP_EQ == mp_cmp_z(mp)) {
-      if (!d)
-        continue;
-    } else {
-      if((res = s_mp_lshd(mp, 1)) != MP_OKAY)
-        return res;
-    }
-    MP_DIGIT(mp, 0) = d;
-  }
-  return MP_OKAY;
-} /* end mp_read_unsigned_octets() */
-/* }}} */
-
-/* {{{ mp_unsigned_octet_size(mp) */
-int
-mp_unsigned_octet_size(const mp_int *mp)
-{
-  int  bytes;
-  int  ix;
-  mp_digit  d = 0;
-
-  ARGCHK(mp != NULL, MP_BADARG);
-  ARGCHK(MP_ZPOS == SIGN(mp), MP_BADARG);
-
-  bytes = (USED(mp) * sizeof(mp_digit));
-
-  /* subtract leading zeros. */
-  /* Iterate over each digit... */
-  for(ix = USED(mp) - 1; ix >= 0; ix--) {
-    d = DIGIT(mp, ix);
-    if (d)
-        break;
-    bytes -= sizeof(d);
-  }
-  if (!bytes)
-    return 1;
-
-  /* Have MSD, check digit bytes, high order first */
-  for(ix = sizeof(mp_digit) - 1; ix >= 0; ix--) {
-    unsigned char x = (unsigned char)(d >> (ix * CHAR_BIT));
-    if (x)
-        break;
-    --bytes;
-  }
-  return bytes;
-} /* end mp_unsigned_octet_size() */
-/* }}} */
-
-/* {{{ mp_to_unsigned_octets(mp, str) */
-/* output a buffer of big endian octets no longer than specified. */
-mp_err
-mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen)
-{
-  int  ix, pos = 0;
-  int  bytes;
-
-  ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG);
-
-  bytes = mp_unsigned_octet_size(mp);
-  ARGCHK(bytes <= maxlen, MP_BADARG);
-
-  /* Iterate over each digit... */
-  for(ix = USED(mp) - 1; ix >= 0; ix--) {
-    mp_digit  d = DIGIT(mp, ix);
-    int       jx;
-
-    /* Unpack digit bytes, high order first */
-    for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
-      unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT));
-      if (!pos && !x)   /* suppress leading zeros */
-        continue;
-      str[pos++] = x;
-    }
-  }
-  if (!pos)
-    str[pos++] = 0;
-  return pos;
-} /* end mp_to_unsigned_octets() */
-/* }}} */
-
-/* {{{ mp_to_signed_octets(mp, str) */
-/* output a buffer of big endian octets no longer than specified. */
-mp_err
-mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen)
-{
-  int  ix, pos = 0;
-  int  bytes;
-
-  ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG);
-
-  bytes = mp_unsigned_octet_size(mp);
-  ARGCHK(bytes <= maxlen, MP_BADARG);
-
-  /* Iterate over each digit... */
-  for(ix = USED(mp) - 1; ix >= 0; ix--) {
-    mp_digit  d = DIGIT(mp, ix);
-    int       jx;
-
-    /* Unpack digit bytes, high order first */
-    for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
-      unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT));
-      if (!pos) {
-        if (!x)         /* suppress leading zeros */
-          continue;
-        if (x & 0x80) { /* add one leading zero to make output positive.  */
-          ARGCHK(bytes + 1 <= maxlen, MP_BADARG);
-          if (bytes + 1 > maxlen)
-            return MP_BADARG;
-          str[pos++] = 0;
-        }
-      }
-      str[pos++] = x;
-    }
-  }
-  if (!pos)
-    str[pos++] = 0;
-  return pos;
-} /* end mp_to_signed_octets() */
-/* }}} */
-
-/* {{{ mp_to_fixlen_octets(mp, str) */
-/* output a buffer of big endian octets exactly as long as requested. */
-mp_err
-mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size length)
-{
-  int  ix, pos = 0;
-  int  bytes;
-
-  ARGCHK(mp != NULL && str != NULL && !SIGN(mp), MP_BADARG);
-
-  bytes = mp_unsigned_octet_size(mp);
-  ARGCHK(bytes <= length, MP_BADARG);
-
-  /* place any needed leading zeros */
-  for (;length > bytes; --length) {
-        *str++ = 0;
-  }
-
-  /* Iterate over each digit... */
-  for(ix = USED(mp) - 1; ix >= 0; ix--) {
-    mp_digit  d = DIGIT(mp, ix);
-    int       jx;
-
-    /* Unpack digit bytes, high order first */
-    for(jx = sizeof(mp_digit) - 1; jx >= 0; jx--) {
-      unsigned char x = (unsigned char)(d >> (jx * CHAR_BIT));
-      if (!pos && !x)   /* suppress leading zeros */
-        continue;
-      str[pos++] = x;
-    }
-  }
-  if (!pos)
-    str[pos++] = 0;
-  return MP_OKAY;
-} /* end mp_to_fixlen_octets() */
-/* }}} */
-
-
-/*------------------------------------------------------------------------*/
-/* HERE THERE BE DRAGONS                                                  */
--- a/jdk/src/share/native/sun/security/ec/mpi.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,409 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- *
- *  Arbitrary precision integer arithmetic library
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
- *
- * The Initial Developer of the Original Code is
- * Michael J. Fromberger.
- * Portions created by the Initial Developer are Copyright (C) 1998
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Netscape Communications Corporation
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _MPI_H
-#define _MPI_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/* $Id: mpi.h,v 1.22 2004/04/27 23:04:36 gerv%gerv.net Exp $ */
-
-#include "mpi-config.h"
-
-#ifndef _WIN32
-#include <sys/param.h>
-#endif /* _WIN32 */
-
-#ifdef _KERNEL
-#include <sys/debug.h>
-#include <sys/systm.h>
-#define assert ASSERT
-#define labs(a) (a >= 0 ? a : -a)
-#define UCHAR_MAX 255
-#define memset(s, c, n) bzero(s, n)
-#define memcpy(a,b,c) bcopy((caddr_t)b, (caddr_t)a, c)
-/*
- * Generic #define's to cover missing things in the kernel
- */
-#ifndef isdigit
-#define isdigit(x)      ((x) >= '0' && (x) <= '9')
-#endif
-#ifndef isupper
-#define isupper(x)      (((unsigned)(x) >= 'A') && ((unsigned)(x) <= 'Z'))
-#endif
-#ifndef islower
-#define islower(x)      (((unsigned)(x) >= 'a') && ((unsigned)(x) <= 'z'))
-#endif
-#ifndef isalpha
-#define isalpha(x)      (isupper(x) || islower(x))
-#endif
-#ifndef toupper
-#define toupper(x)      (islower(x) ? (x) - 'a' + 'A' : (x))
-#endif
-#ifndef tolower
-#define tolower(x)      (isupper(x) ? (x) + 'a' - 'A' : (x))
-#endif
-#ifndef isspace
-#define isspace(x)      (((x) == ' ') || ((x) == '\r') || ((x) == '\n') || \
-                         ((x) == '\t') || ((x) == '\b'))
-#endif
-#endif /* _KERNEL */
-
-#if MP_DEBUG
-#undef MP_IOFUNC
-#define MP_IOFUNC 1
-#endif
-
-#if MP_IOFUNC
-#include <stdio.h>
-#include <ctype.h>
-#endif
-
-#ifndef _KERNEL
-#include <limits.h>
-#endif
-
-#if defined(BSDI)
-#undef ULLONG_MAX
-#endif
-
-#if defined( macintosh )
-#include <Types.h>
-#elif defined( _WIN32_WCE)
-/* #include <sys/types.h> What do we need here ?? */
-#else
-#include <sys/types.h>
-#endif
-
-#define  MP_NEG    1
-#define  MP_ZPOS   0
-
-#define  MP_OKAY          0 /* no error, all is well */
-#define  MP_YES           0 /* yes (boolean result)  */
-#define  MP_NO           -1 /* no (boolean result)   */
-#define  MP_MEM          -2 /* out of memory         */
-#define  MP_RANGE        -3 /* argument out of range */
-#define  MP_BADARG       -4 /* invalid parameter     */
-#define  MP_UNDEF        -5 /* answer is undefined   */
-#define  MP_LAST_CODE    MP_UNDEF
-
-typedef unsigned int      mp_sign;
-typedef unsigned int      mp_size;
-typedef int               mp_err;
-typedef int               mp_flag;
-
-#define MP_32BIT_MAX 4294967295U
-
-#if !defined(ULONG_MAX)
-#error "ULONG_MAX not defined"
-#elif !defined(UINT_MAX)
-#error "UINT_MAX not defined"
-#elif !defined(USHRT_MAX)
-#error "USHRT_MAX not defined"
-#endif
-
-#if defined(ULONG_LONG_MAX)                     /* GCC, HPUX */
-#define MP_ULONG_LONG_MAX ULONG_LONG_MAX
-#elif defined(ULLONG_MAX)                       /* Solaris */
-#define MP_ULONG_LONG_MAX ULLONG_MAX
-/* MP_ULONG_LONG_MAX was defined to be ULLONG_MAX */
-#elif defined(ULONGLONG_MAX)                    /* IRIX, AIX */
-#define MP_ULONG_LONG_MAX ULONGLONG_MAX
-#endif
-
-/* We only use unsigned long for mp_digit iff long is more than 32 bits. */
-#if !defined(MP_USE_UINT_DIGIT) && ULONG_MAX > MP_32BIT_MAX
-typedef unsigned long     mp_digit;
-#define MP_DIGIT_MAX      ULONG_MAX
-#define MP_DIGIT_FMT      "%016lX"   /* printf() format for 1 digit */
-#define MP_HALF_DIGIT_MAX UINT_MAX
-#undef  MP_NO_MP_WORD
-#define MP_NO_MP_WORD 1
-#undef  MP_USE_LONG_DIGIT
-#define MP_USE_LONG_DIGIT 1
-#undef  MP_USE_LONG_LONG_DIGIT
-
-#elif !defined(MP_USE_UINT_DIGIT) && defined(MP_ULONG_LONG_MAX)
-typedef unsigned long long mp_digit;
-#define MP_DIGIT_MAX       MP_ULONG_LONG_MAX
-#define MP_DIGIT_FMT      "%016llX"  /* printf() format for 1 digit */
-#define MP_HALF_DIGIT_MAX  UINT_MAX
-#undef  MP_NO_MP_WORD
-#define MP_NO_MP_WORD 1
-#undef  MP_USE_LONG_LONG_DIGIT
-#define MP_USE_LONG_LONG_DIGIT 1
-#undef  MP_USE_LONG_DIGIT
-
-#else
-typedef unsigned int      mp_digit;
-#define MP_DIGIT_MAX      UINT_MAX
-#define MP_DIGIT_FMT      "%08X"     /* printf() format for 1 digit */
-#define MP_HALF_DIGIT_MAX USHRT_MAX
-#undef  MP_USE_UINT_DIGIT
-#define MP_USE_UINT_DIGIT 1
-#undef  MP_USE_LONG_LONG_DIGIT
-#undef  MP_USE_LONG_DIGIT
-#endif
-
-#if !defined(MP_NO_MP_WORD)
-#if  defined(MP_USE_UINT_DIGIT) && \
-    (defined(MP_ULONG_LONG_MAX) || (ULONG_MAX > UINT_MAX))
-
-#if (ULONG_MAX > UINT_MAX)
-typedef unsigned long     mp_word;
-typedef          long     mp_sword;
-#define MP_WORD_MAX       ULONG_MAX
-
-#else
-typedef unsigned long long mp_word;
-typedef          long long mp_sword;
-#define MP_WORD_MAX       MP_ULONG_LONG_MAX
-#endif
-
-#else
-#define MP_NO_MP_WORD 1
-#endif
-#endif /* !defined(MP_NO_MP_WORD) */
-
-#if !defined(MP_WORD_MAX) && defined(MP_DEFINE_SMALL_WORD)
-typedef unsigned int      mp_word;
-typedef          int      mp_sword;
-#define MP_WORD_MAX       UINT_MAX
-#endif
-
-#ifndef CHAR_BIT
-#define CHAR_BIT 8
-#endif
-
-#define MP_DIGIT_BIT      (CHAR_BIT*sizeof(mp_digit))
-#define MP_WORD_BIT       (CHAR_BIT*sizeof(mp_word))
-#define MP_RADIX          (1+(mp_word)MP_DIGIT_MAX)
-
-#define MP_HALF_DIGIT_BIT (MP_DIGIT_BIT/2)
-#define MP_HALF_RADIX     (1+(mp_digit)MP_HALF_DIGIT_MAX)
-/* MP_HALF_RADIX really ought to be called MP_SQRT_RADIX, but it's named
-** MP_HALF_RADIX because it's the radix for MP_HALF_DIGITs, and it's
-** consistent with the other _HALF_ names.
-*/
-
-
-/* Macros for accessing the mp_int internals           */
-#define  MP_FLAG(MP)     ((MP)->flag)
-#define  MP_SIGN(MP)     ((MP)->sign)
-#define  MP_USED(MP)     ((MP)->used)
-#define  MP_ALLOC(MP)    ((MP)->alloc)
-#define  MP_DIGITS(MP)   ((MP)->dp)
-#define  MP_DIGIT(MP,N)  (MP)->dp[(N)]
-
-/* This defines the maximum I/O base (minimum is 2)   */
-#define MP_MAX_RADIX         64
-
-typedef struct {
-  mp_sign       flag;    /* KM_SLEEP/KM_NOSLEEP        */
-  mp_sign       sign;    /* sign of this quantity      */
-  mp_size       alloc;   /* how many digits allocated  */
-  mp_size       used;    /* how many digits used       */
-  mp_digit     *dp;      /* the digits themselves      */
-} mp_int;
-
-/* Default precision       */
-mp_size mp_get_prec(void);
-void    mp_set_prec(mp_size prec);
-
-/* Memory management       */
-mp_err mp_init(mp_int *mp, int kmflag);
-mp_err mp_init_size(mp_int *mp, mp_size prec, int kmflag);
-mp_err mp_init_copy(mp_int *mp, const mp_int *from);
-mp_err mp_copy(const mp_int *from, mp_int *to);
-void   mp_exch(mp_int *mp1, mp_int *mp2);
-void   mp_clear(mp_int *mp);
-void   mp_zero(mp_int *mp);
-void   mp_set(mp_int *mp, mp_digit d);
-mp_err mp_set_int(mp_int *mp, long z);
-#define mp_set_long(mp,z) mp_set_int(mp,z)
-mp_err mp_set_ulong(mp_int *mp, unsigned long z);
-
-/* Single digit arithmetic */
-mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b);
-mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b);
-mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b);
-mp_err mp_mul_2(const mp_int *a, mp_int *c);
-mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r);
-mp_err mp_div_2(const mp_int *a, mp_int *c);
-mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c);
-
-/* Sign manipulations      */
-mp_err mp_abs(const mp_int *a, mp_int *b);
-mp_err mp_neg(const mp_int *a, mp_int *b);
-
-/* Full arithmetic         */
-mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c);
-mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
-mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
-#if MP_SQUARE
-mp_err mp_sqr(const mp_int *a, mp_int *b);
-#else
-#define mp_sqr(a, b) mp_mul(a, a, b)
-#endif
-mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r);
-mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r);
-mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c);
-mp_err mp_2expt(mp_int *a, mp_digit k);
-mp_err mp_sqrt(const mp_int *a, mp_int *b);
-
-/* Modular arithmetic      */
-#if MP_MODARITH
-mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c);
-mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c);
-mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
-mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
-mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
-#if MP_SQUARE
-mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c);
-#else
-#define mp_sqrmod(a, m, c) mp_mulmod(a, a, m, c)
-#endif
-mp_err mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
-mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c);
-#endif /* MP_MODARITH */
-
-/* Comparisons             */
-int    mp_cmp_z(const mp_int *a);
-int    mp_cmp_d(const mp_int *a, mp_digit d);
-int    mp_cmp(const mp_int *a, const mp_int *b);
-int    mp_cmp_mag(mp_int *a, mp_int *b);
-int    mp_cmp_int(const mp_int *a, long z, int kmflag);
-int    mp_isodd(const mp_int *a);
-int    mp_iseven(const mp_int *a);
-
-/* Number theoretic        */
-#if MP_NUMTH
-mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c);
-mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c);
-mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y);
-mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c);
-mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c);
-#endif /* end MP_NUMTH */
-
-/* Input and output        */
-#if MP_IOFUNC
-void   mp_print(mp_int *mp, FILE *ofp);
-#endif /* end MP_IOFUNC */
-
-/* Base conversion         */
-mp_err mp_read_raw(mp_int *mp, char *str, int len);
-int    mp_raw_size(mp_int *mp);
-mp_err mp_toraw(mp_int *mp, char *str);
-mp_err mp_read_radix(mp_int *mp, const char *str, int radix);
-mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix);
-int    mp_radix_size(mp_int *mp, int radix);
-mp_err mp_toradix(mp_int *mp, char *str, int radix);
-int    mp_tovalue(char ch, int r);
-
-#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
-#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
-#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
-#define mp_tohex(M, S)     mp_toradix((M), (S), 16)
-
-/* Error strings           */
-const  char  *mp_strerror(mp_err ec);
-
-/* Octet string conversion functions */
-mp_err mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len);
-int    mp_unsigned_octet_size(const mp_int *mp);
-mp_err mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen);
-mp_err mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen);
-mp_err mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size len);
-
-/* Miscellaneous */
-mp_size mp_trailing_zeros(const mp_int *mp);
-
-#define MP_CHECKOK(x)  if (MP_OKAY > (res = (x))) goto CLEANUP
-#define MP_CHECKERR(x) if (MP_OKAY > (res = (x))) goto CLEANUP
-
-#if defined(MP_API_COMPATIBLE)
-#define NEG             MP_NEG
-#define ZPOS            MP_ZPOS
-#define DIGIT_MAX       MP_DIGIT_MAX
-#define DIGIT_BIT       MP_DIGIT_BIT
-#define DIGIT_FMT       MP_DIGIT_FMT
-#define RADIX           MP_RADIX
-#define MAX_RADIX       MP_MAX_RADIX
-#define FLAG(MP)        MP_FLAG(MP)
-#define SIGN(MP)        MP_SIGN(MP)
-#define USED(MP)        MP_USED(MP)
-#define ALLOC(MP)       MP_ALLOC(MP)
-#define DIGITS(MP)      MP_DIGITS(MP)
-#define DIGIT(MP,N)     MP_DIGIT(MP,N)
-
-#if MP_ARGCHK == 1
-#define  ARGCHK(X,Y)  {if(!(X)){return (Y);}}
-#elif MP_ARGCHK == 2
-#ifdef _KERNEL
-#define  ARGCHK(X,Y)  ASSERT(X)
-#else
-#include <assert.h>
-#define  ARGCHK(X,Y)  assert(X)
-#endif
-#else
-#define  ARGCHK(X,Y)  /*  */
-#endif
-#endif /* defined MP_API_COMPATIBLE */
-
-#endif /* _MPI_H */
--- a/jdk/src/share/native/sun/security/ec/mplogic.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,242 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- *
- *  Bitwise logical operations on MPI values
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
- *
- * The Initial Developer of the Original Code is
- * Michael J. Fromberger.
- * Portions created by the Initial Developer are Copyright (C) 1998
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/* $Id: mplogic.c,v 1.15 2004/04/27 23:04:36 gerv%gerv.net Exp $ */
-
-#include "mpi-priv.h"
-#include "mplogic.h"
-
-/* {{{ Lookup table for population count */
-
-static unsigned char bitc[] = {
-   0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
-   1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
-   1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
-   2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
-   1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
-   2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
-   2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
-   3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
-   1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
-   2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
-   2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
-   3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
-   2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
-   3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
-   3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
-   4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
-};
-
-/* }}} */
-
-/*
-  mpl_rsh(a, b, d)     - b = a >> d
-  mpl_lsh(a, b, d)     - b = a << d
- */
-
-/* {{{ mpl_rsh(a, b, d) */
-
-mp_err mpl_rsh(const mp_int *a, mp_int *b, mp_digit d)
-{
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  s_mp_div_2d(b, d);
-
-  return MP_OKAY;
-
-} /* end mpl_rsh() */
-
-/* }}} */
-
-/* {{{ mpl_lsh(a, b, d) */
-
-mp_err mpl_lsh(const mp_int *a, mp_int *b, mp_digit d)
-{
-  mp_err   res;
-
-  ARGCHK(a != NULL && b != NULL, MP_BADARG);
-
-  if((res = mp_copy(a, b)) != MP_OKAY)
-    return res;
-
-  return s_mp_mul_2d(b, d);
-
-} /* end mpl_lsh() */
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/*
-  mpl_set_bit
-
-  Returns MP_OKAY or some error code.
-  Grows a if needed to set a bit to 1.
- */
-mp_err mpl_set_bit(mp_int *a, mp_size bitNum, mp_size value)
-{
-  mp_size      ix;
-  mp_err       rv;
-  mp_digit     mask;
-
-  ARGCHK(a != NULL, MP_BADARG);
-
-  ix = bitNum / MP_DIGIT_BIT;
-  if (ix + 1 > MP_USED(a)) {
-    rv = s_mp_pad(a, ix + 1);
-    if (rv != MP_OKAY)
-      return rv;
-  }
-
-  bitNum = bitNum % MP_DIGIT_BIT;
-  mask = (mp_digit)1 << bitNum;
-  if (value)
-    MP_DIGIT(a,ix) |= mask;
-  else
-    MP_DIGIT(a,ix) &= ~mask;
-  s_mp_clamp(a);
-  return MP_OKAY;
-}
-
-/*
-  mpl_get_bit
-
-  returns 0 or 1 or some (negative) error code.
- */
-mp_err mpl_get_bit(const mp_int *a, mp_size bitNum)
-{
-  mp_size      bit, ix;
-  mp_err       rv;
-
-  ARGCHK(a != NULL, MP_BADARG);
-
-  ix = bitNum / MP_DIGIT_BIT;
-  ARGCHK(ix <= MP_USED(a) - 1, MP_RANGE);
-
-  bit   = bitNum % MP_DIGIT_BIT;
-  rv = (mp_err)(MP_DIGIT(a, ix) >> bit) & 1;
-  return rv;
-}
-
-/*
-  mpl_get_bits
-  - Extracts numBits bits from a, where the least significant extracted bit
-  is bit lsbNum.  Returns a negative value if error occurs.
-  - Because sign bit is used to indicate error, maximum number of bits to
-  be returned is the lesser of (a) the number of bits in an mp_digit, or
-  (b) one less than the number of bits in an mp_err.
-  - lsbNum + numbits can be greater than the number of significant bits in
-  integer a, as long as bit lsbNum is in the high order digit of a.
- */
-mp_err mpl_get_bits(const mp_int *a, mp_size lsbNum, mp_size numBits)
-{
-  mp_size    rshift = (lsbNum % MP_DIGIT_BIT);
-  mp_size    lsWndx = (lsbNum / MP_DIGIT_BIT);
-  mp_digit * digit  = MP_DIGITS(a) + lsWndx;
-  mp_digit   mask   = ((1 << numBits) - 1);
-
-  ARGCHK(numBits < CHAR_BIT * sizeof mask, MP_BADARG);
-  ARGCHK(MP_HOWMANY(lsbNum, MP_DIGIT_BIT) <= MP_USED(a), MP_RANGE);
-
-  if ((numBits + lsbNum % MP_DIGIT_BIT <= MP_DIGIT_BIT) ||
-      (lsWndx + 1 >= MP_USED(a))) {
-    mask &= (digit[0] >> rshift);
-  } else {
-    mask &= ((digit[0] >> rshift) | (digit[1] << (MP_DIGIT_BIT - rshift)));
-  }
-  return (mp_err)mask;
-}
-
-/*
-  mpl_significant_bits
-  returns number of significnant bits in abs(a).
-  returns 1 if value is zero.
- */
-mp_err mpl_significant_bits(const mp_int *a)
-{
-  mp_err bits   = 0;
-  int    ix;
-
-  ARGCHK(a != NULL, MP_BADARG);
-
-  ix = MP_USED(a);
-  for (ix = MP_USED(a); ix > 0; ) {
-    mp_digit d;
-    d = MP_DIGIT(a, --ix);
-    if (d) {
-      while (d) {
-        ++bits;
-        d >>= 1;
-      }
-      break;
-    }
-  }
-  bits += ix * MP_DIGIT_BIT;
-  if (!bits)
-    bits = 1;
-  return bits;
-}
-
-/*------------------------------------------------------------------------*/
-/* HERE THERE BE DRAGONS                                                  */
--- a/jdk/src/share/native/sun/security/ec/mplogic.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,105 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- *
- *  Bitwise logical operations on MPI values
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
- *
- * The Initial Developer of the Original Code is
- * Michael J. Fromberger.
- * Portions created by the Initial Developer are Copyright (C) 1998
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _MPLOGIC_H
-#define _MPLOGIC_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/* $Id: mplogic.h,v 1.7 2004/04/27 23:04:36 gerv%gerv.net Exp $ */
-
-#include "mpi.h"
-
-/*
-  The logical operations treat an mp_int as if it were a bit vector,
-  without regard to its sign (an mp_int is represented in a signed
-  magnitude format).  Values are treated as if they had an infinite
-  string of zeros left of the most-significant bit.
- */
-
-/* Parity results                    */
-
-#define MP_EVEN       MP_YES
-#define MP_ODD        MP_NO
-
-/* Bitwise functions                 */
-
-mp_err mpl_not(mp_int *a, mp_int *b);            /* one's complement  */
-mp_err mpl_and(mp_int *a, mp_int *b, mp_int *c); /* bitwise AND       */
-mp_err mpl_or(mp_int *a, mp_int *b, mp_int *c);  /* bitwise OR        */
-mp_err mpl_xor(mp_int *a, mp_int *b, mp_int *c); /* bitwise XOR       */
-
-/* Shift functions                   */
-
-mp_err mpl_rsh(const mp_int *a, mp_int *b, mp_digit d);   /* right shift    */
-mp_err mpl_lsh(const mp_int *a, mp_int *b, mp_digit d);   /* left shift     */
-
-/* Bit count and parity              */
-
-mp_err mpl_num_set(mp_int *a, int *num);         /* count set bits    */
-mp_err mpl_num_clear(mp_int *a, int *num);       /* count clear bits  */
-mp_err mpl_parity(mp_int *a);                    /* determine parity  */
-
-/* Get & Set the value of a bit */
-
-mp_err mpl_set_bit(mp_int *a, mp_size bitNum, mp_size value);
-mp_err mpl_get_bit(const mp_int *a, mp_size bitNum);
-mp_err mpl_get_bits(const mp_int *a, mp_size lsbNum, mp_size numBits);
-mp_err mpl_significant_bits(const mp_int *a);
-
-#endif /* _MPLOGIC_H */
--- a/jdk/src/share/native/sun/security/ec/mpmontg.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,199 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is
- * Netscape Communications Corporation.
- * Portions created by the Initial Developer are Copyright (C) 2000
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Sheueling Chang Shantz <sheueling.chang@sun.com>,
- *   Stephen Fung <stephen.fung@sun.com>, and
- *   Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/* $Id: mpmontg.c,v 1.20 2006/08/29 02:41:38 nelson%bolyard.com Exp $ */
-
-/* This file implements moduluar exponentiation using Montgomery's
- * method for modular reduction.  This file implements the method
- * described as "Improvement 1" in the paper "A Cryptogrpahic Library for
- * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.
- * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"
- * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,
- * published by Springer Verlag.
- */
-
-#define MP_USING_CACHE_SAFE_MOD_EXP 1
-#ifndef _KERNEL
-#include <string.h>
-#include <stddef.h> /* ptrdiff_t */
-#endif
-#include "mpi-priv.h"
-#include "mplogic.h"
-#include "mpprime.h"
-#ifdef MP_USING_MONT_MULF
-#include "montmulf.h"
-#endif
-
-/* if MP_CHAR_STORE_SLOW is defined, we  */
-/* need to know endianness of this platform. */
-#ifdef MP_CHAR_STORE_SLOW
-#if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN)
-#error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \
-       "  if you define MP_CHAR_STORE_SLOW."
-#endif
-#endif
-
-#ifndef STATIC
-#define STATIC
-#endif
-
-#define MAX_ODD_INTS    32   /* 2 ** (WINDOW_BITS - 1) */
-
-#ifndef _KERNEL
-#if defined(_WIN32_WCE)
-#define ABORT  res = MP_UNDEF; goto CLEANUP
-#else
-#define ABORT abort()
-#endif
-#else
-#define ABORT  res = MP_UNDEF; goto CLEANUP
-#endif /* _KERNEL */
-
-/* computes T = REDC(T), 2^b == R */
-mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
-{
-  mp_err res;
-  mp_size i;
-
-  i = MP_USED(T) + MP_USED(&mmm->N) + 2;
-  MP_CHECKOK( s_mp_pad(T, i) );
-  for (i = 0; i < MP_USED(&mmm->N); ++i ) {
-    mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
-    /* T += N * m_i * (MP_RADIX ** i); */
-    MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
-  }
-  s_mp_clamp(T);
-
-  /* T /= R */
-  s_mp_div_2d(T, mmm->b);
-
-  if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
-    /* T = T - N */
-    MP_CHECKOK( s_mp_sub(T, &mmm->N) );
-#ifdef DEBUG
-    if ((res = mp_cmp(T, &mmm->N)) >= 0) {
-      res = MP_UNDEF;
-      goto CLEANUP;
-    }
-#endif
-  }
-  res = MP_OKAY;
-CLEANUP:
-  return res;
-}
-
-#if !defined(MP_ASSEMBLY_MUL_MONT) && !defined(MP_MONT_USE_MP_MUL)
-mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
-                   mp_mont_modulus *mmm)
-{
-  mp_digit *pb;
-  mp_digit m_i;
-  mp_err   res;
-  mp_size  ib;
-  mp_size  useda, usedb;
-
-  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
-
-  if (MP_USED(a) < MP_USED(b)) {
-    const mp_int *xch = b;      /* switch a and b, to do fewer outer loops */
-    b = a;
-    a = xch;
-  }
-
-  MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
-  ib = MP_USED(a) + MP_MAX(MP_USED(b), MP_USED(&mmm->N)) + 2;
-  if((res = s_mp_pad(c, ib)) != MP_OKAY)
-    goto CLEANUP;
-
-  useda = MP_USED(a);
-  pb = MP_DIGITS(b);
-  s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
-  s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
-  m_i = MP_DIGIT(c, 0) * mmm->n0prime;
-  s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
-
-  /* Outer loop:  Digits of b */
-  usedb = MP_USED(b);
-  for (ib = 1; ib < usedb; ib++) {
-    mp_digit b_i    = *pb++;
-
-    /* Inner product:  Digits of a */
-    if (b_i)
-      s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
-    m_i = MP_DIGIT(c, ib) * mmm->n0prime;
-    s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
-  }
-  if (usedb < MP_USED(&mmm->N)) {
-    for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) {
-      m_i = MP_DIGIT(c, ib) * mmm->n0prime;
-      s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
-    }
-  }
-  s_mp_clamp(c);
-  s_mp_div_2d(c, mmm->b);
-  if (s_mp_cmp(c, &mmm->N) >= 0) {
-    MP_CHECKOK( s_mp_sub(c, &mmm->N) );
-  }
-  res = MP_OKAY;
-
-CLEANUP:
-  return res;
-}
-#endif
--- a/jdk/src/share/native/sun/security/ec/mpprime.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,89 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- *
- *  Utilities for finding and working with prime and pseudo-prime
- *  integers
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
- *
- * The Initial Developer of the Original Code is
- * Michael J. Fromberger.
- * Portions created by the Initial Developer are Copyright (C) 1997
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _MP_PRIME_H
-#define _MP_PRIME_H
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include "mpi.h"
-
-extern const int prime_tab_size;   /* number of primes available */
-extern const mp_digit prime_tab[];
-
-/* Tests for divisibility    */
-mp_err  mpp_divis(mp_int *a, mp_int *b);
-mp_err  mpp_divis_d(mp_int *a, mp_digit d);
-
-/* Random selection          */
-mp_err  mpp_random(mp_int *a);
-mp_err  mpp_random_size(mp_int *a, mp_size prec);
-
-/* Pseudo-primality testing  */
-mp_err  mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which);
-mp_err  mpp_divis_primes(mp_int *a, mp_digit *np);
-mp_err  mpp_fermat(mp_int *a, mp_digit w);
-mp_err mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes);
-mp_err  mpp_pprime(mp_int *a, int nt);
-mp_err mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes,
-                 unsigned char *sieve, mp_size nSieve);
-mp_err mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong,
-                      unsigned long * nTries);
-
-#endif /* _MP_PRIME_H */
--- a/jdk/src/share/native/sun/security/ec/oid.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,473 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is
- * Netscape Communications Corporation.
- * Portions created by the Initial Developer are Copyright (C) 1994-2000
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-#include <sys/types.h>
-
-#ifndef _WIN32
-#ifndef __linux__
-#include <sys/systm.h>
-#endif /* __linux__ */
-#include <sys/param.h>
-#endif /* _WIN32 */
-
-#ifdef _KERNEL
-#include <sys/kmem.h>
-#else
-#include <string.h>
-#endif
-#include "ec.h"
-#include "ecl-curve.h"
-#include "ecc_impl.h"
-#include "secoidt.h"
-
-#define CERTICOM_OID            0x2b, 0x81, 0x04
-#define SECG_OID                CERTICOM_OID, 0x00
-
-#define ANSI_X962_OID           0x2a, 0x86, 0x48, 0xce, 0x3d
-#define ANSI_X962_CURVE_OID     ANSI_X962_OID, 0x03
-#define ANSI_X962_GF2m_OID      ANSI_X962_CURVE_OID, 0x00
-#define ANSI_X962_GFp_OID       ANSI_X962_CURVE_OID, 0x01
-
-#define CONST_OID static const unsigned char
-
-/* ANSI X9.62 prime curve OIDs */
-/* NOTE: prime192v1 is the same as secp192r1, prime256v1 is the
- * same as secp256r1
- */
-CONST_OID ansiX962prime192v1[] = { ANSI_X962_GFp_OID, 0x01 };
-CONST_OID ansiX962prime192v2[] = { ANSI_X962_GFp_OID, 0x02 };
-CONST_OID ansiX962prime192v3[] = { ANSI_X962_GFp_OID, 0x03 };
-CONST_OID ansiX962prime239v1[] = { ANSI_X962_GFp_OID, 0x04 };
-CONST_OID ansiX962prime239v2[] = { ANSI_X962_GFp_OID, 0x05 };
-CONST_OID ansiX962prime239v3[] = { ANSI_X962_GFp_OID, 0x06 };
-CONST_OID ansiX962prime256v1[] = { ANSI_X962_GFp_OID, 0x07 };
-
-/* SECG prime curve OIDs */
-CONST_OID secgECsecp112r1[] = { SECG_OID, 0x06 };
-CONST_OID secgECsecp112r2[] = { SECG_OID, 0x07 };
-CONST_OID secgECsecp128r1[] = { SECG_OID, 0x1c };
-CONST_OID secgECsecp128r2[] = { SECG_OID, 0x1d };
-CONST_OID secgECsecp160k1[] = { SECG_OID, 0x09 };
-CONST_OID secgECsecp160r1[] = { SECG_OID, 0x08 };
-CONST_OID secgECsecp160r2[] = { SECG_OID, 0x1e };
-CONST_OID secgECsecp192k1[] = { SECG_OID, 0x1f };
-CONST_OID secgECsecp224k1[] = { SECG_OID, 0x20 };
-CONST_OID secgECsecp224r1[] = { SECG_OID, 0x21 };
-CONST_OID secgECsecp256k1[] = { SECG_OID, 0x0a };
-CONST_OID secgECsecp384r1[] = { SECG_OID, 0x22 };
-CONST_OID secgECsecp521r1[] = { SECG_OID, 0x23 };
-
-/* SECG characterisitic two curve OIDs */
-CONST_OID secgECsect113r1[] = {SECG_OID, 0x04 };
-CONST_OID secgECsect113r2[] = {SECG_OID, 0x05 };
-CONST_OID secgECsect131r1[] = {SECG_OID, 0x16 };
-CONST_OID secgECsect131r2[] = {SECG_OID, 0x17 };
-CONST_OID secgECsect163k1[] = {SECG_OID, 0x01 };
-CONST_OID secgECsect163r1[] = {SECG_OID, 0x02 };
-CONST_OID secgECsect163r2[] = {SECG_OID, 0x0f };
-CONST_OID secgECsect193r1[] = {SECG_OID, 0x18 };
-CONST_OID secgECsect193r2[] = {SECG_OID, 0x19 };
-CONST_OID secgECsect233k1[] = {SECG_OID, 0x1a };
-CONST_OID secgECsect233r1[] = {SECG_OID, 0x1b };
-CONST_OID secgECsect239k1[] = {SECG_OID, 0x03 };
-CONST_OID secgECsect283k1[] = {SECG_OID, 0x10 };
-CONST_OID secgECsect283r1[] = {SECG_OID, 0x11 };
-CONST_OID secgECsect409k1[] = {SECG_OID, 0x24 };
-CONST_OID secgECsect409r1[] = {SECG_OID, 0x25 };
-CONST_OID secgECsect571k1[] = {SECG_OID, 0x26 };
-CONST_OID secgECsect571r1[] = {SECG_OID, 0x27 };
-
-/* ANSI X9.62 characteristic two curve OIDs */
-CONST_OID ansiX962c2pnb163v1[] = { ANSI_X962_GF2m_OID, 0x01 };
-CONST_OID ansiX962c2pnb163v2[] = { ANSI_X962_GF2m_OID, 0x02 };
-CONST_OID ansiX962c2pnb163v3[] = { ANSI_X962_GF2m_OID, 0x03 };
-CONST_OID ansiX962c2pnb176v1[] = { ANSI_X962_GF2m_OID, 0x04 };
-CONST_OID ansiX962c2tnb191v1[] = { ANSI_X962_GF2m_OID, 0x05 };
-CONST_OID ansiX962c2tnb191v2[] = { ANSI_X962_GF2m_OID, 0x06 };
-CONST_OID ansiX962c2tnb191v3[] = { ANSI_X962_GF2m_OID, 0x07 };
-CONST_OID ansiX962c2onb191v4[] = { ANSI_X962_GF2m_OID, 0x08 };
-CONST_OID ansiX962c2onb191v5[] = { ANSI_X962_GF2m_OID, 0x09 };
-CONST_OID ansiX962c2pnb208w1[] = { ANSI_X962_GF2m_OID, 0x0a };
-CONST_OID ansiX962c2tnb239v1[] = { ANSI_X962_GF2m_OID, 0x0b };
-CONST_OID ansiX962c2tnb239v2[] = { ANSI_X962_GF2m_OID, 0x0c };
-CONST_OID ansiX962c2tnb239v3[] = { ANSI_X962_GF2m_OID, 0x0d };
-CONST_OID ansiX962c2onb239v4[] = { ANSI_X962_GF2m_OID, 0x0e };
-CONST_OID ansiX962c2onb239v5[] = { ANSI_X962_GF2m_OID, 0x0f };
-CONST_OID ansiX962c2pnb272w1[] = { ANSI_X962_GF2m_OID, 0x10 };
-CONST_OID ansiX962c2pnb304w1[] = { ANSI_X962_GF2m_OID, 0x11 };
-CONST_OID ansiX962c2tnb359v1[] = { ANSI_X962_GF2m_OID, 0x12 };
-CONST_OID ansiX962c2pnb368w1[] = { ANSI_X962_GF2m_OID, 0x13 };
-CONST_OID ansiX962c2tnb431r1[] = { ANSI_X962_GF2m_OID, 0x14 };
-
-#define OI(x) { siDEROID, (unsigned char *)x, sizeof x }
-#ifndef SECOID_NO_STRINGS
-#define OD(oid,tag,desc,mech,ext) { OI(oid), tag, desc, mech, ext }
-#else
-#define OD(oid,tag,desc,mech,ext) { OI(oid), tag, 0, mech, ext }
-#endif
-
-#define CKM_INVALID_MECHANISM 0xffffffffUL
-
-/* XXX this is incorrect */
-#define INVALID_CERT_EXTENSION 1
-
-#define CKM_ECDSA                      0x00001041
-#define CKM_ECDSA_SHA1                 0x00001042
-#define CKM_ECDH1_DERIVE               0x00001050
-
-static SECOidData ANSI_prime_oids[] = {
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-
-    OD( ansiX962prime192v1, ECCurve_NIST_P192,
-        "ANSI X9.62 elliptic curve prime192v1 (aka secp192r1, NIST P-192)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962prime192v2, ECCurve_X9_62_PRIME_192V2,
-        "ANSI X9.62 elliptic curve prime192v2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962prime192v3, ECCurve_X9_62_PRIME_192V3,
-        "ANSI X9.62 elliptic curve prime192v3",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962prime239v1, ECCurve_X9_62_PRIME_239V1,
-        "ANSI X9.62 elliptic curve prime239v1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962prime239v2, ECCurve_X9_62_PRIME_239V2,
-        "ANSI X9.62 elliptic curve prime239v2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962prime239v3, ECCurve_X9_62_PRIME_239V3,
-        "ANSI X9.62 elliptic curve prime239v3",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962prime256v1, ECCurve_NIST_P256,
-        "ANSI X9.62 elliptic curve prime256v1 (aka secp256r1, NIST P-256)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION )
-};
-
-static SECOidData SECG_oids[] = {
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-
-    OD( secgECsect163k1, ECCurve_NIST_K163,
-        "SECG elliptic curve sect163k1 (aka NIST K-163)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect163r1, ECCurve_SECG_CHAR2_163R1,
-        "SECG elliptic curve sect163r1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect239k1, ECCurve_SECG_CHAR2_239K1,
-        "SECG elliptic curve sect239k1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect113r1, ECCurve_SECG_CHAR2_113R1,
-        "SECG elliptic curve sect113r1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect113r2, ECCurve_SECG_CHAR2_113R2,
-        "SECG elliptic curve sect113r2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp112r1, ECCurve_SECG_PRIME_112R1,
-        "SECG elliptic curve secp112r1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp112r2, ECCurve_SECG_PRIME_112R2,
-        "SECG elliptic curve secp112r2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp160r1, ECCurve_SECG_PRIME_160R1,
-        "SECG elliptic curve secp160r1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp160k1, ECCurve_SECG_PRIME_160K1,
-        "SECG elliptic curve secp160k1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp256k1, ECCurve_SECG_PRIME_256K1,
-        "SECG elliptic curve secp256k1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    OD( secgECsect163r2, ECCurve_NIST_B163,
-        "SECG elliptic curve sect163r2 (aka NIST B-163)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect283k1, ECCurve_NIST_K283,
-        "SECG elliptic curve sect283k1 (aka NIST K-283)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect283r1, ECCurve_NIST_B283,
-        "SECG elliptic curve sect283r1 (aka NIST B-283)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    OD( secgECsect131r1, ECCurve_SECG_CHAR2_131R1,
-        "SECG elliptic curve sect131r1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect131r2, ECCurve_SECG_CHAR2_131R2,
-        "SECG elliptic curve sect131r2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect193r1, ECCurve_SECG_CHAR2_193R1,
-        "SECG elliptic curve sect193r1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect193r2, ECCurve_SECG_CHAR2_193R2,
-        "SECG elliptic curve sect193r2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect233k1, ECCurve_NIST_K233,
-        "SECG elliptic curve sect233k1 (aka NIST K-233)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect233r1, ECCurve_NIST_B233,
-        "SECG elliptic curve sect233r1 (aka NIST B-233)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp128r1, ECCurve_SECG_PRIME_128R1,
-        "SECG elliptic curve secp128r1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp128r2, ECCurve_SECG_PRIME_128R2,
-        "SECG elliptic curve secp128r2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp160r2, ECCurve_SECG_PRIME_160R2,
-        "SECG elliptic curve secp160r2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp192k1, ECCurve_SECG_PRIME_192K1,
-        "SECG elliptic curve secp192k1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp224k1, ECCurve_SECG_PRIME_224K1,
-        "SECG elliptic curve secp224k1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp224r1, ECCurve_NIST_P224,
-        "SECG elliptic curve secp224r1 (aka NIST P-224)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp384r1, ECCurve_NIST_P384,
-        "SECG elliptic curve secp384r1 (aka NIST P-384)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsecp521r1, ECCurve_NIST_P521,
-        "SECG elliptic curve secp521r1 (aka NIST P-521)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect409k1, ECCurve_NIST_K409,
-        "SECG elliptic curve sect409k1 (aka NIST K-409)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect409r1, ECCurve_NIST_B409,
-        "SECG elliptic curve sect409r1 (aka NIST B-409)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect571k1, ECCurve_NIST_K571,
-        "SECG elliptic curve sect571k1 (aka NIST K-571)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( secgECsect571r1, ECCurve_NIST_B571,
-        "SECG elliptic curve sect571r1 (aka NIST B-571)",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION )
-};
-
-static SECOidData ANSI_oids[] = {
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-
-    /* ANSI X9.62 named elliptic curves (characteristic two field) */
-    OD( ansiX962c2pnb163v1, ECCurve_X9_62_CHAR2_PNB163V1,
-        "ANSI X9.62 elliptic curve c2pnb163v1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2pnb163v2, ECCurve_X9_62_CHAR2_PNB163V2,
-        "ANSI X9.62 elliptic curve c2pnb163v2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2pnb163v3, ECCurve_X9_62_CHAR2_PNB163V3,
-        "ANSI X9.62 elliptic curve c2pnb163v3",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2pnb176v1, ECCurve_X9_62_CHAR2_PNB176V1,
-        "ANSI X9.62 elliptic curve c2pnb176v1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2tnb191v1, ECCurve_X9_62_CHAR2_TNB191V1,
-        "ANSI X9.62 elliptic curve c2tnb191v1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2tnb191v2, ECCurve_X9_62_CHAR2_TNB191V2,
-        "ANSI X9.62 elliptic curve c2tnb191v2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2tnb191v3, ECCurve_X9_62_CHAR2_TNB191V3,
-        "ANSI X9.62 elliptic curve c2tnb191v3",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    OD( ansiX962c2pnb208w1, ECCurve_X9_62_CHAR2_PNB208W1,
-        "ANSI X9.62 elliptic curve c2pnb208w1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2tnb239v1, ECCurve_X9_62_CHAR2_TNB239V1,
-        "ANSI X9.62 elliptic curve c2tnb239v1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2tnb239v2, ECCurve_X9_62_CHAR2_TNB239V2,
-        "ANSI X9.62 elliptic curve c2tnb239v2",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2tnb239v3, ECCurve_X9_62_CHAR2_TNB239V3,
-        "ANSI X9.62 elliptic curve c2tnb239v3",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    { { siDEROID, NULL, 0 }, ECCurve_noName,
-        "Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
-    OD( ansiX962c2pnb272w1, ECCurve_X9_62_CHAR2_PNB272W1,
-        "ANSI X9.62 elliptic curve c2pnb272w1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2pnb304w1, ECCurve_X9_62_CHAR2_PNB304W1,
-        "ANSI X9.62 elliptic curve c2pnb304w1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2tnb359v1, ECCurve_X9_62_CHAR2_TNB359V1,
-        "ANSI X9.62 elliptic curve c2tnb359v1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2pnb368w1, ECCurve_X9_62_CHAR2_PNB368W1,
-        "ANSI X9.62 elliptic curve c2pnb368w1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION ),
-    OD( ansiX962c2tnb431r1, ECCurve_X9_62_CHAR2_TNB431R1,
-        "ANSI X9.62 elliptic curve c2tnb431r1",
-        CKM_INVALID_MECHANISM,
-        INVALID_CERT_EXTENSION )
-};
-
-SECOidData *
-SECOID_FindOID(const SECItem *oid)
-{
-    SECOidData *po;
-    SECOidData *ret;
-    int i;
-
-    if (oid->len == 8) {
-        if (oid->data[6] == 0x00) {
-                /* XXX bounds check */
-                po = &ANSI_oids[oid->data[7]];
-                if (memcmp(oid->data, po->oid.data, 8) == 0)
-                        ret = po;
-        }
-        if (oid->data[6] == 0x01) {
-                /* XXX bounds check */
-                po = &ANSI_prime_oids[oid->data[7]];
-                if (memcmp(oid->data, po->oid.data, 8) == 0)
-                        ret = po;
-        }
-    } else if (oid->len == 5) {
-        /* XXX bounds check */
-        po = &SECG_oids[oid->data[4]];
-        if (memcmp(oid->data, po->oid.data, 5) == 0)
-                ret = po;
-    } else {
-        ret = NULL;
-    }
-    return(ret);
-}
-
-ECCurveName
-SECOID_FindOIDTag(const SECItem *oid)
-{
-    SECOidData *oiddata;
-
-    oiddata = SECOID_FindOID (oid);
-    if (oiddata == NULL)
-        return ECCurve_noName;
-
-    return oiddata->offset;
-}
--- a/jdk/src/share/native/sun/security/ec/secitem.c	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,199 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is
- * Netscape Communications Corporation.
- * Portions created by the Initial Developer are Copyright (C) 1994-2000
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/*
- * Support routines for SECItem data structure.
- *
- * $Id: secitem.c,v 1.14 2006/05/22 22:24:34 wtchang%redhat.com Exp $
- */
-
-#include <sys/types.h>
-
-#ifndef _WIN32
-#ifndef __linux__
-#include <sys/systm.h>
-#endif /* __linux__ */
-#include <sys/param.h>
-#endif /* _WIN32 */
-
-#ifdef _KERNEL
-#include <sys/kmem.h>
-#else
-#include <string.h>
-
-#ifndef _WIN32
-#include <strings.h>
-#endif /* _WIN32 */
-
-#include <assert.h>
-#endif
-#include "ec.h"
-#include "ecl-curve.h"
-#include "ecc_impl.h"
-
-void SECITEM_FreeItem(SECItem *, PRBool);
-
-SECItem *
-SECITEM_AllocItem(PRArenaPool *arena, SECItem *item, unsigned int len,
-    int kmflag)
-{
-    SECItem *result = NULL;
-    void *mark = NULL;
-
-    if (arena != NULL) {
-        mark = PORT_ArenaMark(arena);
-    }
-
-    if (item == NULL) {
-        if (arena != NULL) {
-            result = PORT_ArenaZAlloc(arena, sizeof(SECItem), kmflag);
-        } else {
-            result = PORT_ZAlloc(sizeof(SECItem), kmflag);
-        }
-        if (result == NULL) {
-            goto loser;
-        }
-    } else {
-        PORT_Assert(item->data == NULL);
-        result = item;
-    }
-
-    result->len = len;
-    if (len) {
-        if (arena != NULL) {
-            result->data = PORT_ArenaAlloc(arena, len, kmflag);
-        } else {
-            result->data = PORT_Alloc(len, kmflag);
-        }
-        if (result->data == NULL) {
-            goto loser;
-        }
-    } else {
-        result->data = NULL;
-    }
-
-    if (mark) {
-        PORT_ArenaUnmark(arena, mark);
-    }
-    return(result);
-
-loser:
-    if ( arena != NULL ) {
-        if (mark) {
-            PORT_ArenaRelease(arena, mark);
-        }
-        if (item != NULL) {
-            item->data = NULL;
-            item->len = 0;
-        }
-    } else {
-        if (result != NULL) {
-            SECITEM_FreeItem(result, (item == NULL) ? PR_TRUE : PR_FALSE);
-        }
-        /*
-         * If item is not NULL, the above has set item->data and
-         * item->len to 0.
-         */
-    }
-    return(NULL);
-}
-
-SECStatus
-SECITEM_CopyItem(PRArenaPool *arena, SECItem *to, const SECItem *from,
-   int kmflag)
-{
-    to->type = from->type;
-    if (from->data && from->len) {
-        if ( arena ) {
-            to->data = (unsigned char*) PORT_ArenaAlloc(arena, from->len,
-                kmflag);
-        } else {
-            to->data = (unsigned char*) PORT_Alloc(from->len, kmflag);
-        }
-
-        if (!to->data) {
-            return SECFailure;
-        }
-        PORT_Memcpy(to->data, from->data, from->len);
-        to->len = from->len;
-    } else {
-        to->data = 0;
-        to->len = 0;
-    }
-    return SECSuccess;
-}
-
-void
-SECITEM_FreeItem(SECItem *zap, PRBool freeit)
-{
-    if (zap) {
-#ifdef _KERNEL
-        kmem_free(zap->data, zap->len);
-#else
-        free(zap->data);
-#endif
-        zap->data = 0;
-        zap->len = 0;
-        if (freeit) {
-#ifdef _KERNEL
-            kmem_free(zap, sizeof (SECItem));
-#else
-            free(zap);
-#endif
-        }
-    }
-}
--- a/jdk/src/share/native/sun/security/ec/secoidt.h	Tue Oct 13 15:25:58 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,103 +0,0 @@
-/* *********************************************************************
- *
- * Sun elects to have this file available under and governed by the
- * Mozilla Public License Version 1.1 ("MPL") (see
- * http://www.mozilla.org/MPL/ for full license text). For the avoidance
- * of doubt and subject to the following, Sun also elects to allow
- * licensees to use this file under the MPL, the GNU General Public
- * License version 2 only or the Lesser General Public License version
- * 2.1 only. Any references to the "GNU General Public License version 2
- * or later" or "GPL" in the following shall be construed to mean the
- * GNU General Public License version 2 only. Any references to the "GNU
- * Lesser General Public License version 2.1 or later" or "LGPL" in the
- * following shall be construed to mean the GNU Lesser General Public
- * License version 2.1 only. However, the following notice accompanied
- * the original version of this file:
- *
- * Version: MPL 1.1/GPL 2.0/LGPL 2.1
- *
- * The contents of this file are subject to the Mozilla Public License Version
- * 1.1 (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * Software distributed under the License is distributed on an "AS IS" basis,
- * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
- * for the specific language governing rights and limitations under the
- * License.
- *
- * The Original Code is the Netscape security libraries.
- *
- * The Initial Developer of the Original Code is
- * Netscape Communications Corporation.
- * Portions created by the Initial Developer are Copyright (C) 1994-2000
- * the Initial Developer. All Rights Reserved.
- *
- * Contributor(s):
- *   Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
- *
- * Alternatively, the contents of this file may be used under the terms of
- * either the GNU General Public License Version 2 or later (the "GPL"), or
- * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
- * in which case the provisions of the GPL or the LGPL are applicable instead
- * of those above. If you wish to allow use of your version of this file only
- * under the terms of either the GPL or the LGPL, and not to allow others to
- * use your version of this file under the terms of the MPL, indicate your
- * decision by deleting the provisions above and replace them with the notice
- * and other provisions required by the GPL or the LGPL. If you do not delete
- * the provisions above, a recipient may use your version of this file under
- * the terms of any one of the MPL, the GPL or the LGPL.
- *
- *********************************************************************** */
-/*
- * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
- * Use is subject to license terms.
- */
-
-#ifndef _SECOIDT_H_
-#define _SECOIDT_H_
-
-#pragma ident   "%Z%%M% %I%     %E% SMI"
-
-/*
- * secoidt.h - public data structures for ASN.1 OID functions
- *
- * $Id: secoidt.h,v 1.23 2007/05/05 22:45:16 nelson%bolyard.com Exp $
- */
-
-typedef struct SECOidDataStr SECOidData;
-typedef struct SECAlgorithmIDStr SECAlgorithmID;
-
-/*
-** An X.500 algorithm identifier
-*/
-struct SECAlgorithmIDStr {
-    SECItem algorithm;
-    SECItem parameters;
-};
-
-#define SEC_OID_SECG_EC_SECP192R1 SEC_OID_ANSIX962_EC_PRIME192V1
-#define SEC_OID_SECG_EC_SECP256R1 SEC_OID_ANSIX962_EC_PRIME256V1
-#define SEC_OID_PKCS12_KEY_USAGE  SEC_OID_X509_KEY_USAGE
-
-/* fake OID for DSS sign/verify */
-#define SEC_OID_SHA SEC_OID_MISS_DSS
-
-typedef enum {
-    INVALID_CERT_EXTENSION = 0,
-    UNSUPPORTED_CERT_EXTENSION = 1,
-    SUPPORTED_CERT_EXTENSION = 2
-} SECSupportExtenTag;
-
-struct SECOidDataStr {
-    SECItem            oid;
-    ECCurveName        offset;
-    const char *       desc;
-    unsigned long      mechanism;
-    SECSupportExtenTag supportedExtension;
-                                /* only used for x.509 v3 extensions, so
-                                   that we can print the names of those
-                                   extensions that we don't even support */
-};
-
-#endif /* _SECOIDT_H_ */