7131629: Generalize the CMS free list code
Summary: Make the FreeChunk, FreeList, TreeList, and BinaryTreeDictionary classes usable outside CMS.
Reviewed-by: brutisso, johnc, jwilhelm
Contributed-by: coleen.phillimore@oracle.com
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.cpp Fri Apr 20 17:13:36 2012 -0700
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1257 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#include "precompiled.hpp"
-#include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
-#include "gc_implementation/shared/allocationStats.hpp"
-#include "gc_implementation/shared/spaceDecorator.hpp"
-#include "memory/space.inline.hpp"
-#include "runtime/globals.hpp"
-#include "utilities/ostream.hpp"
-
-////////////////////////////////////////////////////////////////////////////////
-// A binary tree based search structure for free blocks.
-// This is currently used in the Concurrent Mark&Sweep implementation.
-////////////////////////////////////////////////////////////////////////////////
-
-TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
- // Do some assertion checking here.
- return (TreeChunk*) fc;
-}
-
-void TreeChunk::verifyTreeChunkList() const {
- TreeChunk* nextTC = (TreeChunk*)next();
- if (prev() != NULL) { // interior list node shouldn'r have tree fields
- guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
- embedded_list()->right() == NULL, "should be clear");
- }
- if (nextTC != NULL) {
- guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
- guarantee(nextTC->size() == size(), "wrong size");
- nextTC->verifyTreeChunkList();
- }
-}
-
-
-TreeList* TreeList::as_TreeList(TreeChunk* tc) {
- // This first free chunk in the list will be the tree list.
- assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
- TreeList* tl = tc->embedded_list();
- tc->set_list(tl);
-#ifdef ASSERT
- tl->set_protecting_lock(NULL);
-#endif
- tl->set_hint(0);
- tl->set_size(tc->size());
- tl->link_head(tc);
- tl->link_tail(tc);
- tl->set_count(1);
- tl->init_statistics(true /* split_birth */);
- tl->setParent(NULL);
- tl->setLeft(NULL);
- tl->setRight(NULL);
- return tl;
-}
-
-TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
- TreeChunk* tc = (TreeChunk*) addr;
- assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
- // The space in the heap will have been mangled initially but
- // is not remangled when a free chunk is returned to the free list
- // (since it is used to maintain the chunk on the free list).
- assert((ZapUnusedHeapArea &&
- SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
- SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
- SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
- (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
- "Space should be clear or mangled");
- tc->setSize(size);
- tc->linkPrev(NULL);
- tc->linkNext(NULL);
- TreeList* tl = TreeList::as_TreeList(tc);
- return tl;
-}
-
-TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
-
- TreeList* retTL = this;
- FreeChunk* list = head();
- assert(!list || list != list->next(), "Chunk on list twice");
- assert(tc != NULL, "Chunk being removed is NULL");
- assert(parent() == NULL || this == parent()->left() ||
- this == parent()->right(), "list is inconsistent");
- assert(tc->isFree(), "Header is not marked correctly");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
- FreeChunk* prevFC = tc->prev();
- TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
- assert(list != NULL, "should have at least the target chunk");
-
- // Is this the first item on the list?
- if (tc == list) {
- // The "getChunk..." functions for a TreeList will not return the
- // first chunk in the list unless it is the last chunk in the list
- // because the first chunk is also acting as the tree node.
- // When coalescing happens, however, the first chunk in the a tree
- // list can be the start of a free range. Free ranges are removed
- // from the free lists so that they are not available to be
- // allocated when the sweeper yields (giving up the free list lock)
- // to allow mutator activity. If this chunk is the first in the
- // list and is not the last in the list, do the work to copy the
- // TreeList from the first chunk to the next chunk and update all
- // the TreeList pointers in the chunks in the list.
- if (nextTC == NULL) {
- assert(prevFC == NULL, "Not last chunk in the list");
- set_tail(NULL);
- set_head(NULL);
- } else {
- // copy embedded list.
- nextTC->set_embedded_list(tc->embedded_list());
- retTL = nextTC->embedded_list();
- // Fix the pointer to the list in each chunk in the list.
- // This can be slow for a long list. Consider having
- // an option that does not allow the first chunk on the
- // list to be coalesced.
- for (TreeChunk* curTC = nextTC; curTC != NULL;
- curTC = TreeChunk::as_TreeChunk(curTC->next())) {
- curTC->set_list(retTL);
- }
- // Fix the parent to point to the new TreeList.
- if (retTL->parent() != NULL) {
- if (this == retTL->parent()->left()) {
- retTL->parent()->setLeft(retTL);
- } else {
- assert(this == retTL->parent()->right(), "Parent is incorrect");
- retTL->parent()->setRight(retTL);
- }
- }
- // Fix the children's parent pointers to point to the
- // new list.
- assert(right() == retTL->right(), "Should have been copied");
- if (retTL->right() != NULL) {
- retTL->right()->setParent(retTL);
- }
- assert(left() == retTL->left(), "Should have been copied");
- if (retTL->left() != NULL) {
- retTL->left()->setParent(retTL);
- }
- retTL->link_head(nextTC);
- assert(nextTC->isFree(), "Should be a free chunk");
- }
- } else {
- if (nextTC == NULL) {
- // Removing chunk at tail of list
- link_tail(prevFC);
- }
- // Chunk is interior to the list
- prevFC->linkAfter(nextTC);
- }
-
- // Below this point the embeded TreeList being used for the
- // tree node may have changed. Don't use "this"
- // TreeList*.
- // chunk should still be a free chunk (bit set in _prev)
- assert(!retTL->head() || retTL->size() == retTL->head()->size(),
- "Wrong sized chunk in list");
- debug_only(
- tc->linkPrev(NULL);
- tc->linkNext(NULL);
- tc->set_list(NULL);
- bool prev_found = false;
- bool next_found = false;
- for (FreeChunk* curFC = retTL->head();
- curFC != NULL; curFC = curFC->next()) {
- assert(curFC != tc, "Chunk is still in list");
- if (curFC == prevFC) {
- prev_found = true;
- }
- if (curFC == nextTC) {
- next_found = true;
- }
- }
- assert(prevFC == NULL || prev_found, "Chunk was lost from list");
- assert(nextTC == NULL || next_found, "Chunk was lost from list");
- assert(retTL->parent() == NULL ||
- retTL == retTL->parent()->left() ||
- retTL == retTL->parent()->right(),
- "list is inconsistent");
- )
- retTL->decrement_count();
-
- assert(tc->isFree(), "Should still be a free chunk");
- assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
- "list invariant");
- assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
- "list invariant");
- return retTL;
-}
-void TreeList::returnChunkAtTail(TreeChunk* chunk) {
- assert(chunk != NULL, "returning NULL chunk");
- assert(chunk->list() == this, "list should be set for chunk");
- assert(tail() != NULL, "The tree list is embedded in the first chunk");
- // which means that the list can never be empty.
- assert(!verifyChunkInFreeLists(chunk), "Double entry");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
- FreeChunk* fc = tail();
- fc->linkAfter(chunk);
- link_tail(chunk);
-
- assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
- increment_count();
- debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-}
-
-// Add this chunk at the head of the list. "At the head of the list"
-// is defined to be after the chunk pointer to by head(). This is
-// because the TreeList is embedded in the first TreeChunk in the
-// list. See the definition of TreeChunk.
-void TreeList::returnChunkAtHead(TreeChunk* chunk) {
- assert(chunk->list() == this, "list should be set for chunk");
- assert(head() != NULL, "The tree list is embedded in the first chunk");
- assert(chunk != NULL, "returning NULL chunk");
- assert(!verifyChunkInFreeLists(chunk), "Double entry");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
- FreeChunk* fc = head()->next();
- if (fc != NULL) {
- chunk->linkAfter(fc);
- } else {
- assert(tail() == NULL, "List is inconsistent");
- link_tail(chunk);
- }
- head()->linkAfter(chunk);
- assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
- increment_count();
- debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-}
-
-TreeChunk* TreeList::head_as_TreeChunk() {
- assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
- "Wrong type of chunk?");
- return TreeChunk::as_TreeChunk(head());
-}
-
-TreeChunk* TreeList::first_available() {
- assert(head() != NULL, "The head of the list cannot be NULL");
- FreeChunk* fc = head()->next();
- TreeChunk* retTC;
- if (fc == NULL) {
- retTC = head_as_TreeChunk();
- } else {
- retTC = TreeChunk::as_TreeChunk(fc);
- }
- assert(retTC->list() == this, "Wrong type of chunk.");
- return retTC;
-}
-
-// Returns the block with the largest heap address amongst
-// those in the list for this size; potentially slow and expensive,
-// use with caution!
-TreeChunk* TreeList::largest_address() {
- assert(head() != NULL, "The head of the list cannot be NULL");
- FreeChunk* fc = head()->next();
- TreeChunk* retTC;
- if (fc == NULL) {
- retTC = head_as_TreeChunk();
- } else {
- // walk down the list and return the one with the highest
- // heap address among chunks of this size.
- FreeChunk* last = fc;
- while (fc->next() != NULL) {
- if ((HeapWord*)last < (HeapWord*)fc) {
- last = fc;
- }
- fc = fc->next();
- }
- retTC = TreeChunk::as_TreeChunk(last);
- }
- assert(retTC->list() == this, "Wrong type of chunk.");
- return retTC;
-}
-
-BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
- _splay(splay)
-{
- assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
-
- reset(mr);
- assert(root()->left() == NULL, "reset check failed");
- assert(root()->right() == NULL, "reset check failed");
- assert(root()->head()->next() == NULL, "reset check failed");
- assert(root()->head()->prev() == NULL, "reset check failed");
- assert(totalSize() == root()->size(), "reset check failed");
- assert(totalFreeBlocks() == 1, "reset check failed");
-}
-
-void BinaryTreeDictionary::inc_totalSize(size_t inc) {
- _totalSize = _totalSize + inc;
-}
-
-void BinaryTreeDictionary::dec_totalSize(size_t dec) {
- _totalSize = _totalSize - dec;
-}
-
-void BinaryTreeDictionary::reset(MemRegion mr) {
- assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
- set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
- set_totalSize(mr.word_size());
- set_totalFreeBlocks(1);
-}
-
-void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
- MemRegion mr(addr, heap_word_size(byte_size));
- reset(mr);
-}
-
-void BinaryTreeDictionary::reset() {
- set_root(NULL);
- set_totalSize(0);
- set_totalFreeBlocks(0);
-}
-
-// Get a free block of size at least size from tree, or NULL.
-// If a splay step is requested, the removal algorithm (only) incorporates
-// a splay step as follows:
-// . the search proceeds down the tree looking for a possible
-// match. At the (closest) matching location, an appropriate splay step is applied
-// (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
-// if available, and if it's the last chunk, the node is deleted. A deteleted
-// node is replaced in place by its tree successor.
-TreeChunk*
-BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
-{
- TreeList *curTL, *prevTL;
- TreeChunk* retTC = NULL;
- assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
- if (FLSVerifyDictionary) {
- verifyTree();
- }
- // starting at the root, work downwards trying to find match.
- // Remember the last node of size too great or too small.
- for (prevTL = curTL = root(); curTL != NULL;) {
- if (curTL->size() == size) { // exact match
- break;
- }
- prevTL = curTL;
- if (curTL->size() < size) { // proceed to right sub-tree
- curTL = curTL->right();
- } else { // proceed to left sub-tree
- assert(curTL->size() > size, "size inconsistency");
- curTL = curTL->left();
- }
- }
- if (curTL == NULL) { // couldn't find exact match
- // try and find the next larger size by walking back up the search path
- for (curTL = prevTL; curTL != NULL;) {
- if (curTL->size() >= size) break;
- else curTL = curTL->parent();
- }
- assert(curTL == NULL || curTL->count() > 0,
- "An empty list should not be in the tree");
- }
- if (curTL != NULL) {
- assert(curTL->size() >= size, "size inconsistency");
- if (UseCMSAdaptiveFreeLists) {
-
- // A candidate chunk has been found. If it is already under
- // populated, get a chunk associated with the hint for this
- // chunk.
- if (curTL->surplus() <= 0) {
- /* Use the hint to find a size with a surplus, and reset the hint. */
- TreeList* hintTL = curTL;
- while (hintTL->hint() != 0) {
- assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
- "hint points in the wrong direction");
- hintTL = findList(hintTL->hint());
- assert(curTL != hintTL, "Infinite loop");
- if (hintTL == NULL ||
- hintTL == curTL /* Should not happen but protect against it */ ) {
- // No useful hint. Set the hint to NULL and go on.
- curTL->set_hint(0);
- break;
- }
- assert(hintTL->size() > size, "hint is inconsistent");
- if (hintTL->surplus() > 0) {
- // The hint led to a list that has a surplus. Use it.
- // Set the hint for the candidate to an overpopulated
- // size.
- curTL->set_hint(hintTL->size());
- // Change the candidate.
- curTL = hintTL;
- break;
- }
- // The evm code reset the hint of the candidate as
- // at an interim point. Why? Seems like this leaves
- // the hint pointing to a list that didn't work.
- // curTL->set_hint(hintTL->size());
- }
- }
- }
- // don't waste time splaying if chunk's singleton
- if (splay && curTL->head()->next() != NULL) {
- semiSplayStep(curTL);
- }
- retTC = curTL->first_available();
- assert((retTC != NULL) && (curTL->count() > 0),
- "A list in the binary tree should not be NULL");
- assert(retTC->size() >= size,
- "A chunk of the wrong size was found");
- removeChunkFromTree(retTC);
- assert(retTC->isFree(), "Header is not marked correctly");
- }
-
- if (FLSVerifyDictionary) {
- verify();
- }
- return retTC;
-}
-
-TreeList* BinaryTreeDictionary::findList(size_t size) const {
- TreeList* curTL;
- for (curTL = root(); curTL != NULL;) {
- if (curTL->size() == size) { // exact match
- break;
- }
-
- if (curTL->size() < size) { // proceed to right sub-tree
- curTL = curTL->right();
- } else { // proceed to left sub-tree
- assert(curTL->size() > size, "size inconsistency");
- curTL = curTL->left();
- }
- }
- return curTL;
-}
-
-
-bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
- size_t size = tc->size();
- TreeList* tl = findList(size);
- if (tl == NULL) {
- return false;
- } else {
- return tl->verifyChunkInFreeLists(tc);
- }
-}
-
-FreeChunk* BinaryTreeDictionary::findLargestDict() const {
- TreeList *curTL = root();
- if (curTL != NULL) {
- while(curTL->right() != NULL) curTL = curTL->right();
- return curTL->largest_address();
- } else {
- return NULL;
- }
-}
-
-// Remove the current chunk from the tree. If it is not the last
-// chunk in a list on a tree node, just unlink it.
-// If it is the last chunk in the list (the next link is NULL),
-// remove the node and repair the tree.
-TreeChunk*
-BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
- assert(tc != NULL, "Should not call with a NULL chunk");
- assert(tc->isFree(), "Header is not marked correctly");
-
- TreeList *newTL, *parentTL;
- TreeChunk* retTC;
- TreeList* tl = tc->list();
- debug_only(
- bool removing_only_chunk = false;
- if (tl == _root) {
- if ((_root->left() == NULL) && (_root->right() == NULL)) {
- if (_root->count() == 1) {
- assert(_root->head() == tc, "Should only be this one chunk");
- removing_only_chunk = true;
- }
- }
- }
- )
- assert(tl != NULL, "List should be set");
- assert(tl->parent() == NULL || tl == tl->parent()->left() ||
- tl == tl->parent()->right(), "list is inconsistent");
-
- bool complicatedSplice = false;
-
- retTC = tc;
- // Removing this chunk can have the side effect of changing the node
- // (TreeList*) in the tree. If the node is the root, update it.
- TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
- assert(tc->isFree(), "Chunk should still be free");
- assert(replacementTL->parent() == NULL ||
- replacementTL == replacementTL->parent()->left() ||
- replacementTL == replacementTL->parent()->right(),
- "list is inconsistent");
- if (tl == root()) {
- assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
- set_root(replacementTL);
- }
- debug_only(
- if (tl != replacementTL) {
- assert(replacementTL->head() != NULL,
- "If the tree list was replaced, it should not be a NULL list");
- TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
- TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
- assert(rhl == replacementTL, "Broken head");
- assert(rtl == replacementTL, "Broken tail");
- assert(replacementTL->size() == tc->size(), "Broken size");
- }
- )
-
- // Does the tree need to be repaired?
- if (replacementTL->count() == 0) {
- assert(replacementTL->head() == NULL &&
- replacementTL->tail() == NULL, "list count is incorrect");
- // Find the replacement node for the (soon to be empty) node being removed.
- // if we have a single (or no) child, splice child in our stead
- if (replacementTL->left() == NULL) {
- // left is NULL so pick right. right may also be NULL.
- newTL = replacementTL->right();
- debug_only(replacementTL->clearRight();)
- } else if (replacementTL->right() == NULL) {
- // right is NULL
- newTL = replacementTL->left();
- debug_only(replacementTL->clearLeft();)
- } else { // we have both children, so, by patriarchal convention,
- // my replacement is least node in right sub-tree
- complicatedSplice = true;
- newTL = removeTreeMinimum(replacementTL->right());
- assert(newTL != NULL && newTL->left() == NULL &&
- newTL->right() == NULL, "sub-tree minimum exists");
- }
- // newTL is the replacement for the (soon to be empty) node.
- // newTL may be NULL.
- // should verify; we just cleanly excised our replacement
- if (FLSVerifyDictionary) {
- verifyTree();
- }
- // first make newTL my parent's child
- if ((parentTL = replacementTL->parent()) == NULL) {
- // newTL should be root
- assert(tl == root(), "Incorrectly replacing root");
- set_root(newTL);
- if (newTL != NULL) {
- newTL->clearParent();
- }
- } else if (parentTL->right() == replacementTL) {
- // replacementTL is a right child
- parentTL->setRight(newTL);
- } else { // replacementTL is a left child
- assert(parentTL->left() == replacementTL, "should be left child");
- parentTL->setLeft(newTL);
- }
- debug_only(replacementTL->clearParent();)
- if (complicatedSplice) { // we need newTL to get replacementTL's
- // two children
- assert(newTL != NULL &&
- newTL->left() == NULL && newTL->right() == NULL,
- "newTL should not have encumbrances from the past");
- // we'd like to assert as below:
- // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
- // "else !complicatedSplice");
- // ... however, the above assertion is too strong because we aren't
- // guaranteed that replacementTL->right() is still NULL.
- // Recall that we removed
- // the right sub-tree minimum from replacementTL.
- // That may well have been its right
- // child! So we'll just assert half of the above:
- assert(replacementTL->left() != NULL, "else !complicatedSplice");
- newTL->setLeft(replacementTL->left());
- newTL->setRight(replacementTL->right());
- debug_only(
- replacementTL->clearRight();
- replacementTL->clearLeft();
- )
- }
- assert(replacementTL->right() == NULL &&
- replacementTL->left() == NULL &&
- replacementTL->parent() == NULL,
- "delete without encumbrances");
- }
-
- assert(totalSize() >= retTC->size(), "Incorrect total size");
- dec_totalSize(retTC->size()); // size book-keeping
- assert(totalFreeBlocks() > 0, "Incorrect total count");
- set_totalFreeBlocks(totalFreeBlocks() - 1);
-
- assert(retTC != NULL, "null chunk?");
- assert(retTC->prev() == NULL && retTC->next() == NULL,
- "should return without encumbrances");
- if (FLSVerifyDictionary) {
- verifyTree();
- }
- assert(!removing_only_chunk || _root == NULL, "root should be NULL");
- return TreeChunk::as_TreeChunk(retTC);
-}
-
-// Remove the leftmost node (lm) in the tree and return it.
-// If lm has a right child, link it to the left node of
-// the parent of lm.
-TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
- assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
- // locate the subtree minimum by walking down left branches
- TreeList* curTL = tl;
- for (; curTL->left() != NULL; curTL = curTL->left());
- // obviously curTL now has at most one child, a right child
- if (curTL != root()) { // Should this test just be removed?
- TreeList* parentTL = curTL->parent();
- if (parentTL->left() == curTL) { // curTL is a left child
- parentTL->setLeft(curTL->right());
- } else {
- // If the list tl has no left child, then curTL may be
- // the right child of parentTL.
- assert(parentTL->right() == curTL, "should be a right child");
- parentTL->setRight(curTL->right());
- }
- } else {
- // The only use of this method would not pass the root of the
- // tree (as indicated by the assertion above that the tree list
- // has a parent) but the specification does not explicitly exclude the
- // passing of the root so accomodate it.
- set_root(NULL);
- }
- debug_only(
- curTL->clearParent(); // Test if this needs to be cleared
- curTL->clearRight(); // recall, above, left child is already null
- )
- // we just excised a (non-root) node, we should still verify all tree invariants
- if (FLSVerifyDictionary) {
- verifyTree();
- }
- return curTL;
-}
-
-// Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
-// The simplifications are the following:
-// . we splay only when we delete (not when we insert)
-// . we apply a single spay step per deletion/access
-// By doing such partial splaying, we reduce the amount of restructuring,
-// while getting a reasonably efficient search tree (we think).
-// [Measurements will be needed to (in)validate this expectation.]
-
-void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
- // apply a semi-splay step at the given node:
- // . if root, norting needs to be done
- // . if child of root, splay once
- // . else zig-zig or sig-zag depending on path from grandparent
- if (root() == tc) return;
- warning("*** Splaying not yet implemented; "
- "tree operations may be inefficient ***");
-}
-
-void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
- TreeList *curTL, *prevTL;
- size_t size = fc->size();
-
- assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
- if (FLSVerifyDictionary) {
- verifyTree();
- }
- // XXX: do i need to clear the FreeChunk fields, let me do it just in case
- // Revisit this later
-
- fc->clearNext();
- fc->linkPrev(NULL);
-
- // work down from the _root, looking for insertion point
- for (prevTL = curTL = root(); curTL != NULL;) {
- if (curTL->size() == size) // exact match
- break;
- prevTL = curTL;
- if (curTL->size() > size) { // follow left branch
- curTL = curTL->left();
- } else { // follow right branch
- assert(curTL->size() < size, "size inconsistency");
- curTL = curTL->right();
- }
- }
- TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
- // This chunk is being returned to the binary tree. Its embedded
- // TreeList should be unused at this point.
- tc->initialize();
- if (curTL != NULL) { // exact match
- tc->set_list(curTL);
- curTL->returnChunkAtTail(tc);
- } else { // need a new node in tree
- tc->clearNext();
- tc->linkPrev(NULL);
- TreeList* newTL = TreeList::as_TreeList(tc);
- assert(((TreeChunk*)tc)->list() == newTL,
- "List was not initialized correctly");
- if (prevTL == NULL) { // we are the only tree node
- assert(root() == NULL, "control point invariant");
- set_root(newTL);
- } else { // insert under prevTL ...
- if (prevTL->size() < size) { // am right child
- assert(prevTL->right() == NULL, "control point invariant");
- prevTL->setRight(newTL);
- } else { // am left child
- assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
- prevTL->setLeft(newTL);
- }
- }
- }
- assert(tc->list() != NULL, "Tree list should be set");
-
- inc_totalSize(size);
- // Method 'totalSizeInTree' walks through the every block in the
- // tree, so it can cause significant performance loss if there are
- // many blocks in the tree
- assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
- set_totalFreeBlocks(totalFreeBlocks() + 1);
- if (FLSVerifyDictionary) {
- verifyTree();
- }
-}
-
-size_t BinaryTreeDictionary::maxChunkSize() const {
- verify_par_locked();
- TreeList* tc = root();
- if (tc == NULL) return 0;
- for (; tc->right() != NULL; tc = tc->right());
- return tc->size();
-}
-
-size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
- size_t res;
- res = tl->count();
-#ifdef ASSERT
- size_t cnt;
- FreeChunk* tc = tl->head();
- for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
- assert(res == cnt, "The count is not being maintained correctly");
-#endif
- return res;
-}
-
-size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
- if (tl == NULL)
- return 0;
- return (tl->size() * totalListLength(tl)) +
- totalSizeInTree(tl->left()) +
- totalSizeInTree(tl->right());
-}
-
-double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
- if (tl == NULL) {
- return 0.0;
- }
- double size = (double)(tl->size());
- double curr = size * size * totalListLength(tl);
- curr += sum_of_squared_block_sizes(tl->left());
- curr += sum_of_squared_block_sizes(tl->right());
- return curr;
-}
-
-size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
- if (tl == NULL)
- return 0;
- return totalListLength(tl) +
- totalFreeBlocksInTree(tl->left()) +
- totalFreeBlocksInTree(tl->right());
-}
-
-size_t BinaryTreeDictionary::numFreeBlocks() const {
- assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
- "_totalFreeBlocks inconsistency");
- return totalFreeBlocks();
-}
-
-size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
- if (tl == NULL)
- return 0;
- return 1 + MAX2(treeHeightHelper(tl->left()),
- treeHeightHelper(tl->right()));
-}
-
-size_t BinaryTreeDictionary::treeHeight() const {
- return treeHeightHelper(root());
-}
-
-size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
- if (tl == NULL) {
- return 0;
- }
- return 1 + totalNodesHelper(tl->left()) +
- totalNodesHelper(tl->right());
-}
-
-size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
- return totalNodesHelper(root());
-}
-
-void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
- TreeList* nd = findList(size);
- if (nd) {
- if (split) {
- if (birth) {
- nd->increment_splitBirths();
- nd->increment_surplus();
- } else {
- nd->increment_splitDeaths();
- nd->decrement_surplus();
- }
- } else {
- if (birth) {
- nd->increment_coalBirths();
- nd->increment_surplus();
- } else {
- nd->increment_coalDeaths();
- nd->decrement_surplus();
- }
- }
- }
- // A list for this size may not be found (nd == 0) if
- // This is a death where the appropriate list is now
- // empty and has been removed from the list.
- // This is a birth associated with a LinAB. The chunk
- // for the LinAB is not in the dictionary.
-}
-
-bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
- if (FLSAlwaysCoalesceLarge) return true;
-
- TreeList* list_of_size = findList(size);
- // None of requested size implies overpopulated.
- return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
- list_of_size->count() > list_of_size->coalDesired();
-}
-
-// Closures for walking the binary tree.
-// do_list() walks the free list in a node applying the closure
-// to each free chunk in the list
-// do_tree() walks the nodes in the binary tree applying do_list()
-// to each list at each node.
-
-class TreeCensusClosure : public StackObj {
- protected:
- virtual void do_list(FreeList* fl) = 0;
- public:
- virtual void do_tree(TreeList* tl) = 0;
-};
-
-class AscendTreeCensusClosure : public TreeCensusClosure {
- public:
- void do_tree(TreeList* tl) {
- if (tl != NULL) {
- do_tree(tl->left());
- do_list(tl);
- do_tree(tl->right());
- }
- }
-};
-
-class DescendTreeCensusClosure : public TreeCensusClosure {
- public:
- void do_tree(TreeList* tl) {
- if (tl != NULL) {
- do_tree(tl->right());
- do_list(tl);
- do_tree(tl->left());
- }
- }
-};
-
-// For each list in the tree, calculate the desired, desired
-// coalesce, count before sweep, and surplus before sweep.
-class BeginSweepClosure : public AscendTreeCensusClosure {
- double _percentage;
- float _inter_sweep_current;
- float _inter_sweep_estimate;
- float _intra_sweep_estimate;
-
- public:
- BeginSweepClosure(double p, float inter_sweep_current,
- float inter_sweep_estimate,
- float intra_sweep_estimate) :
- _percentage(p),
- _inter_sweep_current(inter_sweep_current),
- _inter_sweep_estimate(inter_sweep_estimate),
- _intra_sweep_estimate(intra_sweep_estimate) { }
-
- void do_list(FreeList* fl) {
- double coalSurplusPercent = _percentage;
- fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
- fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
- fl->set_beforeSweep(fl->count());
- fl->set_bfrSurp(fl->surplus());
- }
-};
-
-// Used to search the tree until a condition is met.
-// Similar to TreeCensusClosure but searches the
-// tree and returns promptly when found.
-
-class TreeSearchClosure : public StackObj {
- protected:
- virtual bool do_list(FreeList* fl) = 0;
- public:
- virtual bool do_tree(TreeList* tl) = 0;
-};
-
-#if 0 // Don't need this yet but here for symmetry.
-class AscendTreeSearchClosure : public TreeSearchClosure {
- public:
- bool do_tree(TreeList* tl) {
- if (tl != NULL) {
- if (do_tree(tl->left())) return true;
- if (do_list(tl)) return true;
- if (do_tree(tl->right())) return true;
- }
- return false;
- }
-};
-#endif
-
-class DescendTreeSearchClosure : public TreeSearchClosure {
- public:
- bool do_tree(TreeList* tl) {
- if (tl != NULL) {
- if (do_tree(tl->right())) return true;
- if (do_list(tl)) return true;
- if (do_tree(tl->left())) return true;
- }
- return false;
- }
-};
-
-// Searches the tree for a chunk that ends at the
-// specified address.
-class EndTreeSearchClosure : public DescendTreeSearchClosure {
- HeapWord* _target;
- FreeChunk* _found;
-
- public:
- EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
- bool do_list(FreeList* fl) {
- FreeChunk* item = fl->head();
- while (item != NULL) {
- if (item->end() == _target) {
- _found = item;
- return true;
- }
- item = item->next();
- }
- return false;
- }
- FreeChunk* found() { return _found; }
-};
-
-FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
- EndTreeSearchClosure etsc(target);
- bool found_target = etsc.do_tree(root());
- assert(found_target || etsc.found() == NULL, "Consistency check");
- assert(!found_target || etsc.found() != NULL, "Consistency check");
- return etsc.found();
-}
-
-void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
- float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
- BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
- inter_sweep_estimate,
- intra_sweep_estimate);
- bsc.do_tree(root());
-}
-
-// Closures and methods for calculating total bytes returned to the
-// free lists in the tree.
-NOT_PRODUCT(
- class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
- public:
- void do_list(FreeList* fl) {
- fl->set_returnedBytes(0);
- }
- };
-
- void BinaryTreeDictionary::initializeDictReturnedBytes() {
- InitializeDictReturnedBytesClosure idrb;
- idrb.do_tree(root());
- }
-
- class ReturnedBytesClosure : public AscendTreeCensusClosure {
- size_t _dictReturnedBytes;
- public:
- ReturnedBytesClosure() { _dictReturnedBytes = 0; }
- void do_list(FreeList* fl) {
- _dictReturnedBytes += fl->returnedBytes();
- }
- size_t dictReturnedBytes() { return _dictReturnedBytes; }
- };
-
- size_t BinaryTreeDictionary::sumDictReturnedBytes() {
- ReturnedBytesClosure rbc;
- rbc.do_tree(root());
-
- return rbc.dictReturnedBytes();
- }
-
- // Count the number of entries in the tree.
- class treeCountClosure : public DescendTreeCensusClosure {
- public:
- uint count;
- treeCountClosure(uint c) { count = c; }
- void do_list(FreeList* fl) {
- count++;
- }
- };
-
- size_t BinaryTreeDictionary::totalCount() {
- treeCountClosure ctc(0);
- ctc.do_tree(root());
- return ctc.count;
- }
-)
-
-// Calculate surpluses for the lists in the tree.
-class setTreeSurplusClosure : public AscendTreeCensusClosure {
- double percentage;
- public:
- setTreeSurplusClosure(double v) { percentage = v; }
- void do_list(FreeList* fl) {
- double splitSurplusPercent = percentage;
- fl->set_surplus(fl->count() -
- (ssize_t)((double)fl->desired() * splitSurplusPercent));
- }
-};
-
-void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
- setTreeSurplusClosure sts(splitSurplusPercent);
- sts.do_tree(root());
-}
-
-// Set hints for the lists in the tree.
-class setTreeHintsClosure : public DescendTreeCensusClosure {
- size_t hint;
- public:
- setTreeHintsClosure(size_t v) { hint = v; }
- void do_list(FreeList* fl) {
- fl->set_hint(hint);
- assert(fl->hint() == 0 || fl->hint() > fl->size(),
- "Current hint is inconsistent");
- if (fl->surplus() > 0) {
- hint = fl->size();
- }
- }
-};
-
-void BinaryTreeDictionary::setTreeHints(void) {
- setTreeHintsClosure sth(0);
- sth.do_tree(root());
-}
-
-// Save count before previous sweep and splits and coalesces.
-class clearTreeCensusClosure : public AscendTreeCensusClosure {
- void do_list(FreeList* fl) {
- fl->set_prevSweep(fl->count());
- fl->set_coalBirths(0);
- fl->set_coalDeaths(0);
- fl->set_splitBirths(0);
- fl->set_splitDeaths(0);
- }
-};
-
-void BinaryTreeDictionary::clearTreeCensus(void) {
- clearTreeCensusClosure ctc;
- ctc.do_tree(root());
-}
-
-// Do reporting and post sweep clean up.
-void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
- // Does walking the tree 3 times hurt?
- setTreeSurplus(splitSurplusPercent);
- setTreeHints();
- if (PrintGC && Verbose) {
- reportStatistics();
- }
- clearTreeCensus();
-}
-
-// Print summary statistics
-void BinaryTreeDictionary::reportStatistics() const {
- verify_par_locked();
- gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
- "------------------------------------\n");
- size_t totalSize = totalChunkSize(debug_only(NULL));
- size_t freeBlocks = numFreeBlocks();
- gclog_or_tty->print("Total Free Space: %d\n", totalSize);
- gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSize());
- gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
- if (freeBlocks > 0) {
- gclog_or_tty->print("Av. Block Size: %d\n", totalSize/freeBlocks);
- }
- gclog_or_tty->print("Tree Height: %d\n", treeHeight());
-}
-
-// Print census information - counts, births, deaths, etc.
-// for each list in the tree. Also print some summary
-// information.
-class PrintTreeCensusClosure : public AscendTreeCensusClosure {
- int _print_line;
- size_t _totalFree;
- FreeList _total;
-
- public:
- PrintTreeCensusClosure() {
- _print_line = 0;
- _totalFree = 0;
- }
- FreeList* total() { return &_total; }
- size_t totalFree() { return _totalFree; }
- void do_list(FreeList* fl) {
- if (++_print_line >= 40) {
- FreeList::print_labels_on(gclog_or_tty, "size");
- _print_line = 0;
- }
- fl->print_on(gclog_or_tty);
- _totalFree += fl->count() * fl->size() ;
- total()->set_count( total()->count() + fl->count() );
- total()->set_bfrSurp( total()->bfrSurp() + fl->bfrSurp() );
- total()->set_surplus( total()->splitDeaths() + fl->surplus() );
- total()->set_desired( total()->desired() + fl->desired() );
- total()->set_prevSweep( total()->prevSweep() + fl->prevSweep() );
- total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
- total()->set_coalBirths( total()->coalBirths() + fl->coalBirths() );
- total()->set_coalDeaths( total()->coalDeaths() + fl->coalDeaths() );
- total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
- total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
- }
-};
-
-void BinaryTreeDictionary::printDictCensus(void) const {
-
- gclog_or_tty->print("\nBinaryTree\n");
- FreeList::print_labels_on(gclog_or_tty, "size");
- PrintTreeCensusClosure ptc;
- ptc.do_tree(root());
-
- FreeList* total = ptc.total();
- FreeList::print_labels_on(gclog_or_tty, " ");
- total->print_on(gclog_or_tty, "TOTAL\t");
- gclog_or_tty->print(
- "totalFree(words): " SIZE_FORMAT_W(16)
- " growth: %8.5f deficit: %8.5f\n",
- ptc.totalFree(),
- (double)(total->splitBirths() + total->coalBirths()
- - total->splitDeaths() - total->coalDeaths())
- /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
- (double)(total->desired() - total->count())
- /(total->desired() != 0 ? (double)total->desired() : 1.0));
-}
-
-class PrintFreeListsClosure : public AscendTreeCensusClosure {
- outputStream* _st;
- int _print_line;
-
- public:
- PrintFreeListsClosure(outputStream* st) {
- _st = st;
- _print_line = 0;
- }
- void do_list(FreeList* fl) {
- if (++_print_line >= 40) {
- FreeList::print_labels_on(_st, "size");
- _print_line = 0;
- }
- fl->print_on(gclog_or_tty);
- size_t sz = fl->size();
- for (FreeChunk* fc = fl->head(); fc != NULL;
- fc = fc->next()) {
- _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
- fc, (HeapWord*)fc + sz,
- fc->cantCoalesce() ? "\t CC" : "");
- }
- }
-};
-
-void BinaryTreeDictionary::print_free_lists(outputStream* st) const {
-
- FreeList::print_labels_on(st, "size");
- PrintFreeListsClosure pflc(st);
- pflc.do_tree(root());
-}
-
-// Verify the following tree invariants:
-// . _root has no parent
-// . parent and child point to each other
-// . each node's key correctly related to that of its child(ren)
-void BinaryTreeDictionary::verifyTree() const {
- guarantee(root() == NULL || totalFreeBlocks() == 0 ||
- totalSize() != 0, "_totalSize should't be 0?");
- guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
- verifyTreeHelper(root());
-}
-
-size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
- size_t ct = 0;
- for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
- ct++;
- assert(curFC->prev() == NULL || curFC->prev()->isFree(),
- "Chunk should be free");
- }
- return ct;
-}
-
-// Note: this helper is recursive rather than iterative, so use with
-// caution on very deep trees; and watch out for stack overflow errors;
-// In general, to be used only for debugging.
-void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
- if (tl == NULL)
- return;
- guarantee(tl->size() != 0, "A list must has a size");
- guarantee(tl->left() == NULL || tl->left()->parent() == tl,
- "parent<-/->left");
- guarantee(tl->right() == NULL || tl->right()->parent() == tl,
- "parent<-/->right");;
- guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
- "parent !> left");
- guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
- "parent !< left");
- guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
- guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
- "list inconsistency");
- guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
- "list count is inconsistent");
- guarantee(tl->count() > 1 || tl->head() == tl->tail(),
- "list is incorrectly constructed");
- size_t count = verifyPrevFreePtrs(tl);
- guarantee(count == (size_t)tl->count(), "Node count is incorrect");
- if (tl->head() != NULL) {
- tl->head_as_TreeChunk()->verifyTreeChunkList();
- }
- verifyTreeHelper(tl->left());
- verifyTreeHelper(tl->right());
-}
-
-void BinaryTreeDictionary::verify() const {
- verifyTree();
- guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
-}
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp Fri Apr 20 17:13:36 2012 -0700
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,296 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_BINARYTREEDICTIONARY_HPP
-#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_BINARYTREEDICTIONARY_HPP
-
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeList.hpp"
-
-/*
- * A binary tree based search structure for free blocks.
- * This is currently used in the Concurrent Mark&Sweep implementation.
- */
-
-// A TreeList is a FreeList which can be used to maintain a
-// binary tree of free lists.
-
-class TreeChunk;
-class BinaryTreeDictionary;
-class AscendTreeCensusClosure;
-class DescendTreeCensusClosure;
-class DescendTreeSearchClosure;
-
-class TreeList: public FreeList {
- friend class TreeChunk;
- friend class BinaryTreeDictionary;
- friend class AscendTreeCensusClosure;
- friend class DescendTreeCensusClosure;
- friend class DescendTreeSearchClosure;
-
- protected:
- TreeList* parent() const { return _parent; }
- TreeList* left() const { return _left; }
- TreeList* right() const { return _right; }
-
- // Accessors for links in tree.
-
- void setLeft(TreeList* tl) {
- _left = tl;
- if (tl != NULL)
- tl->setParent(this);
- }
- void setRight(TreeList* tl) {
- _right = tl;
- if (tl != NULL)
- tl->setParent(this);
- }
- void setParent(TreeList* tl) { _parent = tl; }
-
- void clearLeft() { _left = NULL; }
- void clearRight() { _right = NULL; }
- void clearParent() { _parent = NULL; }
- void initialize() { clearLeft(); clearRight(), clearParent(); }
-
- // For constructing a TreeList from a Tree chunk or
- // address and size.
- static TreeList* as_TreeList(TreeChunk* tc);
- static TreeList* as_TreeList(HeapWord* addr, size_t size);
-
- // Returns the head of the free list as a pointer to a TreeChunk.
- TreeChunk* head_as_TreeChunk();
-
- // Returns the first available chunk in the free list as a pointer
- // to a TreeChunk.
- TreeChunk* first_available();
-
- // Returns the block with the largest heap address amongst
- // those in the list for this size; potentially slow and expensive,
- // use with caution!
- TreeChunk* largest_address();
-
- // removeChunkReplaceIfNeeded() removes the given "tc" from the TreeList.
- // If "tc" is the first chunk in the list, it is also the
- // TreeList that is the node in the tree. removeChunkReplaceIfNeeded()
- // returns the possibly replaced TreeList* for the node in
- // the tree. It also updates the parent of the original
- // node to point to the new node.
- TreeList* removeChunkReplaceIfNeeded(TreeChunk* tc);
- // See FreeList.
- void returnChunkAtHead(TreeChunk* tc);
- void returnChunkAtTail(TreeChunk* tc);
-};
-
-// A TreeChunk is a subclass of a FreeChunk that additionally
-// maintains a pointer to the free list on which it is currently
-// linked.
-// A TreeChunk is also used as a node in the binary tree. This
-// allows the binary tree to be maintained without any additional
-// storage (the free chunks are used). In a binary tree the first
-// chunk in the free list is also the tree node. Note that the
-// TreeChunk has an embedded TreeList for this purpose. Because
-// the first chunk in the list is distinguished in this fashion
-// (also is the node in the tree), it is the last chunk to be found
-// on the free list for a node in the tree and is only removed if
-// it is the last chunk on the free list.
-
-class TreeChunk : public FreeChunk {
- friend class TreeList;
- TreeList* _list;
- TreeList _embedded_list; // if non-null, this chunk is on _list
- protected:
- TreeList* embedded_list() const { return (TreeList*) &_embedded_list; }
- void set_embedded_list(TreeList* v) { _embedded_list = *v; }
- public:
- TreeList* list() { return _list; }
- void set_list(TreeList* v) { _list = v; }
- static TreeChunk* as_TreeChunk(FreeChunk* fc);
- // Initialize fields in a TreeChunk that should be
- // initialized when the TreeChunk is being added to
- // a free list in the tree.
- void initialize() { embedded_list()->initialize(); }
-
- // debugging
- void verifyTreeChunkList() const;
-};
-
-const size_t MIN_TREE_CHUNK_SIZE = sizeof(TreeChunk)/HeapWordSize;
-
-class BinaryTreeDictionary: public FreeBlockDictionary {
- friend class VMStructs;
- bool _splay;
- size_t _totalSize;
- size_t _totalFreeBlocks;
- TreeList* _root;
-
- // private accessors
- bool splay() const { return _splay; }
- void set_splay(bool v) { _splay = v; }
- size_t totalSize() const { return _totalSize; }
- void set_totalSize(size_t v) { _totalSize = v; }
- virtual void inc_totalSize(size_t v);
- virtual void dec_totalSize(size_t v);
- size_t totalFreeBlocks() const { return _totalFreeBlocks; }
- void set_totalFreeBlocks(size_t v) { _totalFreeBlocks = v; }
- TreeList* root() const { return _root; }
- void set_root(TreeList* v) { _root = v; }
-
- // Remove a chunk of size "size" or larger from the tree and
- // return it. If the chunk
- // is the last chunk of that size, remove the node for that size
- // from the tree.
- TreeChunk* getChunkFromTree(size_t size, Dither dither, bool splay);
- // Return a list of the specified size or NULL from the tree.
- // The list is not removed from the tree.
- TreeList* findList (size_t size) const;
- // Remove this chunk from the tree. If the removal results
- // in an empty list in the tree, remove the empty list.
- TreeChunk* removeChunkFromTree(TreeChunk* tc);
- // Remove the node in the trees starting at tl that has the
- // minimum value and return it. Repair the tree as needed.
- TreeList* removeTreeMinimum(TreeList* tl);
- void semiSplayStep(TreeList* tl);
- // Add this free chunk to the tree.
- void insertChunkInTree(FreeChunk* freeChunk);
- public:
- void verifyTree() const;
- // verify that the given chunk is in the tree.
- bool verifyChunkInFreeLists(FreeChunk* tc) const;
- private:
- void verifyTreeHelper(TreeList* tl) const;
- static size_t verifyPrevFreePtrs(TreeList* tl);
-
- // Returns the total number of chunks in the list.
- size_t totalListLength(TreeList* tl) const;
- // Returns the total number of words in the chunks in the tree
- // starting at "tl".
- size_t totalSizeInTree(TreeList* tl) const;
- // Returns the sum of the square of the size of each block
- // in the tree starting at "tl".
- double sum_of_squared_block_sizes(TreeList* const tl) const;
- // Returns the total number of free blocks in the tree starting
- // at "tl".
- size_t totalFreeBlocksInTree(TreeList* tl) const;
- size_t numFreeBlocks() const;
- size_t treeHeight() const;
- size_t treeHeightHelper(TreeList* tl) const;
- size_t totalNodesInTree(TreeList* tl) const;
- size_t totalNodesHelper(TreeList* tl) const;
-
- public:
- // Constructor
- BinaryTreeDictionary(MemRegion mr, bool splay = false);
-
- // Reset the dictionary to the initial conditions with
- // a single free chunk.
- void reset(MemRegion mr);
- void reset(HeapWord* addr, size_t size);
- // Reset the dictionary to be empty.
- void reset();
-
- // Return a chunk of size "size" or greater from
- // the tree.
- // want a better dynamic splay strategy for the future.
- FreeChunk* getChunk(size_t size, Dither dither) {
- verify_par_locked();
- FreeChunk* res = getChunkFromTree(size, dither, splay());
- assert(res == NULL || res->isFree(),
- "Should be returning a free chunk");
- return res;
- }
-
- void returnChunk(FreeChunk* chunk) {
- verify_par_locked();
- insertChunkInTree(chunk);
- }
-
- void removeChunk(FreeChunk* chunk) {
- verify_par_locked();
- removeChunkFromTree((TreeChunk*)chunk);
- assert(chunk->isFree(), "Should still be a free chunk");
- }
-
- size_t maxChunkSize() const;
- size_t totalChunkSize(debug_only(const Mutex* lock)) const {
- debug_only(
- if (lock != NULL && lock->owned_by_self()) {
- assert(totalSizeInTree(root()) == totalSize(),
- "_totalSize inconsistency");
- }
- )
- return totalSize();
- }
-
- size_t minSize() const {
- return MIN_TREE_CHUNK_SIZE;
- }
-
- double sum_of_squared_block_sizes() const {
- return sum_of_squared_block_sizes(root());
- }
-
- FreeChunk* find_chunk_ends_at(HeapWord* target) const;
-
- // Find the list with size "size" in the binary tree and update
- // the statistics in the list according to "split" (chunk was
- // split or coalesce) and "birth" (chunk was added or removed).
- void dictCensusUpdate(size_t size, bool split, bool birth);
- // Return true if the dictionary is overpopulated (more chunks of
- // this size than desired) for size "size".
- bool coalDictOverPopulated(size_t size);
- // Methods called at the beginning of a sweep to prepare the
- // statistics for the sweep.
- void beginSweepDictCensus(double coalSurplusPercent,
- float inter_sweep_current,
- float inter_sweep_estimate,
- float intra_sweep_estimate);
- // Methods called after the end of a sweep to modify the
- // statistics for the sweep.
- void endSweepDictCensus(double splitSurplusPercent);
- // Return the largest free chunk in the tree.
- FreeChunk* findLargestDict() const;
- // Accessors for statistics
- void setTreeSurplus(double splitSurplusPercent);
- void setTreeHints(void);
- // Reset statistics for all the lists in the tree.
- void clearTreeCensus(void);
- // Print the statistcis for all the lists in the tree. Also may
- // print out summaries.
- void printDictCensus(void) const;
- void print_free_lists(outputStream* st) const;
-
- // For debugging. Returns the sum of the _returnedBytes for
- // all lists in the tree.
- size_t sumDictReturnedBytes() PRODUCT_RETURN0;
- // Sets the _returnedBytes for all the lists in the tree to zero.
- void initializeDictReturnedBytes() PRODUCT_RETURN;
- // For debugging. Return the total number of chunks in the dictionary.
- size_t totalCount() PRODUCT_RETURN0;
-
- void reportStatistics() const;
-
- void verify() const;
-};
-
-#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_BINARYTREEDICTIONARY_HPP
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/cmsPermGen.cpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/cmsPermGen.cpp Thu Mar 29 19:46:24 2012 -0700
@@ -38,7 +38,7 @@
CMSPermGen::CMSPermGen(ReservedSpace rs, size_t initial_byte_size,
CardTableRS* ct,
- FreeBlockDictionary::DictionaryChoice dictionaryChoice) {
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) {
CMSPermGenGen* g =
new CMSPermGenGen(rs, initial_byte_size, -1, ct);
if (g == NULL) {
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/cmsPermGen.hpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/cmsPermGen.hpp Thu Mar 29 19:46:24 2012 -0700
@@ -45,7 +45,7 @@
public:
CMSPermGen(ReservedSpace rs, size_t initial_byte_size,
- CardTableRS* ct, FreeBlockDictionary::DictionaryChoice);
+ CardTableRS* ct, FreeBlockDictionary<FreeChunk>::DictionaryChoice);
HeapWord* mem_allocate(size_t size);
@@ -65,7 +65,7 @@
// regarding not using adaptive free lists for a perm gen.
ConcurrentMarkSweepGeneration(rs, initial_byte_size, // MinPermHeapExapnsion
level, ct, false /* use adaptive freelists */,
- (FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice)
+ (FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice)
{}
void initialize_performance_counters();
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.cpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.cpp Thu Mar 29 19:46:24 2012 -0700
@@ -69,7 +69,7 @@
// Constructor
CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
MemRegion mr, bool use_adaptive_freelists,
- FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
_dictionaryChoice(dictionaryChoice),
_adaptive_freelists(use_adaptive_freelists),
_bt(bs, mr),
@@ -87,6 +87,8 @@
CMSConcMarkMultiple),
_collector(NULL)
{
+ assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize,
+ "FreeChunk is larger than expected");
_bt.set_space(this);
initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
// We have all of "mr", all of which we place in the dictionary
@@ -96,13 +98,13 @@
// implementation, namely, the simple binary tree (splaying
// temporarily disabled).
switch (dictionaryChoice) {
- case FreeBlockDictionary::dictionarySplayTree:
- case FreeBlockDictionary::dictionarySkipList:
+ case FreeBlockDictionary<FreeChunk>::dictionarySplayTree:
+ case FreeBlockDictionary<FreeChunk>::dictionarySkipList:
default:
warning("dictionaryChoice: selected option not understood; using"
" default BinaryTreeDictionary implementation instead.");
- case FreeBlockDictionary::dictionaryBinaryTree:
- _dictionary = new BinaryTreeDictionary(mr);
+ case FreeBlockDictionary<FreeChunk>::dictionaryBinaryTree:
+ _dictionary = new BinaryTreeDictionary<FreeChunk>(mr, use_adaptive_freelists);
break;
}
assert(_dictionary != NULL, "CMS dictionary initialization");
@@ -448,7 +450,7 @@
reportIndexedFreeListStatistics();
gclog_or_tty->print_cr("Layout of Indexed Freelists");
gclog_or_tty->print_cr("---------------------------");
- FreeList::print_labels_on(st, "size");
+ FreeList<FreeChunk>::print_labels_on(st, "size");
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
_indexedFreeList[i].print_on(gclog_or_tty);
for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
@@ -1331,7 +1333,7 @@
size_t currSize = numWords + MinChunkSize;
assert(currSize % MinObjAlignment == 0, "currSize should be aligned");
for (i = currSize; i < IndexSetSize; i += IndexSetStride) {
- FreeList* fl = &_indexedFreeList[i];
+ FreeList<FreeChunk>* fl = &_indexedFreeList[i];
if (fl->head()) {
ret = getFromListGreater(fl, numWords);
assert(ret == NULL || ret->isFree(), "Should be returning a free chunk");
@@ -1714,7 +1716,7 @@
_dictionary->returnChunk(chunk);
#ifndef PRODUCT
if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
- TreeChunk::as_TreeChunk(chunk)->list()->verify_stats();
+ TreeChunk<FreeChunk>::as_TreeChunk(chunk)->list()->verify_stats();
}
#endif // PRODUCT
}
@@ -1862,11 +1864,11 @@
the excess is >= MIN_CHUNK. */
size_t start = align_object_size(numWords + MinChunkSize);
if (start < IndexSetSize) {
- FreeList* it = _indexedFreeList;
+ FreeList<FreeChunk>* it = _indexedFreeList;
size_t hint = _indexedFreeList[start].hint();
while (hint < IndexSetSize) {
assert(hint % MinObjAlignment == 0, "hint should be aligned");
- FreeList *fl = &_indexedFreeList[hint];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[hint];
if (fl->surplus() > 0 && fl->head() != NULL) {
// Found a list with surplus, reset original hint
// and split out a free chunk which is returned.
@@ -1885,7 +1887,7 @@
}
/* Requires fl->size >= numWords + MinChunkSize */
-FreeChunk* CompactibleFreeListSpace::getFromListGreater(FreeList* fl,
+FreeChunk* CompactibleFreeListSpace::getFromListGreater(FreeList<FreeChunk>* fl,
size_t numWords) {
FreeChunk *curr = fl->head();
size_t oldNumWords = curr->size();
@@ -2167,7 +2169,7 @@
assert_locked();
size_t i;
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
- FreeList* fl = &_indexedFreeList[i];
+ FreeList<FreeChunk>* fl = &_indexedFreeList[i];
if (PrintFLSStatistics > 1) {
gclog_or_tty->print("size[%d] : ", i);
}
@@ -2186,7 +2188,7 @@
assert_locked();
size_t i;
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
- FreeList *fl = &_indexedFreeList[i];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[i];
fl->set_surplus(fl->count() -
(ssize_t)((double)fl->desired() * CMSSmallSplitSurplusPercent));
}
@@ -2197,7 +2199,7 @@
size_t i;
size_t h = IndexSetSize;
for (i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
- FreeList *fl = &_indexedFreeList[i];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[i];
fl->set_hint(h);
if (fl->surplus() > 0) {
h = i;
@@ -2209,7 +2211,7 @@
assert_locked();
size_t i;
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
- FreeList *fl = &_indexedFreeList[i];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[i];
fl->set_prevSweep(fl->count());
fl->set_coalBirths(0);
fl->set_coalDeaths(0);
@@ -2236,7 +2238,7 @@
bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
if (size < SmallForDictionary) {
- FreeList *fl = &_indexedFreeList[size];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[size];
return (fl->coalDesired() < 0) ||
((int)fl->count() > fl->coalDesired());
} else {
@@ -2246,14 +2248,14 @@
void CompactibleFreeListSpace::smallCoalBirth(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
- FreeList *fl = &_indexedFreeList[size];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[size];
fl->increment_coalBirths();
fl->increment_surplus();
}
void CompactibleFreeListSpace::smallCoalDeath(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
- FreeList *fl = &_indexedFreeList[size];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[size];
fl->increment_coalDeaths();
fl->decrement_surplus();
}
@@ -2280,14 +2282,14 @@
void CompactibleFreeListSpace::smallSplitBirth(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
- FreeList *fl = &_indexedFreeList[size];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[size];
fl->increment_splitBirths();
fl->increment_surplus();
}
void CompactibleFreeListSpace::smallSplitDeath(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
- FreeList *fl = &_indexedFreeList[size];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[size];
fl->increment_splitDeaths();
fl->decrement_surplus();
}
@@ -2530,7 +2532,7 @@
assert(_dictionary->minSize() <= IndexSetSize,
"Some sizes can't be allocated without recourse to"
" linear allocation buffers");
- assert(MIN_TREE_CHUNK_SIZE*HeapWordSize == sizeof(TreeChunk),
+ assert(BinaryTreeDictionary<FreeChunk>::min_tree_chunk_size*HeapWordSize == sizeof(TreeChunk<FreeChunk>),
"else MIN_TREE_CHUNK_SIZE is wrong");
assert((IndexSetStride == 2 && IndexSetStart == 4) || // 32-bit
(IndexSetStride == 1 && IndexSetStart == 3), "just checking"); // 64-bit
@@ -2543,15 +2545,15 @@
void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
assert_lock_strong(&_freelistLock);
- FreeList total;
+ FreeList<FreeChunk> total;
gclog_or_tty->print("end sweep# " SIZE_FORMAT "\n", sweep_count);
- FreeList::print_labels_on(gclog_or_tty, "size");
+ FreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
size_t totalFree = 0;
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
- const FreeList *fl = &_indexedFreeList[i];
+ const FreeList<FreeChunk> *fl = &_indexedFreeList[i];
totalFree += fl->count() * fl->size();
if (i % (40*IndexSetStride) == 0) {
- FreeList::print_labels_on(gclog_or_tty, "size");
+ FreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
}
fl->print_on(gclog_or_tty);
total.set_bfrSurp( total.bfrSurp() + fl->bfrSurp() );
@@ -2634,7 +2636,7 @@
res = _cfls->getChunkFromDictionaryExact(word_sz);
if (res == NULL) return NULL;
} else {
- FreeList* fl = &_indexedFreeList[word_sz];
+ FreeList<FreeChunk>* fl = &_indexedFreeList[word_sz];
if (fl->count() == 0) {
// Attempt to refill this local free list.
get_from_global_pool(word_sz, fl);
@@ -2654,7 +2656,7 @@
// Get a chunk of blocks of the right size and update related
// book-keeping stats
-void CFLS_LAB::get_from_global_pool(size_t word_sz, FreeList* fl) {
+void CFLS_LAB::get_from_global_pool(size_t word_sz, FreeList<FreeChunk>* fl) {
// Get the #blocks we want to claim
size_t n_blks = (size_t)_blocks_to_claim[word_sz].average();
assert(n_blks > 0, "Error");
@@ -2736,7 +2738,7 @@
if (num_retire > 0) {
_cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]);
// Reset this list.
- _indexedFreeList[i] = FreeList();
+ _indexedFreeList[i] = FreeList<FreeChunk>();
_indexedFreeList[i].set_size(i);
}
}
@@ -2750,7 +2752,7 @@
}
}
-void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl) {
+void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList<FreeChunk>* fl) {
assert(fl->count() == 0, "Precondition.");
assert(word_sz < CompactibleFreeListSpace::IndexSetSize,
"Precondition");
@@ -2766,12 +2768,12 @@
(cur_sz < CompactibleFreeListSpace::IndexSetSize) &&
(CMSSplitIndexedFreeListBlocks || k <= 1);
k++, cur_sz = k * word_sz) {
- FreeList fl_for_cur_sz; // Empty.
+ FreeList<FreeChunk> fl_for_cur_sz; // Empty.
fl_for_cur_sz.set_size(cur_sz);
{
MutexLockerEx x(_indexedFreeListParLocks[cur_sz],
Mutex::_no_safepoint_check_flag);
- FreeList* gfl = &_indexedFreeList[cur_sz];
+ FreeList<FreeChunk>* gfl = &_indexedFreeList[cur_sz];
if (gfl->count() != 0) {
// nn is the number of chunks of size cur_sz that
// we'd need to split k-ways each, in order to create
@@ -2848,7 +2850,7 @@
while (n > 0) {
fc = dictionary()->getChunk(MAX2(n * word_sz,
_dictionary->minSize()),
- FreeBlockDictionary::atLeast);
+ FreeBlockDictionary<FreeChunk>::atLeast);
if (fc != NULL) {
_bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */); // update _unallocated_blk
dictionary()->dictCensusUpdate(fc->size(),
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp Thu Mar 29 19:46:24 2012 -0700
@@ -25,10 +25,10 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
-#include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeList.hpp"
#include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
+#include "memory/binaryTreeDictionary.hpp"
#include "memory/blockOffsetTable.inline.hpp"
+#include "memory/freeList.hpp"
#include "memory/space.hpp"
// Classes in support of keeping track of promotions into a non-Contiguous
@@ -129,10 +129,10 @@
// Linear allocation blocks
LinearAllocBlock _smallLinearAllocBlock;
- FreeBlockDictionary::DictionaryChoice _dictionaryChoice;
- FreeBlockDictionary* _dictionary; // ptr to dictionary for large size blocks
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice _dictionaryChoice;
+ FreeBlockDictionary<FreeChunk>* _dictionary; // ptr to dictionary for large size blocks
- FreeList _indexedFreeList[IndexSetSize];
+ FreeList<FreeChunk> _indexedFreeList[IndexSetSize];
// indexed array for small size blocks
// allocation stategy
bool _fitStrategy; // Use best fit strategy.
@@ -169,7 +169,7 @@
// If the count of "fl" is negative, it's absolute value indicates a
// number of free chunks that had been previously "borrowed" from global
// list of size "word_sz", and must now be decremented.
- void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl);
+ void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList<FreeChunk>* fl);
// Allocation helper functions
// Allocate using a strategy that takes from the indexed free lists
@@ -215,7 +215,7 @@
// and return it. The split off remainder is returned to
// the free lists. The old name for getFromListGreater
// was lookInListGreater.
- FreeChunk* getFromListGreater(FreeList* fl, size_t numWords);
+ FreeChunk* getFromListGreater(FreeList<FreeChunk>* fl, size_t numWords);
// Get a chunk in the indexed free list or dictionary,
// by considering a larger chunk and splitting it.
FreeChunk* getChunkFromGreater(size_t numWords);
@@ -286,10 +286,10 @@
// Constructor...
CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
bool use_adaptive_freelists,
- FreeBlockDictionary::DictionaryChoice);
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice);
// accessors
bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
- FreeBlockDictionary* dictionary() const { return _dictionary; }
+ FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
@@ -622,7 +622,7 @@
CompactibleFreeListSpace* _cfls;
// Our local free lists.
- FreeList _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
+ FreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
// Initialized from a command-line arg.
@@ -635,7 +635,7 @@
size_t _num_blocks [CompactibleFreeListSpace::IndexSetSize];
// Internal work method
- void get_from_global_pool(size_t word_sz, FreeList* fl);
+ void get_from_global_pool(size_t word_sz, FreeList<FreeChunk>* fl);
public:
CFLS_LAB(CompactibleFreeListSpace* cfls);
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp Thu Mar 29 19:46:24 2012 -0700
@@ -188,7 +188,7 @@
ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
ReservedSpace rs, size_t initial_byte_size, int level,
CardTableRS* ct, bool use_adaptive_freelists,
- FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
CardGeneration(rs, initial_byte_size, level, ct),
_dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
_debug_collection_type(Concurrent_collection_type)
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp Thu Mar 29 19:46:24 2012 -0700
@@ -25,10 +25,10 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
#include "gc_implementation/shared/gSpaceCounters.hpp"
#include "gc_implementation/shared/gcStats.hpp"
#include "gc_implementation/shared/generationCounters.hpp"
+#include "memory/freeBlockDictionary.hpp"
#include "memory/generation.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/virtualspace.hpp"
@@ -1106,7 +1106,7 @@
ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
int level, CardTableRS* ct,
bool use_adaptive_freelists,
- FreeBlockDictionary::DictionaryChoice);
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice);
// Accessors
CMSCollector* collector() const { return _collector; }
@@ -1328,7 +1328,7 @@
ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
int level, CardTableRS* ct,
bool use_adaptive_freelists,
- FreeBlockDictionary::DictionaryChoice
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice
dictionaryChoice) :
ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
use_adaptive_freelists, dictionaryChoice) {}
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeBlockDictionary.cpp Fri Apr 20 17:13:36 2012 -0700
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,60 +0,0 @@
-/*
- * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#include "precompiled.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
-#ifdef TARGET_OS_FAMILY_linux
-# include "thread_linux.inline.hpp"
-#endif
-#ifdef TARGET_OS_FAMILY_solaris
-# include "thread_solaris.inline.hpp"
-#endif
-#ifdef TARGET_OS_FAMILY_windows
-# include "thread_windows.inline.hpp"
-#endif
-#ifdef TARGET_OS_FAMILY_bsd
-# include "thread_bsd.inline.hpp"
-#endif
-
-#ifndef PRODUCT
-Mutex* FreeBlockDictionary::par_lock() const {
- return _lock;
-}
-
-void FreeBlockDictionary::set_par_lock(Mutex* lock) {
- _lock = lock;
-}
-
-void FreeBlockDictionary::verify_par_locked() const {
-#ifdef ASSERT
- if (ParallelGCThreads > 0) {
- Thread* myThread = Thread::current();
- if (myThread->is_GC_task_thread()) {
- assert(par_lock() != NULL, "Should be using locking?");
- assert_lock_strong(par_lock());
- }
- }
-#endif // ASSERT
-}
-#endif
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp Fri Apr 20 17:13:36 2012 -0700
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,103 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREEBLOCKDICTIONARY_HPP
-#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREEBLOCKDICTIONARY_HPP
-
-#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
-#include "memory/allocation.hpp"
-#include "memory/memRegion.hpp"
-#include "runtime/mutex.hpp"
-#include "utilities/debug.hpp"
-#include "utilities/globalDefinitions.hpp"
-#include "utilities/ostream.hpp"
-
-// A FreeBlockDictionary is an abstract superclass that will allow
-// a number of alternative implementations in the future.
-class FreeBlockDictionary: public CHeapObj {
- public:
- enum Dither {
- atLeast,
- exactly,
- roughly
- };
- enum DictionaryChoice {
- dictionaryBinaryTree = 0,
- dictionarySplayTree = 1,
- dictionarySkipList = 2
- };
-
- private:
- NOT_PRODUCT(Mutex* _lock;)
-
- public:
- virtual void removeChunk(FreeChunk* fc) = 0;
- virtual FreeChunk* getChunk(size_t size, Dither dither = atLeast) = 0;
- virtual void returnChunk(FreeChunk* chunk) = 0;
- virtual size_t totalChunkSize(debug_only(const Mutex* lock)) const = 0;
- virtual size_t maxChunkSize() const = 0;
- virtual size_t minSize() const = 0;
- // Reset the dictionary to the initial conditions for a single
- // block.
- virtual void reset(HeapWord* addr, size_t size) = 0;
- virtual void reset() = 0;
-
- virtual void dictCensusUpdate(size_t size, bool split, bool birth) = 0;
- virtual bool coalDictOverPopulated(size_t size) = 0;
- virtual void beginSweepDictCensus(double coalSurplusPercent,
- float inter_sweep_current, float inter_sweep_estimate,
- float intra__sweep_current) = 0;
- virtual void endSweepDictCensus(double splitSurplusPercent) = 0;
- virtual FreeChunk* findLargestDict() const = 0;
- // verify that the given chunk is in the dictionary.
- virtual bool verifyChunkInFreeLists(FreeChunk* tc) const = 0;
-
- // Sigma_{all_free_blocks} (block_size^2)
- virtual double sum_of_squared_block_sizes() const = 0;
-
- virtual FreeChunk* find_chunk_ends_at(HeapWord* target) const = 0;
- virtual void inc_totalSize(size_t v) = 0;
- virtual void dec_totalSize(size_t v) = 0;
-
- NOT_PRODUCT (
- virtual size_t sumDictReturnedBytes() = 0;
- virtual void initializeDictReturnedBytes() = 0;
- virtual size_t totalCount() = 0;
- )
-
- virtual void reportStatistics() const {
- gclog_or_tty->print("No statistics available");
- }
-
- virtual void printDictCensus() const = 0;
- virtual void print_free_lists(outputStream* st) const = 0;
-
- virtual void verify() const = 0;
-
- Mutex* par_lock() const PRODUCT_RETURN0;
- void set_par_lock(Mutex* lock) PRODUCT_RETURN;
- void verify_par_locked() const PRODUCT_RETURN;
-};
-
-#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREEBLOCKDICTIONARY_HPP
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeChunk.cpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeChunk.cpp Thu Mar 29 19:46:24 2012 -0700
@@ -23,7 +23,8 @@
*/
#include "precompiled.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
+#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
+#include "memory/freeBlockDictionary.hpp"
#include "utilities/copy.hpp"
#ifndef PRODUCT
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeList.cpp Fri Apr 20 17:13:36 2012 -0700
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,360 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#include "precompiled.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeList.hpp"
-#include "memory/sharedHeap.hpp"
-#include "runtime/globals.hpp"
-#include "runtime/mutex.hpp"
-#include "runtime/vmThread.hpp"
-
-// Free list. A FreeList is used to access a linked list of chunks
-// of space in the heap. The head and tail are maintained so that
-// items can be (as in the current implementation) added at the
-// at the tail of the list and removed from the head of the list to
-// maintain a FIFO queue.
-
-FreeList::FreeList() :
- _head(NULL), _tail(NULL)
-#ifdef ASSERT
- , _protecting_lock(NULL)
-#endif
-{
- _size = 0;
- _count = 0;
- _hint = 0;
- init_statistics();
-}
-
-FreeList::FreeList(FreeChunk* fc) :
- _head(fc), _tail(fc)
-#ifdef ASSERT
- , _protecting_lock(NULL)
-#endif
-{
- _size = fc->size();
- _count = 1;
- _hint = 0;
- init_statistics();
-#ifndef PRODUCT
- _allocation_stats.set_returnedBytes(size() * HeapWordSize);
-#endif
-}
-
-FreeList::FreeList(HeapWord* addr, size_t size) :
- _head((FreeChunk*) addr), _tail((FreeChunk*) addr)
-#ifdef ASSERT
- , _protecting_lock(NULL)
-#endif
-{
- assert(size > sizeof(FreeChunk), "size is too small");
- head()->setSize(size);
- _size = size;
- _count = 1;
- init_statistics();
-#ifndef PRODUCT
- _allocation_stats.set_returnedBytes(_size * HeapWordSize);
-#endif
-}
-
-void FreeList::reset(size_t hint) {
- set_count(0);
- set_head(NULL);
- set_tail(NULL);
- set_hint(hint);
-}
-
-void FreeList::init_statistics(bool split_birth) {
- _allocation_stats.initialize(split_birth);
-}
-
-FreeChunk* FreeList::getChunkAtHead() {
- assert_proper_lock_protection();
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- FreeChunk* fc = head();
- if (fc != NULL) {
- FreeChunk* nextFC = fc->next();
- if (nextFC != NULL) {
- // The chunk fc being removed has a "next". Set the "next" to the
- // "prev" of fc.
- nextFC->linkPrev(NULL);
- } else { // removed tail of list
- link_tail(NULL);
- }
- link_head(nextFC);
- decrement_count();
- }
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- return fc;
-}
-
-
-void FreeList::getFirstNChunksFromList(size_t n, FreeList* fl) {
- assert_proper_lock_protection();
- assert(fl->count() == 0, "Precondition");
- if (count() > 0) {
- int k = 1;
- fl->set_head(head()); n--;
- FreeChunk* tl = head();
- while (tl->next() != NULL && n > 0) {
- tl = tl->next(); n--; k++;
- }
- assert(tl != NULL, "Loop Inv.");
-
- // First, fix up the list we took from.
- FreeChunk* new_head = tl->next();
- set_head(new_head);
- set_count(count() - k);
- if (new_head == NULL) {
- set_tail(NULL);
- } else {
- new_head->linkPrev(NULL);
- }
- // Now we can fix up the tail.
- tl->linkNext(NULL);
- // And return the result.
- fl->set_tail(tl);
- fl->set_count(k);
- }
-}
-
-// Remove this chunk from the list
-void FreeList::removeChunk(FreeChunk*fc) {
- assert_proper_lock_protection();
- assert(head() != NULL, "Remove from empty list");
- assert(fc != NULL, "Remove a NULL chunk");
- assert(size() == fc->size(), "Wrong list");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
- FreeChunk* prevFC = fc->prev();
- FreeChunk* nextFC = fc->next();
- if (nextFC != NULL) {
- // The chunk fc being removed has a "next". Set the "next" to the
- // "prev" of fc.
- nextFC->linkPrev(prevFC);
- } else { // removed tail of list
- link_tail(prevFC);
- }
- if (prevFC == NULL) { // removed head of list
- link_head(nextFC);
- assert(nextFC == NULL || nextFC->prev() == NULL,
- "Prev of head should be NULL");
- } else {
- prevFC->linkNext(nextFC);
- assert(tail() != prevFC || prevFC->next() == NULL,
- "Next of tail should be NULL");
- }
- decrement_count();
- assert(((head() == NULL) + (tail() == NULL) + (count() == 0)) % 3 == 0,
- "H/T/C Inconsistency");
- // clear next and prev fields of fc, debug only
- NOT_PRODUCT(
- fc->linkPrev(NULL);
- fc->linkNext(NULL);
- )
- assert(fc->isFree(), "Should still be a free chunk");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- assert(head() == NULL || head()->size() == size(), "wrong item on list");
- assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
-}
-
-// Add this chunk at the head of the list.
-void FreeList::returnChunkAtHead(FreeChunk* chunk, bool record_return) {
- assert_proper_lock_protection();
- assert(chunk != NULL, "insert a NULL chunk");
- assert(size() == chunk->size(), "Wrong size");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
- FreeChunk* oldHead = head();
- assert(chunk != oldHead, "double insertion");
- chunk->linkAfter(oldHead);
- link_head(chunk);
- if (oldHead == NULL) { // only chunk in list
- assert(tail() == NULL, "inconsistent FreeList");
- link_tail(chunk);
- }
- increment_count(); // of # of chunks in list
- DEBUG_ONLY(
- if (record_return) {
- increment_returnedBytes_by(size()*HeapWordSize);
- }
- )
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- assert(head() == NULL || head()->size() == size(), "wrong item on list");
- assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
-}
-
-void FreeList::returnChunkAtHead(FreeChunk* chunk) {
- assert_proper_lock_protection();
- returnChunkAtHead(chunk, true);
-}
-
-// Add this chunk at the tail of the list.
-void FreeList::returnChunkAtTail(FreeChunk* chunk, bool record_return) {
- assert_proper_lock_protection();
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- assert(chunk != NULL, "insert a NULL chunk");
- assert(size() == chunk->size(), "wrong size");
-
- FreeChunk* oldTail = tail();
- assert(chunk != oldTail, "double insertion");
- if (oldTail != NULL) {
- oldTail->linkAfter(chunk);
- } else { // only chunk in list
- assert(head() == NULL, "inconsistent FreeList");
- link_head(chunk);
- }
- link_tail(chunk);
- increment_count(); // of # of chunks in list
- DEBUG_ONLY(
- if (record_return) {
- increment_returnedBytes_by(size()*HeapWordSize);
- }
- )
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- assert(head() == NULL || head()->size() == size(), "wrong item on list");
- assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
-}
-
-void FreeList::returnChunkAtTail(FreeChunk* chunk) {
- returnChunkAtTail(chunk, true);
-}
-
-void FreeList::prepend(FreeList* fl) {
- assert_proper_lock_protection();
- if (fl->count() > 0) {
- if (count() == 0) {
- set_head(fl->head());
- set_tail(fl->tail());
- set_count(fl->count());
- } else {
- // Both are non-empty.
- FreeChunk* fl_tail = fl->tail();
- FreeChunk* this_head = head();
- assert(fl_tail->next() == NULL, "Well-formedness of fl");
- fl_tail->linkNext(this_head);
- this_head->linkPrev(fl_tail);
- set_head(fl->head());
- set_count(count() + fl->count());
- }
- fl->set_head(NULL);
- fl->set_tail(NULL);
- fl->set_count(0);
- }
-}
-
-// verifyChunkInFreeLists() is used to verify that an item is in this free list.
-// It is used as a debugging aid.
-bool FreeList::verifyChunkInFreeLists(FreeChunk* fc) const {
- // This is an internal consistency check, not part of the check that the
- // chunk is in the free lists.
- guarantee(fc->size() == size(), "Wrong list is being searched");
- FreeChunk* curFC = head();
- while (curFC) {
- // This is an internal consistency check.
- guarantee(size() == curFC->size(), "Chunk is in wrong list.");
- if (fc == curFC) {
- return true;
- }
- curFC = curFC->next();
- }
- return false;
-}
-
-#ifndef PRODUCT
-void FreeList::verify_stats() const {
- // The +1 of the LH comparand is to allow some "looseness" in
- // checking: we usually call this interface when adding a block
- // and we'll subsequently update the stats; we cannot update the
- // stats beforehand because in the case of the large-block BT
- // dictionary for example, this might be the first block and
- // in that case there would be no place that we could record
- // the stats (which are kept in the block itself).
- assert((_allocation_stats.prevSweep() + _allocation_stats.splitBirths()
- + _allocation_stats.coalBirths() + 1) // Total Production Stock + 1
- >= (_allocation_stats.splitDeaths() + _allocation_stats.coalDeaths()
- + (ssize_t)count()), // Total Current Stock + depletion
- err_msg("FreeList " PTR_FORMAT " of size " SIZE_FORMAT
- " violates Conservation Principle: "
- "prevSweep(" SIZE_FORMAT ")"
- " + splitBirths(" SIZE_FORMAT ")"
- " + coalBirths(" SIZE_FORMAT ") + 1 >= "
- " splitDeaths(" SIZE_FORMAT ")"
- " coalDeaths(" SIZE_FORMAT ")"
- " + count(" SSIZE_FORMAT ")",
- this, _size, _allocation_stats.prevSweep(), _allocation_stats.splitBirths(),
- _allocation_stats.splitBirths(), _allocation_stats.splitDeaths(),
- _allocation_stats.coalDeaths(), count()));
-}
-
-void FreeList::assert_proper_lock_protection_work() const {
- assert(_protecting_lock != NULL, "Don't call this directly");
- assert(ParallelGCThreads > 0, "Don't call this directly");
- Thread* thr = Thread::current();
- if (thr->is_VM_thread() || thr->is_ConcurrentGC_thread()) {
- // assert that we are holding the freelist lock
- } else if (thr->is_GC_task_thread()) {
- assert(_protecting_lock->owned_by_self(), "FreeList RACE DETECTED");
- } else if (thr->is_Java_thread()) {
- assert(!SafepointSynchronize::is_at_safepoint(), "Should not be executing");
- } else {
- ShouldNotReachHere(); // unaccounted thread type?
- }
-}
-#endif
-
-// Print the "label line" for free list stats.
-void FreeList::print_labels_on(outputStream* st, const char* c) {
- st->print("%16s\t", c);
- st->print("%14s\t" "%14s\t" "%14s\t" "%14s\t" "%14s\t"
- "%14s\t" "%14s\t" "%14s\t" "%14s\t" "%14s\t" "\n",
- "bfrsurp", "surplus", "desired", "prvSwep", "bfrSwep",
- "count", "cBirths", "cDeaths", "sBirths", "sDeaths");
-}
-
-// Print the AllocationStats for the given free list. If the second argument
-// to the call is a non-null string, it is printed in the first column;
-// otherwise, if the argument is null (the default), then the size of the
-// (free list) block is printed in the first column.
-void FreeList::print_on(outputStream* st, const char* c) const {
- if (c != NULL) {
- st->print("%16s", c);
- } else {
- st->print(SIZE_FORMAT_W(16), size());
- }
- st->print("\t"
- SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t"
- SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\n",
- bfrSurp(), surplus(), desired(), prevSweep(), beforeSweep(),
- count(), coalBirths(), coalDeaths(), splitBirths(), splitDeaths());
-}
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeList.hpp Fri Apr 20 17:13:36 2012 -0700
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,335 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREELIST_HPP
-#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREELIST_HPP
-
-#include "gc_implementation/shared/allocationStats.hpp"
-
-class CompactibleFreeListSpace;
-
-// A class for maintaining a free list of FreeChunk's. The FreeList
-// maintains a the structure of the list (head, tail, etc.) plus
-// statistics for allocations from the list. The links between items
-// are not part of FreeList. The statistics are
-// used to make decisions about coalescing FreeChunk's when they
-// are swept during collection.
-//
-// See the corresponding .cpp file for a description of the specifics
-// for that implementation.
-
-class Mutex;
-class TreeList;
-
-class FreeList VALUE_OBJ_CLASS_SPEC {
- friend class CompactibleFreeListSpace;
- friend class VMStructs;
- friend class PrintTreeCensusClosure;
-
- protected:
- TreeList* _parent;
- TreeList* _left;
- TreeList* _right;
-
- private:
- FreeChunk* _head; // Head of list of free chunks
- FreeChunk* _tail; // Tail of list of free chunks
- size_t _size; // Size in Heap words of each chunk
- ssize_t _count; // Number of entries in list
- size_t _hint; // next larger size list with a positive surplus
-
- AllocationStats _allocation_stats; // allocation-related statistics
-
-#ifdef ASSERT
- Mutex* _protecting_lock;
-#endif
-
- // Asserts false if the protecting lock (if any) is not held.
- void assert_proper_lock_protection_work() const PRODUCT_RETURN;
- void assert_proper_lock_protection() const {
-#ifdef ASSERT
- if (_protecting_lock != NULL)
- assert_proper_lock_protection_work();
-#endif
- }
-
- // Initialize the allocation statistics.
- protected:
- void init_statistics(bool split_birth = false);
- void set_count(ssize_t v) { _count = v;}
- void increment_count() {
- _count++;
- }
-
- void decrement_count() {
- _count--;
- assert(_count >= 0, "Count should not be negative");
- }
-
- public:
- // Constructor
- // Construct a list without any entries.
- FreeList();
- // Construct a list with "fc" as the first (and lone) entry in the list.
- FreeList(FreeChunk* fc);
- // Construct a list which will have a FreeChunk at address "addr" and
- // of size "size" as the first (and lone) entry in the list.
- FreeList(HeapWord* addr, size_t size);
-
- // Reset the head, tail, hint, and count of a free list.
- void reset(size_t hint);
-
- // Declare the current free list to be protected by the given lock.
-#ifdef ASSERT
- void set_protecting_lock(Mutex* protecting_lock) {
- _protecting_lock = protecting_lock;
- }
-#endif
-
- // Accessors.
- FreeChunk* head() const {
- assert_proper_lock_protection();
- return _head;
- }
- void set_head(FreeChunk* v) {
- assert_proper_lock_protection();
- _head = v;
- assert(!_head || _head->size() == _size, "bad chunk size");
- }
- // Set the head of the list and set the prev field of non-null
- // values to NULL.
- void link_head(FreeChunk* v) {
- assert_proper_lock_protection();
- set_head(v);
- // If this method is not used (just set the head instead),
- // this check can be avoided.
- if (v != NULL) {
- v->linkPrev(NULL);
- }
- }
-
- FreeChunk* tail() const {
- assert_proper_lock_protection();
- return _tail;
- }
- void set_tail(FreeChunk* v) {
- assert_proper_lock_protection();
- _tail = v;
- assert(!_tail || _tail->size() == _size, "bad chunk size");
- }
- // Set the tail of the list and set the next field of non-null
- // values to NULL.
- void link_tail(FreeChunk* v) {
- assert_proper_lock_protection();
- set_tail(v);
- if (v != NULL) {
- v->clearNext();
- }
- }
-
- // No locking checks in read-accessors: lock-free reads (only) are benign.
- // Readers are expected to have the lock if they are doing work that
- // requires atomicity guarantees in sections of code.
- size_t size() const {
- return _size;
- }
- void set_size(size_t v) {
- assert_proper_lock_protection();
- _size = v;
- }
- ssize_t count() const {
- return _count;
- }
- size_t hint() const {
- return _hint;
- }
- void set_hint(size_t v) {
- assert_proper_lock_protection();
- assert(v == 0 || _size < v, "Bad hint"); _hint = v;
- }
-
- // Accessors for statistics
- AllocationStats* allocation_stats() {
- assert_proper_lock_protection();
- return &_allocation_stats;
- }
-
- ssize_t desired() const {
- return _allocation_stats.desired();
- }
- void set_desired(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_desired(v);
- }
- void compute_desired(float inter_sweep_current,
- float inter_sweep_estimate,
- float intra_sweep_estimate) {
- assert_proper_lock_protection();
- _allocation_stats.compute_desired(_count,
- inter_sweep_current,
- inter_sweep_estimate,
- intra_sweep_estimate);
- }
- ssize_t coalDesired() const {
- return _allocation_stats.coalDesired();
- }
- void set_coalDesired(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_coalDesired(v);
- }
-
- ssize_t surplus() const {
- return _allocation_stats.surplus();
- }
- void set_surplus(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_surplus(v);
- }
- void increment_surplus() {
- assert_proper_lock_protection();
- _allocation_stats.increment_surplus();
- }
- void decrement_surplus() {
- assert_proper_lock_protection();
- _allocation_stats.decrement_surplus();
- }
-
- ssize_t bfrSurp() const {
- return _allocation_stats.bfrSurp();
- }
- void set_bfrSurp(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_bfrSurp(v);
- }
- ssize_t prevSweep() const {
- return _allocation_stats.prevSweep();
- }
- void set_prevSweep(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_prevSweep(v);
- }
- ssize_t beforeSweep() const {
- return _allocation_stats.beforeSweep();
- }
- void set_beforeSweep(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_beforeSweep(v);
- }
-
- ssize_t coalBirths() const {
- return _allocation_stats.coalBirths();
- }
- void set_coalBirths(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_coalBirths(v);
- }
- void increment_coalBirths() {
- assert_proper_lock_protection();
- _allocation_stats.increment_coalBirths();
- }
-
- ssize_t coalDeaths() const {
- return _allocation_stats.coalDeaths();
- }
- void set_coalDeaths(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_coalDeaths(v);
- }
- void increment_coalDeaths() {
- assert_proper_lock_protection();
- _allocation_stats.increment_coalDeaths();
- }
-
- ssize_t splitBirths() const {
- return _allocation_stats.splitBirths();
- }
- void set_splitBirths(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_splitBirths(v);
- }
- void increment_splitBirths() {
- assert_proper_lock_protection();
- _allocation_stats.increment_splitBirths();
- }
-
- ssize_t splitDeaths() const {
- return _allocation_stats.splitDeaths();
- }
- void set_splitDeaths(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_splitDeaths(v);
- }
- void increment_splitDeaths() {
- assert_proper_lock_protection();
- _allocation_stats.increment_splitDeaths();
- }
-
- NOT_PRODUCT(
- // For debugging. The "_returnedBytes" in all the lists are summed
- // and compared with the total number of bytes swept during a
- // collection.
- size_t returnedBytes() const { return _allocation_stats.returnedBytes(); }
- void set_returnedBytes(size_t v) { _allocation_stats.set_returnedBytes(v); }
- void increment_returnedBytes_by(size_t v) {
- _allocation_stats.set_returnedBytes(_allocation_stats.returnedBytes() + v);
- }
- )
-
- // Unlink head of list and return it. Returns NULL if
- // the list is empty.
- FreeChunk* getChunkAtHead();
-
- // Remove the first "n" or "count", whichever is smaller, chunks from the
- // list, setting "fl", which is required to be empty, to point to them.
- void getFirstNChunksFromList(size_t n, FreeList* fl);
-
- // Unlink this chunk from it's free list
- void removeChunk(FreeChunk* fc);
-
- // Add this chunk to this free list.
- void returnChunkAtHead(FreeChunk* fc);
- void returnChunkAtTail(FreeChunk* fc);
-
- // Similar to returnChunk* but also records some diagnostic
- // information.
- void returnChunkAtHead(FreeChunk* fc, bool record_return);
- void returnChunkAtTail(FreeChunk* fc, bool record_return);
-
- // Prepend "fl" (whose size is required to be the same as that of "this")
- // to the front of "this" list.
- void prepend(FreeList* fl);
-
- // Verify that the chunk is in the list.
- // found. Return NULL if "fc" is not found.
- bool verifyChunkInFreeLists(FreeChunk* fc) const;
-
- // Stats verification
- void verify_stats() const PRODUCT_RETURN;
-
- // Printing support
- static void print_labels_on(outputStream* st, const char* c);
- void print_on(outputStream* st, const char* c = NULL) const;
-};
-
-#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREELIST_HPP
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/vmStructs_cms.hpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/vmStructs_cms.hpp Thu Mar 29 19:46:24 2012 -0700
@@ -44,11 +44,11 @@
nonstatic_field(FreeChunk, _next, FreeChunk*) \
nonstatic_field(FreeChunk, _prev, FreeChunk*) \
nonstatic_field(LinearAllocBlock, _word_size, size_t) \
- nonstatic_field(FreeList, _size, size_t) \
- nonstatic_field(FreeList, _count, ssize_t) \
- nonstatic_field(BinaryTreeDictionary, _totalSize, size_t) \
- nonstatic_field(CompactibleFreeListSpace, _dictionary, FreeBlockDictionary*) \
- nonstatic_field(CompactibleFreeListSpace, _indexedFreeList[0], FreeList) \
+ nonstatic_field(FreeList<FreeChunk>, _size, size_t) \
+ nonstatic_field(FreeList<FreeChunk>, _count, ssize_t) \
+ nonstatic_field(BinaryTreeDictionary<FreeChunk>,_totalSize, size_t) \
+ nonstatic_field(CompactibleFreeListSpace, _dictionary, FreeBlockDictionary<FreeChunk>*) \
+ nonstatic_field(CompactibleFreeListSpace, _indexedFreeList[0], FreeList<FreeChunk>) \
nonstatic_field(CompactibleFreeListSpace, _smallLinearAllocBlock, LinearAllocBlock)
@@ -70,13 +70,13 @@
declare_toplevel_type(CompactibleFreeListSpace*) \
declare_toplevel_type(CMSCollector*) \
declare_toplevel_type(FreeChunk*) \
- declare_toplevel_type(BinaryTreeDictionary*) \
- declare_toplevel_type(FreeBlockDictionary*) \
- declare_toplevel_type(FreeList*) \
- declare_toplevel_type(FreeList) \
+ declare_toplevel_type(BinaryTreeDictionary<FreeChunk>*) \
+ declare_toplevel_type(FreeBlockDictionary<FreeChunk>*) \
+ declare_toplevel_type(FreeList<FreeChunk>*) \
+ declare_toplevel_type(FreeList<FreeChunk>) \
declare_toplevel_type(LinearAllocBlock) \
- declare_toplevel_type(FreeBlockDictionary) \
- declare_type(BinaryTreeDictionary, FreeBlockDictionary)
+ declare_toplevel_type(FreeBlockDictionary<FreeChunk>) \
+ declare_type(BinaryTreeDictionary<FreeChunk>, FreeBlockDictionary<FreeChunk>)
#define VM_INT_CONSTANTS_CMS(declare_constant) \
declare_constant(Generation::ConcurrentMarkSweep) \
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/binaryTreeDictionary.cpp Thu Mar 29 19:46:24 2012 -0700
@@ -0,0 +1,1343 @@
+/*
+ * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc_implementation/shared/allocationStats.hpp"
+#include "memory/binaryTreeDictionary.hpp"
+#include "runtime/globals.hpp"
+#include "utilities/ostream.hpp"
+#ifndef SERIALGC
+#include "gc_implementation/shared/spaceDecorator.hpp"
+#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
+#endif // SERIALGC
+
+////////////////////////////////////////////////////////////////////////////////
+// A binary tree based search structure for free blocks.
+// This is currently used in the Concurrent Mark&Sweep implementation.
+////////////////////////////////////////////////////////////////////////////////
+
+template <class Chunk>
+TreeChunk<Chunk>* TreeChunk<Chunk>::as_TreeChunk(Chunk* fc) {
+ // Do some assertion checking here.
+ return (TreeChunk<Chunk>*) fc;
+}
+
+template <class Chunk>
+void TreeChunk<Chunk>::verifyTreeChunkList() const {
+ TreeChunk<Chunk>* nextTC = (TreeChunk<Chunk>*)next();
+ if (prev() != NULL) { // interior list node shouldn'r have tree fields
+ guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
+ embedded_list()->right() == NULL, "should be clear");
+ }
+ if (nextTC != NULL) {
+ guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
+ guarantee(nextTC->size() == size(), "wrong size");
+ nextTC->verifyTreeChunkList();
+ }
+}
+
+
+template <class Chunk>
+TreeList<Chunk>* TreeList<Chunk>::as_TreeList(TreeChunk<Chunk>* tc) {
+ // This first free chunk in the list will be the tree list.
+ assert(tc->size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "Chunk is too small for a TreeChunk");
+ TreeList<Chunk>* tl = tc->embedded_list();
+ tc->set_list(tl);
+#ifdef ASSERT
+ tl->set_protecting_lock(NULL);
+#endif
+ tl->set_hint(0);
+ tl->set_size(tc->size());
+ tl->link_head(tc);
+ tl->link_tail(tc);
+ tl->set_count(1);
+ tl->init_statistics(true /* split_birth */);
+ tl->setParent(NULL);
+ tl->setLeft(NULL);
+ tl->setRight(NULL);
+ return tl;
+}
+
+template <class Chunk>
+TreeList<Chunk>* TreeList<Chunk>::as_TreeList(HeapWord* addr, size_t size) {
+ TreeChunk<Chunk>* tc = (TreeChunk<Chunk>*) addr;
+ assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "Chunk is too small for a TreeChunk");
+ // The space in the heap will have been mangled initially but
+ // is not remangled when a free chunk is returned to the free list
+ // (since it is used to maintain the chunk on the free list).
+ assert((ZapUnusedHeapArea &&
+ SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
+ SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
+ SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
+ (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
+ "Space should be clear or mangled");
+ tc->setSize(size);
+ tc->linkPrev(NULL);
+ tc->linkNext(NULL);
+ TreeList<Chunk>* tl = TreeList<Chunk>::as_TreeList(tc);
+ return tl;
+}
+
+template <class Chunk>
+TreeList<Chunk>* TreeList<Chunk>::removeChunkReplaceIfNeeded(TreeChunk<Chunk>* tc) {
+
+ TreeList<Chunk>* retTL = this;
+ Chunk* list = head();
+ assert(!list || list != list->next(), "Chunk on list twice");
+ assert(tc != NULL, "Chunk being removed is NULL");
+ assert(parent() == NULL || this == parent()->left() ||
+ this == parent()->right(), "list is inconsistent");
+ assert(tc->isFree(), "Header is not marked correctly");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk* prevFC = tc->prev();
+ TreeChunk<Chunk>* nextTC = TreeChunk<Chunk>::as_TreeChunk(tc->next());
+ assert(list != NULL, "should have at least the target chunk");
+
+ // Is this the first item on the list?
+ if (tc == list) {
+ // The "getChunk..." functions for a TreeList<Chunk> will not return the
+ // first chunk in the list unless it is the last chunk in the list
+ // because the first chunk is also acting as the tree node.
+ // When coalescing happens, however, the first chunk in the a tree
+ // list can be the start of a free range. Free ranges are removed
+ // from the free lists so that they are not available to be
+ // allocated when the sweeper yields (giving up the free list lock)
+ // to allow mutator activity. If this chunk is the first in the
+ // list and is not the last in the list, do the work to copy the
+ // TreeList<Chunk> from the first chunk to the next chunk and update all
+ // the TreeList<Chunk> pointers in the chunks in the list.
+ if (nextTC == NULL) {
+ assert(prevFC == NULL, "Not last chunk in the list");
+ set_tail(NULL);
+ set_head(NULL);
+ } else {
+ // copy embedded list.
+ nextTC->set_embedded_list(tc->embedded_list());
+ retTL = nextTC->embedded_list();
+ // Fix the pointer to the list in each chunk in the list.
+ // This can be slow for a long list. Consider having
+ // an option that does not allow the first chunk on the
+ // list to be coalesced.
+ for (TreeChunk<Chunk>* curTC = nextTC; curTC != NULL;
+ curTC = TreeChunk<Chunk>::as_TreeChunk(curTC->next())) {
+ curTC->set_list(retTL);
+ }
+ // Fix the parent to point to the new TreeList<Chunk>.
+ if (retTL->parent() != NULL) {
+ if (this == retTL->parent()->left()) {
+ retTL->parent()->setLeft(retTL);
+ } else {
+ assert(this == retTL->parent()->right(), "Parent is incorrect");
+ retTL->parent()->setRight(retTL);
+ }
+ }
+ // Fix the children's parent pointers to point to the
+ // new list.
+ assert(right() == retTL->right(), "Should have been copied");
+ if (retTL->right() != NULL) {
+ retTL->right()->setParent(retTL);
+ }
+ assert(left() == retTL->left(), "Should have been copied");
+ if (retTL->left() != NULL) {
+ retTL->left()->setParent(retTL);
+ }
+ retTL->link_head(nextTC);
+ assert(nextTC->isFree(), "Should be a free chunk");
+ }
+ } else {
+ if (nextTC == NULL) {
+ // Removing chunk at tail of list
+ link_tail(prevFC);
+ }
+ // Chunk is interior to the list
+ prevFC->linkAfter(nextTC);
+ }
+
+ // Below this point the embeded TreeList<Chunk> being used for the
+ // tree node may have changed. Don't use "this"
+ // TreeList<Chunk>*.
+ // chunk should still be a free chunk (bit set in _prev)
+ assert(!retTL->head() || retTL->size() == retTL->head()->size(),
+ "Wrong sized chunk in list");
+ debug_only(
+ tc->linkPrev(NULL);
+ tc->linkNext(NULL);
+ tc->set_list(NULL);
+ bool prev_found = false;
+ bool next_found = false;
+ for (Chunk* curFC = retTL->head();
+ curFC != NULL; curFC = curFC->next()) {
+ assert(curFC != tc, "Chunk is still in list");
+ if (curFC == prevFC) {
+ prev_found = true;
+ }
+ if (curFC == nextTC) {
+ next_found = true;
+ }
+ }
+ assert(prevFC == NULL || prev_found, "Chunk was lost from list");
+ assert(nextTC == NULL || next_found, "Chunk was lost from list");
+ assert(retTL->parent() == NULL ||
+ retTL == retTL->parent()->left() ||
+ retTL == retTL->parent()->right(),
+ "list is inconsistent");
+ )
+ retTL->decrement_count();
+
+ assert(tc->isFree(), "Should still be a free chunk");
+ assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
+ "list invariant");
+ assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
+ "list invariant");
+ return retTL;
+}
+
+template <class Chunk>
+void TreeList<Chunk>::returnChunkAtTail(TreeChunk<Chunk>* chunk) {
+ assert(chunk != NULL, "returning NULL chunk");
+ assert(chunk->list() == this, "list should be set for chunk");
+ assert(tail() != NULL, "The tree list is embedded in the first chunk");
+ // which means that the list can never be empty.
+ assert(!verifyChunkInFreeLists(chunk), "Double entry");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk* fc = tail();
+ fc->linkAfter(chunk);
+ link_tail(chunk);
+
+ assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
+ FreeList<Chunk>::increment_count();
+ debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+}
+
+// Add this chunk at the head of the list. "At the head of the list"
+// is defined to be after the chunk pointer to by head(). This is
+// because the TreeList<Chunk> is embedded in the first TreeChunk<Chunk> in the
+// list. See the definition of TreeChunk<Chunk>.
+template <class Chunk>
+void TreeList<Chunk>::returnChunkAtHead(TreeChunk<Chunk>* chunk) {
+ assert(chunk->list() == this, "list should be set for chunk");
+ assert(head() != NULL, "The tree list is embedded in the first chunk");
+ assert(chunk != NULL, "returning NULL chunk");
+ assert(!verifyChunkInFreeLists(chunk), "Double entry");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk* fc = head()->next();
+ if (fc != NULL) {
+ chunk->linkAfter(fc);
+ } else {
+ assert(tail() == NULL, "List is inconsistent");
+ link_tail(chunk);
+ }
+ head()->linkAfter(chunk);
+ assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
+ FreeList<Chunk>::increment_count();
+ debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+}
+
+template <class Chunk>
+TreeChunk<Chunk>* TreeList<Chunk>::head_as_TreeChunk() {
+ assert(head() == NULL || TreeChunk<Chunk>::as_TreeChunk(head())->list() == this,
+ "Wrong type of chunk?");
+ return TreeChunk<Chunk>::as_TreeChunk(head());
+}
+
+template <class Chunk>
+TreeChunk<Chunk>* TreeList<Chunk>::first_available() {
+ assert(head() != NULL, "The head of the list cannot be NULL");
+ Chunk* fc = head()->next();
+ TreeChunk<Chunk>* retTC;
+ if (fc == NULL) {
+ retTC = head_as_TreeChunk();
+ } else {
+ retTC = TreeChunk<Chunk>::as_TreeChunk(fc);
+ }
+ assert(retTC->list() == this, "Wrong type of chunk.");
+ return retTC;
+}
+
+// Returns the block with the largest heap address amongst
+// those in the list for this size; potentially slow and expensive,
+// use with caution!
+template <class Chunk>
+TreeChunk<Chunk>* TreeList<Chunk>::largest_address() {
+ assert(head() != NULL, "The head of the list cannot be NULL");
+ Chunk* fc = head()->next();
+ TreeChunk<Chunk>* retTC;
+ if (fc == NULL) {
+ retTC = head_as_TreeChunk();
+ } else {
+ // walk down the list and return the one with the highest
+ // heap address among chunks of this size.
+ Chunk* last = fc;
+ while (fc->next() != NULL) {
+ if ((HeapWord*)last < (HeapWord*)fc) {
+ last = fc;
+ }
+ fc = fc->next();
+ }
+ retTC = TreeChunk<Chunk>::as_TreeChunk(last);
+ }
+ assert(retTC->list() == this, "Wrong type of chunk.");
+ return retTC;
+}
+
+template <class Chunk>
+BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(bool adaptive_freelists, bool splay) :
+ _splay(splay), _adaptive_freelists(adaptive_freelists),
+ _totalSize(0), _totalFreeBlocks(0), _root(0) {}
+
+template <class Chunk>
+BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(MemRegion mr,
+ bool adaptive_freelists,
+ bool splay):
+ _adaptive_freelists(adaptive_freelists), _splay(splay)
+{
+ assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
+
+ reset(mr);
+ assert(root()->left() == NULL, "reset check failed");
+ assert(root()->right() == NULL, "reset check failed");
+ assert(root()->head()->next() == NULL, "reset check failed");
+ assert(root()->head()->prev() == NULL, "reset check failed");
+ assert(totalSize() == root()->size(), "reset check failed");
+ assert(totalFreeBlocks() == 1, "reset check failed");
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::inc_totalSize(size_t inc) {
+ _totalSize = _totalSize + inc;
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::dec_totalSize(size_t dec) {
+ _totalSize = _totalSize - dec;
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::reset(MemRegion mr) {
+ assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
+ set_root(TreeList<Chunk>::as_TreeList(mr.start(), mr.word_size()));
+ set_totalSize(mr.word_size());
+ set_totalFreeBlocks(1);
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::reset(HeapWord* addr, size_t byte_size) {
+ MemRegion mr(addr, heap_word_size(byte_size));
+ reset(mr);
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::reset() {
+ set_root(NULL);
+ set_totalSize(0);
+ set_totalFreeBlocks(0);
+}
+
+// Get a free block of size at least size from tree, or NULL.
+// If a splay step is requested, the removal algorithm (only) incorporates
+// a splay step as follows:
+// . the search proceeds down the tree looking for a possible
+// match. At the (closest) matching location, an appropriate splay step is applied
+// (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
+// if available, and if it's the last chunk, the node is deleted. A deteleted
+// node is replaced in place by its tree successor.
+template <class Chunk>
+TreeChunk<Chunk>*
+BinaryTreeDictionary<Chunk>::getChunkFromTree(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither, bool splay)
+{
+ TreeList<Chunk> *curTL, *prevTL;
+ TreeChunk<Chunk>* retTC = NULL;
+ assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
+ if (FLSVerifyDictionary) {
+ verifyTree();
+ }
+ // starting at the root, work downwards trying to find match.
+ // Remember the last node of size too great or too small.
+ for (prevTL = curTL = root(); curTL != NULL;) {
+ if (curTL->size() == size) { // exact match
+ break;
+ }
+ prevTL = curTL;
+ if (curTL->size() < size) { // proceed to right sub-tree
+ curTL = curTL->right();
+ } else { // proceed to left sub-tree
+ assert(curTL->size() > size, "size inconsistency");
+ curTL = curTL->left();
+ }
+ }
+ if (curTL == NULL) { // couldn't find exact match
+
+ if (dither == FreeBlockDictionary<Chunk>::exactly) return NULL;
+
+ // try and find the next larger size by walking back up the search path
+ for (curTL = prevTL; curTL != NULL;) {
+ if (curTL->size() >= size) break;
+ else curTL = curTL->parent();
+ }
+ assert(curTL == NULL || curTL->count() > 0,
+ "An empty list should not be in the tree");
+ }
+ if (curTL != NULL) {
+ assert(curTL->size() >= size, "size inconsistency");
+ if (adaptive_freelists()) {
+
+ // A candidate chunk has been found. If it is already under
+ // populated, get a chunk associated with the hint for this
+ // chunk.
+ if (curTL->surplus() <= 0) {
+ /* Use the hint to find a size with a surplus, and reset the hint. */
+ TreeList<Chunk>* hintTL = curTL;
+ while (hintTL->hint() != 0) {
+ assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
+ "hint points in the wrong direction");
+ hintTL = findList(hintTL->hint());
+ assert(curTL != hintTL, "Infinite loop");
+ if (hintTL == NULL ||
+ hintTL == curTL /* Should not happen but protect against it */ ) {
+ // No useful hint. Set the hint to NULL and go on.
+ curTL->set_hint(0);
+ break;
+ }
+ assert(hintTL->size() > size, "hint is inconsistent");
+ if (hintTL->surplus() > 0) {
+ // The hint led to a list that has a surplus. Use it.
+ // Set the hint for the candidate to an overpopulated
+ // size.
+ curTL->set_hint(hintTL->size());
+ // Change the candidate.
+ curTL = hintTL;
+ break;
+ }
+ // The evm code reset the hint of the candidate as
+ // at an interim point. Why? Seems like this leaves
+ // the hint pointing to a list that didn't work.
+ // curTL->set_hint(hintTL->size());
+ }
+ }
+ }
+ // don't waste time splaying if chunk's singleton
+ if (splay && curTL->head()->next() != NULL) {
+ semiSplayStep(curTL);
+ }
+ retTC = curTL->first_available();
+ assert((retTC != NULL) && (curTL->count() > 0),
+ "A list in the binary tree should not be NULL");
+ assert(retTC->size() >= size,
+ "A chunk of the wrong size was found");
+ removeChunkFromTree(retTC);
+ assert(retTC->isFree(), "Header is not marked correctly");
+ }
+
+ if (FLSVerifyDictionary) {
+ verify();
+ }
+ return retTC;
+}
+
+template <class Chunk>
+TreeList<Chunk>* BinaryTreeDictionary<Chunk>::findList(size_t size) const {
+ TreeList<Chunk>* curTL;
+ for (curTL = root(); curTL != NULL;) {
+ if (curTL->size() == size) { // exact match
+ break;
+ }
+
+ if (curTL->size() < size) { // proceed to right sub-tree
+ curTL = curTL->right();
+ } else { // proceed to left sub-tree
+ assert(curTL->size() > size, "size inconsistency");
+ curTL = curTL->left();
+ }
+ }
+ return curTL;
+}
+
+
+template <class Chunk>
+bool BinaryTreeDictionary<Chunk>::verifyChunkInFreeLists(Chunk* tc) const {
+ size_t size = tc->size();
+ TreeList<Chunk>* tl = findList(size);
+ if (tl == NULL) {
+ return false;
+ } else {
+ return tl->verifyChunkInFreeLists(tc);
+ }
+}
+
+template <class Chunk>
+Chunk* BinaryTreeDictionary<Chunk>::findLargestDict() const {
+ TreeList<Chunk> *curTL = root();
+ if (curTL != NULL) {
+ while(curTL->right() != NULL) curTL = curTL->right();
+ return curTL->largest_address();
+ } else {
+ return NULL;
+ }
+}
+
+// Remove the current chunk from the tree. If it is not the last
+// chunk in a list on a tree node, just unlink it.
+// If it is the last chunk in the list (the next link is NULL),
+// remove the node and repair the tree.
+template <class Chunk>
+TreeChunk<Chunk>*
+BinaryTreeDictionary<Chunk>::removeChunkFromTree(TreeChunk<Chunk>* tc) {
+ assert(tc != NULL, "Should not call with a NULL chunk");
+ assert(tc->isFree(), "Header is not marked correctly");
+
+ TreeList<Chunk> *newTL, *parentTL;
+ TreeChunk<Chunk>* retTC;
+ TreeList<Chunk>* tl = tc->list();
+ debug_only(
+ bool removing_only_chunk = false;
+ if (tl == _root) {
+ if ((_root->left() == NULL) && (_root->right() == NULL)) {
+ if (_root->count() == 1) {
+ assert(_root->head() == tc, "Should only be this one chunk");
+ removing_only_chunk = true;
+ }
+ }
+ }
+ )
+ assert(tl != NULL, "List should be set");
+ assert(tl->parent() == NULL || tl == tl->parent()->left() ||
+ tl == tl->parent()->right(), "list is inconsistent");
+
+ bool complicatedSplice = false;
+
+ retTC = tc;
+ // Removing this chunk can have the side effect of changing the node
+ // (TreeList<Chunk>*) in the tree. If the node is the root, update it.
+ TreeList<Chunk>* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
+ assert(tc->isFree(), "Chunk should still be free");
+ assert(replacementTL->parent() == NULL ||
+ replacementTL == replacementTL->parent()->left() ||
+ replacementTL == replacementTL->parent()->right(),
+ "list is inconsistent");
+ if (tl == root()) {
+ assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
+ set_root(replacementTL);
+ }
+ debug_only(
+ if (tl != replacementTL) {
+ assert(replacementTL->head() != NULL,
+ "If the tree list was replaced, it should not be a NULL list");
+ TreeList<Chunk>* rhl = replacementTL->head_as_TreeChunk()->list();
+ TreeList<Chunk>* rtl = TreeChunk<Chunk>::as_TreeChunk(replacementTL->tail())->list();
+ assert(rhl == replacementTL, "Broken head");
+ assert(rtl == replacementTL, "Broken tail");
+ assert(replacementTL->size() == tc->size(), "Broken size");
+ }
+ )
+
+ // Does the tree need to be repaired?
+ if (replacementTL->count() == 0) {
+ assert(replacementTL->head() == NULL &&
+ replacementTL->tail() == NULL, "list count is incorrect");
+ // Find the replacement node for the (soon to be empty) node being removed.
+ // if we have a single (or no) child, splice child in our stead
+ if (replacementTL->left() == NULL) {
+ // left is NULL so pick right. right may also be NULL.
+ newTL = replacementTL->right();
+ debug_only(replacementTL->clearRight();)
+ } else if (replacementTL->right() == NULL) {
+ // right is NULL
+ newTL = replacementTL->left();
+ debug_only(replacementTL->clearLeft();)
+ } else { // we have both children, so, by patriarchal convention,
+ // my replacement is least node in right sub-tree
+ complicatedSplice = true;
+ newTL = removeTreeMinimum(replacementTL->right());
+ assert(newTL != NULL && newTL->left() == NULL &&
+ newTL->right() == NULL, "sub-tree minimum exists");
+ }
+ // newTL is the replacement for the (soon to be empty) node.
+ // newTL may be NULL.
+ // should verify; we just cleanly excised our replacement
+ if (FLSVerifyDictionary) {
+ verifyTree();
+ }
+ // first make newTL my parent's child
+ if ((parentTL = replacementTL->parent()) == NULL) {
+ // newTL should be root
+ assert(tl == root(), "Incorrectly replacing root");
+ set_root(newTL);
+ if (newTL != NULL) {
+ newTL->clearParent();
+ }
+ } else if (parentTL->right() == replacementTL) {
+ // replacementTL is a right child
+ parentTL->setRight(newTL);
+ } else { // replacementTL is a left child
+ assert(parentTL->left() == replacementTL, "should be left child");
+ parentTL->setLeft(newTL);
+ }
+ debug_only(replacementTL->clearParent();)
+ if (complicatedSplice) { // we need newTL to get replacementTL's
+ // two children
+ assert(newTL != NULL &&
+ newTL->left() == NULL && newTL->right() == NULL,
+ "newTL should not have encumbrances from the past");
+ // we'd like to assert as below:
+ // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
+ // "else !complicatedSplice");
+ // ... however, the above assertion is too strong because we aren't
+ // guaranteed that replacementTL->right() is still NULL.
+ // Recall that we removed
+ // the right sub-tree minimum from replacementTL.
+ // That may well have been its right
+ // child! So we'll just assert half of the above:
+ assert(replacementTL->left() != NULL, "else !complicatedSplice");
+ newTL->setLeft(replacementTL->left());
+ newTL->setRight(replacementTL->right());
+ debug_only(
+ replacementTL->clearRight();
+ replacementTL->clearLeft();
+ )
+ }
+ assert(replacementTL->right() == NULL &&
+ replacementTL->left() == NULL &&
+ replacementTL->parent() == NULL,
+ "delete without encumbrances");
+ }
+
+ assert(totalSize() >= retTC->size(), "Incorrect total size");
+ dec_totalSize(retTC->size()); // size book-keeping
+ assert(totalFreeBlocks() > 0, "Incorrect total count");
+ set_totalFreeBlocks(totalFreeBlocks() - 1);
+
+ assert(retTC != NULL, "null chunk?");
+ assert(retTC->prev() == NULL && retTC->next() == NULL,
+ "should return without encumbrances");
+ if (FLSVerifyDictionary) {
+ verifyTree();
+ }
+ assert(!removing_only_chunk || _root == NULL, "root should be NULL");
+ return TreeChunk<Chunk>::as_TreeChunk(retTC);
+}
+
+// Remove the leftmost node (lm) in the tree and return it.
+// If lm has a right child, link it to the left node of
+// the parent of lm.
+template <class Chunk>
+TreeList<Chunk>* BinaryTreeDictionary<Chunk>::removeTreeMinimum(TreeList<Chunk>* tl) {
+ assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
+ // locate the subtree minimum by walking down left branches
+ TreeList<Chunk>* curTL = tl;
+ for (; curTL->left() != NULL; curTL = curTL->left());
+ // obviously curTL now has at most one child, a right child
+ if (curTL != root()) { // Should this test just be removed?
+ TreeList<Chunk>* parentTL = curTL->parent();
+ if (parentTL->left() == curTL) { // curTL is a left child
+ parentTL->setLeft(curTL->right());
+ } else {
+ // If the list tl has no left child, then curTL may be
+ // the right child of parentTL.
+ assert(parentTL->right() == curTL, "should be a right child");
+ parentTL->setRight(curTL->right());
+ }
+ } else {
+ // The only use of this method would not pass the root of the
+ // tree (as indicated by the assertion above that the tree list
+ // has a parent) but the specification does not explicitly exclude the
+ // passing of the root so accomodate it.
+ set_root(NULL);
+ }
+ debug_only(
+ curTL->clearParent(); // Test if this needs to be cleared
+ curTL->clearRight(); // recall, above, left child is already null
+ )
+ // we just excised a (non-root) node, we should still verify all tree invariants
+ if (FLSVerifyDictionary) {
+ verifyTree();
+ }
+ return curTL;
+}
+
+// Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
+// The simplifications are the following:
+// . we splay only when we delete (not when we insert)
+// . we apply a single spay step per deletion/access
+// By doing such partial splaying, we reduce the amount of restructuring,
+// while getting a reasonably efficient search tree (we think).
+// [Measurements will be needed to (in)validate this expectation.]
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::semiSplayStep(TreeList<Chunk>* tc) {
+ // apply a semi-splay step at the given node:
+ // . if root, norting needs to be done
+ // . if child of root, splay once
+ // . else zig-zig or sig-zag depending on path from grandparent
+ if (root() == tc) return;
+ warning("*** Splaying not yet implemented; "
+ "tree operations may be inefficient ***");
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::insertChunkInTree(Chunk* fc) {
+ TreeList<Chunk> *curTL, *prevTL;
+ size_t size = fc->size();
+
+ assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "too small to be a TreeList<Chunk>");
+ if (FLSVerifyDictionary) {
+ verifyTree();
+ }
+
+ fc->clearNext();
+ fc->linkPrev(NULL);
+
+ // work down from the _root, looking for insertion point
+ for (prevTL = curTL = root(); curTL != NULL;) {
+ if (curTL->size() == size) // exact match
+ break;
+ prevTL = curTL;
+ if (curTL->size() > size) { // follow left branch
+ curTL = curTL->left();
+ } else { // follow right branch
+ assert(curTL->size() < size, "size inconsistency");
+ curTL = curTL->right();
+ }
+ }
+ TreeChunk<Chunk>* tc = TreeChunk<Chunk>::as_TreeChunk(fc);
+ // This chunk is being returned to the binary tree. Its embedded
+ // TreeList<Chunk> should be unused at this point.
+ tc->initialize();
+ if (curTL != NULL) { // exact match
+ tc->set_list(curTL);
+ curTL->returnChunkAtTail(tc);
+ } else { // need a new node in tree
+ tc->clearNext();
+ tc->linkPrev(NULL);
+ TreeList<Chunk>* newTL = TreeList<Chunk>::as_TreeList(tc);
+ assert(((TreeChunk<Chunk>*)tc)->list() == newTL,
+ "List was not initialized correctly");
+ if (prevTL == NULL) { // we are the only tree node
+ assert(root() == NULL, "control point invariant");
+ set_root(newTL);
+ } else { // insert under prevTL ...
+ if (prevTL->size() < size) { // am right child
+ assert(prevTL->right() == NULL, "control point invariant");
+ prevTL->setRight(newTL);
+ } else { // am left child
+ assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
+ prevTL->setLeft(newTL);
+ }
+ }
+ }
+ assert(tc->list() != NULL, "Tree list should be set");
+
+ inc_totalSize(size);
+ // Method 'totalSizeInTree' walks through the every block in the
+ // tree, so it can cause significant performance loss if there are
+ // many blocks in the tree
+ assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
+ set_totalFreeBlocks(totalFreeBlocks() + 1);
+ if (FLSVerifyDictionary) {
+ verifyTree();
+ }
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::maxChunkSize() const {
+ FreeBlockDictionary<Chunk>::verify_par_locked();
+ TreeList<Chunk>* tc = root();
+ if (tc == NULL) return 0;
+ for (; tc->right() != NULL; tc = tc->right());
+ return tc->size();
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::totalListLength(TreeList<Chunk>* tl) const {
+ size_t res;
+ res = tl->count();
+#ifdef ASSERT
+ size_t cnt;
+ Chunk* tc = tl->head();
+ for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
+ assert(res == cnt, "The count is not being maintained correctly");
+#endif
+ return res;
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::totalSizeInTree(TreeList<Chunk>* tl) const {
+ if (tl == NULL)
+ return 0;
+ return (tl->size() * totalListLength(tl)) +
+ totalSizeInTree(tl->left()) +
+ totalSizeInTree(tl->right());
+}
+
+template <class Chunk>
+double BinaryTreeDictionary<Chunk>::sum_of_squared_block_sizes(TreeList<Chunk>* const tl) const {
+ if (tl == NULL) {
+ return 0.0;
+ }
+ double size = (double)(tl->size());
+ double curr = size * size * totalListLength(tl);
+ curr += sum_of_squared_block_sizes(tl->left());
+ curr += sum_of_squared_block_sizes(tl->right());
+ return curr;
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::totalFreeBlocksInTree(TreeList<Chunk>* tl) const {
+ if (tl == NULL)
+ return 0;
+ return totalListLength(tl) +
+ totalFreeBlocksInTree(tl->left()) +
+ totalFreeBlocksInTree(tl->right());
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::numFreeBlocks() const {
+ assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
+ "_totalFreeBlocks inconsistency");
+ return totalFreeBlocks();
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::treeHeightHelper(TreeList<Chunk>* tl) const {
+ if (tl == NULL)
+ return 0;
+ return 1 + MAX2(treeHeightHelper(tl->left()),
+ treeHeightHelper(tl->right()));
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::treeHeight() const {
+ return treeHeightHelper(root());
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::totalNodesHelper(TreeList<Chunk>* tl) const {
+ if (tl == NULL) {
+ return 0;
+ }
+ return 1 + totalNodesHelper(tl->left()) +
+ totalNodesHelper(tl->right());
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::totalNodesInTree(TreeList<Chunk>* tl) const {
+ return totalNodesHelper(root());
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::dictCensusUpdate(size_t size, bool split, bool birth){
+ TreeList<Chunk>* nd = findList(size);
+ if (nd) {
+ if (split) {
+ if (birth) {
+ nd->increment_splitBirths();
+ nd->increment_surplus();
+ } else {
+ nd->increment_splitDeaths();
+ nd->decrement_surplus();
+ }
+ } else {
+ if (birth) {
+ nd->increment_coalBirths();
+ nd->increment_surplus();
+ } else {
+ nd->increment_coalDeaths();
+ nd->decrement_surplus();
+ }
+ }
+ }
+ // A list for this size may not be found (nd == 0) if
+ // This is a death where the appropriate list is now
+ // empty and has been removed from the list.
+ // This is a birth associated with a LinAB. The chunk
+ // for the LinAB is not in the dictionary.
+}
+
+template <class Chunk>
+bool BinaryTreeDictionary<Chunk>::coalDictOverPopulated(size_t size) {
+ if (FLSAlwaysCoalesceLarge) return true;
+
+ TreeList<Chunk>* list_of_size = findList(size);
+ // None of requested size implies overpopulated.
+ return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
+ list_of_size->count() > list_of_size->coalDesired();
+}
+
+// Closures for walking the binary tree.
+// do_list() walks the free list in a node applying the closure
+// to each free chunk in the list
+// do_tree() walks the nodes in the binary tree applying do_list()
+// to each list at each node.
+
+template <class Chunk>
+class TreeCensusClosure : public StackObj {
+ protected:
+ virtual void do_list(FreeList<Chunk>* fl) = 0;
+ public:
+ virtual void do_tree(TreeList<Chunk>* tl) = 0;
+};
+
+template <class Chunk>
+class AscendTreeCensusClosure : public TreeCensusClosure<Chunk> {
+ public:
+ void do_tree(TreeList<Chunk>* tl) {
+ if (tl != NULL) {
+ do_tree(tl->left());
+ do_list(tl);
+ do_tree(tl->right());
+ }
+ }
+};
+
+template <class Chunk>
+class DescendTreeCensusClosure : public TreeCensusClosure<Chunk> {
+ public:
+ void do_tree(TreeList<Chunk>* tl) {
+ if (tl != NULL) {
+ do_tree(tl->right());
+ do_list(tl);
+ do_tree(tl->left());
+ }
+ }
+};
+
+// For each list in the tree, calculate the desired, desired
+// coalesce, count before sweep, and surplus before sweep.
+template <class Chunk>
+class BeginSweepClosure : public AscendTreeCensusClosure<Chunk> {
+ double _percentage;
+ float _inter_sweep_current;
+ float _inter_sweep_estimate;
+ float _intra_sweep_estimate;
+
+ public:
+ BeginSweepClosure(double p, float inter_sweep_current,
+ float inter_sweep_estimate,
+ float intra_sweep_estimate) :
+ _percentage(p),
+ _inter_sweep_current(inter_sweep_current),
+ _inter_sweep_estimate(inter_sweep_estimate),
+ _intra_sweep_estimate(intra_sweep_estimate) { }
+
+ void do_list(FreeList<Chunk>* fl) {
+ double coalSurplusPercent = _percentage;
+ fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
+ fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
+ fl->set_beforeSweep(fl->count());
+ fl->set_bfrSurp(fl->surplus());
+ }
+};
+
+// Used to search the tree until a condition is met.
+// Similar to TreeCensusClosure but searches the
+// tree and returns promptly when found.
+
+template <class Chunk>
+class TreeSearchClosure : public StackObj {
+ protected:
+ virtual bool do_list(FreeList<Chunk>* fl) = 0;
+ public:
+ virtual bool do_tree(TreeList<Chunk>* tl) = 0;
+};
+
+#if 0 // Don't need this yet but here for symmetry.
+template <class Chunk>
+class AscendTreeSearchClosure : public TreeSearchClosure {
+ public:
+ bool do_tree(TreeList<Chunk>* tl) {
+ if (tl != NULL) {
+ if (do_tree(tl->left())) return true;
+ if (do_list(tl)) return true;
+ if (do_tree(tl->right())) return true;
+ }
+ return false;
+ }
+};
+#endif
+
+template <class Chunk>
+class DescendTreeSearchClosure : public TreeSearchClosure<Chunk> {
+ public:
+ bool do_tree(TreeList<Chunk>* tl) {
+ if (tl != NULL) {
+ if (do_tree(tl->right())) return true;
+ if (do_list(tl)) return true;
+ if (do_tree(tl->left())) return true;
+ }
+ return false;
+ }
+};
+
+// Searches the tree for a chunk that ends at the
+// specified address.
+template <class Chunk>
+class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk> {
+ HeapWord* _target;
+ Chunk* _found;
+
+ public:
+ EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
+ bool do_list(FreeList<Chunk>* fl) {
+ Chunk* item = fl->head();
+ while (item != NULL) {
+ if (item->end() == _target) {
+ _found = item;
+ return true;
+ }
+ item = item->next();
+ }
+ return false;
+ }
+ Chunk* found() { return _found; }
+};
+
+template <class Chunk>
+Chunk* BinaryTreeDictionary<Chunk>::find_chunk_ends_at(HeapWord* target) const {
+ EndTreeSearchClosure<Chunk> etsc(target);
+ bool found_target = etsc.do_tree(root());
+ assert(found_target || etsc.found() == NULL, "Consistency check");
+ assert(!found_target || etsc.found() != NULL, "Consistency check");
+ return etsc.found();
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::beginSweepDictCensus(double coalSurplusPercent,
+ float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
+ BeginSweepClosure<Chunk> bsc(coalSurplusPercent, inter_sweep_current,
+ inter_sweep_estimate,
+ intra_sweep_estimate);
+ bsc.do_tree(root());
+}
+
+// Closures and methods for calculating total bytes returned to the
+// free lists in the tree.
+#ifndef PRODUCT
+template <class Chunk>
+class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> {
+ public:
+ void do_list(FreeList<Chunk>* fl) {
+ fl->set_returnedBytes(0);
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::initializeDictReturnedBytes() {
+ InitializeDictReturnedBytesClosure<Chunk> idrb;
+ idrb.do_tree(root());
+}
+
+template <class Chunk>
+class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> {
+ size_t _dictReturnedBytes;
+ public:
+ ReturnedBytesClosure() { _dictReturnedBytes = 0; }
+ void do_list(FreeList<Chunk>* fl) {
+ _dictReturnedBytes += fl->returnedBytes();
+ }
+ size_t dictReturnedBytes() { return _dictReturnedBytes; }
+};
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::sumDictReturnedBytes() {
+ ReturnedBytesClosure<Chunk> rbc;
+ rbc.do_tree(root());
+
+ return rbc.dictReturnedBytes();
+}
+
+// Count the number of entries in the tree.
+template <class Chunk>
+class treeCountClosure : public DescendTreeCensusClosure<Chunk> {
+ public:
+ uint count;
+ treeCountClosure(uint c) { count = c; }
+ void do_list(FreeList<Chunk>* fl) {
+ count++;
+ }
+};
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::totalCount() {
+ treeCountClosure<Chunk> ctc(0);
+ ctc.do_tree(root());
+ return ctc.count;
+}
+#endif // PRODUCT
+
+// Calculate surpluses for the lists in the tree.
+template <class Chunk>
+class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk> {
+ double percentage;
+ public:
+ setTreeSurplusClosure(double v) { percentage = v; }
+ void do_list(FreeList<Chunk>* fl) {
+ double splitSurplusPercent = percentage;
+ fl->set_surplus(fl->count() -
+ (ssize_t)((double)fl->desired() * splitSurplusPercent));
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::setTreeSurplus(double splitSurplusPercent) {
+ setTreeSurplusClosure<Chunk> sts(splitSurplusPercent);
+ sts.do_tree(root());
+}
+
+// Set hints for the lists in the tree.
+template <class Chunk>
+class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk> {
+ size_t hint;
+ public:
+ setTreeHintsClosure(size_t v) { hint = v; }
+ void do_list(FreeList<Chunk>* fl) {
+ fl->set_hint(hint);
+ assert(fl->hint() == 0 || fl->hint() > fl->size(),
+ "Current hint is inconsistent");
+ if (fl->surplus() > 0) {
+ hint = fl->size();
+ }
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::setTreeHints(void) {
+ setTreeHintsClosure<Chunk> sth(0);
+ sth.do_tree(root());
+}
+
+// Save count before previous sweep and splits and coalesces.
+template <class Chunk>
+class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk> {
+ void do_list(FreeList<Chunk>* fl) {
+ fl->set_prevSweep(fl->count());
+ fl->set_coalBirths(0);
+ fl->set_coalDeaths(0);
+ fl->set_splitBirths(0);
+ fl->set_splitDeaths(0);
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::clearTreeCensus(void) {
+ clearTreeCensusClosure<Chunk> ctc;
+ ctc.do_tree(root());
+}
+
+// Do reporting and post sweep clean up.
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::endSweepDictCensus(double splitSurplusPercent) {
+ // Does walking the tree 3 times hurt?
+ setTreeSurplus(splitSurplusPercent);
+ setTreeHints();
+ if (PrintGC && Verbose) {
+ reportStatistics();
+ }
+ clearTreeCensus();
+}
+
+// Print summary statistics
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::reportStatistics() const {
+ FreeBlockDictionary<Chunk>::verify_par_locked();
+ gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
+ "------------------------------------\n");
+ size_t totalSize = totalChunkSize(debug_only(NULL));
+ size_t freeBlocks = numFreeBlocks();
+ gclog_or_tty->print("Total Free Space: %d\n", totalSize);
+ gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSize());
+ gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
+ if (freeBlocks > 0) {
+ gclog_or_tty->print("Av. Block Size: %d\n", totalSize/freeBlocks);
+ }
+ gclog_or_tty->print("Tree Height: %d\n", treeHeight());
+}
+
+// Print census information - counts, births, deaths, etc.
+// for each list in the tree. Also print some summary
+// information.
+template <class Chunk>
+class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk> {
+ int _print_line;
+ size_t _totalFree;
+ FreeList<Chunk> _total;
+
+ public:
+ PrintTreeCensusClosure() {
+ _print_line = 0;
+ _totalFree = 0;
+ }
+ FreeList<Chunk>* total() { return &_total; }
+ size_t totalFree() { return _totalFree; }
+ void do_list(FreeList<Chunk>* fl) {
+ if (++_print_line >= 40) {
+ FreeList<Chunk>::print_labels_on(gclog_or_tty, "size");
+ _print_line = 0;
+ }
+ fl->print_on(gclog_or_tty);
+ _totalFree += fl->count() * fl->size() ;
+ total()->set_count( total()->count() + fl->count() );
+ total()->set_bfrSurp( total()->bfrSurp() + fl->bfrSurp() );
+ total()->set_surplus( total()->splitDeaths() + fl->surplus() );
+ total()->set_desired( total()->desired() + fl->desired() );
+ total()->set_prevSweep( total()->prevSweep() + fl->prevSweep() );
+ total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
+ total()->set_coalBirths( total()->coalBirths() + fl->coalBirths() );
+ total()->set_coalDeaths( total()->coalDeaths() + fl->coalDeaths() );
+ total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
+ total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::printDictCensus(void) const {
+
+ gclog_or_tty->print("\nBinaryTree\n");
+ FreeList<Chunk>::print_labels_on(gclog_or_tty, "size");
+ PrintTreeCensusClosure<Chunk> ptc;
+ ptc.do_tree(root());
+
+ FreeList<Chunk>* total = ptc.total();
+ FreeList<Chunk>::print_labels_on(gclog_or_tty, " ");
+ total->print_on(gclog_or_tty, "TOTAL\t");
+ gclog_or_tty->print(
+ "totalFree(words): " SIZE_FORMAT_W(16)
+ " growth: %8.5f deficit: %8.5f\n",
+ ptc.totalFree(),
+ (double)(total->splitBirths() + total->coalBirths()
+ - total->splitDeaths() - total->coalDeaths())
+ /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
+ (double)(total->desired() - total->count())
+ /(total->desired() != 0 ? (double)total->desired() : 1.0));
+}
+
+template <class Chunk>
+class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk> {
+ outputStream* _st;
+ int _print_line;
+
+ public:
+ PrintFreeListsClosure(outputStream* st) {
+ _st = st;
+ _print_line = 0;
+ }
+ void do_list(FreeList<Chunk>* fl) {
+ if (++_print_line >= 40) {
+ FreeList<Chunk>::print_labels_on(_st, "size");
+ _print_line = 0;
+ }
+ fl->print_on(gclog_or_tty);
+ size_t sz = fl->size();
+ for (Chunk* fc = fl->head(); fc != NULL;
+ fc = fc->next()) {
+ _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
+ fc, (HeapWord*)fc + sz,
+ fc->cantCoalesce() ? "\t CC" : "");
+ }
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::print_free_lists(outputStream* st) const {
+
+ FreeList<Chunk>::print_labels_on(st, "size");
+ PrintFreeListsClosure<Chunk> pflc(st);
+ pflc.do_tree(root());
+}
+
+// Verify the following tree invariants:
+// . _root has no parent
+// . parent and child point to each other
+// . each node's key correctly related to that of its child(ren)
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::verifyTree() const {
+ guarantee(root() == NULL || totalFreeBlocks() == 0 ||
+ totalSize() != 0, "_totalSize should't be 0?");
+ guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
+ verifyTreeHelper(root());
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::verifyPrevFreePtrs(TreeList<Chunk>* tl) {
+ size_t ct = 0;
+ for (Chunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
+ ct++;
+ assert(curFC->prev() == NULL || curFC->prev()->isFree(),
+ "Chunk should be free");
+ }
+ return ct;
+}
+
+// Note: this helper is recursive rather than iterative, so use with
+// caution on very deep trees; and watch out for stack overflow errors;
+// In general, to be used only for debugging.
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::verifyTreeHelper(TreeList<Chunk>* tl) const {
+ if (tl == NULL)
+ return;
+ guarantee(tl->size() != 0, "A list must has a size");
+ guarantee(tl->left() == NULL || tl->left()->parent() == tl,
+ "parent<-/->left");
+ guarantee(tl->right() == NULL || tl->right()->parent() == tl,
+ "parent<-/->right");;
+ guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
+ "parent !> left");
+ guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
+ "parent !< left");
+ guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
+ guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
+ "list inconsistency");
+ guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
+ "list count is inconsistent");
+ guarantee(tl->count() > 1 || tl->head() == tl->tail(),
+ "list is incorrectly constructed");
+ size_t count = verifyPrevFreePtrs(tl);
+ guarantee(count == (size_t)tl->count(), "Node count is incorrect");
+ if (tl->head() != NULL) {
+ tl->head_as_TreeChunk()->verifyTreeChunkList();
+ }
+ verifyTreeHelper(tl->left());
+ verifyTreeHelper(tl->right());
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::verify() const {
+ verifyTree();
+ guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
+}
+
+#ifndef SERIALGC
+// Explicitly instantiate these types for FreeChunk.
+template class BinaryTreeDictionary<FreeChunk>;
+template class TreeChunk<FreeChunk>;
+template class TreeList<FreeChunk>;
+#endif // SERIALGC
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/binaryTreeDictionary.hpp Thu Mar 29 19:46:24 2012 -0700
@@ -0,0 +1,329 @@
+/*
+ * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
+#define SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
+
+#include "memory/freeBlockDictionary.hpp"
+#include "memory/freeList.hpp"
+
+/*
+ * A binary tree based search structure for free blocks.
+ * This is currently used in the Concurrent Mark&Sweep implementation, but
+ * will be used for free block management for metadata.
+ */
+
+// A TreeList is a FreeList which can be used to maintain a
+// binary tree of free lists.
+
+template <class Chunk> class TreeChunk;
+template <class Chunk> class BinaryTreeDictionary;
+template <class Chunk> class AscendTreeCensusClosure;
+template <class Chunk> class DescendTreeCensusClosure;
+template <class Chunk> class DescendTreeSearchClosure;
+
+template <class Chunk>
+class TreeList: public FreeList<Chunk> {
+ friend class TreeChunk<Chunk>;
+ friend class BinaryTreeDictionary<Chunk>;
+ friend class AscendTreeCensusClosure<Chunk>;
+ friend class DescendTreeCensusClosure<Chunk>;
+ friend class DescendTreeSearchClosure<Chunk>;
+
+ TreeList<Chunk>* _parent;
+ TreeList<Chunk>* _left;
+ TreeList<Chunk>* _right;
+
+ protected:
+ TreeList<Chunk>* parent() const { return _parent; }
+ TreeList<Chunk>* left() const { return _left; }
+ TreeList<Chunk>* right() const { return _right; }
+
+ // Wrapper on call to base class, to get the template to compile.
+ Chunk* head() const { return FreeList<Chunk>::head(); }
+ Chunk* tail() const { return FreeList<Chunk>::tail(); }
+ void set_head(Chunk* head) { FreeList<Chunk>::set_head(head); }
+ void set_tail(Chunk* tail) { FreeList<Chunk>::set_tail(tail); }
+
+ size_t size() const { return FreeList<Chunk>::size(); }
+
+ // Accessors for links in tree.
+
+ void setLeft(TreeList<Chunk>* tl) {
+ _left = tl;
+ if (tl != NULL)
+ tl->setParent(this);
+ }
+ void setRight(TreeList<Chunk>* tl) {
+ _right = tl;
+ if (tl != NULL)
+ tl->setParent(this);
+ }
+ void setParent(TreeList<Chunk>* tl) { _parent = tl; }
+
+ void clearLeft() { _left = NULL; }
+ void clearRight() { _right = NULL; }
+ void clearParent() { _parent = NULL; }
+ void initialize() { clearLeft(); clearRight(), clearParent(); }
+
+ // For constructing a TreeList from a Tree chunk or
+ // address and size.
+ static TreeList<Chunk>* as_TreeList(TreeChunk<Chunk>* tc);
+ static TreeList<Chunk>* as_TreeList(HeapWord* addr, size_t size);
+
+ // Returns the head of the free list as a pointer to a TreeChunk.
+ TreeChunk<Chunk>* head_as_TreeChunk();
+
+ // Returns the first available chunk in the free list as a pointer
+ // to a TreeChunk.
+ TreeChunk<Chunk>* first_available();
+
+ // Returns the block with the largest heap address amongst
+ // those in the list for this size; potentially slow and expensive,
+ // use with caution!
+ TreeChunk<Chunk>* largest_address();
+
+ // removeChunkReplaceIfNeeded() removes the given "tc" from the TreeList.
+ // If "tc" is the first chunk in the list, it is also the
+ // TreeList that is the node in the tree. removeChunkReplaceIfNeeded()
+ // returns the possibly replaced TreeList* for the node in
+ // the tree. It also updates the parent of the original
+ // node to point to the new node.
+ TreeList<Chunk>* removeChunkReplaceIfNeeded(TreeChunk<Chunk>* tc);
+ // See FreeList.
+ void returnChunkAtHead(TreeChunk<Chunk>* tc);
+ void returnChunkAtTail(TreeChunk<Chunk>* tc);
+};
+
+// A TreeChunk is a subclass of a Chunk that additionally
+// maintains a pointer to the free list on which it is currently
+// linked.
+// A TreeChunk is also used as a node in the binary tree. This
+// allows the binary tree to be maintained without any additional
+// storage (the free chunks are used). In a binary tree the first
+// chunk in the free list is also the tree node. Note that the
+// TreeChunk has an embedded TreeList for this purpose. Because
+// the first chunk in the list is distinguished in this fashion
+// (also is the node in the tree), it is the last chunk to be found
+// on the free list for a node in the tree and is only removed if
+// it is the last chunk on the free list.
+
+template <class Chunk>
+class TreeChunk : public Chunk {
+ friend class TreeList<Chunk>;
+ TreeList<Chunk>* _list;
+ TreeList<Chunk> _embedded_list; // if non-null, this chunk is on _list
+ protected:
+ TreeList<Chunk>* embedded_list() const { return (TreeList<Chunk>*) &_embedded_list; }
+ void set_embedded_list(TreeList<Chunk>* v) { _embedded_list = *v; }
+ public:
+ TreeList<Chunk>* list() { return _list; }
+ void set_list(TreeList<Chunk>* v) { _list = v; }
+ static TreeChunk<Chunk>* as_TreeChunk(Chunk* fc);
+ // Initialize fields in a TreeChunk that should be
+ // initialized when the TreeChunk is being added to
+ // a free list in the tree.
+ void initialize() { embedded_list()->initialize(); }
+
+ Chunk* next() const { return Chunk::next(); }
+ Chunk* prev() const { return Chunk::prev(); }
+ size_t size() const volatile { return Chunk::size(); }
+
+ // debugging
+ void verifyTreeChunkList() const;
+};
+
+
+template <class Chunk>
+class BinaryTreeDictionary: public FreeBlockDictionary<Chunk> {
+ friend class VMStructs;
+ bool _splay;
+ size_t _totalSize;
+ size_t _totalFreeBlocks;
+ TreeList<Chunk>* _root;
+ bool _adaptive_freelists;
+
+ // private accessors
+ bool splay() const { return _splay; }
+ void set_splay(bool v) { _splay = v; }
+ void set_totalSize(size_t v) { _totalSize = v; }
+ virtual void inc_totalSize(size_t v);
+ virtual void dec_totalSize(size_t v);
+ size_t totalFreeBlocks() const { return _totalFreeBlocks; }
+ void set_totalFreeBlocks(size_t v) { _totalFreeBlocks = v; }
+ TreeList<Chunk>* root() const { return _root; }
+ void set_root(TreeList<Chunk>* v) { _root = v; }
+ bool adaptive_freelists() { return _adaptive_freelists; }
+
+ // This field is added and can be set to point to the
+ // the Mutex used to synchronize access to the
+ // dictionary so that assertion checking can be done.
+ // For example it is set to point to _parDictionaryAllocLock.
+ NOT_PRODUCT(Mutex* _lock;)
+
+ // Remove a chunk of size "size" or larger from the tree and
+ // return it. If the chunk
+ // is the last chunk of that size, remove the node for that size
+ // from the tree.
+ TreeChunk<Chunk>* getChunkFromTree(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither, bool splay);
+ // Return a list of the specified size or NULL from the tree.
+ // The list is not removed from the tree.
+ TreeList<Chunk>* findList (size_t size) const;
+ // Remove this chunk from the tree. If the removal results
+ // in an empty list in the tree, remove the empty list.
+ TreeChunk<Chunk>* removeChunkFromTree(TreeChunk<Chunk>* tc);
+ // Remove the node in the trees starting at tl that has the
+ // minimum value and return it. Repair the tree as needed.
+ TreeList<Chunk>* removeTreeMinimum(TreeList<Chunk>* tl);
+ void semiSplayStep(TreeList<Chunk>* tl);
+ // Add this free chunk to the tree.
+ void insertChunkInTree(Chunk* freeChunk);
+ public:
+
+ static const size_t min_tree_chunk_size = sizeof(TreeChunk<Chunk>)/HeapWordSize;
+
+ void verifyTree() const;
+ // verify that the given chunk is in the tree.
+ bool verifyChunkInFreeLists(Chunk* tc) const;
+ private:
+ void verifyTreeHelper(TreeList<Chunk>* tl) const;
+ static size_t verifyPrevFreePtrs(TreeList<Chunk>* tl);
+
+ // Returns the total number of chunks in the list.
+ size_t totalListLength(TreeList<Chunk>* tl) const;
+ // Returns the total number of words in the chunks in the tree
+ // starting at "tl".
+ size_t totalSizeInTree(TreeList<Chunk>* tl) const;
+ // Returns the sum of the square of the size of each block
+ // in the tree starting at "tl".
+ double sum_of_squared_block_sizes(TreeList<Chunk>* const tl) const;
+ // Returns the total number of free blocks in the tree starting
+ // at "tl".
+ size_t totalFreeBlocksInTree(TreeList<Chunk>* tl) const;
+ size_t numFreeBlocks() const;
+ size_t treeHeight() const;
+ size_t treeHeightHelper(TreeList<Chunk>* tl) const;
+ size_t totalNodesInTree(TreeList<Chunk>* tl) const;
+ size_t totalNodesHelper(TreeList<Chunk>* tl) const;
+
+ public:
+ // Constructor
+ BinaryTreeDictionary(bool adaptive_freelists, bool splay = false);
+ BinaryTreeDictionary(MemRegion mr, bool adaptive_freelists, bool splay = false);
+
+ // Public accessors
+ size_t totalSize() const { return _totalSize; }
+
+ // Reset the dictionary to the initial conditions with
+ // a single free chunk.
+ void reset(MemRegion mr);
+ void reset(HeapWord* addr, size_t size);
+ // Reset the dictionary to be empty.
+ void reset();
+
+ // Return a chunk of size "size" or greater from
+ // the tree.
+ // want a better dynamic splay strategy for the future.
+ Chunk* getChunk(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither) {
+ FreeBlockDictionary<Chunk>::verify_par_locked();
+ Chunk* res = getChunkFromTree(size, dither, splay());
+ assert(res == NULL || res->isFree(),
+ "Should be returning a free chunk");
+ return res;
+ }
+
+ void returnChunk(Chunk* chunk) {
+ FreeBlockDictionary<Chunk>::verify_par_locked();
+ insertChunkInTree(chunk);
+ }
+
+ void removeChunk(Chunk* chunk) {
+ FreeBlockDictionary<Chunk>::verify_par_locked();
+ removeChunkFromTree((TreeChunk<Chunk>*)chunk);
+ assert(chunk->isFree(), "Should still be a free chunk");
+ }
+
+ size_t maxChunkSize() const;
+ size_t totalChunkSize(debug_only(const Mutex* lock)) const {
+ debug_only(
+ if (lock != NULL && lock->owned_by_self()) {
+ assert(totalSizeInTree(root()) == totalSize(),
+ "_totalSize inconsistency");
+ }
+ )
+ return totalSize();
+ }
+
+ size_t minSize() const {
+ return min_tree_chunk_size;
+ }
+
+ double sum_of_squared_block_sizes() const {
+ return sum_of_squared_block_sizes(root());
+ }
+
+ Chunk* find_chunk_ends_at(HeapWord* target) const;
+
+ // Find the list with size "size" in the binary tree and update
+ // the statistics in the list according to "split" (chunk was
+ // split or coalesce) and "birth" (chunk was added or removed).
+ void dictCensusUpdate(size_t size, bool split, bool birth);
+ // Return true if the dictionary is overpopulated (more chunks of
+ // this size than desired) for size "size".
+ bool coalDictOverPopulated(size_t size);
+ // Methods called at the beginning of a sweep to prepare the
+ // statistics for the sweep.
+ void beginSweepDictCensus(double coalSurplusPercent,
+ float inter_sweep_current,
+ float inter_sweep_estimate,
+ float intra_sweep_estimate);
+ // Methods called after the end of a sweep to modify the
+ // statistics for the sweep.
+ void endSweepDictCensus(double splitSurplusPercent);
+ // Return the largest free chunk in the tree.
+ Chunk* findLargestDict() const;
+ // Accessors for statistics
+ void setTreeSurplus(double splitSurplusPercent);
+ void setTreeHints(void);
+ // Reset statistics for all the lists in the tree.
+ void clearTreeCensus(void);
+ // Print the statistcis for all the lists in the tree. Also may
+ // print out summaries.
+ void printDictCensus(void) const;
+ void print_free_lists(outputStream* st) const;
+
+ // For debugging. Returns the sum of the _returnedBytes for
+ // all lists in the tree.
+ size_t sumDictReturnedBytes() PRODUCT_RETURN0;
+ // Sets the _returnedBytes for all the lists in the tree to zero.
+ void initializeDictReturnedBytes() PRODUCT_RETURN;
+ // For debugging. Return the total number of chunks in the dictionary.
+ size_t totalCount() PRODUCT_RETURN0;
+
+ void reportStatistics() const;
+
+ void verify() const;
+};
+
+#endif // SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/freeBlockDictionary.cpp Thu Mar 29 19:46:24 2012 -0700
@@ -0,0 +1,68 @@
+/*
+ * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#ifndef SERIALGC
+#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
+#endif // SERIALGC
+#include "memory/freeBlockDictionary.hpp"
+#ifdef TARGET_OS_FAMILY_linux
+# include "thread_linux.inline.hpp"
+#endif
+#ifdef TARGET_OS_FAMILY_solaris
+# include "thread_solaris.inline.hpp"
+#endif
+#ifdef TARGET_OS_FAMILY_windows
+# include "thread_windows.inline.hpp"
+#endif
+#ifdef TARGET_OS_FAMILY_bsd
+# include "thread_bsd.inline.hpp"
+#endif
+
+#ifndef PRODUCT
+template <class Chunk> Mutex* FreeBlockDictionary<Chunk>::par_lock() const {
+ return _lock;
+}
+
+template <class Chunk> void FreeBlockDictionary<Chunk>::set_par_lock(Mutex* lock) {
+ _lock = lock;
+}
+
+template <class Chunk> void FreeBlockDictionary<Chunk>::verify_par_locked() const {
+#ifdef ASSERT
+ if (ParallelGCThreads > 0) {
+ Thread* myThread = Thread::current();
+ if (myThread->is_GC_task_thread()) {
+ assert(par_lock() != NULL, "Should be using locking?");
+ assert_lock_strong(par_lock());
+ }
+ }
+#endif // ASSERT
+}
+#endif
+
+#ifndef SERIALGC
+// Explicitly instantiate for FreeChunk
+template class FreeBlockDictionary<FreeChunk>;
+#endif // SERIALGC
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/freeBlockDictionary.hpp Thu Mar 29 19:46:24 2012 -0700
@@ -0,0 +1,102 @@
+/*
+ * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_MEMORY_FREEBLOCKDICTIONARY_HPP
+#define SHARE_VM_MEMORY_FREEBLOCKDICTIONARY_HPP
+
+#include "memory/allocation.hpp"
+#include "runtime/mutex.hpp"
+#include "utilities/debug.hpp"
+#include "utilities/globalDefinitions.hpp"
+#include "utilities/ostream.hpp"
+
+// A FreeBlockDictionary is an abstract superclass that will allow
+// a number of alternative implementations in the future.
+template <class Chunk>
+class FreeBlockDictionary: public CHeapObj {
+ public:
+ enum Dither {
+ atLeast,
+ exactly,
+ roughly
+ };
+ enum DictionaryChoice {
+ dictionaryBinaryTree = 0,
+ dictionarySplayTree = 1,
+ dictionarySkipList = 2
+ };
+
+ private:
+ NOT_PRODUCT(Mutex* _lock;)
+
+ public:
+ virtual void removeChunk(Chunk* fc) = 0;
+ virtual Chunk* getChunk(size_t size, Dither dither = atLeast) = 0;
+ virtual void returnChunk(Chunk* chunk) = 0;
+ virtual size_t totalChunkSize(debug_only(const Mutex* lock)) const = 0;
+ virtual size_t maxChunkSize() const = 0;
+ virtual size_t minSize() const = 0;
+ // Reset the dictionary to the initial conditions for a single
+ // block.
+ virtual void reset(HeapWord* addr, size_t size) = 0;
+ virtual void reset() = 0;
+
+ virtual void dictCensusUpdate(size_t size, bool split, bool birth) = 0;
+ virtual bool coalDictOverPopulated(size_t size) = 0;
+ virtual void beginSweepDictCensus(double coalSurplusPercent,
+ float inter_sweep_current, float inter_sweep_estimate,
+ float intra__sweep_current) = 0;
+ virtual void endSweepDictCensus(double splitSurplusPercent) = 0;
+ virtual Chunk* findLargestDict() const = 0;
+ // verify that the given chunk is in the dictionary.
+ virtual bool verifyChunkInFreeLists(Chunk* tc) const = 0;
+
+ // Sigma_{all_free_blocks} (block_size^2)
+ virtual double sum_of_squared_block_sizes() const = 0;
+
+ virtual Chunk* find_chunk_ends_at(HeapWord* target) const = 0;
+ virtual void inc_totalSize(size_t v) = 0;
+ virtual void dec_totalSize(size_t v) = 0;
+
+ NOT_PRODUCT (
+ virtual size_t sumDictReturnedBytes() = 0;
+ virtual void initializeDictReturnedBytes() = 0;
+ virtual size_t totalCount() = 0;
+ )
+
+ virtual void reportStatistics() const {
+ gclog_or_tty->print("No statistics available");
+ }
+
+ virtual void printDictCensus() const = 0;
+ virtual void print_free_lists(outputStream* st) const = 0;
+
+ virtual void verify() const = 0;
+
+ Mutex* par_lock() const PRODUCT_RETURN0;
+ void set_par_lock(Mutex* lock) PRODUCT_RETURN;
+ void verify_par_locked() const PRODUCT_RETURN;
+};
+
+#endif // SHARE_VM_MEMORY_FREEBLOCKDICTIONARY_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/freeList.cpp Thu Mar 29 19:46:24 2012 -0700
@@ -0,0 +1,370 @@
+/*
+ * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "memory/freeBlockDictionary.hpp"
+#include "memory/freeList.hpp"
+#include "memory/sharedHeap.hpp"
+#include "runtime/globals.hpp"
+#include "runtime/mutex.hpp"
+#include "runtime/vmThread.hpp"
+
+#ifndef SERIALGC
+#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
+#endif // SERIALGC
+
+// Free list. A FreeList is used to access a linked list of chunks
+// of space in the heap. The head and tail are maintained so that
+// items can be (as in the current implementation) added at the
+// at the tail of the list and removed from the head of the list to
+// maintain a FIFO queue.
+
+template <class Chunk>
+FreeList<Chunk>::FreeList() :
+ _head(NULL), _tail(NULL)
+#ifdef ASSERT
+ , _protecting_lock(NULL)
+#endif
+{
+ _size = 0;
+ _count = 0;
+ _hint = 0;
+ init_statistics();
+}
+
+template <class Chunk>
+FreeList<Chunk>::FreeList(Chunk* fc) :
+ _head(fc), _tail(fc)
+#ifdef ASSERT
+ , _protecting_lock(NULL)
+#endif
+{
+ _size = fc->size();
+ _count = 1;
+ _hint = 0;
+ init_statistics();
+#ifndef PRODUCT
+ _allocation_stats.set_returnedBytes(size() * HeapWordSize);
+#endif
+}
+
+template <class Chunk>
+void FreeList<Chunk>::reset(size_t hint) {
+ set_count(0);
+ set_head(NULL);
+ set_tail(NULL);
+ set_hint(hint);
+}
+
+template <class Chunk>
+void FreeList<Chunk>::init_statistics(bool split_birth) {
+ _allocation_stats.initialize(split_birth);
+}
+
+template <class Chunk>
+Chunk* FreeList<Chunk>::getChunkAtHead() {
+ assert_proper_lock_protection();
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ Chunk* fc = head();
+ if (fc != NULL) {
+ Chunk* nextFC = fc->next();
+ if (nextFC != NULL) {
+ // The chunk fc being removed has a "next". Set the "next" to the
+ // "prev" of fc.
+ nextFC->linkPrev(NULL);
+ } else { // removed tail of list
+ link_tail(NULL);
+ }
+ link_head(nextFC);
+ decrement_count();
+ }
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ return fc;
+}
+
+
+template <class Chunk>
+void FreeList<Chunk>::getFirstNChunksFromList(size_t n, FreeList<Chunk>* fl) {
+ assert_proper_lock_protection();
+ assert(fl->count() == 0, "Precondition");
+ if (count() > 0) {
+ int k = 1;
+ fl->set_head(head()); n--;
+ Chunk* tl = head();
+ while (tl->next() != NULL && n > 0) {
+ tl = tl->next(); n--; k++;
+ }
+ assert(tl != NULL, "Loop Inv.");
+
+ // First, fix up the list we took from.
+ Chunk* new_head = tl->next();
+ set_head(new_head);
+ set_count(count() - k);
+ if (new_head == NULL) {
+ set_tail(NULL);
+ } else {
+ new_head->linkPrev(NULL);
+ }
+ // Now we can fix up the tail.
+ tl->linkNext(NULL);
+ // And return the result.
+ fl->set_tail(tl);
+ fl->set_count(k);
+ }
+}
+
+// Remove this chunk from the list
+template <class Chunk>
+void FreeList<Chunk>::removeChunk(Chunk*fc) {
+ assert_proper_lock_protection();
+ assert(head() != NULL, "Remove from empty list");
+ assert(fc != NULL, "Remove a NULL chunk");
+ assert(size() == fc->size(), "Wrong list");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk* prevFC = fc->prev();
+ Chunk* nextFC = fc->next();
+ if (nextFC != NULL) {
+ // The chunk fc being removed has a "next". Set the "next" to the
+ // "prev" of fc.
+ nextFC->linkPrev(prevFC);
+ } else { // removed tail of list
+ link_tail(prevFC);
+ }
+ if (prevFC == NULL) { // removed head of list
+ link_head(nextFC);
+ assert(nextFC == NULL || nextFC->prev() == NULL,
+ "Prev of head should be NULL");
+ } else {
+ prevFC->linkNext(nextFC);
+ assert(tail() != prevFC || prevFC->next() == NULL,
+ "Next of tail should be NULL");
+ }
+ decrement_count();
+ assert(((head() == NULL) + (tail() == NULL) + (count() == 0)) % 3 == 0,
+ "H/T/C Inconsistency");
+ // clear next and prev fields of fc, debug only
+ NOT_PRODUCT(
+ fc->linkPrev(NULL);
+ fc->linkNext(NULL);
+ )
+ assert(fc->isFree(), "Should still be a free chunk");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ assert(head() == NULL || head()->size() == size(), "wrong item on list");
+ assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
+}
+
+// Add this chunk at the head of the list.
+template <class Chunk>
+void FreeList<Chunk>::returnChunkAtHead(Chunk* chunk, bool record_return) {
+ assert_proper_lock_protection();
+ assert(chunk != NULL, "insert a NULL chunk");
+ assert(size() == chunk->size(), "Wrong size");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk* oldHead = head();
+ assert(chunk != oldHead, "double insertion");
+ chunk->linkAfter(oldHead);
+ link_head(chunk);
+ if (oldHead == NULL) { // only chunk in list
+ assert(tail() == NULL, "inconsistent FreeList");
+ link_tail(chunk);
+ }
+ increment_count(); // of # of chunks in list
+ DEBUG_ONLY(
+ if (record_return) {
+ increment_returnedBytes_by(size()*HeapWordSize);
+ }
+ )
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ assert(head() == NULL || head()->size() == size(), "wrong item on list");
+ assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
+}
+
+template <class Chunk>
+void FreeList<Chunk>::returnChunkAtHead(Chunk* chunk) {
+ assert_proper_lock_protection();
+ returnChunkAtHead(chunk, true);
+}
+
+// Add this chunk at the tail of the list.
+template <class Chunk>
+void FreeList<Chunk>::returnChunkAtTail(Chunk* chunk, bool record_return) {
+ assert_proper_lock_protection();
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ assert(chunk != NULL, "insert a NULL chunk");
+ assert(size() == chunk->size(), "wrong size");
+
+ Chunk* oldTail = tail();
+ assert(chunk != oldTail, "double insertion");
+ if (oldTail != NULL) {
+ oldTail->linkAfter(chunk);
+ } else { // only chunk in list
+ assert(head() == NULL, "inconsistent FreeList");
+ link_head(chunk);
+ }
+ link_tail(chunk);
+ increment_count(); // of # of chunks in list
+ DEBUG_ONLY(
+ if (record_return) {
+ increment_returnedBytes_by(size()*HeapWordSize);
+ }
+ )
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ assert(head() == NULL || head()->size() == size(), "wrong item on list");
+ assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
+}
+
+template <class Chunk>
+void FreeList<Chunk>::returnChunkAtTail(Chunk* chunk) {
+ returnChunkAtTail(chunk, true);
+}
+
+template <class Chunk>
+void FreeList<Chunk>::prepend(FreeList<Chunk>* fl) {
+ assert_proper_lock_protection();
+ if (fl->count() > 0) {
+ if (count() == 0) {
+ set_head(fl->head());
+ set_tail(fl->tail());
+ set_count(fl->count());
+ } else {
+ // Both are non-empty.
+ Chunk* fl_tail = fl->tail();
+ Chunk* this_head = head();
+ assert(fl_tail->next() == NULL, "Well-formedness of fl");
+ fl_tail->linkNext(this_head);
+ this_head->linkPrev(fl_tail);
+ set_head(fl->head());
+ set_count(count() + fl->count());
+ }
+ fl->set_head(NULL);
+ fl->set_tail(NULL);
+ fl->set_count(0);
+ }
+}
+
+// verifyChunkInFreeLists() is used to verify that an item is in this free list.
+// It is used as a debugging aid.
+template <class Chunk>
+bool FreeList<Chunk>::verifyChunkInFreeLists(Chunk* fc) const {
+ // This is an internal consistency check, not part of the check that the
+ // chunk is in the free lists.
+ guarantee(fc->size() == size(), "Wrong list is being searched");
+ Chunk* curFC = head();
+ while (curFC) {
+ // This is an internal consistency check.
+ guarantee(size() == curFC->size(), "Chunk is in wrong list.");
+ if (fc == curFC) {
+ return true;
+ }
+ curFC = curFC->next();
+ }
+ return false;
+}
+
+#ifndef PRODUCT
+template <class Chunk>
+void FreeList<Chunk>::verify_stats() const {
+ // The +1 of the LH comparand is to allow some "looseness" in
+ // checking: we usually call this interface when adding a block
+ // and we'll subsequently update the stats; we cannot update the
+ // stats beforehand because in the case of the large-block BT
+ // dictionary for example, this might be the first block and
+ // in that case there would be no place that we could record
+ // the stats (which are kept in the block itself).
+ assert((_allocation_stats.prevSweep() + _allocation_stats.splitBirths()
+ + _allocation_stats.coalBirths() + 1) // Total Production Stock + 1
+ >= (_allocation_stats.splitDeaths() + _allocation_stats.coalDeaths()
+ + (ssize_t)count()), // Total Current Stock + depletion
+ err_msg("FreeList " PTR_FORMAT " of size " SIZE_FORMAT
+ " violates Conservation Principle: "
+ "prevSweep(" SIZE_FORMAT ")"
+ " + splitBirths(" SIZE_FORMAT ")"
+ " + coalBirths(" SIZE_FORMAT ") + 1 >= "
+ " splitDeaths(" SIZE_FORMAT ")"
+ " coalDeaths(" SIZE_FORMAT ")"
+ " + count(" SSIZE_FORMAT ")",
+ this, _size, _allocation_stats.prevSweep(), _allocation_stats.splitBirths(),
+ _allocation_stats.splitBirths(), _allocation_stats.splitDeaths(),
+ _allocation_stats.coalDeaths(), count()));
+}
+
+template <class Chunk>
+void FreeList<Chunk>::assert_proper_lock_protection_work() const {
+ assert(_protecting_lock != NULL, "Don't call this directly");
+ assert(ParallelGCThreads > 0, "Don't call this directly");
+ Thread* thr = Thread::current();
+ if (thr->is_VM_thread() || thr->is_ConcurrentGC_thread()) {
+ // assert that we are holding the freelist lock
+ } else if (thr->is_GC_task_thread()) {
+ assert(_protecting_lock->owned_by_self(), "FreeList RACE DETECTED");
+ } else if (thr->is_Java_thread()) {
+ assert(!SafepointSynchronize::is_at_safepoint(), "Should not be executing");
+ } else {
+ ShouldNotReachHere(); // unaccounted thread type?
+ }
+}
+#endif
+
+// Print the "label line" for free list stats.
+template <class Chunk>
+void FreeList<Chunk>::print_labels_on(outputStream* st, const char* c) {
+ st->print("%16s\t", c);
+ st->print("%14s\t" "%14s\t" "%14s\t" "%14s\t" "%14s\t"
+ "%14s\t" "%14s\t" "%14s\t" "%14s\t" "%14s\t" "\n",
+ "bfrsurp", "surplus", "desired", "prvSwep", "bfrSwep",
+ "count", "cBirths", "cDeaths", "sBirths", "sDeaths");
+}
+
+// Print the AllocationStats for the given free list. If the second argument
+// to the call is a non-null string, it is printed in the first column;
+// otherwise, if the argument is null (the default), then the size of the
+// (free list) block is printed in the first column.
+template <class Chunk>
+void FreeList<Chunk>::print_on(outputStream* st, const char* c) const {
+ if (c != NULL) {
+ st->print("%16s", c);
+ } else {
+ st->print(SIZE_FORMAT_W(16), size());
+ }
+ st->print("\t"
+ SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t"
+ SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\n",
+ bfrSurp(), surplus(), desired(), prevSweep(), beforeSweep(),
+ count(), coalBirths(), coalDeaths(), splitBirths(), splitDeaths());
+}
+
+#ifndef SERIALGC
+// Needs to be after the definitions have been seen.
+template class FreeList<FreeChunk>;
+#endif // SERIALGC
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/freeList.hpp Thu Mar 29 19:46:24 2012 -0700
@@ -0,0 +1,329 @@
+/*
+ * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_MEMORY_FREELIST_HPP
+#define SHARE_VM_MEMORY_FREELIST_HPP
+
+#include "gc_implementation/shared/allocationStats.hpp"
+
+class CompactibleFreeListSpace;
+
+// A class for maintaining a free list of Chunk's. The FreeList
+// maintains a the structure of the list (head, tail, etc.) plus
+// statistics for allocations from the list. The links between items
+// are not part of FreeList. The statistics are
+// used to make decisions about coalescing Chunk's when they
+// are swept during collection.
+//
+// See the corresponding .cpp file for a description of the specifics
+// for that implementation.
+
+class Mutex;
+template <class Chunk> class TreeList;
+template <class Chunk> class PrintTreeCensusClosure;
+
+template <class Chunk>
+class FreeList VALUE_OBJ_CLASS_SPEC {
+ friend class CompactibleFreeListSpace;
+ friend class VMStructs;
+ friend class PrintTreeCensusClosure<Chunk>;
+
+ private:
+ Chunk* _head; // Head of list of free chunks
+ Chunk* _tail; // Tail of list of free chunks
+ size_t _size; // Size in Heap words of each chunk
+ ssize_t _count; // Number of entries in list
+ size_t _hint; // next larger size list with a positive surplus
+
+ AllocationStats _allocation_stats; // allocation-related statistics
+
+#ifdef ASSERT
+ Mutex* _protecting_lock;
+#endif
+
+ // Asserts false if the protecting lock (if any) is not held.
+ void assert_proper_lock_protection_work() const PRODUCT_RETURN;
+ void assert_proper_lock_protection() const {
+#ifdef ASSERT
+ if (_protecting_lock != NULL)
+ assert_proper_lock_protection_work();
+#endif
+ }
+
+ // Initialize the allocation statistics.
+ protected:
+ void init_statistics(bool split_birth = false);
+ void set_count(ssize_t v) { _count = v;}
+ void increment_count() {
+ _count++;
+ }
+
+ void decrement_count() {
+ _count--;
+ assert(_count >= 0, "Count should not be negative");
+ }
+
+ public:
+ // Constructor
+ // Construct a list without any entries.
+ FreeList();
+ // Construct a list with "fc" as the first (and lone) entry in the list.
+ FreeList(Chunk* fc);
+
+ // Reset the head, tail, hint, and count of a free list.
+ void reset(size_t hint);
+
+ // Declare the current free list to be protected by the given lock.
+#ifdef ASSERT
+ void set_protecting_lock(Mutex* protecting_lock) {
+ _protecting_lock = protecting_lock;
+ }
+#endif
+
+ // Accessors.
+ Chunk* head() const {
+ assert_proper_lock_protection();
+ return _head;
+ }
+ void set_head(Chunk* v) {
+ assert_proper_lock_protection();
+ _head = v;
+ assert(!_head || _head->size() == _size, "bad chunk size");
+ }
+ // Set the head of the list and set the prev field of non-null
+ // values to NULL.
+ void link_head(Chunk* v) {
+ assert_proper_lock_protection();
+ set_head(v);
+ // If this method is not used (just set the head instead),
+ // this check can be avoided.
+ if (v != NULL) {
+ v->linkPrev(NULL);
+ }
+ }
+
+ Chunk* tail() const {
+ assert_proper_lock_protection();
+ return _tail;
+ }
+ void set_tail(Chunk* v) {
+ assert_proper_lock_protection();
+ _tail = v;
+ assert(!_tail || _tail->size() == _size, "bad chunk size");
+ }
+ // Set the tail of the list and set the next field of non-null
+ // values to NULL.
+ void link_tail(Chunk* v) {
+ assert_proper_lock_protection();
+ set_tail(v);
+ if (v != NULL) {
+ v->clearNext();
+ }
+ }
+
+ // No locking checks in read-accessors: lock-free reads (only) are benign.
+ // Readers are expected to have the lock if they are doing work that
+ // requires atomicity guarantees in sections of code.
+ size_t size() const {
+ return _size;
+ }
+ void set_size(size_t v) {
+ assert_proper_lock_protection();
+ _size = v;
+ }
+ ssize_t count() const {
+ return _count;
+ }
+ size_t hint() const {
+ return _hint;
+ }
+ void set_hint(size_t v) {
+ assert_proper_lock_protection();
+ assert(v == 0 || _size < v, "Bad hint"); _hint = v;
+ }
+
+ // Accessors for statistics
+ AllocationStats* allocation_stats() {
+ assert_proper_lock_protection();
+ return &_allocation_stats;
+ }
+
+ ssize_t desired() const {
+ return _allocation_stats.desired();
+ }
+ void set_desired(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_desired(v);
+ }
+ void compute_desired(float inter_sweep_current,
+ float inter_sweep_estimate,
+ float intra_sweep_estimate) {
+ assert_proper_lock_protection();
+ _allocation_stats.compute_desired(_count,
+ inter_sweep_current,
+ inter_sweep_estimate,
+ intra_sweep_estimate);
+ }
+ ssize_t coalDesired() const {
+ return _allocation_stats.coalDesired();
+ }
+ void set_coalDesired(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_coalDesired(v);
+ }
+
+ ssize_t surplus() const {
+ return _allocation_stats.surplus();
+ }
+ void set_surplus(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_surplus(v);
+ }
+ void increment_surplus() {
+ assert_proper_lock_protection();
+ _allocation_stats.increment_surplus();
+ }
+ void decrement_surplus() {
+ assert_proper_lock_protection();
+ _allocation_stats.decrement_surplus();
+ }
+
+ ssize_t bfrSurp() const {
+ return _allocation_stats.bfrSurp();
+ }
+ void set_bfrSurp(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_bfrSurp(v);
+ }
+ ssize_t prevSweep() const {
+ return _allocation_stats.prevSweep();
+ }
+ void set_prevSweep(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_prevSweep(v);
+ }
+ ssize_t beforeSweep() const {
+ return _allocation_stats.beforeSweep();
+ }
+ void set_beforeSweep(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_beforeSweep(v);
+ }
+
+ ssize_t coalBirths() const {
+ return _allocation_stats.coalBirths();
+ }
+ void set_coalBirths(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_coalBirths(v);
+ }
+ void increment_coalBirths() {
+ assert_proper_lock_protection();
+ _allocation_stats.increment_coalBirths();
+ }
+
+ ssize_t coalDeaths() const {
+ return _allocation_stats.coalDeaths();
+ }
+ void set_coalDeaths(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_coalDeaths(v);
+ }
+ void increment_coalDeaths() {
+ assert_proper_lock_protection();
+ _allocation_stats.increment_coalDeaths();
+ }
+
+ ssize_t splitBirths() const {
+ return _allocation_stats.splitBirths();
+ }
+ void set_splitBirths(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_splitBirths(v);
+ }
+ void increment_splitBirths() {
+ assert_proper_lock_protection();
+ _allocation_stats.increment_splitBirths();
+ }
+
+ ssize_t splitDeaths() const {
+ return _allocation_stats.splitDeaths();
+ }
+ void set_splitDeaths(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_splitDeaths(v);
+ }
+ void increment_splitDeaths() {
+ assert_proper_lock_protection();
+ _allocation_stats.increment_splitDeaths();
+ }
+
+ NOT_PRODUCT(
+ // For debugging. The "_returnedBytes" in all the lists are summed
+ // and compared with the total number of bytes swept during a
+ // collection.
+ size_t returnedBytes() const { return _allocation_stats.returnedBytes(); }
+ void set_returnedBytes(size_t v) { _allocation_stats.set_returnedBytes(v); }
+ void increment_returnedBytes_by(size_t v) {
+ _allocation_stats.set_returnedBytes(_allocation_stats.returnedBytes() + v);
+ }
+ )
+
+ // Unlink head of list and return it. Returns NULL if
+ // the list is empty.
+ Chunk* getChunkAtHead();
+
+ // Remove the first "n" or "count", whichever is smaller, chunks from the
+ // list, setting "fl", which is required to be empty, to point to them.
+ void getFirstNChunksFromList(size_t n, FreeList<Chunk>* fl);
+
+ // Unlink this chunk from it's free list
+ void removeChunk(Chunk* fc);
+
+ // Add this chunk to this free list.
+ void returnChunkAtHead(Chunk* fc);
+ void returnChunkAtTail(Chunk* fc);
+
+ // Similar to returnChunk* but also records some diagnostic
+ // information.
+ void returnChunkAtHead(Chunk* fc, bool record_return);
+ void returnChunkAtTail(Chunk* fc, bool record_return);
+
+ // Prepend "fl" (whose size is required to be the same as that of "this")
+ // to the front of "this" list.
+ void prepend(FreeList<Chunk>* fl);
+
+ // Verify that the chunk is in the list.
+ // found. Return NULL if "fc" is not found.
+ bool verifyChunkInFreeLists(Chunk* fc) const;
+
+ // Stats verification
+ void verify_stats() const PRODUCT_RETURN;
+
+ // Printing support
+ static void print_labels_on(outputStream* st, const char* c);
+ void print_on(outputStream* st, const char* c = NULL) const;
+};
+
+#endif // SHARE_VM_MEMORY_FREELIST_HPP
--- a/hotspot/src/share/vm/memory/generationSpec.cpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/memory/generationSpec.cpp Thu Mar 29 19:46:24 2012 -0700
@@ -68,7 +68,7 @@
ConcurrentMarkSweepGeneration* g = NULL;
g = new ConcurrentMarkSweepGeneration(rs,
init_size(), level, ctrs, UseCMSAdaptiveFreeLists,
- (FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice);
+ (FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice);
g->initialize_performance_counters();
@@ -88,7 +88,7 @@
ASConcurrentMarkSweepGeneration* g = NULL;
g = new ASConcurrentMarkSweepGeneration(rs,
init_size(), level, ctrs, UseCMSAdaptiveFreeLists,
- (FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice);
+ (FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice);
g->initialize_performance_counters();
@@ -175,7 +175,7 @@
}
// XXXPERM
return new CMSPermGen(perm_rs, init_size, ctrs,
- (FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice);
+ (FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice);
}
#endif // SERIALGC
default:
--- a/hotspot/src/share/vm/precompiled/precompiled.hpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/precompiled/precompiled.hpp Thu Mar 29 19:46:24 2012 -0700
@@ -293,13 +293,10 @@
# include "c1/c1_globals.hpp"
#endif // COMPILER1
#ifndef SERIALGC
-# include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
# include "gc_implementation/concurrentMarkSweep/cmsOopClosures.hpp"
# include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
# include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
-# include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
# include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
-# include "gc_implementation/concurrentMarkSweep/freeList.hpp"
# include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
# include "gc_implementation/g1/dirtyCardQueue.hpp"
# include "gc_implementation/g1/g1BlockOffsetTable.hpp"
--- a/hotspot/src/share/vm/runtime/vmStructs.cpp Fri Apr 20 17:13:36 2012 -0700
+++ b/hotspot/src/share/vm/runtime/vmStructs.cpp Thu Mar 29 19:46:24 2012 -0700
@@ -44,7 +44,6 @@
#include "code/vmreg.hpp"
#include "compiler/oopMap.hpp"
#include "compiler/compileBroker.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
#include "gc_implementation/shared/immutableSpace.hpp"
#include "gc_implementation/shared/markSweep.hpp"
#include "gc_implementation/shared/mutableSpace.hpp"
@@ -55,6 +54,7 @@
#include "memory/cardTableRS.hpp"
#include "memory/compactPermGen.hpp"
#include "memory/defNewGeneration.hpp"
+#include "memory/freeBlockDictionary.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/generation.hpp"
#include "memory/generationSpec.hpp"