--- a/jdk/src/share/classes/java/lang/Math.java Wed Nov 07 17:39:34 2012 -0800
+++ b/jdk/src/share/classes/java/lang/Math.java Wed Nov 07 20:50:09 2012 -0800
@@ -742,6 +742,7 @@
* @param y the second value
* @return the result
* @throws ArithmeticException if the result overflows an int
+ * @since 1.8
*/
public static int addExact(int x, int y) {
int r = x + y;
@@ -760,6 +761,7 @@
* @param y the second value
* @return the result
* @throws ArithmeticException if the result overflows a long
+ * @since 1.8
*/
public static long addExact(long x, long y) {
long r = x + y;
@@ -778,6 +780,7 @@
* @param y the second value to subtract from the first
* @return the result
* @throws ArithmeticException if the result overflows an int
+ * @since 1.8
*/
public static int subtractExact(int x, int y) {
int r = x - y;
@@ -797,6 +800,7 @@
* @param y the second value to subtract from the first
* @return the result
* @throws ArithmeticException if the result overflows a long
+ * @since 1.8
*/
public static long subtractExact(long x, long y) {
long r = x - y;
@@ -816,6 +820,7 @@
* @param y the second value
* @return the result
* @throws ArithmeticException if the result overflows an int
+ * @since 1.8
*/
public static int multiplyExact(int x, int y) {
long r = (long)x * (long)y;
@@ -833,6 +838,7 @@
* @param y the second value
* @return the result
* @throws ArithmeticException if the result overflows a long
+ * @since 1.8
*/
public static long multiplyExact(long x, long y) {
long r = x * y;
@@ -857,6 +863,7 @@
* @param value the long value
* @return the argument as an int
* @throws ArithmeticException if the {@code argument} overflows an int
+ * @since 1.8
*/
public static int toIntExact(long value) {
if ((int)value != value) {
@@ -866,6 +873,159 @@
}
/**
+ * Returns the largest (closest to positive infinity)
+ * {@code int} value that is less than or equal to the algebraic quotient.
+ * There is one special case, if the dividend is the
+ * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
+ * then integer overflow occurs and
+ * the result is equal to the {@code Integer.MIN_VALUE}.
+ * <p>
+ * Normal integer division operates under the round to zero rounding mode
+ * (truncation). This operation instead acts under the round toward
+ * negative infinity (floor) rounding mode.
+ * The floor rounding mode gives different results than truncation
+ * when the exact result is negative.
+ * <ul>
+ * <li>If the signs of the arguments are the same, the results of
+ * {@code floorDiv} and the {@code /} operator are the same. <br>
+ * For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
+ * <li>If the signs of the arguments are different, the quotient is negative and
+ * {@code floorDiv} returns the integer less than or equal to the quotient
+ * and the {@code /} operator returns the integer closest to zero.<br>
+ * For example, {@code floorDiv(-4, 3) == -2},
+ * whereas {@code (-4 / 3) == -1}.
+ * </li>
+ * </ul>
+ * <p>
+ *
+ * @param x the dividend
+ * @param y the divisor
+ * @return the largest (closest to positive infinity)
+ * {@code int} value that is less than or equal to the algebraic quotient.
+ * @throws ArithmeticException if the divisor {@code y} is zero
+ * @see #floorMod(int, int)
+ * @see #floor(double)
+ * @since 1.8
+ */
+ public static int floorDiv(int x, int y) {
+ int r = x / y;
+ // if the signs are different and modulo not zero, round down
+ if ((x ^ y) < 0 && (r * y != x)) {
+ r--;
+ }
+ return r;
+ }
+
+ /**
+ * Returns the largest (closest to positive infinity)
+ * {@code long} value that is less than or equal to the algebraic quotient.
+ * There is one special case, if the dividend is the
+ * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
+ * then integer overflow occurs and
+ * the result is equal to the {@code Long.MIN_VALUE}.
+ * <p>
+ * Normal integer division operates under the round to zero rounding mode
+ * (truncation). This operation instead acts under the round toward
+ * negative infinity (floor) rounding mode.
+ * The floor rounding mode gives different results than truncation
+ * when the exact result is negative.
+ * <p>
+ * For examples, see {@link #floorDiv(int, int)}.
+ *
+ * @param x the dividend
+ * @param y the divisor
+ * @return the largest (closest to positive infinity)
+ * {@code long} value that is less than or equal to the algebraic quotient.
+ * @throws ArithmeticException if the divisor {@code y} is zero
+ * @see #floorMod(long, long)
+ * @see #floor(double)
+ * @since 1.8
+ */
+ public static long floorDiv(long x, long y) {
+ long r = x / y;
+ // if the signs are different and modulo not zero, round down
+ if ((x ^ y) < 0 && (r * y != x)) {
+ r--;
+ }
+ return r;
+ }
+
+ /**
+ * Returns the floor modulus of the {@code int} arguments.
+ * <p>
+ * The floor modulus is {@code x - (floorDiv(x, y) * y)},
+ * has the same sign as the divisor {@code y}, and
+ * is in the range of {@code -abs(y) < r < +abs(y)}.
+ *
+ * <p>
+ * The relationship between {@code floorDiv} and {@code floorMod} is such that:
+ * <ul>
+ * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
+ * </ul>
+ * <p>
+ * The difference in values between {@code floorMod} and
+ * the {@code %} operator is due to the difference between
+ * {@code floorDiv} that returns the integer less than or equal to the quotient
+ * and the {@code /} operator that returns the integer closest to zero.
+ * <p>
+ * Examples:
+ * <ul>
+ * <li>If the signs of the arguments are the same, the results
+ * of {@code floorMod} and the {@code %} operator are the same. <br>
+ * <ul>
+ * <li>{@code floorMod(4, 3) == 1}; and {@code (4 % 3) == 1}</li>
+ * </ul>
+ * <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br>
+ * <ul>
+ * <li>{@code floorMod(+4, -3) == -2}; and {@code (+4 % -3) == +1} </li>
+ * <li>{@code floorMod(-4, +3) == +2}; and {@code (-4 % +3) == -1} </li>
+ * <li>{@code floorMod(-4, -3) == -1}; and {@code (-4 % -3) == -1 } </li>
+ * </ul>
+ * </li>
+ * </ul>
+ * <p>
+ * If the signs of arguments are unknown and a positive modulus
+ * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
+ *
+ * @param x the dividend
+ * @param y the divisor
+ * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
+ * @throws ArithmeticException if the divisor {@code y} is zero
+ * @see #floorDiv(int, int)
+ * @since 1.8
+ */
+ public static int floorMod(int x, int y) {
+ int r = x - floorDiv(x, y) * y;
+ return r;
+ }
+
+ /**
+ * Returns the floor modulus of the {@code long} arguments.
+ * <p>
+ * The floor modulus is {@code x - (floorDiv(x, y) * y)},
+ * has the same sign as the divisor {@code y}, and
+ * is in the range of {@code -abs(y) < r < +abs(y)}.
+ *
+ * <p>
+ * The relationship between {@code floorDiv} and {@code floorMod} is such that:
+ * <ul>
+ * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
+ * </ul>
+ * <p>
+ * For examples, see {@link #floorMod(int, int)}.
+ *
+ * @param x the dividend
+ * @param y the divisor
+ * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
+ * @throws ArithmeticException if the divisor {@code y} is zero
+ * @see #floorDiv(long, long)
+ * @since 1.8
+ */
+ public static long floorMod(long x, long y) {
+ return x - floorDiv(x, y) * y;
+ }
+
+ /**
* Returns the absolute value of an {@code int} value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
--- a/jdk/src/share/classes/java/lang/StrictMath.java Wed Nov 07 17:39:34 2012 -0800
+++ b/jdk/src/share/classes/java/lang/StrictMath.java Wed Nov 07 20:50:09 2012 -0800
@@ -365,7 +365,7 @@
* @param a the value to be floored or ceiled
* @param negativeBoundary result for values in (-1, 0)
* @param positiveBoundary result for values in (0, 1)
- * @param sign the sign of the result
+ * @param increment value to add when the argument is non-integral
*/
private static double floorOrCeil(double a,
double negativeBoundary,
@@ -702,7 +702,7 @@
* <p>This method is properly synchronized to allow correct use by
* more than one thread. However, if many threads need to generate
* pseudorandom numbers at a great rate, it may reduce contention
- * for each thread to have its own pseudorandom number generator.
+ * for each thread to have its own pseudorandom-number generator.
*
* @return a pseudorandom {@code double} greater than or equal
* to {@code 0.0} and less than {@code 1.0}.
@@ -745,7 +745,7 @@
}
/**
- * Return the difference of the arguments,
+ * Returns the difference of the arguments,
* throwing an exception if the result overflows an {@code int}.
*
* @param x the first value
@@ -760,7 +760,7 @@
}
/**
- * Return the difference of the arguments,
+ * Returns the difference of the arguments,
* throwing an exception if the result overflows a {@code long}.
*
* @param x the first value
@@ -775,7 +775,7 @@
}
/**
- * Return the product of the arguments,
+ * Returns the product of the arguments,
* throwing an exception if the result overflows an {@code int}.
*
* @param x the first value
@@ -790,7 +790,7 @@
}
/**
- * Return the product of the arguments,
+ * Returns the product of the arguments,
* throwing an exception if the result overflows a {@code long}.
*
* @param x the first value
@@ -805,7 +805,7 @@
}
/**
- * Return the value of the {@code long} argument;
+ * Returns the value of the {@code long} argument;
* throwing an exception if the value overflows an {@code int}.
*
* @param value the long value
@@ -819,6 +819,107 @@
}
/**
+ * Returns the largest (closest to positive infinity)
+ * {@code int} value that is less than or equal to the algebraic quotient.
+ * There is one special case, if the dividend is the
+ * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
+ * then integer overflow occurs and
+ * the result is equal to the {@code Integer.MIN_VALUE}.
+ * <p>
+ * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
+ * a comparison to the integer division {@code /} operator.
+ *
+ * @param x the dividend
+ * @param y the divisor
+ * @return the largest (closest to positive infinity)
+ * {@code int} value that is less than or equal to the algebraic quotient.
+ * @throws ArithmeticException if the divisor {@code y} is zero
+ * @see Math#floorDiv(int, int)
+ * @see Math#floor(double)
+ * @since 1.8
+ */
+ public static int floorDiv(int x, int y) {
+ return Math.floorDiv(x, y);
+ }
+
+ /**
+ * Returns the largest (closest to positive infinity)
+ * {@code long} value that is less than or equal to the algebraic quotient.
+ * There is one special case, if the dividend is the
+ * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
+ * then integer overflow occurs and
+ * the result is equal to the {@code Long.MIN_VALUE}.
+ * <p>
+ * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
+ * a comparison to the integer division {@code /} operator.
+ *
+ * @param x the dividend
+ * @param y the divisor
+ * @return the largest (closest to positive infinity)
+ * {@code long} value that is less than or equal to the algebraic quotient.
+ * @throws ArithmeticException if the divisor {@code y} is zero
+ * @see Math#floorDiv(long, long)
+ * @see Math#floor(double)
+ * @since 1.8
+ */
+ public static long floorDiv(long x, long y) {
+ return Math.floorDiv(x, y);
+ }
+
+ /**
+ * Returns the floor modulus of the {@code int} arguments.
+ * <p>
+ * The floor modulus is {@code x - (floorDiv(x, y) * y)},
+ * has the same sign as the divisor {@code y}, and
+ * is in the range of {@code -abs(y) < r < +abs(y)}.
+ * <p>
+ * The relationship between {@code floorDiv} and {@code floorMod} is such that:
+ * <ul>
+ * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
+ * </ul>
+ * <p>
+ * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
+ * a comparison to the {@code %} operator.
+ *
+ * @param x the dividend
+ * @param y the divisor
+ * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
+ * @throws ArithmeticException if the divisor {@code y} is zero
+ * @see Math#floorMod(int, int)
+ * @see StrictMath#floorDiv(int, int)
+ * @since 1.8
+ */
+ public static int floorMod(int x, int y) {
+ return Math.floorMod(x , y);
+ }
+ /**
+ * Returns the floor modulus of the {@code long} arguments.
+ * <p>
+ * The floor modulus is {@code x - (floorDiv(x, y) * y)},
+ * has the same sign as the divisor {@code y}, and
+ * is in the range of {@code -abs(y) < r < +abs(y)}.
+ * <p>
+ * The relationship between {@code floorDiv} and {@code floorMod} is such that:
+ * <ul>
+ * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
+ * </ul>
+ * <p>
+ * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
+ * a comparison to the {@code %} operator.
+ *
+ * @param x the dividend
+ * @param y the divisor
+ * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
+ * @throws ArithmeticException if the divisor {@code y} is zero
+ * @see Math#floorMod(long, long)
+ * @see StrictMath#floorDiv(long, long)
+ * @since 1.8
+ */
+ public static long floorMod(long x, long y) {
+ return Math.floorMod(x, y);
+ }
+
+ /**
* Returns the absolute value of an {@code int} value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
@@ -1543,7 +1644,7 @@
}
/**
- * Return {@code d} ×
+ * Returns {@code d} ×
* 2<sup>{@code scaleFactor}</sup> rounded as if performed
* by a single correctly rounded floating-point multiply to a
* member of the double value set. See the Java
@@ -1577,7 +1678,7 @@
}
/**
- * Return {@code f} ×
+ * Returns {@code f} ×
* 2<sup>{@code scaleFactor}</sup> rounded as if performed
* by a single correctly rounded floating-point multiply to a
* member of the float value set. See the Java
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/test/java/lang/Math/DivModTests.java Wed Nov 07 20:50:09 2012 -0800
@@ -0,0 +1,395 @@
+/*
+ * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+import java.math.BigDecimal;
+import java.math.RoundingMode;
+
+/**
+ * @test Test Math and StrictMath Floor Div / Modulo operations.
+ * @bug 6282196
+ * @summary Basic tests for Floor division and modulo methods for both Math
+ * and StrictMath for int and long datatypes.
+ */
+public class DivModTests {
+
+ /**
+ * The count of test errors.
+ */
+ private static int errors = 0;
+
+ /**
+ * @param args the command line arguments are unused
+ */
+ public static void main(String[] args) {
+ errors = 0;
+ testIntFloorDivMod();
+ testLongFloorDivMod();
+
+ if (errors > 0) {
+ throw new RuntimeException(errors + " errors found in DivMod methods.");
+ }
+ }
+
+ /**
+ * Report a test failure and increment the error count.
+ * @param message the formatting string
+ * @param args the variable number of arguments for the message.
+ */
+ static void fail(String message, Object... args) {
+ errors++;
+ System.out.printf(message, args);
+ }
+
+ /**
+ * Test the integer floorDiv and floorMod methods.
+ * Math and StrictMath tested and the same results are expected for both.
+ */
+ static void testIntFloorDivMod() {
+ testIntFloorDivMod(4, 0, new ArithmeticException("/ by zero"), new ArithmeticException("/ by zero")); // Should throw ArithmeticException
+ testIntFloorDivMod(4, 3, 1, 1);
+ testIntFloorDivMod(3, 3, 1, 0);
+ testIntFloorDivMod(2, 3, 0, 2);
+ testIntFloorDivMod(1, 3, 0, 1);
+ testIntFloorDivMod(0, 3, 0, 0);
+ testIntFloorDivMod(4, -3, -2, -2);
+ testIntFloorDivMod(3, -3, -1, 0);
+ testIntFloorDivMod(2, -3, -1, -1);
+ testIntFloorDivMod(1, -3, -1, -2);
+ testIntFloorDivMod(0, -3, 0, 0);
+ testIntFloorDivMod(-1, 3, -1, 2);
+ testIntFloorDivMod(-2, 3, -1, 1);
+ testIntFloorDivMod(-3, 3, -1, 0);
+ testIntFloorDivMod(-4, 3, -2, 2);
+ testIntFloorDivMod(-1, -3, 0, -1);
+ testIntFloorDivMod(-2, -3, 0, -2);
+ testIntFloorDivMod(-3, -3, 1, 0);
+ testIntFloorDivMod(-4, -3, 1, -1);
+ testIntFloorDivMod(Integer.MAX_VALUE, 1, Integer.MAX_VALUE, 0);
+ testIntFloorDivMod(Integer.MAX_VALUE, -1, -Integer.MAX_VALUE, 0);
+ testIntFloorDivMod(Integer.MAX_VALUE, 3, 715827882, 1);
+ testIntFloorDivMod(Integer.MAX_VALUE - 1, 3, 715827882, 0);
+ testIntFloorDivMod(Integer.MIN_VALUE, 3, -715827883, 1);
+ testIntFloorDivMod(Integer.MIN_VALUE + 1, 3, -715827883, 2);
+ testIntFloorDivMod(Integer.MIN_VALUE + 1, -1, Integer.MAX_VALUE, 0);
+ // Special case of integer overflow
+ testIntFloorDivMod(Integer.MIN_VALUE, -1, Integer.MIN_VALUE, 0);
+ }
+
+ /**
+ * Test FloorDiv and then FloorMod with int data.
+ */
+ static void testIntFloorDivMod(int x, int y, Object divExpected, Object modExpected) {
+ testIntFloorDiv(x, y, divExpected);
+ testIntFloorMod(x, y, modExpected);
+ }
+
+ /**
+ * Test FloorDiv with int data.
+ */
+ static void testIntFloorDiv(int x, int y, Object expected) {
+ Object result = doFloorDiv(x, y);
+ if (!resultEquals(result, expected)) {
+ fail("FAIL: Math.floorDiv(%d, %d) = %s; expected %s%n", x, y, result, expected);
+ }
+
+ Object strict_result = doStrictFloorDiv(x, y);
+ if (!resultEquals(strict_result, expected)) {
+ fail("FAIL: StrictMath.floorDiv(%d, %d) = %s; expected %s%n", x, y, strict_result, expected);
+ }
+ }
+
+ /**
+ * Test FloorMod with int data.
+ */
+ static void testIntFloorMod(int x, int y, Object expected) {
+ Object result = doFloorMod(x, y);
+ if (!resultEquals(result, expected)) {
+ fail("FAIL: Math.floorMod(%d, %d) = %s; expected %s%n", x, y, result, expected);
+ }
+
+ Object strict_result = doStrictFloorMod(x, y);
+ if (!resultEquals(strict_result, expected)) {
+ fail("FAIL: StrictMath.floorMod(%d, %d) = %s; expected %s%n", x, y, strict_result, expected);
+ }
+
+ try {
+ // Verify result against double precision floor function
+ int tmp = x / y; // Force ArithmeticException for divide by zero
+ double ff = x - Math.floor((double)x / (double)y) * y;
+ int fr = (int)ff;
+ if (fr != result) {
+ fail("FAIL: Math.floorMod(%d, %d) = %s differs from Math.floor(x, y): %d%n", x, y, result, fr);
+ }
+ } catch (ArithmeticException ae) {
+ if (y != 0) {
+ fail("FAIL: Math.floorMod(%d, %d); unexpected %s%n", x, y, ae);
+ }
+ }
+ }
+
+ /**
+ * Test the floorDiv and floorMod methods for primitive long.
+ */
+ static void testLongFloorDivMod() {
+ testLongFloorDivMod(4L, 0L, new ArithmeticException("/ by zero"), new ArithmeticException("/ by zero")); // Should throw ArithmeticException
+ testLongFloorDivMod(4L, 3L, 1L, 1L);
+ testLongFloorDivMod(3L, 3L, 1L, 0L);
+ testLongFloorDivMod(2L, 3L, 0L, 2L);
+ testLongFloorDivMod(1L, 3L, 0L, 1L);
+ testLongFloorDivMod(0L, 3L, 0L, 0L);
+ testLongFloorDivMod(4L, -3L, -2L, -2L);
+ testLongFloorDivMod(3L, -3L, -1L, 0l);
+ testLongFloorDivMod(2L, -3L, -1L, -1L);
+ testLongFloorDivMod(1L, -3L, -1L, -2L);
+ testLongFloorDivMod(0L, -3L, 0L, 0L);
+ testLongFloorDivMod(-1L, 3L, -1L, 2L);
+ testLongFloorDivMod(-2L, 3L, -1L, 1L);
+ testLongFloorDivMod(-3L, 3L, -1L, 0L);
+ testLongFloorDivMod(-4L, 3L, -2L, 2L);
+ testLongFloorDivMod(-1L, -3L, 0L, -1L);
+ testLongFloorDivMod(-2L, -3L, 0L, -2L);
+ testLongFloorDivMod(-3L, -3L, 1L, 0L);
+ testLongFloorDivMod(-4L, -3L, 1L, -1L);
+
+ testLongFloorDivMod(Long.MAX_VALUE, 1, Long.MAX_VALUE, 0L);
+ testLongFloorDivMod(Long.MAX_VALUE, -1, -Long.MAX_VALUE, 0L);
+ testLongFloorDivMod(Long.MAX_VALUE, 3L, Long.MAX_VALUE / 3L, 1L);
+ testLongFloorDivMod(Long.MAX_VALUE - 1L, 3L, (Long.MAX_VALUE - 1L) / 3L, 0L);
+ testLongFloorDivMod(Long.MIN_VALUE, 3L, Long.MIN_VALUE / 3L - 1L, 1L);
+ testLongFloorDivMod(Long.MIN_VALUE + 1L, 3L, Long.MIN_VALUE / 3L - 1L, 2L);
+ testLongFloorDivMod(Long.MIN_VALUE + 1, -1, Long.MAX_VALUE, 0L);
+ // Special case of integer overflow
+ testLongFloorDivMod(Long.MIN_VALUE, -1, Long.MIN_VALUE, 0L);
+ }
+
+ /**
+ * Test the integer floorDiv and floorMod methods.
+ * Math and StrictMath are tested and the same results are expected for both.
+ */
+ static void testLongFloorDivMod(long x, long y, Object divExpected, Object modExpected) {
+ testLongFloorDiv(x, y, divExpected);
+ testLongFloorMod(x, y, modExpected);
+ }
+
+ /**
+ * Test FloorDiv with long arguments against expected value.
+ * The expected value is usually a Long but in some cases is
+ * an ArithmeticException.
+ *
+ * @param x dividend
+ * @param y modulus
+ * @param expected expected value,
+ */
+ static void testLongFloorDiv(long x, long y, Object expected) {
+ Object result = doFloorDiv(x, y);
+ if (!resultEquals(result, expected)) {
+ fail("FAIL: long Math.floorDiv(%d, %d) = %s; expected %s%n", x, y, result, expected);
+ }
+
+ Object strict_result = doStrictFloorDiv(x, y);
+ if (!resultEquals(strict_result, expected)) {
+ fail("FAIL: long StrictMath.floorDiv(%d, %d) = %s; expected %s%n", x, y, strict_result, expected);
+ }
+ }
+
+ /**
+ * Test FloorMod of long arguments against expected value.
+ * The expected value is usually a Long but in some cases is
+ * an ArithmeticException.
+ *
+ * @param x dividend
+ * @param y modulus
+ * @param expected expected value
+ */
+ static void testLongFloorMod(long x, long y, Object expected) {
+ Object result = doFloorMod(x, y);
+ if (!resultEquals(result, expected)) {
+ fail("FAIL: long Math.floorMod(%d, %d) = %s; expected %s%n", x, y, result, expected);
+ }
+
+ Object strict_result = doStrictFloorMod(x, y);
+ if (!resultEquals(strict_result, expected)) {
+ fail("FAIL: long StrictMath.floorMod(%d, %d) = %s; expected %s%n", x, y, strict_result, expected);
+ }
+
+ try {
+ // Verify the result against BigDecimal rounding mode.
+ BigDecimal xD = new BigDecimal(x);
+ BigDecimal yD = new BigDecimal(y);
+ BigDecimal resultD = xD.divide(yD, RoundingMode.FLOOR);
+ resultD = resultD.multiply(yD);
+ resultD = xD.subtract(resultD);
+ long fr = resultD.longValue();
+ if (fr != result) {
+ fail("FAIL: Long.floorMod(%d, %d) = %d is different than BigDecimal result: %d%n",x, y, result, fr);
+
+ }
+ } catch (ArithmeticException ae) {
+ if (y != 0) {
+ fail("FAIL: long Math.floorMod(%d, %d); unexpected ArithmeticException from bigdecimal");
+ }
+ }
+ }
+
+ /**
+ * Invoke floorDiv and return the result or any exception.
+ * @param x the x value
+ * @param y the y value
+ * @return the result Integer or an exception.
+ */
+ static Object doFloorDiv(int x, int y) {
+ try {
+ return Math.floorDiv(x, y);
+ } catch (ArithmeticException ae) {
+ return ae;
+ }
+ }
+
+ /**
+ * Invoke floorDiv and return the result or any exception.
+ * @param x the x value
+ * @param y the y value
+ * @return the result Integer or an exception.
+ */
+ static Object doFloorDiv(long x, long y) {
+ try {
+ return Math.floorDiv(x, y);
+ } catch (ArithmeticException ae) {
+ return ae;
+ }
+ }
+
+ /**
+ * Invoke floorDiv and return the result or any exception.
+ * @param x the x value
+ * @param y the y value
+ * @return the result Integer or an exception.
+ */
+ static Object doFloorMod(int x, int y) {
+ try {
+ return Math.floorMod(x, y);
+ } catch (ArithmeticException ae) {
+ return ae;
+ }
+ }
+
+ /**
+ * Invoke floorDiv and return the result or any exception.
+ * @param x the x value
+ * @param y the y value
+ * @return the result Integer or an exception.
+ */
+ static Object doFloorMod(long x, long y) {
+ try {
+ return Math.floorMod(x, y);
+ } catch (ArithmeticException ae) {
+ return ae;
+ }
+ }
+
+ /**
+ * Invoke floorDiv and return the result or any exception.
+ * @param x the x value
+ * @param y the y value
+ * @return the result Integer or an exception.
+ */
+ static Object doStrictFloorDiv(int x, int y) {
+ try {
+ return StrictMath.floorDiv(x, y);
+ } catch (ArithmeticException ae) {
+ return ae;
+ }
+ }
+
+ /**
+ * Invoke floorDiv and return the result or any exception.
+ * @param x the x value
+ * @param y the y value
+ * @return the result Integer or an exception.
+ */
+ static Object doStrictFloorDiv(long x, long y) {
+ try {
+ return StrictMath.floorDiv(x, y);
+ } catch (ArithmeticException ae) {
+ return ae;
+ }
+ }
+
+ /**
+ * Invoke floorDiv and return the result or any exception.
+ * @param x the x value
+ * @param y the y value
+ * @return the result Integer or an exception.
+ */
+ static Object doStrictFloorMod(int x, int y) {
+ try {
+ return StrictMath.floorMod(x, y);
+ } catch (ArithmeticException ae) {
+ return ae;
+ }
+ }
+
+ /**
+ * Invoke floorDiv and return the result or any exception.
+ * @param x the x value
+ * @param y the y value
+ * @return the result Integer or an exception.
+ */
+ static Object doStrictFloorMod(long x, long y) {
+ try {
+ return StrictMath.floorMod(x, y);
+ } catch (ArithmeticException ae) {
+ return ae;
+ }
+ }
+
+ /**
+ * Returns a boolean by comparing the result and the expected value.
+ * The equals method is not defined for ArithmeticException but it is
+ * desirable to have equals return true if the expected and the result
+ * both threw the same exception (class and message.)
+ *
+ * @param result the result from testing the method
+ * @param expected the expected value
+ * @return true if the result is equal to the expected values; false otherwise.
+ */
+ static boolean resultEquals(Object result, Object expected) {
+ if (result.getClass() != expected.getClass()) {
+ fail("FAIL: Result type mismatch, %s; expected: %s%n",
+ result.getClass().getName(), expected.getClass().getName());
+ return false;
+ }
+
+ if (result.equals(expected)) {
+ return true;
+ }
+ // Handle special case to compare ArithmeticExceptions
+ if (result instanceof ArithmeticException && expected instanceof ArithmeticException) {
+ ArithmeticException ae1 = (ArithmeticException)result;
+ ArithmeticException ae2 = (ArithmeticException)expected;
+ return ae1.getMessage().equals(ae2.getMessage());
+ }
+ return false;
+ }
+
+}