--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.cpp Wed May 02 15:47:06 2012 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1257 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#include "precompiled.hpp"
-#include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
-#include "gc_implementation/shared/allocationStats.hpp"
-#include "gc_implementation/shared/spaceDecorator.hpp"
-#include "memory/space.inline.hpp"
-#include "runtime/globals.hpp"
-#include "utilities/ostream.hpp"
-
-////////////////////////////////////////////////////////////////////////////////
-// A binary tree based search structure for free blocks.
-// This is currently used in the Concurrent Mark&Sweep implementation.
-////////////////////////////////////////////////////////////////////////////////
-
-TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
- // Do some assertion checking here.
- return (TreeChunk*) fc;
-}
-
-void TreeChunk::verifyTreeChunkList() const {
- TreeChunk* nextTC = (TreeChunk*)next();
- if (prev() != NULL) { // interior list node shouldn'r have tree fields
- guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
- embedded_list()->right() == NULL, "should be clear");
- }
- if (nextTC != NULL) {
- guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
- guarantee(nextTC->size() == size(), "wrong size");
- nextTC->verifyTreeChunkList();
- }
-}
-
-
-TreeList* TreeList::as_TreeList(TreeChunk* tc) {
- // This first free chunk in the list will be the tree list.
- assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
- TreeList* tl = tc->embedded_list();
- tc->set_list(tl);
-#ifdef ASSERT
- tl->set_protecting_lock(NULL);
-#endif
- tl->set_hint(0);
- tl->set_size(tc->size());
- tl->link_head(tc);
- tl->link_tail(tc);
- tl->set_count(1);
- tl->init_statistics(true /* split_birth */);
- tl->setParent(NULL);
- tl->setLeft(NULL);
- tl->setRight(NULL);
- return tl;
-}
-
-TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
- TreeChunk* tc = (TreeChunk*) addr;
- assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
- // The space in the heap will have been mangled initially but
- // is not remangled when a free chunk is returned to the free list
- // (since it is used to maintain the chunk on the free list).
- assert((ZapUnusedHeapArea &&
- SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
- SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
- SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
- (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
- "Space should be clear or mangled");
- tc->setSize(size);
- tc->linkPrev(NULL);
- tc->linkNext(NULL);
- TreeList* tl = TreeList::as_TreeList(tc);
- return tl;
-}
-
-TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
-
- TreeList* retTL = this;
- FreeChunk* list = head();
- assert(!list || list != list->next(), "Chunk on list twice");
- assert(tc != NULL, "Chunk being removed is NULL");
- assert(parent() == NULL || this == parent()->left() ||
- this == parent()->right(), "list is inconsistent");
- assert(tc->isFree(), "Header is not marked correctly");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
- FreeChunk* prevFC = tc->prev();
- TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
- assert(list != NULL, "should have at least the target chunk");
-
- // Is this the first item on the list?
- if (tc == list) {
- // The "getChunk..." functions for a TreeList will not return the
- // first chunk in the list unless it is the last chunk in the list
- // because the first chunk is also acting as the tree node.
- // When coalescing happens, however, the first chunk in the a tree
- // list can be the start of a free range. Free ranges are removed
- // from the free lists so that they are not available to be
- // allocated when the sweeper yields (giving up the free list lock)
- // to allow mutator activity. If this chunk is the first in the
- // list and is not the last in the list, do the work to copy the
- // TreeList from the first chunk to the next chunk and update all
- // the TreeList pointers in the chunks in the list.
- if (nextTC == NULL) {
- assert(prevFC == NULL, "Not last chunk in the list");
- set_tail(NULL);
- set_head(NULL);
- } else {
- // copy embedded list.
- nextTC->set_embedded_list(tc->embedded_list());
- retTL = nextTC->embedded_list();
- // Fix the pointer to the list in each chunk in the list.
- // This can be slow for a long list. Consider having
- // an option that does not allow the first chunk on the
- // list to be coalesced.
- for (TreeChunk* curTC = nextTC; curTC != NULL;
- curTC = TreeChunk::as_TreeChunk(curTC->next())) {
- curTC->set_list(retTL);
- }
- // Fix the parent to point to the new TreeList.
- if (retTL->parent() != NULL) {
- if (this == retTL->parent()->left()) {
- retTL->parent()->setLeft(retTL);
- } else {
- assert(this == retTL->parent()->right(), "Parent is incorrect");
- retTL->parent()->setRight(retTL);
- }
- }
- // Fix the children's parent pointers to point to the
- // new list.
- assert(right() == retTL->right(), "Should have been copied");
- if (retTL->right() != NULL) {
- retTL->right()->setParent(retTL);
- }
- assert(left() == retTL->left(), "Should have been copied");
- if (retTL->left() != NULL) {
- retTL->left()->setParent(retTL);
- }
- retTL->link_head(nextTC);
- assert(nextTC->isFree(), "Should be a free chunk");
- }
- } else {
- if (nextTC == NULL) {
- // Removing chunk at tail of list
- link_tail(prevFC);
- }
- // Chunk is interior to the list
- prevFC->linkAfter(nextTC);
- }
-
- // Below this point the embeded TreeList being used for the
- // tree node may have changed. Don't use "this"
- // TreeList*.
- // chunk should still be a free chunk (bit set in _prev)
- assert(!retTL->head() || retTL->size() == retTL->head()->size(),
- "Wrong sized chunk in list");
- debug_only(
- tc->linkPrev(NULL);
- tc->linkNext(NULL);
- tc->set_list(NULL);
- bool prev_found = false;
- bool next_found = false;
- for (FreeChunk* curFC = retTL->head();
- curFC != NULL; curFC = curFC->next()) {
- assert(curFC != tc, "Chunk is still in list");
- if (curFC == prevFC) {
- prev_found = true;
- }
- if (curFC == nextTC) {
- next_found = true;
- }
- }
- assert(prevFC == NULL || prev_found, "Chunk was lost from list");
- assert(nextTC == NULL || next_found, "Chunk was lost from list");
- assert(retTL->parent() == NULL ||
- retTL == retTL->parent()->left() ||
- retTL == retTL->parent()->right(),
- "list is inconsistent");
- )
- retTL->decrement_count();
-
- assert(tc->isFree(), "Should still be a free chunk");
- assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
- "list invariant");
- assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
- "list invariant");
- return retTL;
-}
-void TreeList::returnChunkAtTail(TreeChunk* chunk) {
- assert(chunk != NULL, "returning NULL chunk");
- assert(chunk->list() == this, "list should be set for chunk");
- assert(tail() != NULL, "The tree list is embedded in the first chunk");
- // which means that the list can never be empty.
- assert(!verifyChunkInFreeLists(chunk), "Double entry");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
- FreeChunk* fc = tail();
- fc->linkAfter(chunk);
- link_tail(chunk);
-
- assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
- increment_count();
- debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-}
-
-// Add this chunk at the head of the list. "At the head of the list"
-// is defined to be after the chunk pointer to by head(). This is
-// because the TreeList is embedded in the first TreeChunk in the
-// list. See the definition of TreeChunk.
-void TreeList::returnChunkAtHead(TreeChunk* chunk) {
- assert(chunk->list() == this, "list should be set for chunk");
- assert(head() != NULL, "The tree list is embedded in the first chunk");
- assert(chunk != NULL, "returning NULL chunk");
- assert(!verifyChunkInFreeLists(chunk), "Double entry");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
- FreeChunk* fc = head()->next();
- if (fc != NULL) {
- chunk->linkAfter(fc);
- } else {
- assert(tail() == NULL, "List is inconsistent");
- link_tail(chunk);
- }
- head()->linkAfter(chunk);
- assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
- increment_count();
- debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-}
-
-TreeChunk* TreeList::head_as_TreeChunk() {
- assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
- "Wrong type of chunk?");
- return TreeChunk::as_TreeChunk(head());
-}
-
-TreeChunk* TreeList::first_available() {
- assert(head() != NULL, "The head of the list cannot be NULL");
- FreeChunk* fc = head()->next();
- TreeChunk* retTC;
- if (fc == NULL) {
- retTC = head_as_TreeChunk();
- } else {
- retTC = TreeChunk::as_TreeChunk(fc);
- }
- assert(retTC->list() == this, "Wrong type of chunk.");
- return retTC;
-}
-
-// Returns the block with the largest heap address amongst
-// those in the list for this size; potentially slow and expensive,
-// use with caution!
-TreeChunk* TreeList::largest_address() {
- assert(head() != NULL, "The head of the list cannot be NULL");
- FreeChunk* fc = head()->next();
- TreeChunk* retTC;
- if (fc == NULL) {
- retTC = head_as_TreeChunk();
- } else {
- // walk down the list and return the one with the highest
- // heap address among chunks of this size.
- FreeChunk* last = fc;
- while (fc->next() != NULL) {
- if ((HeapWord*)last < (HeapWord*)fc) {
- last = fc;
- }
- fc = fc->next();
- }
- retTC = TreeChunk::as_TreeChunk(last);
- }
- assert(retTC->list() == this, "Wrong type of chunk.");
- return retTC;
-}
-
-BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
- _splay(splay)
-{
- assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
-
- reset(mr);
- assert(root()->left() == NULL, "reset check failed");
- assert(root()->right() == NULL, "reset check failed");
- assert(root()->head()->next() == NULL, "reset check failed");
- assert(root()->head()->prev() == NULL, "reset check failed");
- assert(totalSize() == root()->size(), "reset check failed");
- assert(totalFreeBlocks() == 1, "reset check failed");
-}
-
-void BinaryTreeDictionary::inc_totalSize(size_t inc) {
- _totalSize = _totalSize + inc;
-}
-
-void BinaryTreeDictionary::dec_totalSize(size_t dec) {
- _totalSize = _totalSize - dec;
-}
-
-void BinaryTreeDictionary::reset(MemRegion mr) {
- assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
- set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
- set_totalSize(mr.word_size());
- set_totalFreeBlocks(1);
-}
-
-void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
- MemRegion mr(addr, heap_word_size(byte_size));
- reset(mr);
-}
-
-void BinaryTreeDictionary::reset() {
- set_root(NULL);
- set_totalSize(0);
- set_totalFreeBlocks(0);
-}
-
-// Get a free block of size at least size from tree, or NULL.
-// If a splay step is requested, the removal algorithm (only) incorporates
-// a splay step as follows:
-// . the search proceeds down the tree looking for a possible
-// match. At the (closest) matching location, an appropriate splay step is applied
-// (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
-// if available, and if it's the last chunk, the node is deleted. A deteleted
-// node is replaced in place by its tree successor.
-TreeChunk*
-BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
-{
- TreeList *curTL, *prevTL;
- TreeChunk* retTC = NULL;
- assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
- if (FLSVerifyDictionary) {
- verifyTree();
- }
- // starting at the root, work downwards trying to find match.
- // Remember the last node of size too great or too small.
- for (prevTL = curTL = root(); curTL != NULL;) {
- if (curTL->size() == size) { // exact match
- break;
- }
- prevTL = curTL;
- if (curTL->size() < size) { // proceed to right sub-tree
- curTL = curTL->right();
- } else { // proceed to left sub-tree
- assert(curTL->size() > size, "size inconsistency");
- curTL = curTL->left();
- }
- }
- if (curTL == NULL) { // couldn't find exact match
- // try and find the next larger size by walking back up the search path
- for (curTL = prevTL; curTL != NULL;) {
- if (curTL->size() >= size) break;
- else curTL = curTL->parent();
- }
- assert(curTL == NULL || curTL->count() > 0,
- "An empty list should not be in the tree");
- }
- if (curTL != NULL) {
- assert(curTL->size() >= size, "size inconsistency");
- if (UseCMSAdaptiveFreeLists) {
-
- // A candidate chunk has been found. If it is already under
- // populated, get a chunk associated with the hint for this
- // chunk.
- if (curTL->surplus() <= 0) {
- /* Use the hint to find a size with a surplus, and reset the hint. */
- TreeList* hintTL = curTL;
- while (hintTL->hint() != 0) {
- assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
- "hint points in the wrong direction");
- hintTL = findList(hintTL->hint());
- assert(curTL != hintTL, "Infinite loop");
- if (hintTL == NULL ||
- hintTL == curTL /* Should not happen but protect against it */ ) {
- // No useful hint. Set the hint to NULL and go on.
- curTL->set_hint(0);
- break;
- }
- assert(hintTL->size() > size, "hint is inconsistent");
- if (hintTL->surplus() > 0) {
- // The hint led to a list that has a surplus. Use it.
- // Set the hint for the candidate to an overpopulated
- // size.
- curTL->set_hint(hintTL->size());
- // Change the candidate.
- curTL = hintTL;
- break;
- }
- // The evm code reset the hint of the candidate as
- // at an interim point. Why? Seems like this leaves
- // the hint pointing to a list that didn't work.
- // curTL->set_hint(hintTL->size());
- }
- }
- }
- // don't waste time splaying if chunk's singleton
- if (splay && curTL->head()->next() != NULL) {
- semiSplayStep(curTL);
- }
- retTC = curTL->first_available();
- assert((retTC != NULL) && (curTL->count() > 0),
- "A list in the binary tree should not be NULL");
- assert(retTC->size() >= size,
- "A chunk of the wrong size was found");
- removeChunkFromTree(retTC);
- assert(retTC->isFree(), "Header is not marked correctly");
- }
-
- if (FLSVerifyDictionary) {
- verify();
- }
- return retTC;
-}
-
-TreeList* BinaryTreeDictionary::findList(size_t size) const {
- TreeList* curTL;
- for (curTL = root(); curTL != NULL;) {
- if (curTL->size() == size) { // exact match
- break;
- }
-
- if (curTL->size() < size) { // proceed to right sub-tree
- curTL = curTL->right();
- } else { // proceed to left sub-tree
- assert(curTL->size() > size, "size inconsistency");
- curTL = curTL->left();
- }
- }
- return curTL;
-}
-
-
-bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
- size_t size = tc->size();
- TreeList* tl = findList(size);
- if (tl == NULL) {
- return false;
- } else {
- return tl->verifyChunkInFreeLists(tc);
- }
-}
-
-FreeChunk* BinaryTreeDictionary::findLargestDict() const {
- TreeList *curTL = root();
- if (curTL != NULL) {
- while(curTL->right() != NULL) curTL = curTL->right();
- return curTL->largest_address();
- } else {
- return NULL;
- }
-}
-
-// Remove the current chunk from the tree. If it is not the last
-// chunk in a list on a tree node, just unlink it.
-// If it is the last chunk in the list (the next link is NULL),
-// remove the node and repair the tree.
-TreeChunk*
-BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
- assert(tc != NULL, "Should not call with a NULL chunk");
- assert(tc->isFree(), "Header is not marked correctly");
-
- TreeList *newTL, *parentTL;
- TreeChunk* retTC;
- TreeList* tl = tc->list();
- debug_only(
- bool removing_only_chunk = false;
- if (tl == _root) {
- if ((_root->left() == NULL) && (_root->right() == NULL)) {
- if (_root->count() == 1) {
- assert(_root->head() == tc, "Should only be this one chunk");
- removing_only_chunk = true;
- }
- }
- }
- )
- assert(tl != NULL, "List should be set");
- assert(tl->parent() == NULL || tl == tl->parent()->left() ||
- tl == tl->parent()->right(), "list is inconsistent");
-
- bool complicatedSplice = false;
-
- retTC = tc;
- // Removing this chunk can have the side effect of changing the node
- // (TreeList*) in the tree. If the node is the root, update it.
- TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
- assert(tc->isFree(), "Chunk should still be free");
- assert(replacementTL->parent() == NULL ||
- replacementTL == replacementTL->parent()->left() ||
- replacementTL == replacementTL->parent()->right(),
- "list is inconsistent");
- if (tl == root()) {
- assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
- set_root(replacementTL);
- }
- debug_only(
- if (tl != replacementTL) {
- assert(replacementTL->head() != NULL,
- "If the tree list was replaced, it should not be a NULL list");
- TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
- TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
- assert(rhl == replacementTL, "Broken head");
- assert(rtl == replacementTL, "Broken tail");
- assert(replacementTL->size() == tc->size(), "Broken size");
- }
- )
-
- // Does the tree need to be repaired?
- if (replacementTL->count() == 0) {
- assert(replacementTL->head() == NULL &&
- replacementTL->tail() == NULL, "list count is incorrect");
- // Find the replacement node for the (soon to be empty) node being removed.
- // if we have a single (or no) child, splice child in our stead
- if (replacementTL->left() == NULL) {
- // left is NULL so pick right. right may also be NULL.
- newTL = replacementTL->right();
- debug_only(replacementTL->clearRight();)
- } else if (replacementTL->right() == NULL) {
- // right is NULL
- newTL = replacementTL->left();
- debug_only(replacementTL->clearLeft();)
- } else { // we have both children, so, by patriarchal convention,
- // my replacement is least node in right sub-tree
- complicatedSplice = true;
- newTL = removeTreeMinimum(replacementTL->right());
- assert(newTL != NULL && newTL->left() == NULL &&
- newTL->right() == NULL, "sub-tree minimum exists");
- }
- // newTL is the replacement for the (soon to be empty) node.
- // newTL may be NULL.
- // should verify; we just cleanly excised our replacement
- if (FLSVerifyDictionary) {
- verifyTree();
- }
- // first make newTL my parent's child
- if ((parentTL = replacementTL->parent()) == NULL) {
- // newTL should be root
- assert(tl == root(), "Incorrectly replacing root");
- set_root(newTL);
- if (newTL != NULL) {
- newTL->clearParent();
- }
- } else if (parentTL->right() == replacementTL) {
- // replacementTL is a right child
- parentTL->setRight(newTL);
- } else { // replacementTL is a left child
- assert(parentTL->left() == replacementTL, "should be left child");
- parentTL->setLeft(newTL);
- }
- debug_only(replacementTL->clearParent();)
- if (complicatedSplice) { // we need newTL to get replacementTL's
- // two children
- assert(newTL != NULL &&
- newTL->left() == NULL && newTL->right() == NULL,
- "newTL should not have encumbrances from the past");
- // we'd like to assert as below:
- // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
- // "else !complicatedSplice");
- // ... however, the above assertion is too strong because we aren't
- // guaranteed that replacementTL->right() is still NULL.
- // Recall that we removed
- // the right sub-tree minimum from replacementTL.
- // That may well have been its right
- // child! So we'll just assert half of the above:
- assert(replacementTL->left() != NULL, "else !complicatedSplice");
- newTL->setLeft(replacementTL->left());
- newTL->setRight(replacementTL->right());
- debug_only(
- replacementTL->clearRight();
- replacementTL->clearLeft();
- )
- }
- assert(replacementTL->right() == NULL &&
- replacementTL->left() == NULL &&
- replacementTL->parent() == NULL,
- "delete without encumbrances");
- }
-
- assert(totalSize() >= retTC->size(), "Incorrect total size");
- dec_totalSize(retTC->size()); // size book-keeping
- assert(totalFreeBlocks() > 0, "Incorrect total count");
- set_totalFreeBlocks(totalFreeBlocks() - 1);
-
- assert(retTC != NULL, "null chunk?");
- assert(retTC->prev() == NULL && retTC->next() == NULL,
- "should return without encumbrances");
- if (FLSVerifyDictionary) {
- verifyTree();
- }
- assert(!removing_only_chunk || _root == NULL, "root should be NULL");
- return TreeChunk::as_TreeChunk(retTC);
-}
-
-// Remove the leftmost node (lm) in the tree and return it.
-// If lm has a right child, link it to the left node of
-// the parent of lm.
-TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
- assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
- // locate the subtree minimum by walking down left branches
- TreeList* curTL = tl;
- for (; curTL->left() != NULL; curTL = curTL->left());
- // obviously curTL now has at most one child, a right child
- if (curTL != root()) { // Should this test just be removed?
- TreeList* parentTL = curTL->parent();
- if (parentTL->left() == curTL) { // curTL is a left child
- parentTL->setLeft(curTL->right());
- } else {
- // If the list tl has no left child, then curTL may be
- // the right child of parentTL.
- assert(parentTL->right() == curTL, "should be a right child");
- parentTL->setRight(curTL->right());
- }
- } else {
- // The only use of this method would not pass the root of the
- // tree (as indicated by the assertion above that the tree list
- // has a parent) but the specification does not explicitly exclude the
- // passing of the root so accomodate it.
- set_root(NULL);
- }
- debug_only(
- curTL->clearParent(); // Test if this needs to be cleared
- curTL->clearRight(); // recall, above, left child is already null
- )
- // we just excised a (non-root) node, we should still verify all tree invariants
- if (FLSVerifyDictionary) {
- verifyTree();
- }
- return curTL;
-}
-
-// Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
-// The simplifications are the following:
-// . we splay only when we delete (not when we insert)
-// . we apply a single spay step per deletion/access
-// By doing such partial splaying, we reduce the amount of restructuring,
-// while getting a reasonably efficient search tree (we think).
-// [Measurements will be needed to (in)validate this expectation.]
-
-void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
- // apply a semi-splay step at the given node:
- // . if root, norting needs to be done
- // . if child of root, splay once
- // . else zig-zig or sig-zag depending on path from grandparent
- if (root() == tc) return;
- warning("*** Splaying not yet implemented; "
- "tree operations may be inefficient ***");
-}
-
-void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
- TreeList *curTL, *prevTL;
- size_t size = fc->size();
-
- assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
- if (FLSVerifyDictionary) {
- verifyTree();
- }
- // XXX: do i need to clear the FreeChunk fields, let me do it just in case
- // Revisit this later
-
- fc->clearNext();
- fc->linkPrev(NULL);
-
- // work down from the _root, looking for insertion point
- for (prevTL = curTL = root(); curTL != NULL;) {
- if (curTL->size() == size) // exact match
- break;
- prevTL = curTL;
- if (curTL->size() > size) { // follow left branch
- curTL = curTL->left();
- } else { // follow right branch
- assert(curTL->size() < size, "size inconsistency");
- curTL = curTL->right();
- }
- }
- TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
- // This chunk is being returned to the binary tree. Its embedded
- // TreeList should be unused at this point.
- tc->initialize();
- if (curTL != NULL) { // exact match
- tc->set_list(curTL);
- curTL->returnChunkAtTail(tc);
- } else { // need a new node in tree
- tc->clearNext();
- tc->linkPrev(NULL);
- TreeList* newTL = TreeList::as_TreeList(tc);
- assert(((TreeChunk*)tc)->list() == newTL,
- "List was not initialized correctly");
- if (prevTL == NULL) { // we are the only tree node
- assert(root() == NULL, "control point invariant");
- set_root(newTL);
- } else { // insert under prevTL ...
- if (prevTL->size() < size) { // am right child
- assert(prevTL->right() == NULL, "control point invariant");
- prevTL->setRight(newTL);
- } else { // am left child
- assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
- prevTL->setLeft(newTL);
- }
- }
- }
- assert(tc->list() != NULL, "Tree list should be set");
-
- inc_totalSize(size);
- // Method 'totalSizeInTree' walks through the every block in the
- // tree, so it can cause significant performance loss if there are
- // many blocks in the tree
- assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
- set_totalFreeBlocks(totalFreeBlocks() + 1);
- if (FLSVerifyDictionary) {
- verifyTree();
- }
-}
-
-size_t BinaryTreeDictionary::maxChunkSize() const {
- verify_par_locked();
- TreeList* tc = root();
- if (tc == NULL) return 0;
- for (; tc->right() != NULL; tc = tc->right());
- return tc->size();
-}
-
-size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
- size_t res;
- res = tl->count();
-#ifdef ASSERT
- size_t cnt;
- FreeChunk* tc = tl->head();
- for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
- assert(res == cnt, "The count is not being maintained correctly");
-#endif
- return res;
-}
-
-size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
- if (tl == NULL)
- return 0;
- return (tl->size() * totalListLength(tl)) +
- totalSizeInTree(tl->left()) +
- totalSizeInTree(tl->right());
-}
-
-double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
- if (tl == NULL) {
- return 0.0;
- }
- double size = (double)(tl->size());
- double curr = size * size * totalListLength(tl);
- curr += sum_of_squared_block_sizes(tl->left());
- curr += sum_of_squared_block_sizes(tl->right());
- return curr;
-}
-
-size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
- if (tl == NULL)
- return 0;
- return totalListLength(tl) +
- totalFreeBlocksInTree(tl->left()) +
- totalFreeBlocksInTree(tl->right());
-}
-
-size_t BinaryTreeDictionary::numFreeBlocks() const {
- assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
- "_totalFreeBlocks inconsistency");
- return totalFreeBlocks();
-}
-
-size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
- if (tl == NULL)
- return 0;
- return 1 + MAX2(treeHeightHelper(tl->left()),
- treeHeightHelper(tl->right()));
-}
-
-size_t BinaryTreeDictionary::treeHeight() const {
- return treeHeightHelper(root());
-}
-
-size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
- if (tl == NULL) {
- return 0;
- }
- return 1 + totalNodesHelper(tl->left()) +
- totalNodesHelper(tl->right());
-}
-
-size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
- return totalNodesHelper(root());
-}
-
-void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
- TreeList* nd = findList(size);
- if (nd) {
- if (split) {
- if (birth) {
- nd->increment_splitBirths();
- nd->increment_surplus();
- } else {
- nd->increment_splitDeaths();
- nd->decrement_surplus();
- }
- } else {
- if (birth) {
- nd->increment_coalBirths();
- nd->increment_surplus();
- } else {
- nd->increment_coalDeaths();
- nd->decrement_surplus();
- }
- }
- }
- // A list for this size may not be found (nd == 0) if
- // This is a death where the appropriate list is now
- // empty and has been removed from the list.
- // This is a birth associated with a LinAB. The chunk
- // for the LinAB is not in the dictionary.
-}
-
-bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
- if (FLSAlwaysCoalesceLarge) return true;
-
- TreeList* list_of_size = findList(size);
- // None of requested size implies overpopulated.
- return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
- list_of_size->count() > list_of_size->coalDesired();
-}
-
-// Closures for walking the binary tree.
-// do_list() walks the free list in a node applying the closure
-// to each free chunk in the list
-// do_tree() walks the nodes in the binary tree applying do_list()
-// to each list at each node.
-
-class TreeCensusClosure : public StackObj {
- protected:
- virtual void do_list(FreeList* fl) = 0;
- public:
- virtual void do_tree(TreeList* tl) = 0;
-};
-
-class AscendTreeCensusClosure : public TreeCensusClosure {
- public:
- void do_tree(TreeList* tl) {
- if (tl != NULL) {
- do_tree(tl->left());
- do_list(tl);
- do_tree(tl->right());
- }
- }
-};
-
-class DescendTreeCensusClosure : public TreeCensusClosure {
- public:
- void do_tree(TreeList* tl) {
- if (tl != NULL) {
- do_tree(tl->right());
- do_list(tl);
- do_tree(tl->left());
- }
- }
-};
-
-// For each list in the tree, calculate the desired, desired
-// coalesce, count before sweep, and surplus before sweep.
-class BeginSweepClosure : public AscendTreeCensusClosure {
- double _percentage;
- float _inter_sweep_current;
- float _inter_sweep_estimate;
- float _intra_sweep_estimate;
-
- public:
- BeginSweepClosure(double p, float inter_sweep_current,
- float inter_sweep_estimate,
- float intra_sweep_estimate) :
- _percentage(p),
- _inter_sweep_current(inter_sweep_current),
- _inter_sweep_estimate(inter_sweep_estimate),
- _intra_sweep_estimate(intra_sweep_estimate) { }
-
- void do_list(FreeList* fl) {
- double coalSurplusPercent = _percentage;
- fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
- fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
- fl->set_beforeSweep(fl->count());
- fl->set_bfrSurp(fl->surplus());
- }
-};
-
-// Used to search the tree until a condition is met.
-// Similar to TreeCensusClosure but searches the
-// tree and returns promptly when found.
-
-class TreeSearchClosure : public StackObj {
- protected:
- virtual bool do_list(FreeList* fl) = 0;
- public:
- virtual bool do_tree(TreeList* tl) = 0;
-};
-
-#if 0 // Don't need this yet but here for symmetry.
-class AscendTreeSearchClosure : public TreeSearchClosure {
- public:
- bool do_tree(TreeList* tl) {
- if (tl != NULL) {
- if (do_tree(tl->left())) return true;
- if (do_list(tl)) return true;
- if (do_tree(tl->right())) return true;
- }
- return false;
- }
-};
-#endif
-
-class DescendTreeSearchClosure : public TreeSearchClosure {
- public:
- bool do_tree(TreeList* tl) {
- if (tl != NULL) {
- if (do_tree(tl->right())) return true;
- if (do_list(tl)) return true;
- if (do_tree(tl->left())) return true;
- }
- return false;
- }
-};
-
-// Searches the tree for a chunk that ends at the
-// specified address.
-class EndTreeSearchClosure : public DescendTreeSearchClosure {
- HeapWord* _target;
- FreeChunk* _found;
-
- public:
- EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
- bool do_list(FreeList* fl) {
- FreeChunk* item = fl->head();
- while (item != NULL) {
- if (item->end() == _target) {
- _found = item;
- return true;
- }
- item = item->next();
- }
- return false;
- }
- FreeChunk* found() { return _found; }
-};
-
-FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
- EndTreeSearchClosure etsc(target);
- bool found_target = etsc.do_tree(root());
- assert(found_target || etsc.found() == NULL, "Consistency check");
- assert(!found_target || etsc.found() != NULL, "Consistency check");
- return etsc.found();
-}
-
-void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
- float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
- BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
- inter_sweep_estimate,
- intra_sweep_estimate);
- bsc.do_tree(root());
-}
-
-// Closures and methods for calculating total bytes returned to the
-// free lists in the tree.
-NOT_PRODUCT(
- class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
- public:
- void do_list(FreeList* fl) {
- fl->set_returnedBytes(0);
- }
- };
-
- void BinaryTreeDictionary::initializeDictReturnedBytes() {
- InitializeDictReturnedBytesClosure idrb;
- idrb.do_tree(root());
- }
-
- class ReturnedBytesClosure : public AscendTreeCensusClosure {
- size_t _dictReturnedBytes;
- public:
- ReturnedBytesClosure() { _dictReturnedBytes = 0; }
- void do_list(FreeList* fl) {
- _dictReturnedBytes += fl->returnedBytes();
- }
- size_t dictReturnedBytes() { return _dictReturnedBytes; }
- };
-
- size_t BinaryTreeDictionary::sumDictReturnedBytes() {
- ReturnedBytesClosure rbc;
- rbc.do_tree(root());
-
- return rbc.dictReturnedBytes();
- }
-
- // Count the number of entries in the tree.
- class treeCountClosure : public DescendTreeCensusClosure {
- public:
- uint count;
- treeCountClosure(uint c) { count = c; }
- void do_list(FreeList* fl) {
- count++;
- }
- };
-
- size_t BinaryTreeDictionary::totalCount() {
- treeCountClosure ctc(0);
- ctc.do_tree(root());
- return ctc.count;
- }
-)
-
-// Calculate surpluses for the lists in the tree.
-class setTreeSurplusClosure : public AscendTreeCensusClosure {
- double percentage;
- public:
- setTreeSurplusClosure(double v) { percentage = v; }
- void do_list(FreeList* fl) {
- double splitSurplusPercent = percentage;
- fl->set_surplus(fl->count() -
- (ssize_t)((double)fl->desired() * splitSurplusPercent));
- }
-};
-
-void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
- setTreeSurplusClosure sts(splitSurplusPercent);
- sts.do_tree(root());
-}
-
-// Set hints for the lists in the tree.
-class setTreeHintsClosure : public DescendTreeCensusClosure {
- size_t hint;
- public:
- setTreeHintsClosure(size_t v) { hint = v; }
- void do_list(FreeList* fl) {
- fl->set_hint(hint);
- assert(fl->hint() == 0 || fl->hint() > fl->size(),
- "Current hint is inconsistent");
- if (fl->surplus() > 0) {
- hint = fl->size();
- }
- }
-};
-
-void BinaryTreeDictionary::setTreeHints(void) {
- setTreeHintsClosure sth(0);
- sth.do_tree(root());
-}
-
-// Save count before previous sweep and splits and coalesces.
-class clearTreeCensusClosure : public AscendTreeCensusClosure {
- void do_list(FreeList* fl) {
- fl->set_prevSweep(fl->count());
- fl->set_coalBirths(0);
- fl->set_coalDeaths(0);
- fl->set_splitBirths(0);
- fl->set_splitDeaths(0);
- }
-};
-
-void BinaryTreeDictionary::clearTreeCensus(void) {
- clearTreeCensusClosure ctc;
- ctc.do_tree(root());
-}
-
-// Do reporting and post sweep clean up.
-void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
- // Does walking the tree 3 times hurt?
- setTreeSurplus(splitSurplusPercent);
- setTreeHints();
- if (PrintGC && Verbose) {
- reportStatistics();
- }
- clearTreeCensus();
-}
-
-// Print summary statistics
-void BinaryTreeDictionary::reportStatistics() const {
- verify_par_locked();
- gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
- "------------------------------------\n");
- size_t totalSize = totalChunkSize(debug_only(NULL));
- size_t freeBlocks = numFreeBlocks();
- gclog_or_tty->print("Total Free Space: %d\n", totalSize);
- gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSize());
- gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
- if (freeBlocks > 0) {
- gclog_or_tty->print("Av. Block Size: %d\n", totalSize/freeBlocks);
- }
- gclog_or_tty->print("Tree Height: %d\n", treeHeight());
-}
-
-// Print census information - counts, births, deaths, etc.
-// for each list in the tree. Also print some summary
-// information.
-class PrintTreeCensusClosure : public AscendTreeCensusClosure {
- int _print_line;
- size_t _totalFree;
- FreeList _total;
-
- public:
- PrintTreeCensusClosure() {
- _print_line = 0;
- _totalFree = 0;
- }
- FreeList* total() { return &_total; }
- size_t totalFree() { return _totalFree; }
- void do_list(FreeList* fl) {
- if (++_print_line >= 40) {
- FreeList::print_labels_on(gclog_or_tty, "size");
- _print_line = 0;
- }
- fl->print_on(gclog_or_tty);
- _totalFree += fl->count() * fl->size() ;
- total()->set_count( total()->count() + fl->count() );
- total()->set_bfrSurp( total()->bfrSurp() + fl->bfrSurp() );
- total()->set_surplus( total()->splitDeaths() + fl->surplus() );
- total()->set_desired( total()->desired() + fl->desired() );
- total()->set_prevSweep( total()->prevSweep() + fl->prevSweep() );
- total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
- total()->set_coalBirths( total()->coalBirths() + fl->coalBirths() );
- total()->set_coalDeaths( total()->coalDeaths() + fl->coalDeaths() );
- total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
- total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
- }
-};
-
-void BinaryTreeDictionary::printDictCensus(void) const {
-
- gclog_or_tty->print("\nBinaryTree\n");
- FreeList::print_labels_on(gclog_or_tty, "size");
- PrintTreeCensusClosure ptc;
- ptc.do_tree(root());
-
- FreeList* total = ptc.total();
- FreeList::print_labels_on(gclog_or_tty, " ");
- total->print_on(gclog_or_tty, "TOTAL\t");
- gclog_or_tty->print(
- "totalFree(words): " SIZE_FORMAT_W(16)
- " growth: %8.5f deficit: %8.5f\n",
- ptc.totalFree(),
- (double)(total->splitBirths() + total->coalBirths()
- - total->splitDeaths() - total->coalDeaths())
- /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
- (double)(total->desired() - total->count())
- /(total->desired() != 0 ? (double)total->desired() : 1.0));
-}
-
-class PrintFreeListsClosure : public AscendTreeCensusClosure {
- outputStream* _st;
- int _print_line;
-
- public:
- PrintFreeListsClosure(outputStream* st) {
- _st = st;
- _print_line = 0;
- }
- void do_list(FreeList* fl) {
- if (++_print_line >= 40) {
- FreeList::print_labels_on(_st, "size");
- _print_line = 0;
- }
- fl->print_on(gclog_or_tty);
- size_t sz = fl->size();
- for (FreeChunk* fc = fl->head(); fc != NULL;
- fc = fc->next()) {
- _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
- fc, (HeapWord*)fc + sz,
- fc->cantCoalesce() ? "\t CC" : "");
- }
- }
-};
-
-void BinaryTreeDictionary::print_free_lists(outputStream* st) const {
-
- FreeList::print_labels_on(st, "size");
- PrintFreeListsClosure pflc(st);
- pflc.do_tree(root());
-}
-
-// Verify the following tree invariants:
-// . _root has no parent
-// . parent and child point to each other
-// . each node's key correctly related to that of its child(ren)
-void BinaryTreeDictionary::verifyTree() const {
- guarantee(root() == NULL || totalFreeBlocks() == 0 ||
- totalSize() != 0, "_totalSize should't be 0?");
- guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
- verifyTreeHelper(root());
-}
-
-size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
- size_t ct = 0;
- for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
- ct++;
- assert(curFC->prev() == NULL || curFC->prev()->isFree(),
- "Chunk should be free");
- }
- return ct;
-}
-
-// Note: this helper is recursive rather than iterative, so use with
-// caution on very deep trees; and watch out for stack overflow errors;
-// In general, to be used only for debugging.
-void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
- if (tl == NULL)
- return;
- guarantee(tl->size() != 0, "A list must has a size");
- guarantee(tl->left() == NULL || tl->left()->parent() == tl,
- "parent<-/->left");
- guarantee(tl->right() == NULL || tl->right()->parent() == tl,
- "parent<-/->right");;
- guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
- "parent !> left");
- guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
- "parent !< left");
- guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
- guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
- "list inconsistency");
- guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
- "list count is inconsistent");
- guarantee(tl->count() > 1 || tl->head() == tl->tail(),
- "list is incorrectly constructed");
- size_t count = verifyPrevFreePtrs(tl);
- guarantee(count == (size_t)tl->count(), "Node count is incorrect");
- if (tl->head() != NULL) {
- tl->head_as_TreeChunk()->verifyTreeChunkList();
- }
- verifyTreeHelper(tl->left());
- verifyTreeHelper(tl->right());
-}
-
-void BinaryTreeDictionary::verify() const {
- verifyTree();
- guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
-}
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp Wed May 02 15:47:06 2012 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,296 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_BINARYTREEDICTIONARY_HPP
-#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_BINARYTREEDICTIONARY_HPP
-
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeList.hpp"
-
-/*
- * A binary tree based search structure for free blocks.
- * This is currently used in the Concurrent Mark&Sweep implementation.
- */
-
-// A TreeList is a FreeList which can be used to maintain a
-// binary tree of free lists.
-
-class TreeChunk;
-class BinaryTreeDictionary;
-class AscendTreeCensusClosure;
-class DescendTreeCensusClosure;
-class DescendTreeSearchClosure;
-
-class TreeList: public FreeList {
- friend class TreeChunk;
- friend class BinaryTreeDictionary;
- friend class AscendTreeCensusClosure;
- friend class DescendTreeCensusClosure;
- friend class DescendTreeSearchClosure;
-
- protected:
- TreeList* parent() const { return _parent; }
- TreeList* left() const { return _left; }
- TreeList* right() const { return _right; }
-
- // Accessors for links in tree.
-
- void setLeft(TreeList* tl) {
- _left = tl;
- if (tl != NULL)
- tl->setParent(this);
- }
- void setRight(TreeList* tl) {
- _right = tl;
- if (tl != NULL)
- tl->setParent(this);
- }
- void setParent(TreeList* tl) { _parent = tl; }
-
- void clearLeft() { _left = NULL; }
- void clearRight() { _right = NULL; }
- void clearParent() { _parent = NULL; }
- void initialize() { clearLeft(); clearRight(), clearParent(); }
-
- // For constructing a TreeList from a Tree chunk or
- // address and size.
- static TreeList* as_TreeList(TreeChunk* tc);
- static TreeList* as_TreeList(HeapWord* addr, size_t size);
-
- // Returns the head of the free list as a pointer to a TreeChunk.
- TreeChunk* head_as_TreeChunk();
-
- // Returns the first available chunk in the free list as a pointer
- // to a TreeChunk.
- TreeChunk* first_available();
-
- // Returns the block with the largest heap address amongst
- // those in the list for this size; potentially slow and expensive,
- // use with caution!
- TreeChunk* largest_address();
-
- // removeChunkReplaceIfNeeded() removes the given "tc" from the TreeList.
- // If "tc" is the first chunk in the list, it is also the
- // TreeList that is the node in the tree. removeChunkReplaceIfNeeded()
- // returns the possibly replaced TreeList* for the node in
- // the tree. It also updates the parent of the original
- // node to point to the new node.
- TreeList* removeChunkReplaceIfNeeded(TreeChunk* tc);
- // See FreeList.
- void returnChunkAtHead(TreeChunk* tc);
- void returnChunkAtTail(TreeChunk* tc);
-};
-
-// A TreeChunk is a subclass of a FreeChunk that additionally
-// maintains a pointer to the free list on which it is currently
-// linked.
-// A TreeChunk is also used as a node in the binary tree. This
-// allows the binary tree to be maintained without any additional
-// storage (the free chunks are used). In a binary tree the first
-// chunk in the free list is also the tree node. Note that the
-// TreeChunk has an embedded TreeList for this purpose. Because
-// the first chunk in the list is distinguished in this fashion
-// (also is the node in the tree), it is the last chunk to be found
-// on the free list for a node in the tree and is only removed if
-// it is the last chunk on the free list.
-
-class TreeChunk : public FreeChunk {
- friend class TreeList;
- TreeList* _list;
- TreeList _embedded_list; // if non-null, this chunk is on _list
- protected:
- TreeList* embedded_list() const { return (TreeList*) &_embedded_list; }
- void set_embedded_list(TreeList* v) { _embedded_list = *v; }
- public:
- TreeList* list() { return _list; }
- void set_list(TreeList* v) { _list = v; }
- static TreeChunk* as_TreeChunk(FreeChunk* fc);
- // Initialize fields in a TreeChunk that should be
- // initialized when the TreeChunk is being added to
- // a free list in the tree.
- void initialize() { embedded_list()->initialize(); }
-
- // debugging
- void verifyTreeChunkList() const;
-};
-
-const size_t MIN_TREE_CHUNK_SIZE = sizeof(TreeChunk)/HeapWordSize;
-
-class BinaryTreeDictionary: public FreeBlockDictionary {
- friend class VMStructs;
- bool _splay;
- size_t _totalSize;
- size_t _totalFreeBlocks;
- TreeList* _root;
-
- // private accessors
- bool splay() const { return _splay; }
- void set_splay(bool v) { _splay = v; }
- size_t totalSize() const { return _totalSize; }
- void set_totalSize(size_t v) { _totalSize = v; }
- virtual void inc_totalSize(size_t v);
- virtual void dec_totalSize(size_t v);
- size_t totalFreeBlocks() const { return _totalFreeBlocks; }
- void set_totalFreeBlocks(size_t v) { _totalFreeBlocks = v; }
- TreeList* root() const { return _root; }
- void set_root(TreeList* v) { _root = v; }
-
- // Remove a chunk of size "size" or larger from the tree and
- // return it. If the chunk
- // is the last chunk of that size, remove the node for that size
- // from the tree.
- TreeChunk* getChunkFromTree(size_t size, Dither dither, bool splay);
- // Return a list of the specified size or NULL from the tree.
- // The list is not removed from the tree.
- TreeList* findList (size_t size) const;
- // Remove this chunk from the tree. If the removal results
- // in an empty list in the tree, remove the empty list.
- TreeChunk* removeChunkFromTree(TreeChunk* tc);
- // Remove the node in the trees starting at tl that has the
- // minimum value and return it. Repair the tree as needed.
- TreeList* removeTreeMinimum(TreeList* tl);
- void semiSplayStep(TreeList* tl);
- // Add this free chunk to the tree.
- void insertChunkInTree(FreeChunk* freeChunk);
- public:
- void verifyTree() const;
- // verify that the given chunk is in the tree.
- bool verifyChunkInFreeLists(FreeChunk* tc) const;
- private:
- void verifyTreeHelper(TreeList* tl) const;
- static size_t verifyPrevFreePtrs(TreeList* tl);
-
- // Returns the total number of chunks in the list.
- size_t totalListLength(TreeList* tl) const;
- // Returns the total number of words in the chunks in the tree
- // starting at "tl".
- size_t totalSizeInTree(TreeList* tl) const;
- // Returns the sum of the square of the size of each block
- // in the tree starting at "tl".
- double sum_of_squared_block_sizes(TreeList* const tl) const;
- // Returns the total number of free blocks in the tree starting
- // at "tl".
- size_t totalFreeBlocksInTree(TreeList* tl) const;
- size_t numFreeBlocks() const;
- size_t treeHeight() const;
- size_t treeHeightHelper(TreeList* tl) const;
- size_t totalNodesInTree(TreeList* tl) const;
- size_t totalNodesHelper(TreeList* tl) const;
-
- public:
- // Constructor
- BinaryTreeDictionary(MemRegion mr, bool splay = false);
-
- // Reset the dictionary to the initial conditions with
- // a single free chunk.
- void reset(MemRegion mr);
- void reset(HeapWord* addr, size_t size);
- // Reset the dictionary to be empty.
- void reset();
-
- // Return a chunk of size "size" or greater from
- // the tree.
- // want a better dynamic splay strategy for the future.
- FreeChunk* getChunk(size_t size, Dither dither) {
- verify_par_locked();
- FreeChunk* res = getChunkFromTree(size, dither, splay());
- assert(res == NULL || res->isFree(),
- "Should be returning a free chunk");
- return res;
- }
-
- void returnChunk(FreeChunk* chunk) {
- verify_par_locked();
- insertChunkInTree(chunk);
- }
-
- void removeChunk(FreeChunk* chunk) {
- verify_par_locked();
- removeChunkFromTree((TreeChunk*)chunk);
- assert(chunk->isFree(), "Should still be a free chunk");
- }
-
- size_t maxChunkSize() const;
- size_t totalChunkSize(debug_only(const Mutex* lock)) const {
- debug_only(
- if (lock != NULL && lock->owned_by_self()) {
- assert(totalSizeInTree(root()) == totalSize(),
- "_totalSize inconsistency");
- }
- )
- return totalSize();
- }
-
- size_t minSize() const {
- return MIN_TREE_CHUNK_SIZE;
- }
-
- double sum_of_squared_block_sizes() const {
- return sum_of_squared_block_sizes(root());
- }
-
- FreeChunk* find_chunk_ends_at(HeapWord* target) const;
-
- // Find the list with size "size" in the binary tree and update
- // the statistics in the list according to "split" (chunk was
- // split or coalesce) and "birth" (chunk was added or removed).
- void dictCensusUpdate(size_t size, bool split, bool birth);
- // Return true if the dictionary is overpopulated (more chunks of
- // this size than desired) for size "size".
- bool coalDictOverPopulated(size_t size);
- // Methods called at the beginning of a sweep to prepare the
- // statistics for the sweep.
- void beginSweepDictCensus(double coalSurplusPercent,
- float inter_sweep_current,
- float inter_sweep_estimate,
- float intra_sweep_estimate);
- // Methods called after the end of a sweep to modify the
- // statistics for the sweep.
- void endSweepDictCensus(double splitSurplusPercent);
- // Return the largest free chunk in the tree.
- FreeChunk* findLargestDict() const;
- // Accessors for statistics
- void setTreeSurplus(double splitSurplusPercent);
- void setTreeHints(void);
- // Reset statistics for all the lists in the tree.
- void clearTreeCensus(void);
- // Print the statistcis for all the lists in the tree. Also may
- // print out summaries.
- void printDictCensus(void) const;
- void print_free_lists(outputStream* st) const;
-
- // For debugging. Returns the sum of the _returnedBytes for
- // all lists in the tree.
- size_t sumDictReturnedBytes() PRODUCT_RETURN0;
- // Sets the _returnedBytes for all the lists in the tree to zero.
- void initializeDictReturnedBytes() PRODUCT_RETURN;
- // For debugging. Return the total number of chunks in the dictionary.
- size_t totalCount() PRODUCT_RETURN0;
-
- void reportStatistics() const;
-
- void verify() const;
-};
-
-#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_BINARYTREEDICTIONARY_HPP
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/cmsPermGen.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/cmsPermGen.cpp Fri May 04 10:46:32 2012 -0700
@@ -38,7 +38,7 @@
CMSPermGen::CMSPermGen(ReservedSpace rs, size_t initial_byte_size,
CardTableRS* ct,
- FreeBlockDictionary::DictionaryChoice dictionaryChoice) {
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) {
CMSPermGenGen* g =
new CMSPermGenGen(rs, initial_byte_size, -1, ct);
if (g == NULL) {
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/cmsPermGen.hpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/cmsPermGen.hpp Fri May 04 10:46:32 2012 -0700
@@ -45,7 +45,7 @@
public:
CMSPermGen(ReservedSpace rs, size_t initial_byte_size,
- CardTableRS* ct, FreeBlockDictionary::DictionaryChoice);
+ CardTableRS* ct, FreeBlockDictionary<FreeChunk>::DictionaryChoice);
HeapWord* mem_allocate(size_t size);
@@ -65,7 +65,7 @@
// regarding not using adaptive free lists for a perm gen.
ConcurrentMarkSweepGeneration(rs, initial_byte_size, // MinPermHeapExapnsion
level, ct, false /* use adaptive freelists */,
- (FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice)
+ (FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice)
{}
void initialize_performance_counters();
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.cpp Fri May 04 10:46:32 2012 -0700
@@ -69,7 +69,7 @@
// Constructor
CompactibleFreeListSpace::CompactibleFreeListSpace(BlockOffsetSharedArray* bs,
MemRegion mr, bool use_adaptive_freelists,
- FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
_dictionaryChoice(dictionaryChoice),
_adaptive_freelists(use_adaptive_freelists),
_bt(bs, mr),
@@ -87,6 +87,8 @@
CMSConcMarkMultiple),
_collector(NULL)
{
+ assert(sizeof(FreeChunk) / BytesPerWord <= MinChunkSize,
+ "FreeChunk is larger than expected");
_bt.set_space(this);
initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
// We have all of "mr", all of which we place in the dictionary
@@ -96,13 +98,13 @@
// implementation, namely, the simple binary tree (splaying
// temporarily disabled).
switch (dictionaryChoice) {
- case FreeBlockDictionary::dictionarySplayTree:
- case FreeBlockDictionary::dictionarySkipList:
+ case FreeBlockDictionary<FreeChunk>::dictionarySplayTree:
+ case FreeBlockDictionary<FreeChunk>::dictionarySkipList:
default:
warning("dictionaryChoice: selected option not understood; using"
" default BinaryTreeDictionary implementation instead.");
- case FreeBlockDictionary::dictionaryBinaryTree:
- _dictionary = new BinaryTreeDictionary(mr);
+ case FreeBlockDictionary<FreeChunk>::dictionaryBinaryTree:
+ _dictionary = new BinaryTreeDictionary<FreeChunk>(mr, use_adaptive_freelists);
break;
}
assert(_dictionary != NULL, "CMS dictionary initialization");
@@ -117,7 +119,7 @@
// moved to its new location before the klass is moved.
// Set the _refillSize for the linear allocation blocks
if (!use_adaptive_freelists) {
- FreeChunk* fc = _dictionary->getChunk(mr.word_size());
+ FreeChunk* fc = _dictionary->get_chunk(mr.word_size());
// The small linAB initially has all the space and will allocate
// a chunk of any size.
HeapWord* addr = (HeapWord*) fc;
@@ -273,12 +275,12 @@
assert(mr.word_size() >= MinChunkSize, "Chunk size is too small");
_bt.single_block(mr.start(), mr.word_size());
FreeChunk* fc = (FreeChunk*) mr.start();
- fc->setSize(mr.word_size());
+ fc->set_size(mr.word_size());
if (mr.word_size() >= IndexSetSize ) {
returnChunkToDictionary(fc);
} else {
_bt.verify_not_unallocated((HeapWord*)fc, fc->size());
- _indexedFreeList[mr.word_size()].returnChunkAtHead(fc);
+ _indexedFreeList[mr.word_size()].return_chunk_at_head(fc);
}
}
_promoInfo.reset();
@@ -296,7 +298,7 @@
} else {
// Place as much of mr in the linAB as we can get,
// provided it was big enough to go into the dictionary.
- FreeChunk* fc = dictionary()->findLargestDict();
+ FreeChunk* fc = dictionary()->find_largest_dict();
if (fc != NULL) {
assert(fc->size() == mr.word_size(),
"Why was the chunk broken up?");
@@ -323,14 +325,14 @@
#ifndef PRODUCT
void CompactibleFreeListSpace::initializeIndexedFreeListArrayReturnedBytes() {
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
- _indexedFreeList[i].allocation_stats()->set_returnedBytes(0);
+ _indexedFreeList[i].allocation_stats()->set_returned_bytes(0);
}
}
size_t CompactibleFreeListSpace::sumIndexedFreeListArrayReturnedBytes() {
size_t sum = 0;
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
- sum += _indexedFreeList[i].allocation_stats()->returnedBytes();
+ sum += _indexedFreeList[i].allocation_stats()->returned_bytes();
}
return sum;
}
@@ -354,7 +356,7 @@
size_t CompactibleFreeListSpace::totalCount() {
size_t num = totalCountInIndexedFreeLists();
- num += dictionary()->totalCount();
+ num += dictionary()->total_count();
if (_smallLinearAllocBlock._word_size != 0) {
num++;
}
@@ -364,7 +366,7 @@
bool CompactibleFreeListSpace::is_free_block(const HeapWord* p) const {
FreeChunk* fc = (FreeChunk*) p;
- return fc->isFree();
+ return fc->is_free();
}
size_t CompactibleFreeListSpace::used() const {
@@ -391,7 +393,7 @@
// that supports jvmstat, and you are apt to see the values
// flicker in such cases.
assert(_dictionary != NULL, "No _dictionary?");
- return (_dictionary->totalChunkSize(DEBUG_ONLY(freelistLock())) +
+ return (_dictionary->total_chunk_size(DEBUG_ONLY(freelistLock())) +
totalSizeInIndexedFreeLists() +
_smallLinearAllocBlock._word_size) * HeapWordSize;
}
@@ -399,7 +401,7 @@
size_t CompactibleFreeListSpace::max_alloc_in_words() const {
assert(_dictionary != NULL, "No _dictionary?");
assert_locked();
- size_t res = _dictionary->maxChunkSize();
+ size_t res = _dictionary->max_chunk_size();
res = MAX2(res, MIN2(_smallLinearAllocBlock._word_size,
(size_t) SmallForLinearAlloc - 1));
// XXX the following could potentially be pretty slow;
@@ -448,7 +450,7 @@
reportIndexedFreeListStatistics();
gclog_or_tty->print_cr("Layout of Indexed Freelists");
gclog_or_tty->print_cr("---------------------------");
- FreeList::print_labels_on(st, "size");
+ FreeList<FreeChunk>::print_labels_on(st, "size");
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
_indexedFreeList[i].print_on(gclog_or_tty);
for (FreeChunk* fc = _indexedFreeList[i].head(); fc != NULL;
@@ -467,7 +469,7 @@
void CompactibleFreeListSpace::print_dictionary_free_lists(outputStream* st)
const {
- _dictionary->reportStatistics();
+ _dictionary->report_statistics();
st->print_cr("Layout of Freelists in Tree");
st->print_cr("---------------------------");
_dictionary->print_free_lists(st);
@@ -545,12 +547,12 @@
void CompactibleFreeListSpace::reportFreeListStatistics() const {
assert_lock_strong(&_freelistLock);
assert(PrintFLSStatistics != 0, "Reporting error");
- _dictionary->reportStatistics();
+ _dictionary->report_statistics();
if (PrintFLSStatistics > 1) {
reportIndexedFreeListStatistics();
- size_t totalSize = totalSizeInIndexedFreeLists() +
- _dictionary->totalChunkSize(DEBUG_ONLY(freelistLock()));
- gclog_or_tty->print(" free=%ld frag=%1.4f\n", totalSize, flsFrag());
+ size_t total_size = totalSizeInIndexedFreeLists() +
+ _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
+ gclog_or_tty->print(" free=%ld frag=%1.4f\n", total_size, flsFrag());
}
}
@@ -558,13 +560,13 @@
assert_lock_strong(&_freelistLock);
gclog_or_tty->print("Statistics for IndexedFreeLists:\n"
"--------------------------------\n");
- size_t totalSize = totalSizeInIndexedFreeLists();
- size_t freeBlocks = numFreeBlocksInIndexedFreeLists();
- gclog_or_tty->print("Total Free Space: %d\n", totalSize);
+ size_t total_size = totalSizeInIndexedFreeLists();
+ size_t free_blocks = numFreeBlocksInIndexedFreeLists();
+ gclog_or_tty->print("Total Free Space: %d\n", total_size);
gclog_or_tty->print("Max Chunk Size: %d\n", maxChunkSizeInIndexedFreeLists());
- gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
- if (freeBlocks != 0) {
- gclog_or_tty->print("Av. Block Size: %d\n", totalSize/freeBlocks);
+ gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
+ if (free_blocks != 0) {
+ gclog_or_tty->print("Av. Block Size: %d\n", total_size/free_blocks);
}
}
@@ -911,7 +913,7 @@
for (addr = bottom(), last = end();
addr < last; addr += size) {
FreeChunk* fc = (FreeChunk*)addr;
- if (fc->isFree()) {
+ if (fc->is_free()) {
// Since we hold the free list lock, which protects direct
// allocation in this generation by mutators, a free object
// will remain free throughout this iteration code.
@@ -953,7 +955,7 @@
for (addr = block_start_careful(mr.start()), end = mr.end();
addr < end; addr += size) {
FreeChunk* fc = (FreeChunk*)addr;
- if (fc->isFree()) {
+ if (fc->is_free()) {
// Since we hold the free list lock, which protects direct
// allocation in this generation by mutators, a free object
// will remain free throughout this iteration code.
@@ -1069,7 +1071,7 @@
NOT_PRODUCT(verify_objects_initialized());
assert(MemRegion(bottom(), end()).contains(p), "p not in space");
FreeChunk* fc = (FreeChunk*)p;
- if (fc->isFree()) {
+ if (fc->is_free()) {
return fc->size();
} else {
// Ignore mark word because this may be a recently promoted
@@ -1160,7 +1162,7 @@
FreeChunk* fc = (FreeChunk*)p;
assert(is_in_reserved(p), "Should be in space");
assert(_bt.block_start(p) == p, "Should be a block boundary");
- if (!fc->isFree()) {
+ if (!fc->is_free()) {
// Ignore mark word because it may have been used to
// chain together promoted objects (the last one
// would have a null value).
@@ -1222,7 +1224,7 @@
FreeChunk* fc = (FreeChunk*)res;
fc->markNotFree();
- assert(!fc->isFree(), "shouldn't be marked free");
+ assert(!fc->is_free(), "shouldn't be marked free");
assert(oop(fc)->klass_or_null() == NULL, "should look uninitialized");
// Verify that the block offset table shows this to
// be a single block, but not one which is unallocated.
@@ -1331,10 +1333,10 @@
size_t currSize = numWords + MinChunkSize;
assert(currSize % MinObjAlignment == 0, "currSize should be aligned");
for (i = currSize; i < IndexSetSize; i += IndexSetStride) {
- FreeList* fl = &_indexedFreeList[i];
+ FreeList<FreeChunk>* fl = &_indexedFreeList[i];
if (fl->head()) {
ret = getFromListGreater(fl, numWords);
- assert(ret == NULL || ret->isFree(), "Should be returning a free chunk");
+ assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
return ret;
}
}
@@ -1345,7 +1347,7 @@
/* Try to get a chunk that satisfies request, while avoiding
fragmentation that can't be handled. */
{
- ret = dictionary()->getChunk(currSize);
+ ret = dictionary()->get_chunk(currSize);
if (ret != NULL) {
assert(ret->size() - numWords >= MinChunkSize,
"Chunk is too small");
@@ -1353,10 +1355,10 @@
/* Carve returned chunk. */
(void) splitChunkAndReturnRemainder(ret, numWords);
/* Label this as no longer a free chunk. */
- assert(ret->isFree(), "This chunk should be free");
- ret->linkPrev(NULL);
+ assert(ret->is_free(), "This chunk should be free");
+ ret->link_prev(NULL);
}
- assert(ret == NULL || ret->isFree(), "Should be returning a free chunk");
+ assert(ret == NULL || ret->is_free(), "Should be returning a free chunk");
return ret;
}
ShouldNotReachHere();
@@ -1364,7 +1366,7 @@
bool CompactibleFreeListSpace::verifyChunkInIndexedFreeLists(FreeChunk* fc) const {
assert(fc->size() < IndexSetSize, "Size of chunk is too large");
- return _indexedFreeList[fc->size()].verifyChunkInFreeLists(fc);
+ return _indexedFreeList[fc->size()].verify_chunk_in_free_list(fc);
}
bool CompactibleFreeListSpace::verify_chunk_is_linear_alloc_block(FreeChunk* fc) const {
@@ -1378,13 +1380,13 @@
// Check if the purported free chunk is present either as a linear
// allocation block, the size-indexed table of (smaller) free blocks,
// or the larger free blocks kept in the binary tree dictionary.
-bool CompactibleFreeListSpace::verifyChunkInFreeLists(FreeChunk* fc) const {
+bool CompactibleFreeListSpace::verify_chunk_in_free_list(FreeChunk* fc) const {
if (verify_chunk_is_linear_alloc_block(fc)) {
return true;
} else if (fc->size() < IndexSetSize) {
return verifyChunkInIndexedFreeLists(fc);
} else {
- return dictionary()->verifyChunkInFreeLists(fc);
+ return dictionary()->verify_chunk_in_free_list(fc);
}
}
@@ -1412,7 +1414,7 @@
}
if (fc != NULL) {
fc->dontCoalesce();
- assert(fc->isFree(), "Should be free, but not coalescable");
+ assert(fc->is_free(), "Should be free, but not coalescable");
// Verify that the block offset table shows this to
// be a single block, but not one which is unallocated.
_bt.verify_single_block((HeapWord*)fc, fc->size());
@@ -1492,7 +1494,7 @@
}
// Return the chunk that isn't big enough, and then refill below.
addChunkToFreeLists(blk->_ptr, sz);
- splitBirth(sz);
+ split_birth(sz);
// Don't keep statistics on adding back chunk from a LinAB.
} else {
// A refilled block would not satisfy the request.
@@ -1504,14 +1506,14 @@
assert(blk->_ptr == NULL || blk->_word_size >= size + MinChunkSize,
"block was replenished");
if (res != NULL) {
- splitBirth(size);
+ split_birth(size);
repairLinearAllocBlock(blk);
} else if (blk->_ptr != NULL) {
res = blk->_ptr;
size_t blk_size = blk->_word_size;
blk->_word_size -= size;
blk->_ptr += size;
- splitBirth(size);
+ split_birth(size);
repairLinearAllocBlock(blk);
// Update BOT last so that other (parallel) GC threads see a consistent
// view of the BOT and free blocks.
@@ -1540,7 +1542,7 @@
size_t blk_size = blk->_word_size;
blk->_word_size -= size;
blk->_ptr += size;
- splitBirth(size);
+ split_birth(size);
repairLinearAllocBlock(blk);
// Update BOT last so that other (parallel) GC threads see a consistent
// view of the BOT and free blocks.
@@ -1557,7 +1559,7 @@
assert_locked();
assert(size < SmallForDictionary, "just checking");
FreeChunk* res;
- res = _indexedFreeList[size].getChunkAtHead();
+ res = _indexedFreeList[size].get_chunk_at_head();
if (res == NULL) {
res = getChunkFromIndexedFreeListHelper(size);
}
@@ -1591,7 +1593,7 @@
// Do not replenish from an underpopulated size.
if (_indexedFreeList[replenish_size].surplus() > 0 &&
_indexedFreeList[replenish_size].head() != NULL) {
- newFc = _indexedFreeList[replenish_size].getChunkAtHead();
+ newFc = _indexedFreeList[replenish_size].get_chunk_at_head();
} else if (bestFitFirst()) {
newFc = bestFitSmall(replenish_size);
}
@@ -1624,13 +1626,13 @@
i < (num_blk - 1);
curFc = nextFc, nextFc = (FreeChunk*)((HeapWord*)nextFc + size),
i++) {
- curFc->setSize(size);
+ curFc->set_size(size);
// Don't record this as a return in order to try and
// determine the "returns" from a GC.
_bt.verify_not_unallocated((HeapWord*) fc, size);
- _indexedFreeList[size].returnChunkAtTail(curFc, false);
+ _indexedFreeList[size].return_chunk_at_tail(curFc, false);
_bt.mark_block((HeapWord*)curFc, size);
- splitBirth(size);
+ split_birth(size);
// Don't record the initial population of the indexed list
// as a split birth.
}
@@ -1638,9 +1640,9 @@
// check that the arithmetic was OK above
assert((HeapWord*)nextFc == (HeapWord*)newFc + num_blk*size,
"inconsistency in carving newFc");
- curFc->setSize(size);
+ curFc->set_size(size);
_bt.mark_block((HeapWord*)curFc, size);
- splitBirth(size);
+ split_birth(size);
fc = curFc;
} else {
// Return entire block to caller
@@ -1653,14 +1655,14 @@
// replenish the indexed free list.
fc = getChunkFromDictionaryExact(size);
}
- // assert(fc == NULL || fc->isFree(), "Should be returning a free chunk");
+ // assert(fc == NULL || fc->is_free(), "Should be returning a free chunk");
return fc;
}
FreeChunk*
CompactibleFreeListSpace::getChunkFromDictionary(size_t size) {
assert_locked();
- FreeChunk* fc = _dictionary->getChunk(size);
+ FreeChunk* fc = _dictionary->get_chunk(size);
if (fc == NULL) {
return NULL;
}
@@ -1677,7 +1679,7 @@
FreeChunk*
CompactibleFreeListSpace::getChunkFromDictionaryExact(size_t size) {
assert_locked();
- FreeChunk* fc = _dictionary->getChunk(size);
+ FreeChunk* fc = _dictionary->get_chunk(size);
if (fc == NULL) {
return fc;
}
@@ -1686,11 +1688,11 @@
_bt.verify_single_block((HeapWord*)fc, size);
return fc;
}
- assert(fc->size() > size, "getChunk() guarantee");
+ assert(fc->size() > size, "get_chunk() guarantee");
if (fc->size() < size + MinChunkSize) {
// Return the chunk to the dictionary and go get a bigger one.
returnChunkToDictionary(fc);
- fc = _dictionary->getChunk(size + MinChunkSize);
+ fc = _dictionary->get_chunk(size + MinChunkSize);
if (fc == NULL) {
return NULL;
}
@@ -1711,10 +1713,10 @@
_bt.verify_single_block((HeapWord*)chunk, size);
// adjust _unallocated_block downward, as necessary
_bt.freed((HeapWord*)chunk, size);
- _dictionary->returnChunk(chunk);
+ _dictionary->return_chunk(chunk);
#ifndef PRODUCT
if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
- TreeChunk::as_TreeChunk(chunk)->list()->verify_stats();
+ TreeChunk<FreeChunk>::as_TreeChunk(chunk)->list()->verify_stats();
}
#endif // PRODUCT
}
@@ -1726,9 +1728,9 @@
_bt.verify_single_block((HeapWord*) fc, size);
_bt.verify_not_unallocated((HeapWord*) fc, size);
if (_adaptive_freelists) {
- _indexedFreeList[size].returnChunkAtTail(fc);
+ _indexedFreeList[size].return_chunk_at_tail(fc);
} else {
- _indexedFreeList[size].returnChunkAtHead(fc);
+ _indexedFreeList[size].return_chunk_at_head(fc);
}
#ifndef PRODUCT
if (CMSCollector::abstract_state() != CMSCollector::Sweeping) {
@@ -1756,7 +1758,7 @@
FreeChunk* ec;
{
MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
- ec = dictionary()->findLargestDict(); // get largest block
+ ec = dictionary()->find_largest_dict(); // get largest block
if (ec != NULL && ec->end() == chunk) {
// It's a coterminal block - we can coalesce.
size_t old_size = ec->size();
@@ -1767,7 +1769,7 @@
ec = (FreeChunk*)chunk;
}
}
- ec->setSize(size);
+ ec->set_size(size);
debug_only(ec->mangleFreed(size));
if (size < SmallForDictionary) {
lock = _indexedFreeListParLocks[size];
@@ -1790,7 +1792,7 @@
_bt.verify_single_block(chunk, size);
FreeChunk* fc = (FreeChunk*) chunk;
- fc->setSize(size);
+ fc->set_size(size);
debug_only(fc->mangleFreed(size));
if (size < SmallForDictionary) {
returnChunkToFreeList(fc);
@@ -1833,7 +1835,7 @@
assert_locked();
assert(fc != NULL, "null chunk");
_bt.verify_single_block((HeapWord*)fc, size);
- _dictionary->removeChunk(fc);
+ _dictionary->remove_chunk(fc);
// adjust _unallocated_block upward, as necessary
_bt.allocated((HeapWord*)fc, size);
}
@@ -1848,7 +1850,7 @@
verifyIndexedFreeList(size);
}
)
- _indexedFreeList[size].removeChunk(fc);
+ _indexedFreeList[size].remove_chunk(fc);
NOT_PRODUCT(
if (FLSVerifyIndexTable) {
verifyIndexedFreeList(size);
@@ -1862,17 +1864,17 @@
the excess is >= MIN_CHUNK. */
size_t start = align_object_size(numWords + MinChunkSize);
if (start < IndexSetSize) {
- FreeList* it = _indexedFreeList;
+ FreeList<FreeChunk>* it = _indexedFreeList;
size_t hint = _indexedFreeList[start].hint();
while (hint < IndexSetSize) {
assert(hint % MinObjAlignment == 0, "hint should be aligned");
- FreeList *fl = &_indexedFreeList[hint];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[hint];
if (fl->surplus() > 0 && fl->head() != NULL) {
// Found a list with surplus, reset original hint
// and split out a free chunk which is returned.
_indexedFreeList[start].set_hint(hint);
FreeChunk* res = getFromListGreater(fl, numWords);
- assert(res == NULL || res->isFree(),
+ assert(res == NULL || res->is_free(),
"Should be returning a free chunk");
return res;
}
@@ -1885,7 +1887,7 @@
}
/* Requires fl->size >= numWords + MinChunkSize */
-FreeChunk* CompactibleFreeListSpace::getFromListGreater(FreeList* fl,
+FreeChunk* CompactibleFreeListSpace::getFromListGreater(FreeList<FreeChunk>* fl,
size_t numWords) {
FreeChunk *curr = fl->head();
size_t oldNumWords = curr->size();
@@ -1894,13 +1896,13 @@
assert(oldNumWords >= numWords + MinChunkSize,
"Size of chunks in the list is too small");
- fl->removeChunk(curr);
+ fl->remove_chunk(curr);
// recorded indirectly by splitChunkAndReturnRemainder -
// smallSplit(oldNumWords, numWords);
FreeChunk* new_chunk = splitChunkAndReturnRemainder(curr, numWords);
// Does anything have to be done for the remainder in terms of
// fixing the card table?
- assert(new_chunk == NULL || new_chunk->isFree(),
+ assert(new_chunk == NULL || new_chunk->is_free(),
"Should be returning a free chunk");
return new_chunk;
}
@@ -1918,13 +1920,13 @@
assert(rem_size >= MinChunkSize, "Free chunk smaller than minimum");
FreeChunk* ffc = (FreeChunk*)((HeapWord*)chunk + new_size);
assert(is_aligned(ffc), "alignment problem");
- ffc->setSize(rem_size);
- ffc->linkNext(NULL);
- ffc->linkPrev(NULL); // Mark as a free block for other (parallel) GC threads.
+ ffc->set_size(rem_size);
+ ffc->link_next(NULL);
+ ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
// Above must occur before BOT is updated below.
// adjust block offset table
OrderAccess::storestore();
- assert(chunk->isFree() && ffc->isFree(), "Error");
+ assert(chunk->is_free() && ffc->is_free(), "Error");
_bt.split_block((HeapWord*)chunk, chunk->size(), new_size);
if (rem_size < SmallForDictionary) {
bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
@@ -1939,7 +1941,7 @@
returnChunkToDictionary(ffc);
split(size ,rem_size);
}
- chunk->setSize(new_size);
+ chunk->set_size(new_size);
return chunk;
}
@@ -2046,10 +2048,10 @@
assert(blk->_word_size != 0 && blk->_word_size >= MinChunkSize,
"Minimum block size requirement");
FreeChunk* fc = (FreeChunk*)(blk->_ptr);
- fc->setSize(blk->_word_size);
- fc->linkPrev(NULL); // mark as free
+ fc->set_size(blk->_word_size);
+ fc->link_prev(NULL); // mark as free
fc->dontCoalesce();
- assert(fc->isFree(), "just marked it free");
+ assert(fc->is_free(), "just marked it free");
assert(fc->cantCoalesce(), "just marked it uncoalescable");
}
}
@@ -2149,7 +2151,7 @@
}
double totFree = itabFree +
- _dictionary->totalChunkSize(DEBUG_ONLY(freelistLock()));
+ _dictionary->total_chunk_size(DEBUG_ONLY(freelistLock()));
if (totFree > 0) {
frag = ((frag + _dictionary->sum_of_squared_block_sizes()) /
(totFree * totFree));
@@ -2167,16 +2169,16 @@
assert_locked();
size_t i;
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
- FreeList* fl = &_indexedFreeList[i];
+ FreeList<FreeChunk>* fl = &_indexedFreeList[i];
if (PrintFLSStatistics > 1) {
gclog_or_tty->print("size[%d] : ", i);
}
fl->compute_desired(inter_sweep_current, inter_sweep_estimate, intra_sweep_estimate);
- fl->set_coalDesired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent));
- fl->set_beforeSweep(fl->count());
- fl->set_bfrSurp(fl->surplus());
+ fl->set_coal_desired((ssize_t)((double)fl->desired() * CMSSmallCoalSurplusPercent));
+ fl->set_before_sweep(fl->count());
+ fl->set_bfr_surp(fl->surplus());
}
- _dictionary->beginSweepDictCensus(CMSLargeCoalSurplusPercent,
+ _dictionary->begin_sweep_dict_census(CMSLargeCoalSurplusPercent,
inter_sweep_current,
inter_sweep_estimate,
intra_sweep_estimate);
@@ -2186,7 +2188,7 @@
assert_locked();
size_t i;
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
- FreeList *fl = &_indexedFreeList[i];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[i];
fl->set_surplus(fl->count() -
(ssize_t)((double)fl->desired() * CMSSmallSplitSurplusPercent));
}
@@ -2197,7 +2199,7 @@
size_t i;
size_t h = IndexSetSize;
for (i = IndexSetSize - 1; i != 0; i -= IndexSetStride) {
- FreeList *fl = &_indexedFreeList[i];
+ FreeList<FreeChunk> *fl = &_indexedFreeList[i];
fl->set_hint(h);
if (fl->surplus() > 0) {
h = i;
@@ -2209,18 +2211,18 @@
assert_locked();
size_t i;
for (i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
- FreeList *fl = &_indexedFreeList[i];
- fl->set_prevSweep(fl->count());
- fl->set_coalBirths(0);
- fl->set_coalDeaths(0);
- fl->set_splitBirths(0);
- fl->set_splitDeaths(0);
+ FreeList<FreeChunk> *fl = &_indexedFreeList[i];
+ fl->set_prev_sweep(fl->count());
+ fl->set_coal_births(0);
+ fl->set_coal_deaths(0);
+ fl->set_split_births(0);
+ fl->set_split_deaths(0);
}
}
void CompactibleFreeListSpace::endSweepFLCensus(size_t sweep_count) {
if (PrintFLSStatistics > 0) {
- HeapWord* largestAddr = (HeapWord*) dictionary()->findLargestDict();
+ HeapWord* largestAddr = (HeapWord*) dictionary()->find_largest_dict();
gclog_or_tty->print_cr("CMS: Large block " PTR_FORMAT,
largestAddr);
}
@@ -2231,30 +2233,30 @@
}
clearFLCensus();
assert_locked();
- _dictionary->endSweepDictCensus(CMSLargeSplitSurplusPercent);
+ _dictionary->end_sweep_dict_census(CMSLargeSplitSurplusPercent);
}
bool CompactibleFreeListSpace::coalOverPopulated(size_t size) {
if (size < SmallForDictionary) {
- FreeList *fl = &_indexedFreeList[size];
- return (fl->coalDesired() < 0) ||
- ((int)fl->count() > fl->coalDesired());
+ FreeList<FreeChunk> *fl = &_indexedFreeList[size];
+ return (fl->coal_desired() < 0) ||
+ ((int)fl->count() > fl->coal_desired());
} else {
- return dictionary()->coalDictOverPopulated(size);
+ return dictionary()->coal_dict_over_populated(size);
}
}
void CompactibleFreeListSpace::smallCoalBirth(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
- FreeList *fl = &_indexedFreeList[size];
- fl->increment_coalBirths();
+ FreeList<FreeChunk> *fl = &_indexedFreeList[size];
+ fl->increment_coal_births();
fl->increment_surplus();
}
void CompactibleFreeListSpace::smallCoalDeath(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
- FreeList *fl = &_indexedFreeList[size];
- fl->increment_coalDeaths();
+ FreeList<FreeChunk> *fl = &_indexedFreeList[size];
+ fl->increment_coal_deaths();
fl->decrement_surplus();
}
@@ -2262,7 +2264,7 @@
if (size < SmallForDictionary) {
smallCoalBirth(size);
} else {
- dictionary()->dictCensusUpdate(size,
+ dictionary()->dict_census_udpate(size,
false /* split */,
true /* birth */);
}
@@ -2272,7 +2274,7 @@
if(size < SmallForDictionary) {
smallCoalDeath(size);
} else {
- dictionary()->dictCensusUpdate(size,
+ dictionary()->dict_census_udpate(size,
false /* split */,
false /* birth */);
}
@@ -2280,23 +2282,23 @@
void CompactibleFreeListSpace::smallSplitBirth(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
- FreeList *fl = &_indexedFreeList[size];
- fl->increment_splitBirths();
+ FreeList<FreeChunk> *fl = &_indexedFreeList[size];
+ fl->increment_split_births();
fl->increment_surplus();
}
void CompactibleFreeListSpace::smallSplitDeath(size_t size) {
assert(size < SmallForDictionary, "Size too large for indexed list");
- FreeList *fl = &_indexedFreeList[size];
- fl->increment_splitDeaths();
+ FreeList<FreeChunk> *fl = &_indexedFreeList[size];
+ fl->increment_split_deaths();
fl->decrement_surplus();
}
-void CompactibleFreeListSpace::splitBirth(size_t size) {
+void CompactibleFreeListSpace::split_birth(size_t size) {
if (size < SmallForDictionary) {
smallSplitBirth(size);
} else {
- dictionary()->dictCensusUpdate(size,
+ dictionary()->dict_census_udpate(size,
true /* split */,
true /* birth */);
}
@@ -2306,7 +2308,7 @@
if (size < SmallForDictionary) {
smallSplitDeath(size);
} else {
- dictionary()->dictCensusUpdate(size,
+ dictionary()->dict_census_udpate(size,
true /* split */,
false /* birth */);
}
@@ -2315,8 +2317,8 @@
void CompactibleFreeListSpace::split(size_t from, size_t to1) {
size_t to2 = from - to1;
splitDeath(from);
- splitBirth(to1);
- splitBirth(to2);
+ split_birth(to1);
+ split_birth(to2);
}
void CompactibleFreeListSpace::print() const {
@@ -2362,7 +2364,7 @@
FreeChunk* fc = (FreeChunk*)addr;
res = fc->size();
if (FLSVerifyLists && !fc->cantCoalesce()) {
- guarantee(_sp->verifyChunkInFreeLists(fc),
+ guarantee(_sp->verify_chunk_in_free_list(fc),
"Chunk should be on a free list");
}
}
@@ -2518,7 +2520,7 @@
"Slot should have been empty");
for (; fc != NULL; fc = fc->next(), n++) {
guarantee(fc->size() == size, "Size inconsistency");
- guarantee(fc->isFree(), "!free?");
+ guarantee(fc->is_free(), "!free?");
guarantee(fc->next() == NULL || fc->next()->prev() == fc, "Broken list");
guarantee((fc->next() == NULL) == (fc == tail), "Incorrect tail");
}
@@ -2527,10 +2529,10 @@
#ifndef PRODUCT
void CompactibleFreeListSpace::check_free_list_consistency() const {
- assert(_dictionary->minSize() <= IndexSetSize,
+ assert(_dictionary->min_size() <= IndexSetSize,
"Some sizes can't be allocated without recourse to"
" linear allocation buffers");
- assert(MIN_TREE_CHUNK_SIZE*HeapWordSize == sizeof(TreeChunk),
+ assert(BinaryTreeDictionary<FreeChunk>::min_tree_chunk_size*HeapWordSize == sizeof(TreeChunk<FreeChunk>),
"else MIN_TREE_CHUNK_SIZE is wrong");
assert((IndexSetStride == 2 && IndexSetStart == 4) || // 32-bit
(IndexSetStride == 1 && IndexSetStart == 3), "just checking"); // 64-bit
@@ -2543,36 +2545,36 @@
void CompactibleFreeListSpace::printFLCensus(size_t sweep_count) const {
assert_lock_strong(&_freelistLock);
- FreeList total;
+ FreeList<FreeChunk> total;
gclog_or_tty->print("end sweep# " SIZE_FORMAT "\n", sweep_count);
- FreeList::print_labels_on(gclog_or_tty, "size");
- size_t totalFree = 0;
+ FreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
+ size_t total_free = 0;
for (size_t i = IndexSetStart; i < IndexSetSize; i += IndexSetStride) {
- const FreeList *fl = &_indexedFreeList[i];
- totalFree += fl->count() * fl->size();
+ const FreeList<FreeChunk> *fl = &_indexedFreeList[i];
+ total_free += fl->count() * fl->size();
if (i % (40*IndexSetStride) == 0) {
- FreeList::print_labels_on(gclog_or_tty, "size");
+ FreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
}
fl->print_on(gclog_or_tty);
- total.set_bfrSurp( total.bfrSurp() + fl->bfrSurp() );
+ total.set_bfr_surp( total.bfr_surp() + fl->bfr_surp() );
total.set_surplus( total.surplus() + fl->surplus() );
total.set_desired( total.desired() + fl->desired() );
- total.set_prevSweep( total.prevSweep() + fl->prevSweep() );
- total.set_beforeSweep(total.beforeSweep() + fl->beforeSweep());
+ total.set_prev_sweep( total.prev_sweep() + fl->prev_sweep() );
+ total.set_before_sweep(total.before_sweep() + fl->before_sweep());
total.set_count( total.count() + fl->count() );
- total.set_coalBirths( total.coalBirths() + fl->coalBirths() );
- total.set_coalDeaths( total.coalDeaths() + fl->coalDeaths() );
- total.set_splitBirths(total.splitBirths() + fl->splitBirths());
- total.set_splitDeaths(total.splitDeaths() + fl->splitDeaths());
+ total.set_coal_births( total.coal_births() + fl->coal_births() );
+ total.set_coal_deaths( total.coal_deaths() + fl->coal_deaths() );
+ total.set_split_births(total.split_births() + fl->split_births());
+ total.set_split_deaths(total.split_deaths() + fl->split_deaths());
}
total.print_on(gclog_or_tty, "TOTAL");
gclog_or_tty->print_cr("Total free in indexed lists "
- SIZE_FORMAT " words", totalFree);
+ SIZE_FORMAT " words", total_free);
gclog_or_tty->print("growth: %8.5f deficit: %8.5f\n",
- (double)(total.splitBirths()+total.coalBirths()-total.splitDeaths()-total.coalDeaths())/
- (total.prevSweep() != 0 ? (double)total.prevSweep() : 1.0),
+ (double)(total.split_births()+total.coal_births()-total.split_deaths()-total.coal_deaths())/
+ (total.prev_sweep() != 0 ? (double)total.prev_sweep() : 1.0),
(double)(total.desired() - total.count())/(total.desired() != 0 ? (double)total.desired() : 1.0));
- _dictionary->printDictCensus();
+ _dictionary->print_dict_census();
}
///////////////////////////////////////////////////////////////////////////
@@ -2634,18 +2636,18 @@
res = _cfls->getChunkFromDictionaryExact(word_sz);
if (res == NULL) return NULL;
} else {
- FreeList* fl = &_indexedFreeList[word_sz];
+ FreeList<FreeChunk>* fl = &_indexedFreeList[word_sz];
if (fl->count() == 0) {
// Attempt to refill this local free list.
get_from_global_pool(word_sz, fl);
// If it didn't work, give up.
if (fl->count() == 0) return NULL;
}
- res = fl->getChunkAtHead();
+ res = fl->get_chunk_at_head();
assert(res != NULL, "Why was count non-zero?");
}
res->markNotFree();
- assert(!res->isFree(), "shouldn't be marked free");
+ assert(!res->is_free(), "shouldn't be marked free");
assert(oop(res)->klass_or_null() == NULL, "should look uninitialized");
// mangle a just allocated object with a distinct pattern.
debug_only(res->mangleAllocated(word_sz));
@@ -2654,7 +2656,7 @@
// Get a chunk of blocks of the right size and update related
// book-keeping stats
-void CFLS_LAB::get_from_global_pool(size_t word_sz, FreeList* fl) {
+void CFLS_LAB::get_from_global_pool(size_t word_sz, FreeList<FreeChunk>* fl) {
// Get the #blocks we want to claim
size_t n_blks = (size_t)_blocks_to_claim[word_sz].average();
assert(n_blks > 0, "Error");
@@ -2736,7 +2738,7 @@
if (num_retire > 0) {
_cfls->_indexedFreeList[i].prepend(&_indexedFreeList[i]);
// Reset this list.
- _indexedFreeList[i] = FreeList();
+ _indexedFreeList[i] = FreeList<FreeChunk>();
_indexedFreeList[i].set_size(i);
}
}
@@ -2750,7 +2752,7 @@
}
}
-void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl) {
+void CompactibleFreeListSpace:: par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList<FreeChunk>* fl) {
assert(fl->count() == 0, "Precondition.");
assert(word_sz < CompactibleFreeListSpace::IndexSetSize,
"Precondition");
@@ -2766,12 +2768,12 @@
(cur_sz < CompactibleFreeListSpace::IndexSetSize) &&
(CMSSplitIndexedFreeListBlocks || k <= 1);
k++, cur_sz = k * word_sz) {
- FreeList fl_for_cur_sz; // Empty.
+ FreeList<FreeChunk> fl_for_cur_sz; // Empty.
fl_for_cur_sz.set_size(cur_sz);
{
MutexLockerEx x(_indexedFreeListParLocks[cur_sz],
Mutex::_no_safepoint_check_flag);
- FreeList* gfl = &_indexedFreeList[cur_sz];
+ FreeList<FreeChunk>* gfl = &_indexedFreeList[cur_sz];
if (gfl->count() != 0) {
// nn is the number of chunks of size cur_sz that
// we'd need to split k-ways each, in order to create
@@ -2784,9 +2786,9 @@
// we increment the split death count by the number of blocks
// we just took from the cur_sz-size blocks list and which
// we will be splitting below.
- ssize_t deaths = gfl->splitDeaths() +
+ ssize_t deaths = gfl->split_deaths() +
fl_for_cur_sz.count();
- gfl->set_splitDeaths(deaths);
+ gfl->set_split_deaths(deaths);
}
}
}
@@ -2797,21 +2799,21 @@
} else {
// Divide each block on fl_for_cur_sz up k ways.
FreeChunk* fc;
- while ((fc = fl_for_cur_sz.getChunkAtHead()) != NULL) {
+ while ((fc = fl_for_cur_sz.get_chunk_at_head()) != NULL) {
// Must do this in reverse order, so that anybody attempting to
// access the main chunk sees it as a single free block until we
// change it.
size_t fc_size = fc->size();
- assert(fc->isFree(), "Error");
+ assert(fc->is_free(), "Error");
for (int i = k-1; i >= 0; i--) {
FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
assert((i != 0) ||
- ((fc == ffc) && ffc->isFree() &&
+ ((fc == ffc) && ffc->is_free() &&
(ffc->size() == k*word_sz) && (fc_size == word_sz)),
"Counting error");
- ffc->setSize(word_sz);
- ffc->linkPrev(NULL); // Mark as a free block for other (parallel) GC threads.
- ffc->linkNext(NULL);
+ ffc->set_size(word_sz);
+ ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
+ ffc->link_next(NULL);
// Above must occur before BOT is updated below.
OrderAccess::storestore();
// splitting from the right, fc_size == i * word_sz
@@ -2822,7 +2824,7 @@
_bt.verify_single_block((HeapWord*)fc, fc_size);
_bt.verify_single_block((HeapWord*)ffc, word_sz);
// Push this on "fl".
- fl->returnChunkAtHead(ffc);
+ fl->return_chunk_at_head(ffc);
}
// TRAP
assert(fl->tail()->next() == NULL, "List invariant.");
@@ -2832,8 +2834,8 @@
size_t num = fl->count();
MutexLockerEx x(_indexedFreeListParLocks[word_sz],
Mutex::_no_safepoint_check_flag);
- ssize_t births = _indexedFreeList[word_sz].splitBirths() + num;
- _indexedFreeList[word_sz].set_splitBirths(births);
+ ssize_t births = _indexedFreeList[word_sz].split_births() + num;
+ _indexedFreeList[word_sz].set_split_births(births);
return;
}
}
@@ -2846,12 +2848,12 @@
MutexLockerEx x(parDictionaryAllocLock(),
Mutex::_no_safepoint_check_flag);
while (n > 0) {
- fc = dictionary()->getChunk(MAX2(n * word_sz,
- _dictionary->minSize()),
- FreeBlockDictionary::atLeast);
+ fc = dictionary()->get_chunk(MAX2(n * word_sz,
+ _dictionary->min_size()),
+ FreeBlockDictionary<FreeChunk>::atLeast);
if (fc != NULL) {
_bt.allocated((HeapWord*)fc, fc->size(), true /* reducing */); // update _unallocated_blk
- dictionary()->dictCensusUpdate(fc->size(),
+ dictionary()->dict_census_udpate(fc->size(),
true /*split*/,
false /*birth*/);
break;
@@ -2862,7 +2864,7 @@
if (fc == NULL) return;
// Otherwise, split up that block.
assert((ssize_t)n >= 1, "Control point invariant");
- assert(fc->isFree(), "Error: should be a free block");
+ assert(fc->is_free(), "Error: should be a free block");
_bt.verify_single_block((HeapWord*)fc, fc->size());
const size_t nn = fc->size() / word_sz;
n = MIN2(nn, n);
@@ -2893,18 +2895,18 @@
if (rem > 0) {
size_t prefix_size = n * word_sz;
rem_fc = (FreeChunk*)((HeapWord*)fc + prefix_size);
- rem_fc->setSize(rem);
- rem_fc->linkPrev(NULL); // Mark as a free block for other (parallel) GC threads.
- rem_fc->linkNext(NULL);
+ rem_fc->set_size(rem);
+ rem_fc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
+ rem_fc->link_next(NULL);
// Above must occur before BOT is updated below.
assert((ssize_t)n > 0 && prefix_size > 0 && rem_fc > fc, "Error");
OrderAccess::storestore();
_bt.split_block((HeapWord*)fc, fc->size(), prefix_size);
- assert(fc->isFree(), "Error");
- fc->setSize(prefix_size);
+ assert(fc->is_free(), "Error");
+ fc->set_size(prefix_size);
if (rem >= IndexSetSize) {
returnChunkToDictionary(rem_fc);
- dictionary()->dictCensusUpdate(rem, true /*split*/, true /*birth*/);
+ dictionary()->dict_census_udpate(rem, true /*split*/, true /*birth*/);
rem_fc = NULL;
}
// Otherwise, return it to the small list below.
@@ -2914,7 +2916,7 @@
MutexLockerEx x(_indexedFreeListParLocks[rem],
Mutex::_no_safepoint_check_flag);
_bt.verify_not_unallocated((HeapWord*)rem_fc, rem_fc->size());
- _indexedFreeList[rem].returnChunkAtHead(rem_fc);
+ _indexedFreeList[rem].return_chunk_at_head(rem_fc);
smallSplitBirth(rem);
}
assert((ssize_t)n > 0 && fc != NULL, "Consistency");
@@ -2926,9 +2928,9 @@
// All but first chunk in this loop
for (ssize_t i = n-1; i > 0; i--) {
FreeChunk* ffc = (FreeChunk*)((HeapWord*)fc + i * word_sz);
- ffc->setSize(word_sz);
- ffc->linkPrev(NULL); // Mark as a free block for other (parallel) GC threads.
- ffc->linkNext(NULL);
+ ffc->set_size(word_sz);
+ ffc->link_prev(NULL); // Mark as a free block for other (parallel) GC threads.
+ ffc->link_next(NULL);
// Above must occur before BOT is updated below.
OrderAccess::storestore();
// splitting from the right, fc_size == (n - i + 1) * wordsize
@@ -2938,25 +2940,25 @@
_bt.verify_single_block((HeapWord*)ffc, ffc->size());
_bt.verify_single_block((HeapWord*)fc, fc_size);
// Push this on "fl".
- fl->returnChunkAtHead(ffc);
+ fl->return_chunk_at_head(ffc);
}
// First chunk
- assert(fc->isFree() && fc->size() == n*word_sz, "Error: should still be a free block");
+ assert(fc->is_free() && fc->size() == n*word_sz, "Error: should still be a free block");
// The blocks above should show their new sizes before the first block below
- fc->setSize(word_sz);
- fc->linkPrev(NULL); // idempotent wrt free-ness, see assert above
- fc->linkNext(NULL);
+ fc->set_size(word_sz);
+ fc->link_prev(NULL); // idempotent wrt free-ness, see assert above
+ fc->link_next(NULL);
_bt.verify_not_unallocated((HeapWord*)fc, fc->size());
_bt.verify_single_block((HeapWord*)fc, fc->size());
- fl->returnChunkAtHead(fc);
+ fl->return_chunk_at_head(fc);
assert((ssize_t)n > 0 && (ssize_t)n == fl->count(), "Incorrect number of blocks");
{
// Update the stats for this block size.
MutexLockerEx x(_indexedFreeListParLocks[word_sz],
Mutex::_no_safepoint_check_flag);
- const ssize_t births = _indexedFreeList[word_sz].splitBirths() + n;
- _indexedFreeList[word_sz].set_splitBirths(births);
+ const ssize_t births = _indexedFreeList[word_sz].split_births() + n;
+ _indexedFreeList[word_sz].set_split_births(births);
// ssize_t new_surplus = _indexedFreeList[word_sz].surplus() + n;
// _indexedFreeList[word_sz].set_surplus(new_surplus);
}
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp Fri May 04 10:46:32 2012 -0700
@@ -25,10 +25,10 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
-#include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeList.hpp"
#include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
+#include "memory/binaryTreeDictionary.hpp"
#include "memory/blockOffsetTable.inline.hpp"
+#include "memory/freeList.hpp"
#include "memory/space.hpp"
// Classes in support of keeping track of promotions into a non-Contiguous
@@ -129,10 +129,10 @@
// Linear allocation blocks
LinearAllocBlock _smallLinearAllocBlock;
- FreeBlockDictionary::DictionaryChoice _dictionaryChoice;
- FreeBlockDictionary* _dictionary; // ptr to dictionary for large size blocks
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice _dictionaryChoice;
+ FreeBlockDictionary<FreeChunk>* _dictionary; // ptr to dictionary for large size blocks
- FreeList _indexedFreeList[IndexSetSize];
+ FreeList<FreeChunk> _indexedFreeList[IndexSetSize];
// indexed array for small size blocks
// allocation stategy
bool _fitStrategy; // Use best fit strategy.
@@ -169,7 +169,7 @@
// If the count of "fl" is negative, it's absolute value indicates a
// number of free chunks that had been previously "borrowed" from global
// list of size "word_sz", and must now be decremented.
- void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl);
+ void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList<FreeChunk>* fl);
// Allocation helper functions
// Allocate using a strategy that takes from the indexed free lists
@@ -215,7 +215,7 @@
// and return it. The split off remainder is returned to
// the free lists. The old name for getFromListGreater
// was lookInListGreater.
- FreeChunk* getFromListGreater(FreeList* fl, size_t numWords);
+ FreeChunk* getFromListGreater(FreeList<FreeChunk>* fl, size_t numWords);
// Get a chunk in the indexed free list or dictionary,
// by considering a larger chunk and splitting it.
FreeChunk* getChunkFromGreater(size_t numWords);
@@ -286,10 +286,10 @@
// Constructor...
CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
bool use_adaptive_freelists,
- FreeBlockDictionary::DictionaryChoice);
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice);
// accessors
bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
- FreeBlockDictionary* dictionary() const { return _dictionary; }
+ FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
@@ -499,7 +499,7 @@
// Verify that the given chunk is in the free lists:
// i.e. either the binary tree dictionary, the indexed free lists
// or the linear allocation block.
- bool verifyChunkInFreeLists(FreeChunk* fc) const;
+ bool verify_chunk_in_free_list(FreeChunk* fc) const;
// Verify that the given chunk is the linear allocation block
bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
// Do some basic checks on the the free lists.
@@ -608,7 +608,7 @@
void coalDeath(size_t size);
void smallSplitBirth(size_t size);
void smallSplitDeath(size_t size);
- void splitBirth(size_t size);
+ void split_birth(size_t size);
void splitDeath(size_t size);
void split(size_t from, size_t to1);
@@ -622,7 +622,7 @@
CompactibleFreeListSpace* _cfls;
// Our local free lists.
- FreeList _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
+ FreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
// Initialized from a command-line arg.
@@ -635,7 +635,7 @@
size_t _num_blocks [CompactibleFreeListSpace::IndexSetSize];
// Internal work method
- void get_from_global_pool(size_t word_sz, FreeList* fl);
+ void get_from_global_pool(size_t word_sz, FreeList<FreeChunk>* fl);
public:
CFLS_LAB(CompactibleFreeListSpace* cfls);
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp Fri May 04 10:46:32 2012 -0700
@@ -188,7 +188,7 @@
ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
ReservedSpace rs, size_t initial_byte_size, int level,
CardTableRS* ct, bool use_adaptive_freelists,
- FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
CardGeneration(rs, initial_byte_size, level, ct),
_dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
_debug_collection_type(Concurrent_collection_type)
@@ -1026,7 +1026,7 @@
// its mark-bit or P-bits not yet set. Such objects need
// to be safely navigable by block_start().
assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
- assert(!((FreeChunk*)res)->isFree(), "Error, block will look free but show wrong size");
+ assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
collector()->direct_allocated(res, adjustedSize);
_direct_allocated_words += adjustedSize;
// allocation counters
@@ -1391,7 +1391,7 @@
oop obj = oop(obj_ptr);
OrderAccess::storestore();
assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
- assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
+ assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
// IMPORTANT: See note on object initialization for CMS above.
// Otherwise, copy the object. Here we must be careful to insert the
// klass pointer last, since this marks the block as an allocated object.
@@ -1400,7 +1400,7 @@
// Restore the mark word copied above.
obj->set_mark(m);
assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
- assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
+ assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
OrderAccess::storestore();
if (UseCompressedOops) {
@@ -1421,7 +1421,7 @@
promoInfo->track((PromotedObject*)obj, old->klass());
}
assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
- assert(!((FreeChunk*)obj_ptr)->isFree(), "Error, block will look free but show wrong size");
+ assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
assert(old->is_oop(), "Will use and dereference old klass ptr below");
// Finally, install the klass pointer (this should be volatile).
@@ -2034,7 +2034,7 @@
pointer_delta(cms_space->end(), cms_space->compaction_top())
* HeapWordSize,
"All the free space should be compacted into one chunk at top");
- assert(cms_space->dictionary()->totalChunkSize(
+ assert(cms_space->dictionary()->total_chunk_size(
debug_only(cms_space->freelistLock())) == 0 ||
cms_space->totalSizeInIndexedFreeLists() == 0,
"All the free space should be in a single chunk");
@@ -6131,7 +6131,7 @@
double nearLargestPercent = FLSLargestBlockCoalesceProximity;
HeapWord* minAddr = _cmsSpace->bottom();
HeapWord* largestAddr =
- (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
+ (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
if (largestAddr == NULL) {
// The dictionary appears to be empty. In this case
// try to coalesce at the end of the heap.
@@ -7906,7 +7906,7 @@
_last_fc = NULL;
_sp->initializeIndexedFreeListArrayReturnedBytes();
- _sp->dictionary()->initializeDictReturnedBytes();
+ _sp->dictionary()->initialize_dict_returned_bytes();
)
assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
"sweep _limit out of bounds");
@@ -7954,13 +7954,13 @@
if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
- size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
- size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
- gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
+ size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
+ size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
+ gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
gclog_or_tty->print(" Indexed List Returned "SIZE_FORMAT" bytes",
indexListReturnedBytes);
gclog_or_tty->print_cr(" Dictionary Returned "SIZE_FORMAT" bytes",
- dictReturnedBytes);
+ dict_returned_bytes);
}
}
if (CMSTraceSweeper) {
@@ -7985,9 +7985,9 @@
if (CMSTestInFreeList) {
if (freeRangeInFreeLists) {
FreeChunk* fc = (FreeChunk*) freeFinger;
- assert(fc->isFree(), "A chunk on the free list should be free.");
+ assert(fc->is_free(), "A chunk on the free list should be free.");
assert(fc->size() > 0, "Free range should have a size");
- assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
+ assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
}
}
}
@@ -8057,7 +8057,7 @@
assert(addr < _limit, "sweep invariant");
// check if we should yield
do_yield_check(addr);
- if (fc->isFree()) {
+ if (fc->is_free()) {
// Chunk that is already free
res = fc->size();
do_already_free_chunk(fc);
@@ -8145,7 +8145,7 @@
// Chunks that cannot be coalesced are not in the
// free lists.
if (CMSTestInFreeList && !fc->cantCoalesce()) {
- assert(_sp->verifyChunkInFreeLists(fc),
+ assert(_sp->verify_chunk_in_free_list(fc),
"free chunk should be in free lists");
}
// a chunk that is already free, should not have been
@@ -8171,7 +8171,7 @@
FreeChunk* nextChunk = (FreeChunk*)(addr + size);
assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
if ((HeapWord*)nextChunk < _sp->end() && // There is another free chunk to the right ...
- nextChunk->isFree() && // ... which is free...
+ nextChunk->is_free() && // ... which is free...
nextChunk->cantCoalesce()) { // ... but can't be coalesced
// nothing to do
} else {
@@ -8203,7 +8203,7 @@
assert(ffc->size() == pointer_delta(addr, freeFinger()),
"Size of free range is inconsistent with chunk size.");
if (CMSTestInFreeList) {
- assert(_sp->verifyChunkInFreeLists(ffc),
+ assert(_sp->verify_chunk_in_free_list(ffc),
"free range is not in free lists");
}
_sp->removeFreeChunkFromFreeLists(ffc);
@@ -8262,7 +8262,7 @@
assert(ffc->size() == pointer_delta(addr, freeFinger()),
"Size of free range is inconsistent with chunk size.");
if (CMSTestInFreeList) {
- assert(_sp->verifyChunkInFreeLists(ffc),
+ assert(_sp->verify_chunk_in_free_list(ffc),
"free range is not in free lists");
}
_sp->removeFreeChunkFromFreeLists(ffc);
@@ -8351,11 +8351,11 @@
size_t chunkSize) {
// do_post_free_or_garbage_chunk() should only be called in the case
// of the adaptive free list allocator.
- const bool fcInFreeLists = fc->isFree();
+ const bool fcInFreeLists = fc->is_free();
assert(_sp->adaptive_freelists(), "Should only be used in this case.");
assert((HeapWord*)fc <= _limit, "sweep invariant");
if (CMSTestInFreeList && fcInFreeLists) {
- assert(_sp->verifyChunkInFreeLists(fc), "free chunk is not in free lists");
+ assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
}
if (CMSTraceSweeper) {
@@ -8410,7 +8410,7 @@
assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
"Size of free range is inconsistent with chunk size.");
if (CMSTestInFreeList) {
- assert(_sp->verifyChunkInFreeLists(ffc),
+ assert(_sp->verify_chunk_in_free_list(ffc),
"Chunk is not in free lists");
}
_sp->coalDeath(ffc->size());
@@ -8459,7 +8459,7 @@
" when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
_limit, _sp->bottom(), _sp->end(), fc, chunk_size));
if (eob >= _limit) {
- assert(eob == _limit || fc->isFree(), "Only a free chunk should allow us to cross over the limit");
+ assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
if (CMSTraceSweeper) {
gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
"[" PTR_FORMAT "," PTR_FORMAT ") in space "
@@ -8482,8 +8482,8 @@
if (!freeRangeInFreeLists()) {
if (CMSTestInFreeList) {
FreeChunk* fc = (FreeChunk*) chunk;
- fc->setSize(size);
- assert(!_sp->verifyChunkInFreeLists(fc),
+ fc->set_size(size);
+ assert(!_sp->verify_chunk_in_free_list(fc),
"chunk should not be in free lists yet");
}
if (CMSTraceSweeper) {
@@ -8557,8 +8557,8 @@
// This is actually very useful in a product build if it can
// be called from the debugger. Compile it into the product
// as needed.
-bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
- return debug_cms_space->verifyChunkInFreeLists(fc);
+bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
+ return debug_cms_space->verify_chunk_in_free_list(fc);
}
#endif
@@ -9255,7 +9255,7 @@
size_t chunk_at_end_old_size = chunk_at_end->size();
assert(chunk_at_end_old_size >= word_size_change,
"Shrink is too large");
- chunk_at_end->setSize(chunk_at_end_old_size -
+ chunk_at_end->set_size(chunk_at_end_old_size -
word_size_change);
_cmsSpace->freed((HeapWord*) chunk_at_end->end(),
word_size_change);
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp Fri May 04 10:46:32 2012 -0700
@@ -25,10 +25,10 @@
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
#include "gc_implementation/shared/gSpaceCounters.hpp"
#include "gc_implementation/shared/gcStats.hpp"
#include "gc_implementation/shared/generationCounters.hpp"
+#include "memory/freeBlockDictionary.hpp"
#include "memory/generation.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/virtualspace.hpp"
@@ -1106,7 +1106,7 @@
ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
int level, CardTableRS* ct,
bool use_adaptive_freelists,
- FreeBlockDictionary::DictionaryChoice);
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice);
// Accessors
CMSCollector* collector() const { return _collector; }
@@ -1328,7 +1328,7 @@
ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
int level, CardTableRS* ct,
bool use_adaptive_freelists,
- FreeBlockDictionary::DictionaryChoice
+ FreeBlockDictionary<FreeChunk>::DictionaryChoice
dictionaryChoice) :
ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
use_adaptive_freelists, dictionaryChoice) {}
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeBlockDictionary.cpp Wed May 02 15:47:06 2012 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,60 +0,0 @@
-/*
- * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#include "precompiled.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
-#ifdef TARGET_OS_FAMILY_linux
-# include "thread_linux.inline.hpp"
-#endif
-#ifdef TARGET_OS_FAMILY_solaris
-# include "thread_solaris.inline.hpp"
-#endif
-#ifdef TARGET_OS_FAMILY_windows
-# include "thread_windows.inline.hpp"
-#endif
-#ifdef TARGET_OS_FAMILY_bsd
-# include "thread_bsd.inline.hpp"
-#endif
-
-#ifndef PRODUCT
-Mutex* FreeBlockDictionary::par_lock() const {
- return _lock;
-}
-
-void FreeBlockDictionary::set_par_lock(Mutex* lock) {
- _lock = lock;
-}
-
-void FreeBlockDictionary::verify_par_locked() const {
-#ifdef ASSERT
- if (ParallelGCThreads > 0) {
- Thread* myThread = Thread::current();
- if (myThread->is_GC_task_thread()) {
- assert(par_lock() != NULL, "Should be using locking?");
- assert_lock_strong(par_lock());
- }
- }
-#endif // ASSERT
-}
-#endif
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp Wed May 02 15:47:06 2012 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,103 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREEBLOCKDICTIONARY_HPP
-#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREEBLOCKDICTIONARY_HPP
-
-#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
-#include "memory/allocation.hpp"
-#include "memory/memRegion.hpp"
-#include "runtime/mutex.hpp"
-#include "utilities/debug.hpp"
-#include "utilities/globalDefinitions.hpp"
-#include "utilities/ostream.hpp"
-
-// A FreeBlockDictionary is an abstract superclass that will allow
-// a number of alternative implementations in the future.
-class FreeBlockDictionary: public CHeapObj {
- public:
- enum Dither {
- atLeast,
- exactly,
- roughly
- };
- enum DictionaryChoice {
- dictionaryBinaryTree = 0,
- dictionarySplayTree = 1,
- dictionarySkipList = 2
- };
-
- private:
- NOT_PRODUCT(Mutex* _lock;)
-
- public:
- virtual void removeChunk(FreeChunk* fc) = 0;
- virtual FreeChunk* getChunk(size_t size, Dither dither = atLeast) = 0;
- virtual void returnChunk(FreeChunk* chunk) = 0;
- virtual size_t totalChunkSize(debug_only(const Mutex* lock)) const = 0;
- virtual size_t maxChunkSize() const = 0;
- virtual size_t minSize() const = 0;
- // Reset the dictionary to the initial conditions for a single
- // block.
- virtual void reset(HeapWord* addr, size_t size) = 0;
- virtual void reset() = 0;
-
- virtual void dictCensusUpdate(size_t size, bool split, bool birth) = 0;
- virtual bool coalDictOverPopulated(size_t size) = 0;
- virtual void beginSweepDictCensus(double coalSurplusPercent,
- float inter_sweep_current, float inter_sweep_estimate,
- float intra__sweep_current) = 0;
- virtual void endSweepDictCensus(double splitSurplusPercent) = 0;
- virtual FreeChunk* findLargestDict() const = 0;
- // verify that the given chunk is in the dictionary.
- virtual bool verifyChunkInFreeLists(FreeChunk* tc) const = 0;
-
- // Sigma_{all_free_blocks} (block_size^2)
- virtual double sum_of_squared_block_sizes() const = 0;
-
- virtual FreeChunk* find_chunk_ends_at(HeapWord* target) const = 0;
- virtual void inc_totalSize(size_t v) = 0;
- virtual void dec_totalSize(size_t v) = 0;
-
- NOT_PRODUCT (
- virtual size_t sumDictReturnedBytes() = 0;
- virtual void initializeDictReturnedBytes() = 0;
- virtual size_t totalCount() = 0;
- )
-
- virtual void reportStatistics() const {
- gclog_or_tty->print("No statistics available");
- }
-
- virtual void printDictCensus() const = 0;
- virtual void print_free_lists(outputStream* st) const = 0;
-
- virtual void verify() const = 0;
-
- Mutex* par_lock() const PRODUCT_RETURN0;
- void set_par_lock(Mutex* lock) PRODUCT_RETURN;
- void verify_par_locked() const PRODUCT_RETURN;
-};
-
-#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREEBLOCKDICTIONARY_HPP
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeChunk.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeChunk.cpp Fri May 04 10:46:32 2012 -0700
@@ -23,7 +23,8 @@
*/
#include "precompiled.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
+#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
+#include "memory/freeBlockDictionary.hpp"
#include "utilities/copy.hpp"
#ifndef PRODUCT
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeChunk.hpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeChunk.hpp Fri May 04 10:46:32 2012 -0700
@@ -75,20 +75,20 @@
// calls. We really want the read of _mark and _prev from this pointer
// to be volatile but making the fields volatile causes all sorts of
// compilation errors.
- return ((volatile FreeChunk*)addr)->isFree();
+ return ((volatile FreeChunk*)addr)->is_free();
}
- bool isFree() const volatile {
+ bool is_free() const volatile {
LP64_ONLY(if (UseCompressedOops) return mark()->is_cms_free_chunk(); else)
return (((intptr_t)_prev) & 0x1) == 0x1;
}
bool cantCoalesce() const {
- assert(isFree(), "can't get coalesce bit on not free");
+ assert(is_free(), "can't get coalesce bit on not free");
return (((intptr_t)_prev) & 0x2) == 0x2;
}
void dontCoalesce() {
// the block should be free
- assert(isFree(), "Should look like a free block");
+ assert(is_free(), "Should look like a free block");
_prev = (FreeChunk*)(((intptr_t)_prev) | 0x2);
}
FreeChunk* prev() const {
@@ -103,23 +103,23 @@
LP64_ONLY(if (UseCompressedOops) return mark()->get_size(); else )
return _size;
}
- void setSize(size_t sz) {
+ void set_size(size_t sz) {
LP64_ONLY(if (UseCompressedOops) set_mark(markOopDesc::set_size_and_free(sz)); else )
_size = sz;
}
FreeChunk* next() const { return _next; }
- void linkAfter(FreeChunk* ptr) {
- linkNext(ptr);
- if (ptr != NULL) ptr->linkPrev(this);
+ void link_after(FreeChunk* ptr) {
+ link_next(ptr);
+ if (ptr != NULL) ptr->link_prev(this);
}
- void linkNext(FreeChunk* ptr) { _next = ptr; }
- void linkPrev(FreeChunk* ptr) {
+ void link_next(FreeChunk* ptr) { _next = ptr; }
+ void link_prev(FreeChunk* ptr) {
LP64_ONLY(if (UseCompressedOops) _prev = ptr; else)
_prev = (FreeChunk*)((intptr_t)ptr | 0x1);
}
- void clearNext() { _next = NULL; }
+ void clear_next() { _next = NULL; }
void markNotFree() {
// Set _prev (klass) to null before (if) clearing the mark word below
_prev = NULL;
@@ -129,7 +129,7 @@
set_mark(markOopDesc::prototype());
}
#endif
- assert(!isFree(), "Error");
+ assert(!is_free(), "Error");
}
// Return the address past the end of this chunk
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeList.cpp Wed May 02 15:47:06 2012 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,360 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#include "precompiled.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeList.hpp"
-#include "memory/sharedHeap.hpp"
-#include "runtime/globals.hpp"
-#include "runtime/mutex.hpp"
-#include "runtime/vmThread.hpp"
-
-// Free list. A FreeList is used to access a linked list of chunks
-// of space in the heap. The head and tail are maintained so that
-// items can be (as in the current implementation) added at the
-// at the tail of the list and removed from the head of the list to
-// maintain a FIFO queue.
-
-FreeList::FreeList() :
- _head(NULL), _tail(NULL)
-#ifdef ASSERT
- , _protecting_lock(NULL)
-#endif
-{
- _size = 0;
- _count = 0;
- _hint = 0;
- init_statistics();
-}
-
-FreeList::FreeList(FreeChunk* fc) :
- _head(fc), _tail(fc)
-#ifdef ASSERT
- , _protecting_lock(NULL)
-#endif
-{
- _size = fc->size();
- _count = 1;
- _hint = 0;
- init_statistics();
-#ifndef PRODUCT
- _allocation_stats.set_returnedBytes(size() * HeapWordSize);
-#endif
-}
-
-FreeList::FreeList(HeapWord* addr, size_t size) :
- _head((FreeChunk*) addr), _tail((FreeChunk*) addr)
-#ifdef ASSERT
- , _protecting_lock(NULL)
-#endif
-{
- assert(size > sizeof(FreeChunk), "size is too small");
- head()->setSize(size);
- _size = size;
- _count = 1;
- init_statistics();
-#ifndef PRODUCT
- _allocation_stats.set_returnedBytes(_size * HeapWordSize);
-#endif
-}
-
-void FreeList::reset(size_t hint) {
- set_count(0);
- set_head(NULL);
- set_tail(NULL);
- set_hint(hint);
-}
-
-void FreeList::init_statistics(bool split_birth) {
- _allocation_stats.initialize(split_birth);
-}
-
-FreeChunk* FreeList::getChunkAtHead() {
- assert_proper_lock_protection();
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- FreeChunk* fc = head();
- if (fc != NULL) {
- FreeChunk* nextFC = fc->next();
- if (nextFC != NULL) {
- // The chunk fc being removed has a "next". Set the "next" to the
- // "prev" of fc.
- nextFC->linkPrev(NULL);
- } else { // removed tail of list
- link_tail(NULL);
- }
- link_head(nextFC);
- decrement_count();
- }
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- return fc;
-}
-
-
-void FreeList::getFirstNChunksFromList(size_t n, FreeList* fl) {
- assert_proper_lock_protection();
- assert(fl->count() == 0, "Precondition");
- if (count() > 0) {
- int k = 1;
- fl->set_head(head()); n--;
- FreeChunk* tl = head();
- while (tl->next() != NULL && n > 0) {
- tl = tl->next(); n--; k++;
- }
- assert(tl != NULL, "Loop Inv.");
-
- // First, fix up the list we took from.
- FreeChunk* new_head = tl->next();
- set_head(new_head);
- set_count(count() - k);
- if (new_head == NULL) {
- set_tail(NULL);
- } else {
- new_head->linkPrev(NULL);
- }
- // Now we can fix up the tail.
- tl->linkNext(NULL);
- // And return the result.
- fl->set_tail(tl);
- fl->set_count(k);
- }
-}
-
-// Remove this chunk from the list
-void FreeList::removeChunk(FreeChunk*fc) {
- assert_proper_lock_protection();
- assert(head() != NULL, "Remove from empty list");
- assert(fc != NULL, "Remove a NULL chunk");
- assert(size() == fc->size(), "Wrong list");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
- FreeChunk* prevFC = fc->prev();
- FreeChunk* nextFC = fc->next();
- if (nextFC != NULL) {
- // The chunk fc being removed has a "next". Set the "next" to the
- // "prev" of fc.
- nextFC->linkPrev(prevFC);
- } else { // removed tail of list
- link_tail(prevFC);
- }
- if (prevFC == NULL) { // removed head of list
- link_head(nextFC);
- assert(nextFC == NULL || nextFC->prev() == NULL,
- "Prev of head should be NULL");
- } else {
- prevFC->linkNext(nextFC);
- assert(tail() != prevFC || prevFC->next() == NULL,
- "Next of tail should be NULL");
- }
- decrement_count();
- assert(((head() == NULL) + (tail() == NULL) + (count() == 0)) % 3 == 0,
- "H/T/C Inconsistency");
- // clear next and prev fields of fc, debug only
- NOT_PRODUCT(
- fc->linkPrev(NULL);
- fc->linkNext(NULL);
- )
- assert(fc->isFree(), "Should still be a free chunk");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- assert(head() == NULL || head()->size() == size(), "wrong item on list");
- assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
-}
-
-// Add this chunk at the head of the list.
-void FreeList::returnChunkAtHead(FreeChunk* chunk, bool record_return) {
- assert_proper_lock_protection();
- assert(chunk != NULL, "insert a NULL chunk");
- assert(size() == chunk->size(), "Wrong size");
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
-
- FreeChunk* oldHead = head();
- assert(chunk != oldHead, "double insertion");
- chunk->linkAfter(oldHead);
- link_head(chunk);
- if (oldHead == NULL) { // only chunk in list
- assert(tail() == NULL, "inconsistent FreeList");
- link_tail(chunk);
- }
- increment_count(); // of # of chunks in list
- DEBUG_ONLY(
- if (record_return) {
- increment_returnedBytes_by(size()*HeapWordSize);
- }
- )
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- assert(head() == NULL || head()->size() == size(), "wrong item on list");
- assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
-}
-
-void FreeList::returnChunkAtHead(FreeChunk* chunk) {
- assert_proper_lock_protection();
- returnChunkAtHead(chunk, true);
-}
-
-// Add this chunk at the tail of the list.
-void FreeList::returnChunkAtTail(FreeChunk* chunk, bool record_return) {
- assert_proper_lock_protection();
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- assert(chunk != NULL, "insert a NULL chunk");
- assert(size() == chunk->size(), "wrong size");
-
- FreeChunk* oldTail = tail();
- assert(chunk != oldTail, "double insertion");
- if (oldTail != NULL) {
- oldTail->linkAfter(chunk);
- } else { // only chunk in list
- assert(head() == NULL, "inconsistent FreeList");
- link_head(chunk);
- }
- link_tail(chunk);
- increment_count(); // of # of chunks in list
- DEBUG_ONLY(
- if (record_return) {
- increment_returnedBytes_by(size()*HeapWordSize);
- }
- )
- assert(head() == NULL || head()->prev() == NULL, "list invariant");
- assert(tail() == NULL || tail()->next() == NULL, "list invariant");
- assert(head() == NULL || head()->size() == size(), "wrong item on list");
- assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
-}
-
-void FreeList::returnChunkAtTail(FreeChunk* chunk) {
- returnChunkAtTail(chunk, true);
-}
-
-void FreeList::prepend(FreeList* fl) {
- assert_proper_lock_protection();
- if (fl->count() > 0) {
- if (count() == 0) {
- set_head(fl->head());
- set_tail(fl->tail());
- set_count(fl->count());
- } else {
- // Both are non-empty.
- FreeChunk* fl_tail = fl->tail();
- FreeChunk* this_head = head();
- assert(fl_tail->next() == NULL, "Well-formedness of fl");
- fl_tail->linkNext(this_head);
- this_head->linkPrev(fl_tail);
- set_head(fl->head());
- set_count(count() + fl->count());
- }
- fl->set_head(NULL);
- fl->set_tail(NULL);
- fl->set_count(0);
- }
-}
-
-// verifyChunkInFreeLists() is used to verify that an item is in this free list.
-// It is used as a debugging aid.
-bool FreeList::verifyChunkInFreeLists(FreeChunk* fc) const {
- // This is an internal consistency check, not part of the check that the
- // chunk is in the free lists.
- guarantee(fc->size() == size(), "Wrong list is being searched");
- FreeChunk* curFC = head();
- while (curFC) {
- // This is an internal consistency check.
- guarantee(size() == curFC->size(), "Chunk is in wrong list.");
- if (fc == curFC) {
- return true;
- }
- curFC = curFC->next();
- }
- return false;
-}
-
-#ifndef PRODUCT
-void FreeList::verify_stats() const {
- // The +1 of the LH comparand is to allow some "looseness" in
- // checking: we usually call this interface when adding a block
- // and we'll subsequently update the stats; we cannot update the
- // stats beforehand because in the case of the large-block BT
- // dictionary for example, this might be the first block and
- // in that case there would be no place that we could record
- // the stats (which are kept in the block itself).
- assert((_allocation_stats.prevSweep() + _allocation_stats.splitBirths()
- + _allocation_stats.coalBirths() + 1) // Total Production Stock + 1
- >= (_allocation_stats.splitDeaths() + _allocation_stats.coalDeaths()
- + (ssize_t)count()), // Total Current Stock + depletion
- err_msg("FreeList " PTR_FORMAT " of size " SIZE_FORMAT
- " violates Conservation Principle: "
- "prevSweep(" SIZE_FORMAT ")"
- " + splitBirths(" SIZE_FORMAT ")"
- " + coalBirths(" SIZE_FORMAT ") + 1 >= "
- " splitDeaths(" SIZE_FORMAT ")"
- " coalDeaths(" SIZE_FORMAT ")"
- " + count(" SSIZE_FORMAT ")",
- this, _size, _allocation_stats.prevSweep(), _allocation_stats.splitBirths(),
- _allocation_stats.splitBirths(), _allocation_stats.splitDeaths(),
- _allocation_stats.coalDeaths(), count()));
-}
-
-void FreeList::assert_proper_lock_protection_work() const {
- assert(_protecting_lock != NULL, "Don't call this directly");
- assert(ParallelGCThreads > 0, "Don't call this directly");
- Thread* thr = Thread::current();
- if (thr->is_VM_thread() || thr->is_ConcurrentGC_thread()) {
- // assert that we are holding the freelist lock
- } else if (thr->is_GC_task_thread()) {
- assert(_protecting_lock->owned_by_self(), "FreeList RACE DETECTED");
- } else if (thr->is_Java_thread()) {
- assert(!SafepointSynchronize::is_at_safepoint(), "Should not be executing");
- } else {
- ShouldNotReachHere(); // unaccounted thread type?
- }
-}
-#endif
-
-// Print the "label line" for free list stats.
-void FreeList::print_labels_on(outputStream* st, const char* c) {
- st->print("%16s\t", c);
- st->print("%14s\t" "%14s\t" "%14s\t" "%14s\t" "%14s\t"
- "%14s\t" "%14s\t" "%14s\t" "%14s\t" "%14s\t" "\n",
- "bfrsurp", "surplus", "desired", "prvSwep", "bfrSwep",
- "count", "cBirths", "cDeaths", "sBirths", "sDeaths");
-}
-
-// Print the AllocationStats for the given free list. If the second argument
-// to the call is a non-null string, it is printed in the first column;
-// otherwise, if the argument is null (the default), then the size of the
-// (free list) block is printed in the first column.
-void FreeList::print_on(outputStream* st, const char* c) const {
- if (c != NULL) {
- st->print("%16s", c);
- } else {
- st->print(SIZE_FORMAT_W(16), size());
- }
- st->print("\t"
- SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t"
- SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\n",
- bfrSurp(), surplus(), desired(), prevSweep(), beforeSweep(),
- count(), coalBirths(), coalDeaths(), splitBirths(), splitDeaths());
-}
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/freeList.hpp Wed May 02 15:47:06 2012 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,335 +0,0 @@
-/*
- * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREELIST_HPP
-#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREELIST_HPP
-
-#include "gc_implementation/shared/allocationStats.hpp"
-
-class CompactibleFreeListSpace;
-
-// A class for maintaining a free list of FreeChunk's. The FreeList
-// maintains a the structure of the list (head, tail, etc.) plus
-// statistics for allocations from the list. The links between items
-// are not part of FreeList. The statistics are
-// used to make decisions about coalescing FreeChunk's when they
-// are swept during collection.
-//
-// See the corresponding .cpp file for a description of the specifics
-// for that implementation.
-
-class Mutex;
-class TreeList;
-
-class FreeList VALUE_OBJ_CLASS_SPEC {
- friend class CompactibleFreeListSpace;
- friend class VMStructs;
- friend class PrintTreeCensusClosure;
-
- protected:
- TreeList* _parent;
- TreeList* _left;
- TreeList* _right;
-
- private:
- FreeChunk* _head; // Head of list of free chunks
- FreeChunk* _tail; // Tail of list of free chunks
- size_t _size; // Size in Heap words of each chunk
- ssize_t _count; // Number of entries in list
- size_t _hint; // next larger size list with a positive surplus
-
- AllocationStats _allocation_stats; // allocation-related statistics
-
-#ifdef ASSERT
- Mutex* _protecting_lock;
-#endif
-
- // Asserts false if the protecting lock (if any) is not held.
- void assert_proper_lock_protection_work() const PRODUCT_RETURN;
- void assert_proper_lock_protection() const {
-#ifdef ASSERT
- if (_protecting_lock != NULL)
- assert_proper_lock_protection_work();
-#endif
- }
-
- // Initialize the allocation statistics.
- protected:
- void init_statistics(bool split_birth = false);
- void set_count(ssize_t v) { _count = v;}
- void increment_count() {
- _count++;
- }
-
- void decrement_count() {
- _count--;
- assert(_count >= 0, "Count should not be negative");
- }
-
- public:
- // Constructor
- // Construct a list without any entries.
- FreeList();
- // Construct a list with "fc" as the first (and lone) entry in the list.
- FreeList(FreeChunk* fc);
- // Construct a list which will have a FreeChunk at address "addr" and
- // of size "size" as the first (and lone) entry in the list.
- FreeList(HeapWord* addr, size_t size);
-
- // Reset the head, tail, hint, and count of a free list.
- void reset(size_t hint);
-
- // Declare the current free list to be protected by the given lock.
-#ifdef ASSERT
- void set_protecting_lock(Mutex* protecting_lock) {
- _protecting_lock = protecting_lock;
- }
-#endif
-
- // Accessors.
- FreeChunk* head() const {
- assert_proper_lock_protection();
- return _head;
- }
- void set_head(FreeChunk* v) {
- assert_proper_lock_protection();
- _head = v;
- assert(!_head || _head->size() == _size, "bad chunk size");
- }
- // Set the head of the list and set the prev field of non-null
- // values to NULL.
- void link_head(FreeChunk* v) {
- assert_proper_lock_protection();
- set_head(v);
- // If this method is not used (just set the head instead),
- // this check can be avoided.
- if (v != NULL) {
- v->linkPrev(NULL);
- }
- }
-
- FreeChunk* tail() const {
- assert_proper_lock_protection();
- return _tail;
- }
- void set_tail(FreeChunk* v) {
- assert_proper_lock_protection();
- _tail = v;
- assert(!_tail || _tail->size() == _size, "bad chunk size");
- }
- // Set the tail of the list and set the next field of non-null
- // values to NULL.
- void link_tail(FreeChunk* v) {
- assert_proper_lock_protection();
- set_tail(v);
- if (v != NULL) {
- v->clearNext();
- }
- }
-
- // No locking checks in read-accessors: lock-free reads (only) are benign.
- // Readers are expected to have the lock if they are doing work that
- // requires atomicity guarantees in sections of code.
- size_t size() const {
- return _size;
- }
- void set_size(size_t v) {
- assert_proper_lock_protection();
- _size = v;
- }
- ssize_t count() const {
- return _count;
- }
- size_t hint() const {
- return _hint;
- }
- void set_hint(size_t v) {
- assert_proper_lock_protection();
- assert(v == 0 || _size < v, "Bad hint"); _hint = v;
- }
-
- // Accessors for statistics
- AllocationStats* allocation_stats() {
- assert_proper_lock_protection();
- return &_allocation_stats;
- }
-
- ssize_t desired() const {
- return _allocation_stats.desired();
- }
- void set_desired(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_desired(v);
- }
- void compute_desired(float inter_sweep_current,
- float inter_sweep_estimate,
- float intra_sweep_estimate) {
- assert_proper_lock_protection();
- _allocation_stats.compute_desired(_count,
- inter_sweep_current,
- inter_sweep_estimate,
- intra_sweep_estimate);
- }
- ssize_t coalDesired() const {
- return _allocation_stats.coalDesired();
- }
- void set_coalDesired(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_coalDesired(v);
- }
-
- ssize_t surplus() const {
- return _allocation_stats.surplus();
- }
- void set_surplus(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_surplus(v);
- }
- void increment_surplus() {
- assert_proper_lock_protection();
- _allocation_stats.increment_surplus();
- }
- void decrement_surplus() {
- assert_proper_lock_protection();
- _allocation_stats.decrement_surplus();
- }
-
- ssize_t bfrSurp() const {
- return _allocation_stats.bfrSurp();
- }
- void set_bfrSurp(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_bfrSurp(v);
- }
- ssize_t prevSweep() const {
- return _allocation_stats.prevSweep();
- }
- void set_prevSweep(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_prevSweep(v);
- }
- ssize_t beforeSweep() const {
- return _allocation_stats.beforeSweep();
- }
- void set_beforeSweep(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_beforeSweep(v);
- }
-
- ssize_t coalBirths() const {
- return _allocation_stats.coalBirths();
- }
- void set_coalBirths(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_coalBirths(v);
- }
- void increment_coalBirths() {
- assert_proper_lock_protection();
- _allocation_stats.increment_coalBirths();
- }
-
- ssize_t coalDeaths() const {
- return _allocation_stats.coalDeaths();
- }
- void set_coalDeaths(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_coalDeaths(v);
- }
- void increment_coalDeaths() {
- assert_proper_lock_protection();
- _allocation_stats.increment_coalDeaths();
- }
-
- ssize_t splitBirths() const {
- return _allocation_stats.splitBirths();
- }
- void set_splitBirths(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_splitBirths(v);
- }
- void increment_splitBirths() {
- assert_proper_lock_protection();
- _allocation_stats.increment_splitBirths();
- }
-
- ssize_t splitDeaths() const {
- return _allocation_stats.splitDeaths();
- }
- void set_splitDeaths(ssize_t v) {
- assert_proper_lock_protection();
- _allocation_stats.set_splitDeaths(v);
- }
- void increment_splitDeaths() {
- assert_proper_lock_protection();
- _allocation_stats.increment_splitDeaths();
- }
-
- NOT_PRODUCT(
- // For debugging. The "_returnedBytes" in all the lists are summed
- // and compared with the total number of bytes swept during a
- // collection.
- size_t returnedBytes() const { return _allocation_stats.returnedBytes(); }
- void set_returnedBytes(size_t v) { _allocation_stats.set_returnedBytes(v); }
- void increment_returnedBytes_by(size_t v) {
- _allocation_stats.set_returnedBytes(_allocation_stats.returnedBytes() + v);
- }
- )
-
- // Unlink head of list and return it. Returns NULL if
- // the list is empty.
- FreeChunk* getChunkAtHead();
-
- // Remove the first "n" or "count", whichever is smaller, chunks from the
- // list, setting "fl", which is required to be empty, to point to them.
- void getFirstNChunksFromList(size_t n, FreeList* fl);
-
- // Unlink this chunk from it's free list
- void removeChunk(FreeChunk* fc);
-
- // Add this chunk to this free list.
- void returnChunkAtHead(FreeChunk* fc);
- void returnChunkAtTail(FreeChunk* fc);
-
- // Similar to returnChunk* but also records some diagnostic
- // information.
- void returnChunkAtHead(FreeChunk* fc, bool record_return);
- void returnChunkAtTail(FreeChunk* fc, bool record_return);
-
- // Prepend "fl" (whose size is required to be the same as that of "this")
- // to the front of "this" list.
- void prepend(FreeList* fl);
-
- // Verify that the chunk is in the list.
- // found. Return NULL if "fc" is not found.
- bool verifyChunkInFreeLists(FreeChunk* fc) const;
-
- // Stats verification
- void verify_stats() const PRODUCT_RETURN;
-
- // Printing support
- static void print_labels_on(outputStream* st, const char* c);
- void print_on(outputStream* st, const char* c = NULL) const;
-};
-
-#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_FREELIST_HPP
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/promotionInfo.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/promotionInfo.cpp Fri May 04 10:46:32 2012 -0700
@@ -121,7 +121,7 @@
void PromotionInfo::track(PromotedObject* trackOop, klassOop klassOfOop) {
// make a copy of header as it may need to be spooled
markOop mark = oop(trackOop)->mark();
- trackOop->clearNext();
+ trackOop->clear_next();
if (mark->must_be_preserved_for_cms_scavenge(klassOfOop)) {
// save non-prototypical header, and mark oop
saveDisplacedHeader(mark);
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/promotionInfo.hpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/promotionInfo.hpp Fri May 04 10:46:32 2012 -0700
@@ -43,7 +43,7 @@
// whose position will depend on endian-ness of the platform.
// This is so that there is no interference with the
// cms_free_bit occupying bit position 7 (lsb == 0)
- // when we are using compressed oops; see FreeChunk::isFree().
+ // when we are using compressed oops; see FreeChunk::is_free().
// We cannot move the cms_free_bit down because currently
// biased locking code assumes that age bits are contiguous
// with the lock bits. Even if that assumption were relaxed,
@@ -65,7 +65,7 @@
};
public:
inline PromotedObject* next() const {
- assert(!((FreeChunk*)this)->isFree(), "Error");
+ assert(!((FreeChunk*)this)->is_free(), "Error");
PromotedObject* res;
if (UseCompressedOops) {
// The next pointer is a compressed oop stored in the top 32 bits
@@ -85,27 +85,27 @@
} else {
_next |= (intptr_t)x;
}
- assert(!((FreeChunk*)this)->isFree(), "Error");
+ assert(!((FreeChunk*)this)->is_free(), "Error");
}
inline void setPromotedMark() {
_next |= promoted_mask;
- assert(!((FreeChunk*)this)->isFree(), "Error");
+ assert(!((FreeChunk*)this)->is_free(), "Error");
}
inline bool hasPromotedMark() const {
- assert(!((FreeChunk*)this)->isFree(), "Error");
+ assert(!((FreeChunk*)this)->is_free(), "Error");
return (_next & promoted_mask) == promoted_mask;
}
inline void setDisplacedMark() {
_next |= displaced_mark;
- assert(!((FreeChunk*)this)->isFree(), "Error");
+ assert(!((FreeChunk*)this)->is_free(), "Error");
}
inline bool hasDisplacedMark() const {
- assert(!((FreeChunk*)this)->isFree(), "Error");
+ assert(!((FreeChunk*)this)->is_free(), "Error");
return (_next & displaced_mark) != 0;
}
- inline void clearNext() {
+ inline void clear_next() {
_next = 0;
- assert(!((FreeChunk*)this)->isFree(), "Error");
+ assert(!((FreeChunk*)this)->is_free(), "Error");
}
debug_only(void *next_addr() { return (void *) &_next; })
};
--- a/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/vmStructs_cms.hpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/vmStructs_cms.hpp Fri May 04 10:46:32 2012 -0700
@@ -44,11 +44,11 @@
nonstatic_field(FreeChunk, _next, FreeChunk*) \
nonstatic_field(FreeChunk, _prev, FreeChunk*) \
nonstatic_field(LinearAllocBlock, _word_size, size_t) \
- nonstatic_field(FreeList, _size, size_t) \
- nonstatic_field(FreeList, _count, ssize_t) \
- nonstatic_field(BinaryTreeDictionary, _totalSize, size_t) \
- nonstatic_field(CompactibleFreeListSpace, _dictionary, FreeBlockDictionary*) \
- nonstatic_field(CompactibleFreeListSpace, _indexedFreeList[0], FreeList) \
+ nonstatic_field(FreeList<FreeChunk>, _size, size_t) \
+ nonstatic_field(FreeList<FreeChunk>, _count, ssize_t) \
+ nonstatic_field(BinaryTreeDictionary<FreeChunk>,_total_size, size_t) \
+ nonstatic_field(CompactibleFreeListSpace, _dictionary, FreeBlockDictionary<FreeChunk>*) \
+ nonstatic_field(CompactibleFreeListSpace, _indexedFreeList[0], FreeList<FreeChunk>) \
nonstatic_field(CompactibleFreeListSpace, _smallLinearAllocBlock, LinearAllocBlock)
@@ -70,13 +70,13 @@
declare_toplevel_type(CompactibleFreeListSpace*) \
declare_toplevel_type(CMSCollector*) \
declare_toplevel_type(FreeChunk*) \
- declare_toplevel_type(BinaryTreeDictionary*) \
- declare_toplevel_type(FreeBlockDictionary*) \
- declare_toplevel_type(FreeList*) \
- declare_toplevel_type(FreeList) \
+ declare_toplevel_type(BinaryTreeDictionary<FreeChunk>*) \
+ declare_toplevel_type(FreeBlockDictionary<FreeChunk>*) \
+ declare_toplevel_type(FreeList<FreeChunk>*) \
+ declare_toplevel_type(FreeList<FreeChunk>) \
declare_toplevel_type(LinearAllocBlock) \
- declare_toplevel_type(FreeBlockDictionary) \
- declare_type(BinaryTreeDictionary, FreeBlockDictionary)
+ declare_toplevel_type(FreeBlockDictionary<FreeChunk>) \
+ declare_type(BinaryTreeDictionary<FreeChunk>, FreeBlockDictionary<FreeChunk>)
#define VM_INT_CONSTANTS_CMS(declare_constant) \
declare_constant(Generation::ConcurrentMarkSweep) \
--- a/hotspot/src/share/vm/gc_implementation/g1/concurrentMark.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/g1/concurrentMark.cpp Fri May 04 10:46:32 2012 -0700
@@ -1183,35 +1183,31 @@
g1p->record_concurrent_mark_remark_end();
}
-// Used to calculate the # live objects per region
-// for verification purposes
-class CalcLiveObjectsClosure: public HeapRegionClosure {
-
- CMBitMapRO* _bm;
+// Base class of the closures that finalize and verify the
+// liveness counting data.
+class CMCountDataClosureBase: public HeapRegionClosure {
+protected:
ConcurrentMark* _cm;
BitMap* _region_bm;
BitMap* _card_bm;
- size_t _region_marked_bytes;
-
- intptr_t _bottom_card_num;
-
- void mark_card_num_range(intptr_t start_card_num, intptr_t last_card_num) {
- assert(start_card_num <= last_card_num, "sanity");
- BitMap::idx_t start_idx = start_card_num - _bottom_card_num;
- BitMap::idx_t last_idx = last_card_num - _bottom_card_num;
-
- for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
- _card_bm->par_at_put(i, 1);
+ void set_card_bitmap_range(BitMap::idx_t start_idx, BitMap::idx_t last_idx) {
+ assert(start_idx <= last_idx, "sanity");
+
+ // Set the inclusive bit range [start_idx, last_idx].
+ // For small ranges (up to 8 cards) use a simple loop; otherwise
+ // use par_at_put_range.
+ if ((last_idx - start_idx) < 8) {
+ for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
+ _card_bm->par_set_bit(i);
+ }
+ } else {
+ assert(last_idx < _card_bm->size(), "sanity");
+ // Note BitMap::par_at_put_range() is exclusive.
+ _card_bm->par_at_put_range(start_idx, last_idx+1, true);
}
}
-public:
- CalcLiveObjectsClosure(CMBitMapRO *bm, ConcurrentMark *cm,
- BitMap* region_bm, BitMap* card_bm) :
- _bm(bm), _cm(cm), _region_bm(region_bm), _card_bm(card_bm),
- _region_marked_bytes(0), _bottom_card_num(cm->heap_bottom_card_num()) { }
-
// It takes a region that's not empty (i.e., it has at least one
// live object in it and sets its corresponding bit on the region
// bitmap to 1. If the region is "starts humongous" it will also set
@@ -1234,6 +1230,24 @@
}
}
+public:
+ CMCountDataClosureBase(ConcurrentMark *cm,
+ BitMap* region_bm, BitMap* card_bm):
+ _cm(cm), _region_bm(region_bm), _card_bm(card_bm) { }
+};
+
+// Closure that calculates the # live objects per region. Used
+// for verification purposes during the cleanup pause.
+class CalcLiveObjectsClosure: public CMCountDataClosureBase {
+ CMBitMapRO* _bm;
+ size_t _region_marked_bytes;
+
+public:
+ CalcLiveObjectsClosure(CMBitMapRO *bm, ConcurrentMark *cm,
+ BitMap* region_bm, BitMap* card_bm) :
+ CMCountDataClosureBase(cm, region_bm, card_bm),
+ _bm(bm), _region_marked_bytes(0) { }
+
bool doHeapRegion(HeapRegion* hr) {
if (hr->continuesHumongous()) {
@@ -1260,65 +1274,31 @@
size_t marked_bytes = 0;
- // Below, the term "card num" means the result of shifting an address
- // by the card shift -- address 0 corresponds to card number 0. One
- // must subtract the card num of the bottom of the heap to obtain a
- // card table index.
-
- // The first card num of the sequence of live cards currently being
- // constructed. -1 ==> no sequence.
- intptr_t start_card_num = -1;
-
- // The last card num of the sequence of live cards currently being
- // constructed. -1 ==> no sequence.
- intptr_t last_card_num = -1;
-
while (start < nextTop) {
oop obj = oop(start);
int obj_sz = obj->size();
-
- // The card num of the start of the current object.
- intptr_t obj_card_num =
- intptr_t(uintptr_t(start) >> CardTableModRefBS::card_shift);
HeapWord* obj_last = start + obj_sz - 1;
- intptr_t obj_last_card_num =
- intptr_t(uintptr_t(obj_last) >> CardTableModRefBS::card_shift);
-
- if (obj_card_num != last_card_num) {
- if (start_card_num == -1) {
- assert(last_card_num == -1, "Both or neither.");
- start_card_num = obj_card_num;
- } else {
- assert(last_card_num != -1, "Both or neither.");
- assert(obj_card_num >= last_card_num, "Inv");
- if ((obj_card_num - last_card_num) > 1) {
- // Mark the last run, and start a new one.
- mark_card_num_range(start_card_num, last_card_num);
- start_card_num = obj_card_num;
- }
- }
- }
- // In any case, we set the last card num.
- last_card_num = obj_last_card_num;
-
+
+ BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
+ BitMap::idx_t last_idx = _cm->card_bitmap_index_for(obj_last);
+
+ // Set the bits in the card BM for this object (inclusive).
+ set_card_bitmap_range(start_idx, last_idx);
+
+ // Add the size of this object to the number of marked bytes.
marked_bytes += (size_t)obj_sz * HeapWordSize;
// Find the next marked object after this one.
- start = _bm->getNextMarkedWordAddress(start + 1, nextTop);
- }
-
- // Handle the last range, if any.
- if (start_card_num != -1) {
- mark_card_num_range(start_card_num, last_card_num);
+ start = _bm->getNextMarkedWordAddress(obj_last + 1, nextTop);
}
// Mark the allocated-since-marking portion...
HeapWord* top = hr->top();
if (nextTop < top) {
- start_card_num = intptr_t(uintptr_t(nextTop) >> CardTableModRefBS::card_shift);
- last_card_num = intptr_t(uintptr_t(top) >> CardTableModRefBS::card_shift);
-
- mark_card_num_range(start_card_num, last_card_num);
+ BitMap::idx_t start_idx = _cm->card_bitmap_index_for(nextTop);
+ BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top - 1);
+
+ set_card_bitmap_range(start_idx, last_idx);
// This definitely means the region has live objects.
set_bit_for_region(hr);
@@ -1394,17 +1374,6 @@
MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
Mutex::_no_safepoint_check_flag);
- // Verify that _top_at_conc_count == ntams
- if (hr->top_at_conc_mark_count() != hr->next_top_at_mark_start()) {
- if (_verbose) {
- gclog_or_tty->print_cr("Region %u: top at conc count incorrect: "
- "expected " PTR_FORMAT ", actual: " PTR_FORMAT,
- hr->hrs_index(), hr->next_top_at_mark_start(),
- hr->top_at_conc_mark_count());
- }
- failures += 1;
- }
-
// Verify the marked bytes for this region.
size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
size_t act_marked_bytes = hr->next_marked_bytes();
@@ -1470,7 +1439,7 @@
_failures += failures;
// We could stop iteration over the heap when we
- // find the first voilating region by returning true.
+ // find the first violating region by returning true.
return false;
}
};
@@ -1543,62 +1512,19 @@
int failures() const { return _failures; }
};
-// Final update of count data (during cleanup).
-// Adds [top_at_count, NTAMS) to the marked bytes for each
-// region. Sets the bits in the card bitmap corresponding
-// to the interval [top_at_count, top], and sets the
-// liveness bit for each region containing live data
-// in the region bitmap.
-
-class FinalCountDataUpdateClosure: public HeapRegionClosure {
- ConcurrentMark* _cm;
- BitMap* _region_bm;
- BitMap* _card_bm;
-
- void set_card_bitmap_range(BitMap::idx_t start_idx, BitMap::idx_t last_idx) {
- assert(start_idx <= last_idx, "sanity");
-
- // Set the inclusive bit range [start_idx, last_idx].
- // For small ranges (up to 8 cards) use a simple loop; otherwise
- // use par_at_put_range.
- if ((last_idx - start_idx) <= 8) {
- for (BitMap::idx_t i = start_idx; i <= last_idx; i += 1) {
- _card_bm->par_set_bit(i);
- }
- } else {
- assert(last_idx < _card_bm->size(), "sanity");
- // Note BitMap::par_at_put_range() is exclusive.
- _card_bm->par_at_put_range(start_idx, last_idx+1, true);
- }
- }
-
- // It takes a region that's not empty (i.e., it has at least one
- // live object in it and sets its corresponding bit on the region
- // bitmap to 1. If the region is "starts humongous" it will also set
- // to 1 the bits on the region bitmap that correspond to its
- // associated "continues humongous" regions.
- void set_bit_for_region(HeapRegion* hr) {
- assert(!hr->continuesHumongous(), "should have filtered those out");
-
- BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
- if (!hr->startsHumongous()) {
- // Normal (non-humongous) case: just set the bit.
- _region_bm->par_set_bit(index);
- } else {
- // Starts humongous case: calculate how many regions are part of
- // this humongous region and then set the bit range.
- G1CollectedHeap* g1h = G1CollectedHeap::heap();
- HeapRegion *last_hr = g1h->heap_region_containing_raw(hr->end() - 1);
- BitMap::idx_t end_index = (BitMap::idx_t) last_hr->hrs_index() + 1;
- _region_bm->par_at_put_range(index, end_index, true);
- }
- }
-
+// Closure that finalizes the liveness counting data.
+// Used during the cleanup pause.
+// Sets the bits corresponding to the interval [NTAMS, top]
+// (which contains the implicitly live objects) in the
+// card liveness bitmap. Also sets the bit for each region,
+// containing live data, in the region liveness bitmap.
+
+class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
public:
FinalCountDataUpdateClosure(ConcurrentMark* cm,
BitMap* region_bm,
BitMap* card_bm) :
- _cm(cm), _region_bm(region_bm), _card_bm(card_bm) { }
+ CMCountDataClosureBase(cm, region_bm, card_bm) { }
bool doHeapRegion(HeapRegion* hr) {
@@ -1613,26 +1539,10 @@
return false;
}
- HeapWord* start = hr->top_at_conc_mark_count();
HeapWord* ntams = hr->next_top_at_mark_start();
HeapWord* top = hr->top();
- assert(hr->bottom() <= start && start <= hr->end() &&
- hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
-
- if (start < ntams) {
- // Region was changed between remark and cleanup pauses
- // We need to add (ntams - start) to the marked bytes
- // for this region, and set bits for the range
- // [ card_idx(start), card_idx(ntams) ) in the card bitmap.
- size_t live_bytes = (ntams - start) * HeapWordSize;
- hr->add_to_marked_bytes(live_bytes);
-
- // Record the new top at conc count
- hr->set_top_at_conc_mark_count(ntams);
-
- // The setting of the bits in the card bitmap takes place below
- }
+ assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
// Mark the allocated-since-marking portion...
if (ntams < top) {
@@ -1640,8 +1550,8 @@
set_bit_for_region(hr);
}
- // Now set the bits for [start, top]
- BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
+ // Now set the bits for [ntams, top]
+ BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
BitMap::idx_t last_idx = _cm->card_bitmap_index_for(top);
set_card_bitmap_range(start_idx, last_idx);
@@ -3072,9 +2982,6 @@
// Update the marked bytes for this region.
hr->add_to_marked_bytes(marked_bytes);
- // Now set the top at count to NTAMS.
- hr->set_top_at_conc_mark_count(limit);
-
// Next heap region
return false;
}
--- a/hotspot/src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp Fri May 04 10:46:32 2012 -0700
@@ -368,16 +368,11 @@
if (curr == NULL)
gclog_or_tty->print_cr(" empty");
while (curr != NULL) {
- gclog_or_tty->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
- "age: %4d, y: %d, surv: %d",
- curr->bottom(), curr->end(),
- curr->top(),
+ gclog_or_tty->print_cr(" "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
+ HR_FORMAT_PARAMS(curr),
curr->prev_top_at_mark_start(),
curr->next_top_at_mark_start(),
- curr->top_at_conc_mark_count(),
- curr->age_in_surv_rate_group_cond(),
- curr->is_young(),
- curr->is_survivor());
+ curr->age_in_surv_rate_group_cond());
curr = curr->get_next_young_region();
}
}
@@ -1253,12 +1248,13 @@
IsGCActiveMark x;
// Timing
- bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
- assert(!system_gc || explicit_gc, "invariant");
+ assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
- TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
- G1Log::fine(), true, gclog_or_tty);
+
+ char verbose_str[128];
+ sprintf(verbose_str, "Full GC (%s)", GCCause::to_string(gc_cause()));
+ TraceTime t(verbose_str, G1Log::fine(), true, gclog_or_tty);
TraceCollectorStats tcs(g1mm()->full_collection_counters());
TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
@@ -3593,25 +3589,22 @@
// Inner scope for scope based logging, timers, and stats collection
{
- char verbose_str[128];
- sprintf(verbose_str, "GC pause ");
- if (g1_policy()->gcs_are_young()) {
- strcat(verbose_str, "(young)");
- } else {
- strcat(verbose_str, "(mixed)");
- }
if (g1_policy()->during_initial_mark_pause()) {
- strcat(verbose_str, " (initial-mark)");
// We are about to start a marking cycle, so we increment the
// full collection counter.
increment_total_full_collections();
}
-
// if the log level is "finer" is on, we'll print long statistics information
// in the collector policy code, so let's not print this as the output
// is messy if we do.
gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
+
+ char verbose_str[128];
+ sprintf(verbose_str, "GC pause (%s) (%s)%s",
+ GCCause::to_string(gc_cause()),
+ g1_policy()->gcs_are_young() ? "young" : "mixed",
+ g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
TraceTime t(verbose_str, G1Log::fine() && !G1Log::finer(), true, gclog_or_tty);
TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
--- a/hotspot/src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp Fri May 04 10:46:32 2012 -0700
@@ -886,8 +886,9 @@
size_t start_used) {
if (G1Log::finer()) {
gclog_or_tty->stamp(PrintGCTimeStamps);
- gclog_or_tty->print("[GC pause");
- gclog_or_tty->print(" (%s)", gcs_are_young() ? "young" : "mixed");
+ gclog_or_tty->print("[GC pause (%s) (%s)",
+ GCCause::to_string(_g1->gc_cause()),
+ gcs_are_young() ? "young" : "mixed");
}
// We only need to do this here as the policy will only be applied
@@ -2459,16 +2460,10 @@
while (csr != NULL) {
HeapRegion* next = csr->next_in_collection_set();
assert(csr->in_collection_set(), "bad CS");
- st->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
- "age: %4d, y: %d, surv: %d",
- csr->bottom(), csr->end(),
- csr->top(),
- csr->prev_top_at_mark_start(),
- csr->next_top_at_mark_start(),
- csr->top_at_conc_mark_count(),
- csr->age_in_surv_rate_group_cond(),
- csr->is_young(),
- csr->is_survivor());
+ st->print_cr(" "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
+ HR_FORMAT_PARAMS(csr),
+ csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
+ csr->age_in_surv_rate_group_cond());
csr = next;
}
}
--- a/hotspot/src/share/vm/gc_implementation/g1/heapRegion.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/g1/heapRegion.cpp Fri May 04 10:46:32 2012 -0700
@@ -510,9 +510,6 @@
_rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
- // In case the region is allocated during a pause, note the top.
- // We haven't done any counting on a brand new region.
- _top_at_conc_mark_count = bottom();
}
class NextCompactionHeapRegionClosure: public HeapRegionClosure {
@@ -585,14 +582,12 @@
// we find to be self-forwarded on the next bitmap. So all
// objects need to be below NTAMS.
_next_top_at_mark_start = top();
- set_top_at_conc_mark_count(bottom());
_next_marked_bytes = 0;
} else if (during_conc_mark) {
// During concurrent mark, all objects in the CSet (including
// the ones we find to be self-forwarded) are implicitly live.
// So all objects need to be above NTAMS.
_next_top_at_mark_start = bottom();
- set_top_at_conc_mark_count(bottom());
_next_marked_bytes = 0;
}
}
--- a/hotspot/src/share/vm/gc_implementation/g1/heapRegion.hpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/g1/heapRegion.hpp Fri May 04 10:46:32 2012 -0700
@@ -306,9 +306,6 @@
// If a collection pause is in progress, this is the top at the start
// of that pause.
- // We've counted the marked bytes of objects below here.
- HeapWord* _top_at_conc_mark_count;
-
void init_top_at_mark_start() {
assert(_prev_marked_bytes == 0 &&
_next_marked_bytes == 0,
@@ -316,7 +313,6 @@
HeapWord* bot = bottom();
_prev_top_at_mark_start = bot;
_next_top_at_mark_start = bot;
- _top_at_conc_mark_count = bot;
}
void set_young_type(YoungType new_type) {
@@ -625,19 +621,6 @@
// last mark phase ended.
bool is_marked() { return _prev_top_at_mark_start != bottom(); }
- void init_top_at_conc_mark_count() {
- _top_at_conc_mark_count = bottom();
- }
-
- void set_top_at_conc_mark_count(HeapWord *cur) {
- assert(bottom() <= cur && cur <= end(), "Sanity.");
- _top_at_conc_mark_count = cur;
- }
-
- HeapWord* top_at_conc_mark_count() {
- return _top_at_conc_mark_count;
- }
-
void reset_during_compaction() {
guarantee( isHumongous() && startsHumongous(),
"should only be called for humongous regions");
@@ -733,7 +716,6 @@
_evacuation_failed = b;
if (b) {
- init_top_at_conc_mark_count();
_next_marked_bytes = 0;
}
}
--- a/hotspot/src/share/vm/gc_implementation/g1/heapRegion.inline.hpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/g1/heapRegion.inline.hpp Fri May 04 10:46:32 2012 -0700
@@ -56,7 +56,6 @@
}
inline void HeapRegion::note_start_of_marking() {
- init_top_at_conc_mark_count();
_next_marked_bytes = 0;
_next_top_at_mark_start = top();
}
--- a/hotspot/src/share/vm/gc_implementation/shared/allocationStats.hpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/gc_implementation/shared/allocationStats.hpp Fri May 04 10:46:32 2012 -0700
@@ -39,7 +39,7 @@
// We measure the demand between the end of the previous sweep and
// beginning of this sweep:
// Count(end_last_sweep) - Count(start_this_sweep)
- // + splitBirths(between) - splitDeaths(between)
+ // + split_births(between) - split_deaths(between)
// The above number divided by the time since the end of the
// previous sweep gives us a time rate of demand for blocks
// of this size. We compute a padded average of this rate as
@@ -51,34 +51,34 @@
AdaptivePaddedAverage _demand_rate_estimate;
ssize_t _desired; // Demand stimate computed as described above
- ssize_t _coalDesired; // desired +/- small-percent for tuning coalescing
+ ssize_t _coal_desired; // desired +/- small-percent for tuning coalescing
ssize_t _surplus; // count - (desired +/- small-percent),
// used to tune splitting in best fit
- ssize_t _bfrSurp; // surplus at start of current sweep
- ssize_t _prevSweep; // count from end of previous sweep
- ssize_t _beforeSweep; // count from before current sweep
- ssize_t _coalBirths; // additional chunks from coalescing
- ssize_t _coalDeaths; // loss from coalescing
- ssize_t _splitBirths; // additional chunks from splitting
- ssize_t _splitDeaths; // loss from splitting
- size_t _returnedBytes; // number of bytes returned to list.
+ ssize_t _bfr_surp; // surplus at start of current sweep
+ ssize_t _prev_sweep; // count from end of previous sweep
+ ssize_t _before_sweep; // count from before current sweep
+ ssize_t _coal_births; // additional chunks from coalescing
+ ssize_t _coal_deaths; // loss from coalescing
+ ssize_t _split_births; // additional chunks from splitting
+ ssize_t _split_deaths; // loss from splitting
+ size_t _returned_bytes; // number of bytes returned to list.
public:
void initialize(bool split_birth = false) {
AdaptivePaddedAverage* dummy =
new (&_demand_rate_estimate) AdaptivePaddedAverage(CMS_FLSWeight,
CMS_FLSPadding);
_desired = 0;
- _coalDesired = 0;
+ _coal_desired = 0;
_surplus = 0;
- _bfrSurp = 0;
- _prevSweep = 0;
- _beforeSweep = 0;
- _coalBirths = 0;
- _coalDeaths = 0;
- _splitBirths = (split_birth ? 1 : 0);
- _splitDeaths = 0;
- _returnedBytes = 0;
+ _bfr_surp = 0;
+ _prev_sweep = 0;
+ _before_sweep = 0;
+ _coal_births = 0;
+ _coal_deaths = 0;
+ _split_births = (split_birth ? 1 : 0);
+ _split_deaths = 0;
+ _returned_bytes = 0;
}
AllocationStats() {
@@ -99,12 +99,12 @@
// vulnerable to noisy glitches. In such cases, we
// ignore the current sample and use currently available
// historical estimates.
- assert(prevSweep() + splitBirths() + coalBirths() // "Total Production Stock"
- >= splitDeaths() + coalDeaths() + (ssize_t)count, // "Current stock + depletion"
+ assert(prev_sweep() + split_births() + coal_births() // "Total Production Stock"
+ >= split_deaths() + coal_deaths() + (ssize_t)count, // "Current stock + depletion"
"Conservation Principle");
if (inter_sweep_current > _threshold) {
- ssize_t demand = prevSweep() - (ssize_t)count + splitBirths() + coalBirths()
- - splitDeaths() - coalDeaths();
+ ssize_t demand = prev_sweep() - (ssize_t)count + split_births() + coal_births()
+ - split_deaths() - coal_deaths();
assert(demand >= 0,
err_msg("Demand (" SSIZE_FORMAT ") should be non-negative for "
PTR_FORMAT " (size=" SIZE_FORMAT ")",
@@ -130,40 +130,40 @@
ssize_t desired() const { return _desired; }
void set_desired(ssize_t v) { _desired = v; }
- ssize_t coalDesired() const { return _coalDesired; }
- void set_coalDesired(ssize_t v) { _coalDesired = v; }
+ ssize_t coal_desired() const { return _coal_desired; }
+ void set_coal_desired(ssize_t v) { _coal_desired = v; }
ssize_t surplus() const { return _surplus; }
void set_surplus(ssize_t v) { _surplus = v; }
void increment_surplus() { _surplus++; }
void decrement_surplus() { _surplus--; }
- ssize_t bfrSurp() const { return _bfrSurp; }
- void set_bfrSurp(ssize_t v) { _bfrSurp = v; }
- ssize_t prevSweep() const { return _prevSweep; }
- void set_prevSweep(ssize_t v) { _prevSweep = v; }
- ssize_t beforeSweep() const { return _beforeSweep; }
- void set_beforeSweep(ssize_t v) { _beforeSweep = v; }
+ ssize_t bfr_surp() const { return _bfr_surp; }
+ void set_bfr_surp(ssize_t v) { _bfr_surp = v; }
+ ssize_t prev_sweep() const { return _prev_sweep; }
+ void set_prev_sweep(ssize_t v) { _prev_sweep = v; }
+ ssize_t before_sweep() const { return _before_sweep; }
+ void set_before_sweep(ssize_t v) { _before_sweep = v; }
- ssize_t coalBirths() const { return _coalBirths; }
- void set_coalBirths(ssize_t v) { _coalBirths = v; }
- void increment_coalBirths() { _coalBirths++; }
+ ssize_t coal_births() const { return _coal_births; }
+ void set_coal_births(ssize_t v) { _coal_births = v; }
+ void increment_coal_births() { _coal_births++; }
- ssize_t coalDeaths() const { return _coalDeaths; }
- void set_coalDeaths(ssize_t v) { _coalDeaths = v; }
- void increment_coalDeaths() { _coalDeaths++; }
+ ssize_t coal_deaths() const { return _coal_deaths; }
+ void set_coal_deaths(ssize_t v) { _coal_deaths = v; }
+ void increment_coal_deaths() { _coal_deaths++; }
- ssize_t splitBirths() const { return _splitBirths; }
- void set_splitBirths(ssize_t v) { _splitBirths = v; }
- void increment_splitBirths() { _splitBirths++; }
+ ssize_t split_births() const { return _split_births; }
+ void set_split_births(ssize_t v) { _split_births = v; }
+ void increment_split_births() { _split_births++; }
- ssize_t splitDeaths() const { return _splitDeaths; }
- void set_splitDeaths(ssize_t v) { _splitDeaths = v; }
- void increment_splitDeaths() { _splitDeaths++; }
+ ssize_t split_deaths() const { return _split_deaths; }
+ void set_split_deaths(ssize_t v) { _split_deaths = v; }
+ void increment_split_deaths() { _split_deaths++; }
NOT_PRODUCT(
- size_t returnedBytes() const { return _returnedBytes; }
- void set_returnedBytes(size_t v) { _returnedBytes = v; }
+ size_t returned_bytes() const { return _returned_bytes; }
+ void set_returned_bytes(size_t v) { _returned_bytes = v; }
)
};
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/binaryTreeDictionary.cpp Fri May 04 10:46:32 2012 -0700
@@ -0,0 +1,1343 @@
+/*
+ * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc_implementation/shared/allocationStats.hpp"
+#include "memory/binaryTreeDictionary.hpp"
+#include "runtime/globals.hpp"
+#include "utilities/ostream.hpp"
+#ifndef SERIALGC
+#include "gc_implementation/shared/spaceDecorator.hpp"
+#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
+#endif // SERIALGC
+
+////////////////////////////////////////////////////////////////////////////////
+// A binary tree based search structure for free blocks.
+// This is currently used in the Concurrent Mark&Sweep implementation.
+////////////////////////////////////////////////////////////////////////////////
+
+template <class Chunk>
+TreeChunk<Chunk>* TreeChunk<Chunk>::as_TreeChunk(Chunk* fc) {
+ // Do some assertion checking here.
+ return (TreeChunk<Chunk>*) fc;
+}
+
+template <class Chunk>
+void TreeChunk<Chunk>::verify_tree_chunk_list() const {
+ TreeChunk<Chunk>* nextTC = (TreeChunk<Chunk>*)next();
+ if (prev() != NULL) { // interior list node shouldn'r have tree fields
+ guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
+ embedded_list()->right() == NULL, "should be clear");
+ }
+ if (nextTC != NULL) {
+ guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
+ guarantee(nextTC->size() == size(), "wrong size");
+ nextTC->verify_tree_chunk_list();
+ }
+}
+
+
+template <class Chunk>
+TreeList<Chunk>* TreeList<Chunk>::as_TreeList(TreeChunk<Chunk>* tc) {
+ // This first free chunk in the list will be the tree list.
+ assert(tc->size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "Chunk is too small for a TreeChunk");
+ TreeList<Chunk>* tl = tc->embedded_list();
+ tc->set_list(tl);
+#ifdef ASSERT
+ tl->set_protecting_lock(NULL);
+#endif
+ tl->set_hint(0);
+ tl->set_size(tc->size());
+ tl->link_head(tc);
+ tl->link_tail(tc);
+ tl->set_count(1);
+ tl->init_statistics(true /* split_birth */);
+ tl->set_parent(NULL);
+ tl->set_left(NULL);
+ tl->set_right(NULL);
+ return tl;
+}
+
+template <class Chunk>
+TreeList<Chunk>* TreeList<Chunk>::as_TreeList(HeapWord* addr, size_t size) {
+ TreeChunk<Chunk>* tc = (TreeChunk<Chunk>*) addr;
+ assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "Chunk is too small for a TreeChunk");
+ // The space in the heap will have been mangled initially but
+ // is not remangled when a free chunk is returned to the free list
+ // (since it is used to maintain the chunk on the free list).
+ assert((ZapUnusedHeapArea &&
+ SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
+ SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
+ SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
+ (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
+ "Space should be clear or mangled");
+ tc->set_size(size);
+ tc->link_prev(NULL);
+ tc->link_next(NULL);
+ TreeList<Chunk>* tl = TreeList<Chunk>::as_TreeList(tc);
+ return tl;
+}
+
+template <class Chunk>
+TreeList<Chunk>* TreeList<Chunk>::remove_chunk_replace_if_needed(TreeChunk<Chunk>* tc) {
+
+ TreeList<Chunk>* retTL = this;
+ Chunk* list = head();
+ assert(!list || list != list->next(), "Chunk on list twice");
+ assert(tc != NULL, "Chunk being removed is NULL");
+ assert(parent() == NULL || this == parent()->left() ||
+ this == parent()->right(), "list is inconsistent");
+ assert(tc->is_free(), "Header is not marked correctly");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk* prevFC = tc->prev();
+ TreeChunk<Chunk>* nextTC = TreeChunk<Chunk>::as_TreeChunk(tc->next());
+ assert(list != NULL, "should have at least the target chunk");
+
+ // Is this the first item on the list?
+ if (tc == list) {
+ // The "getChunk..." functions for a TreeList<Chunk> will not return the
+ // first chunk in the list unless it is the last chunk in the list
+ // because the first chunk is also acting as the tree node.
+ // When coalescing happens, however, the first chunk in the a tree
+ // list can be the start of a free range. Free ranges are removed
+ // from the free lists so that they are not available to be
+ // allocated when the sweeper yields (giving up the free list lock)
+ // to allow mutator activity. If this chunk is the first in the
+ // list and is not the last in the list, do the work to copy the
+ // TreeList<Chunk> from the first chunk to the next chunk and update all
+ // the TreeList<Chunk> pointers in the chunks in the list.
+ if (nextTC == NULL) {
+ assert(prevFC == NULL, "Not last chunk in the list");
+ set_tail(NULL);
+ set_head(NULL);
+ } else {
+ // copy embedded list.
+ nextTC->set_embedded_list(tc->embedded_list());
+ retTL = nextTC->embedded_list();
+ // Fix the pointer to the list in each chunk in the list.
+ // This can be slow for a long list. Consider having
+ // an option that does not allow the first chunk on the
+ // list to be coalesced.
+ for (TreeChunk<Chunk>* curTC = nextTC; curTC != NULL;
+ curTC = TreeChunk<Chunk>::as_TreeChunk(curTC->next())) {
+ curTC->set_list(retTL);
+ }
+ // Fix the parent to point to the new TreeList<Chunk>.
+ if (retTL->parent() != NULL) {
+ if (this == retTL->parent()->left()) {
+ retTL->parent()->set_left(retTL);
+ } else {
+ assert(this == retTL->parent()->right(), "Parent is incorrect");
+ retTL->parent()->set_right(retTL);
+ }
+ }
+ // Fix the children's parent pointers to point to the
+ // new list.
+ assert(right() == retTL->right(), "Should have been copied");
+ if (retTL->right() != NULL) {
+ retTL->right()->set_parent(retTL);
+ }
+ assert(left() == retTL->left(), "Should have been copied");
+ if (retTL->left() != NULL) {
+ retTL->left()->set_parent(retTL);
+ }
+ retTL->link_head(nextTC);
+ assert(nextTC->is_free(), "Should be a free chunk");
+ }
+ } else {
+ if (nextTC == NULL) {
+ // Removing chunk at tail of list
+ link_tail(prevFC);
+ }
+ // Chunk is interior to the list
+ prevFC->link_after(nextTC);
+ }
+
+ // Below this point the embeded TreeList<Chunk> being used for the
+ // tree node may have changed. Don't use "this"
+ // TreeList<Chunk>*.
+ // chunk should still be a free chunk (bit set in _prev)
+ assert(!retTL->head() || retTL->size() == retTL->head()->size(),
+ "Wrong sized chunk in list");
+ debug_only(
+ tc->link_prev(NULL);
+ tc->link_next(NULL);
+ tc->set_list(NULL);
+ bool prev_found = false;
+ bool next_found = false;
+ for (Chunk* curFC = retTL->head();
+ curFC != NULL; curFC = curFC->next()) {
+ assert(curFC != tc, "Chunk is still in list");
+ if (curFC == prevFC) {
+ prev_found = true;
+ }
+ if (curFC == nextTC) {
+ next_found = true;
+ }
+ }
+ assert(prevFC == NULL || prev_found, "Chunk was lost from list");
+ assert(nextTC == NULL || next_found, "Chunk was lost from list");
+ assert(retTL->parent() == NULL ||
+ retTL == retTL->parent()->left() ||
+ retTL == retTL->parent()->right(),
+ "list is inconsistent");
+ )
+ retTL->decrement_count();
+
+ assert(tc->is_free(), "Should still be a free chunk");
+ assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
+ "list invariant");
+ assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
+ "list invariant");
+ return retTL;
+}
+
+template <class Chunk>
+void TreeList<Chunk>::return_chunk_at_tail(TreeChunk<Chunk>* chunk) {
+ assert(chunk != NULL, "returning NULL chunk");
+ assert(chunk->list() == this, "list should be set for chunk");
+ assert(tail() != NULL, "The tree list is embedded in the first chunk");
+ // which means that the list can never be empty.
+ assert(!verify_chunk_in_free_list(chunk), "Double entry");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk* fc = tail();
+ fc->link_after(chunk);
+ link_tail(chunk);
+
+ assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
+ FreeList<Chunk>::increment_count();
+ debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+}
+
+// Add this chunk at the head of the list. "At the head of the list"
+// is defined to be after the chunk pointer to by head(). This is
+// because the TreeList<Chunk> is embedded in the first TreeChunk<Chunk> in the
+// list. See the definition of TreeChunk<Chunk>.
+template <class Chunk>
+void TreeList<Chunk>::return_chunk_at_head(TreeChunk<Chunk>* chunk) {
+ assert(chunk->list() == this, "list should be set for chunk");
+ assert(head() != NULL, "The tree list is embedded in the first chunk");
+ assert(chunk != NULL, "returning NULL chunk");
+ assert(!verify_chunk_in_free_list(chunk), "Double entry");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk* fc = head()->next();
+ if (fc != NULL) {
+ chunk->link_after(fc);
+ } else {
+ assert(tail() == NULL, "List is inconsistent");
+ link_tail(chunk);
+ }
+ head()->link_after(chunk);
+ assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
+ FreeList<Chunk>::increment_count();
+ debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+}
+
+template <class Chunk>
+TreeChunk<Chunk>* TreeList<Chunk>::head_as_TreeChunk() {
+ assert(head() == NULL || TreeChunk<Chunk>::as_TreeChunk(head())->list() == this,
+ "Wrong type of chunk?");
+ return TreeChunk<Chunk>::as_TreeChunk(head());
+}
+
+template <class Chunk>
+TreeChunk<Chunk>* TreeList<Chunk>::first_available() {
+ assert(head() != NULL, "The head of the list cannot be NULL");
+ Chunk* fc = head()->next();
+ TreeChunk<Chunk>* retTC;
+ if (fc == NULL) {
+ retTC = head_as_TreeChunk();
+ } else {
+ retTC = TreeChunk<Chunk>::as_TreeChunk(fc);
+ }
+ assert(retTC->list() == this, "Wrong type of chunk.");
+ return retTC;
+}
+
+// Returns the block with the largest heap address amongst
+// those in the list for this size; potentially slow and expensive,
+// use with caution!
+template <class Chunk>
+TreeChunk<Chunk>* TreeList<Chunk>::largest_address() {
+ assert(head() != NULL, "The head of the list cannot be NULL");
+ Chunk* fc = head()->next();
+ TreeChunk<Chunk>* retTC;
+ if (fc == NULL) {
+ retTC = head_as_TreeChunk();
+ } else {
+ // walk down the list and return the one with the highest
+ // heap address among chunks of this size.
+ Chunk* last = fc;
+ while (fc->next() != NULL) {
+ if ((HeapWord*)last < (HeapWord*)fc) {
+ last = fc;
+ }
+ fc = fc->next();
+ }
+ retTC = TreeChunk<Chunk>::as_TreeChunk(last);
+ }
+ assert(retTC->list() == this, "Wrong type of chunk.");
+ return retTC;
+}
+
+template <class Chunk>
+BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(bool adaptive_freelists, bool splay) :
+ _splay(splay), _adaptive_freelists(adaptive_freelists),
+ _total_size(0), _total_free_blocks(0), _root(0) {}
+
+template <class Chunk>
+BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(MemRegion mr,
+ bool adaptive_freelists,
+ bool splay):
+ _adaptive_freelists(adaptive_freelists), _splay(splay)
+{
+ assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
+
+ reset(mr);
+ assert(root()->left() == NULL, "reset check failed");
+ assert(root()->right() == NULL, "reset check failed");
+ assert(root()->head()->next() == NULL, "reset check failed");
+ assert(root()->head()->prev() == NULL, "reset check failed");
+ assert(total_size() == root()->size(), "reset check failed");
+ assert(total_free_blocks() == 1, "reset check failed");
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::inc_total_size(size_t inc) {
+ _total_size = _total_size + inc;
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::dec_total_size(size_t dec) {
+ _total_size = _total_size - dec;
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::reset(MemRegion mr) {
+ assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
+ set_root(TreeList<Chunk>::as_TreeList(mr.start(), mr.word_size()));
+ set_total_size(mr.word_size());
+ set_total_free_blocks(1);
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::reset(HeapWord* addr, size_t byte_size) {
+ MemRegion mr(addr, heap_word_size(byte_size));
+ reset(mr);
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::reset() {
+ set_root(NULL);
+ set_total_size(0);
+ set_total_free_blocks(0);
+}
+
+// Get a free block of size at least size from tree, or NULL.
+// If a splay step is requested, the removal algorithm (only) incorporates
+// a splay step as follows:
+// . the search proceeds down the tree looking for a possible
+// match. At the (closest) matching location, an appropriate splay step is applied
+// (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
+// if available, and if it's the last chunk, the node is deleted. A deteleted
+// node is replaced in place by its tree successor.
+template <class Chunk>
+TreeChunk<Chunk>*
+BinaryTreeDictionary<Chunk>::get_chunk_from_tree(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither, bool splay)
+{
+ TreeList<Chunk> *curTL, *prevTL;
+ TreeChunk<Chunk>* retTC = NULL;
+ assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+ // starting at the root, work downwards trying to find match.
+ // Remember the last node of size too great or too small.
+ for (prevTL = curTL = root(); curTL != NULL;) {
+ if (curTL->size() == size) { // exact match
+ break;
+ }
+ prevTL = curTL;
+ if (curTL->size() < size) { // proceed to right sub-tree
+ curTL = curTL->right();
+ } else { // proceed to left sub-tree
+ assert(curTL->size() > size, "size inconsistency");
+ curTL = curTL->left();
+ }
+ }
+ if (curTL == NULL) { // couldn't find exact match
+
+ if (dither == FreeBlockDictionary<Chunk>::exactly) return NULL;
+
+ // try and find the next larger size by walking back up the search path
+ for (curTL = prevTL; curTL != NULL;) {
+ if (curTL->size() >= size) break;
+ else curTL = curTL->parent();
+ }
+ assert(curTL == NULL || curTL->count() > 0,
+ "An empty list should not be in the tree");
+ }
+ if (curTL != NULL) {
+ assert(curTL->size() >= size, "size inconsistency");
+ if (adaptive_freelists()) {
+
+ // A candidate chunk has been found. If it is already under
+ // populated, get a chunk associated with the hint for this
+ // chunk.
+ if (curTL->surplus() <= 0) {
+ /* Use the hint to find a size with a surplus, and reset the hint. */
+ TreeList<Chunk>* hintTL = curTL;
+ while (hintTL->hint() != 0) {
+ assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
+ "hint points in the wrong direction");
+ hintTL = find_list(hintTL->hint());
+ assert(curTL != hintTL, "Infinite loop");
+ if (hintTL == NULL ||
+ hintTL == curTL /* Should not happen but protect against it */ ) {
+ // No useful hint. Set the hint to NULL and go on.
+ curTL->set_hint(0);
+ break;
+ }
+ assert(hintTL->size() > size, "hint is inconsistent");
+ if (hintTL->surplus() > 0) {
+ // The hint led to a list that has a surplus. Use it.
+ // Set the hint for the candidate to an overpopulated
+ // size.
+ curTL->set_hint(hintTL->size());
+ // Change the candidate.
+ curTL = hintTL;
+ break;
+ }
+ // The evm code reset the hint of the candidate as
+ // at an interim point. Why? Seems like this leaves
+ // the hint pointing to a list that didn't work.
+ // curTL->set_hint(hintTL->size());
+ }
+ }
+ }
+ // don't waste time splaying if chunk's singleton
+ if (splay && curTL->head()->next() != NULL) {
+ semi_splay_step(curTL);
+ }
+ retTC = curTL->first_available();
+ assert((retTC != NULL) && (curTL->count() > 0),
+ "A list in the binary tree should not be NULL");
+ assert(retTC->size() >= size,
+ "A chunk of the wrong size was found");
+ remove_chunk_from_tree(retTC);
+ assert(retTC->is_free(), "Header is not marked correctly");
+ }
+
+ if (FLSVerifyDictionary) {
+ verify();
+ }
+ return retTC;
+}
+
+template <class Chunk>
+TreeList<Chunk>* BinaryTreeDictionary<Chunk>::find_list(size_t size) const {
+ TreeList<Chunk>* curTL;
+ for (curTL = root(); curTL != NULL;) {
+ if (curTL->size() == size) { // exact match
+ break;
+ }
+
+ if (curTL->size() < size) { // proceed to right sub-tree
+ curTL = curTL->right();
+ } else { // proceed to left sub-tree
+ assert(curTL->size() > size, "size inconsistency");
+ curTL = curTL->left();
+ }
+ }
+ return curTL;
+}
+
+
+template <class Chunk>
+bool BinaryTreeDictionary<Chunk>::verify_chunk_in_free_list(Chunk* tc) const {
+ size_t size = tc->size();
+ TreeList<Chunk>* tl = find_list(size);
+ if (tl == NULL) {
+ return false;
+ } else {
+ return tl->verify_chunk_in_free_list(tc);
+ }
+}
+
+template <class Chunk>
+Chunk* BinaryTreeDictionary<Chunk>::find_largest_dict() const {
+ TreeList<Chunk> *curTL = root();
+ if (curTL != NULL) {
+ while(curTL->right() != NULL) curTL = curTL->right();
+ return curTL->largest_address();
+ } else {
+ return NULL;
+ }
+}
+
+// Remove the current chunk from the tree. If it is not the last
+// chunk in a list on a tree node, just unlink it.
+// If it is the last chunk in the list (the next link is NULL),
+// remove the node and repair the tree.
+template <class Chunk>
+TreeChunk<Chunk>*
+BinaryTreeDictionary<Chunk>::remove_chunk_from_tree(TreeChunk<Chunk>* tc) {
+ assert(tc != NULL, "Should not call with a NULL chunk");
+ assert(tc->is_free(), "Header is not marked correctly");
+
+ TreeList<Chunk> *newTL, *parentTL;
+ TreeChunk<Chunk>* retTC;
+ TreeList<Chunk>* tl = tc->list();
+ debug_only(
+ bool removing_only_chunk = false;
+ if (tl == _root) {
+ if ((_root->left() == NULL) && (_root->right() == NULL)) {
+ if (_root->count() == 1) {
+ assert(_root->head() == tc, "Should only be this one chunk");
+ removing_only_chunk = true;
+ }
+ }
+ }
+ )
+ assert(tl != NULL, "List should be set");
+ assert(tl->parent() == NULL || tl == tl->parent()->left() ||
+ tl == tl->parent()->right(), "list is inconsistent");
+
+ bool complicated_splice = false;
+
+ retTC = tc;
+ // Removing this chunk can have the side effect of changing the node
+ // (TreeList<Chunk>*) in the tree. If the node is the root, update it.
+ TreeList<Chunk>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
+ assert(tc->is_free(), "Chunk should still be free");
+ assert(replacementTL->parent() == NULL ||
+ replacementTL == replacementTL->parent()->left() ||
+ replacementTL == replacementTL->parent()->right(),
+ "list is inconsistent");
+ if (tl == root()) {
+ assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
+ set_root(replacementTL);
+ }
+ debug_only(
+ if (tl != replacementTL) {
+ assert(replacementTL->head() != NULL,
+ "If the tree list was replaced, it should not be a NULL list");
+ TreeList<Chunk>* rhl = replacementTL->head_as_TreeChunk()->list();
+ TreeList<Chunk>* rtl = TreeChunk<Chunk>::as_TreeChunk(replacementTL->tail())->list();
+ assert(rhl == replacementTL, "Broken head");
+ assert(rtl == replacementTL, "Broken tail");
+ assert(replacementTL->size() == tc->size(), "Broken size");
+ }
+ )
+
+ // Does the tree need to be repaired?
+ if (replacementTL->count() == 0) {
+ assert(replacementTL->head() == NULL &&
+ replacementTL->tail() == NULL, "list count is incorrect");
+ // Find the replacement node for the (soon to be empty) node being removed.
+ // if we have a single (or no) child, splice child in our stead
+ if (replacementTL->left() == NULL) {
+ // left is NULL so pick right. right may also be NULL.
+ newTL = replacementTL->right();
+ debug_only(replacementTL->clear_right();)
+ } else if (replacementTL->right() == NULL) {
+ // right is NULL
+ newTL = replacementTL->left();
+ debug_only(replacementTL->clearLeft();)
+ } else { // we have both children, so, by patriarchal convention,
+ // my replacement is least node in right sub-tree
+ complicated_splice = true;
+ newTL = remove_tree_minimum(replacementTL->right());
+ assert(newTL != NULL && newTL->left() == NULL &&
+ newTL->right() == NULL, "sub-tree minimum exists");
+ }
+ // newTL is the replacement for the (soon to be empty) node.
+ // newTL may be NULL.
+ // should verify; we just cleanly excised our replacement
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+ // first make newTL my parent's child
+ if ((parentTL = replacementTL->parent()) == NULL) {
+ // newTL should be root
+ assert(tl == root(), "Incorrectly replacing root");
+ set_root(newTL);
+ if (newTL != NULL) {
+ newTL->clear_parent();
+ }
+ } else if (parentTL->right() == replacementTL) {
+ // replacementTL is a right child
+ parentTL->set_right(newTL);
+ } else { // replacementTL is a left child
+ assert(parentTL->left() == replacementTL, "should be left child");
+ parentTL->set_left(newTL);
+ }
+ debug_only(replacementTL->clear_parent();)
+ if (complicated_splice) { // we need newTL to get replacementTL's
+ // two children
+ assert(newTL != NULL &&
+ newTL->left() == NULL && newTL->right() == NULL,
+ "newTL should not have encumbrances from the past");
+ // we'd like to assert as below:
+ // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
+ // "else !complicated_splice");
+ // ... however, the above assertion is too strong because we aren't
+ // guaranteed that replacementTL->right() is still NULL.
+ // Recall that we removed
+ // the right sub-tree minimum from replacementTL.
+ // That may well have been its right
+ // child! So we'll just assert half of the above:
+ assert(replacementTL->left() != NULL, "else !complicated_splice");
+ newTL->set_left(replacementTL->left());
+ newTL->set_right(replacementTL->right());
+ debug_only(
+ replacementTL->clear_right();
+ replacementTL->clearLeft();
+ )
+ }
+ assert(replacementTL->right() == NULL &&
+ replacementTL->left() == NULL &&
+ replacementTL->parent() == NULL,
+ "delete without encumbrances");
+ }
+
+ assert(total_size() >= retTC->size(), "Incorrect total size");
+ dec_total_size(retTC->size()); // size book-keeping
+ assert(total_free_blocks() > 0, "Incorrect total count");
+ set_total_free_blocks(total_free_blocks() - 1);
+
+ assert(retTC != NULL, "null chunk?");
+ assert(retTC->prev() == NULL && retTC->next() == NULL,
+ "should return without encumbrances");
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+ assert(!removing_only_chunk || _root == NULL, "root should be NULL");
+ return TreeChunk<Chunk>::as_TreeChunk(retTC);
+}
+
+// Remove the leftmost node (lm) in the tree and return it.
+// If lm has a right child, link it to the left node of
+// the parent of lm.
+template <class Chunk>
+TreeList<Chunk>* BinaryTreeDictionary<Chunk>::remove_tree_minimum(TreeList<Chunk>* tl) {
+ assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
+ // locate the subtree minimum by walking down left branches
+ TreeList<Chunk>* curTL = tl;
+ for (; curTL->left() != NULL; curTL = curTL->left());
+ // obviously curTL now has at most one child, a right child
+ if (curTL != root()) { // Should this test just be removed?
+ TreeList<Chunk>* parentTL = curTL->parent();
+ if (parentTL->left() == curTL) { // curTL is a left child
+ parentTL->set_left(curTL->right());
+ } else {
+ // If the list tl has no left child, then curTL may be
+ // the right child of parentTL.
+ assert(parentTL->right() == curTL, "should be a right child");
+ parentTL->set_right(curTL->right());
+ }
+ } else {
+ // The only use of this method would not pass the root of the
+ // tree (as indicated by the assertion above that the tree list
+ // has a parent) but the specification does not explicitly exclude the
+ // passing of the root so accomodate it.
+ set_root(NULL);
+ }
+ debug_only(
+ curTL->clear_parent(); // Test if this needs to be cleared
+ curTL->clear_right(); // recall, above, left child is already null
+ )
+ // we just excised a (non-root) node, we should still verify all tree invariants
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+ return curTL;
+}
+
+// Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
+// The simplifications are the following:
+// . we splay only when we delete (not when we insert)
+// . we apply a single spay step per deletion/access
+// By doing such partial splaying, we reduce the amount of restructuring,
+// while getting a reasonably efficient search tree (we think).
+// [Measurements will be needed to (in)validate this expectation.]
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::semi_splay_step(TreeList<Chunk>* tc) {
+ // apply a semi-splay step at the given node:
+ // . if root, norting needs to be done
+ // . if child of root, splay once
+ // . else zig-zig or sig-zag depending on path from grandparent
+ if (root() == tc) return;
+ warning("*** Splaying not yet implemented; "
+ "tree operations may be inefficient ***");
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::insert_chunk_in_tree(Chunk* fc) {
+ TreeList<Chunk> *curTL, *prevTL;
+ size_t size = fc->size();
+
+ assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "too small to be a TreeList<Chunk>");
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+
+ fc->clear_next();
+ fc->link_prev(NULL);
+
+ // work down from the _root, looking for insertion point
+ for (prevTL = curTL = root(); curTL != NULL;) {
+ if (curTL->size() == size) // exact match
+ break;
+ prevTL = curTL;
+ if (curTL->size() > size) { // follow left branch
+ curTL = curTL->left();
+ } else { // follow right branch
+ assert(curTL->size() < size, "size inconsistency");
+ curTL = curTL->right();
+ }
+ }
+ TreeChunk<Chunk>* tc = TreeChunk<Chunk>::as_TreeChunk(fc);
+ // This chunk is being returned to the binary tree. Its embedded
+ // TreeList<Chunk> should be unused at this point.
+ tc->initialize();
+ if (curTL != NULL) { // exact match
+ tc->set_list(curTL);
+ curTL->return_chunk_at_tail(tc);
+ } else { // need a new node in tree
+ tc->clear_next();
+ tc->link_prev(NULL);
+ TreeList<Chunk>* newTL = TreeList<Chunk>::as_TreeList(tc);
+ assert(((TreeChunk<Chunk>*)tc)->list() == newTL,
+ "List was not initialized correctly");
+ if (prevTL == NULL) { // we are the only tree node
+ assert(root() == NULL, "control point invariant");
+ set_root(newTL);
+ } else { // insert under prevTL ...
+ if (prevTL->size() < size) { // am right child
+ assert(prevTL->right() == NULL, "control point invariant");
+ prevTL->set_right(newTL);
+ } else { // am left child
+ assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
+ prevTL->set_left(newTL);
+ }
+ }
+ }
+ assert(tc->list() != NULL, "Tree list should be set");
+
+ inc_total_size(size);
+ // Method 'total_size_in_tree' walks through the every block in the
+ // tree, so it can cause significant performance loss if there are
+ // many blocks in the tree
+ assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
+ set_total_free_blocks(total_free_blocks() + 1);
+ if (FLSVerifyDictionary) {
+ verify_tree();
+ }
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::max_chunk_size() const {
+ FreeBlockDictionary<Chunk>::verify_par_locked();
+ TreeList<Chunk>* tc = root();
+ if (tc == NULL) return 0;
+ for (; tc->right() != NULL; tc = tc->right());
+ return tc->size();
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::total_list_length(TreeList<Chunk>* tl) const {
+ size_t res;
+ res = tl->count();
+#ifdef ASSERT
+ size_t cnt;
+ Chunk* tc = tl->head();
+ for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
+ assert(res == cnt, "The count is not being maintained correctly");
+#endif
+ return res;
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::total_size_in_tree(TreeList<Chunk>* tl) const {
+ if (tl == NULL)
+ return 0;
+ return (tl->size() * total_list_length(tl)) +
+ total_size_in_tree(tl->left()) +
+ total_size_in_tree(tl->right());
+}
+
+template <class Chunk>
+double BinaryTreeDictionary<Chunk>::sum_of_squared_block_sizes(TreeList<Chunk>* const tl) const {
+ if (tl == NULL) {
+ return 0.0;
+ }
+ double size = (double)(tl->size());
+ double curr = size * size * total_list_length(tl);
+ curr += sum_of_squared_block_sizes(tl->left());
+ curr += sum_of_squared_block_sizes(tl->right());
+ return curr;
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::total_free_blocks_in_tree(TreeList<Chunk>* tl) const {
+ if (tl == NULL)
+ return 0;
+ return total_list_length(tl) +
+ total_free_blocks_in_tree(tl->left()) +
+ total_free_blocks_in_tree(tl->right());
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::num_free_blocks() const {
+ assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
+ "_total_free_blocks inconsistency");
+ return total_free_blocks();
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::tree_height_helper(TreeList<Chunk>* tl) const {
+ if (tl == NULL)
+ return 0;
+ return 1 + MAX2(tree_height_helper(tl->left()),
+ tree_height_helper(tl->right()));
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::treeHeight() const {
+ return tree_height_helper(root());
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::total_nodes_helper(TreeList<Chunk>* tl) const {
+ if (tl == NULL) {
+ return 0;
+ }
+ return 1 + total_nodes_helper(tl->left()) +
+ total_nodes_helper(tl->right());
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::total_nodes_in_tree(TreeList<Chunk>* tl) const {
+ return total_nodes_helper(root());
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::dict_census_udpate(size_t size, bool split, bool birth){
+ TreeList<Chunk>* nd = find_list(size);
+ if (nd) {
+ if (split) {
+ if (birth) {
+ nd->increment_split_births();
+ nd->increment_surplus();
+ } else {
+ nd->increment_split_deaths();
+ nd->decrement_surplus();
+ }
+ } else {
+ if (birth) {
+ nd->increment_coal_births();
+ nd->increment_surplus();
+ } else {
+ nd->increment_coal_deaths();
+ nd->decrement_surplus();
+ }
+ }
+ }
+ // A list for this size may not be found (nd == 0) if
+ // This is a death where the appropriate list is now
+ // empty and has been removed from the list.
+ // This is a birth associated with a LinAB. The chunk
+ // for the LinAB is not in the dictionary.
+}
+
+template <class Chunk>
+bool BinaryTreeDictionary<Chunk>::coal_dict_over_populated(size_t size) {
+ if (FLSAlwaysCoalesceLarge) return true;
+
+ TreeList<Chunk>* list_of_size = find_list(size);
+ // None of requested size implies overpopulated.
+ return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
+ list_of_size->count() > list_of_size->coal_desired();
+}
+
+// Closures for walking the binary tree.
+// do_list() walks the free list in a node applying the closure
+// to each free chunk in the list
+// do_tree() walks the nodes in the binary tree applying do_list()
+// to each list at each node.
+
+template <class Chunk>
+class TreeCensusClosure : public StackObj {
+ protected:
+ virtual void do_list(FreeList<Chunk>* fl) = 0;
+ public:
+ virtual void do_tree(TreeList<Chunk>* tl) = 0;
+};
+
+template <class Chunk>
+class AscendTreeCensusClosure : public TreeCensusClosure<Chunk> {
+ public:
+ void do_tree(TreeList<Chunk>* tl) {
+ if (tl != NULL) {
+ do_tree(tl->left());
+ do_list(tl);
+ do_tree(tl->right());
+ }
+ }
+};
+
+template <class Chunk>
+class DescendTreeCensusClosure : public TreeCensusClosure<Chunk> {
+ public:
+ void do_tree(TreeList<Chunk>* tl) {
+ if (tl != NULL) {
+ do_tree(tl->right());
+ do_list(tl);
+ do_tree(tl->left());
+ }
+ }
+};
+
+// For each list in the tree, calculate the desired, desired
+// coalesce, count before sweep, and surplus before sweep.
+template <class Chunk>
+class BeginSweepClosure : public AscendTreeCensusClosure<Chunk> {
+ double _percentage;
+ float _inter_sweep_current;
+ float _inter_sweep_estimate;
+ float _intra_sweep_estimate;
+
+ public:
+ BeginSweepClosure(double p, float inter_sweep_current,
+ float inter_sweep_estimate,
+ float intra_sweep_estimate) :
+ _percentage(p),
+ _inter_sweep_current(inter_sweep_current),
+ _inter_sweep_estimate(inter_sweep_estimate),
+ _intra_sweep_estimate(intra_sweep_estimate) { }
+
+ void do_list(FreeList<Chunk>* fl) {
+ double coalSurplusPercent = _percentage;
+ fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
+ fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
+ fl->set_before_sweep(fl->count());
+ fl->set_bfr_surp(fl->surplus());
+ }
+};
+
+// Used to search the tree until a condition is met.
+// Similar to TreeCensusClosure but searches the
+// tree and returns promptly when found.
+
+template <class Chunk>
+class TreeSearchClosure : public StackObj {
+ protected:
+ virtual bool do_list(FreeList<Chunk>* fl) = 0;
+ public:
+ virtual bool do_tree(TreeList<Chunk>* tl) = 0;
+};
+
+#if 0 // Don't need this yet but here for symmetry.
+template <class Chunk>
+class AscendTreeSearchClosure : public TreeSearchClosure {
+ public:
+ bool do_tree(TreeList<Chunk>* tl) {
+ if (tl != NULL) {
+ if (do_tree(tl->left())) return true;
+ if (do_list(tl)) return true;
+ if (do_tree(tl->right())) return true;
+ }
+ return false;
+ }
+};
+#endif
+
+template <class Chunk>
+class DescendTreeSearchClosure : public TreeSearchClosure<Chunk> {
+ public:
+ bool do_tree(TreeList<Chunk>* tl) {
+ if (tl != NULL) {
+ if (do_tree(tl->right())) return true;
+ if (do_list(tl)) return true;
+ if (do_tree(tl->left())) return true;
+ }
+ return false;
+ }
+};
+
+// Searches the tree for a chunk that ends at the
+// specified address.
+template <class Chunk>
+class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk> {
+ HeapWord* _target;
+ Chunk* _found;
+
+ public:
+ EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
+ bool do_list(FreeList<Chunk>* fl) {
+ Chunk* item = fl->head();
+ while (item != NULL) {
+ if (item->end() == _target) {
+ _found = item;
+ return true;
+ }
+ item = item->next();
+ }
+ return false;
+ }
+ Chunk* found() { return _found; }
+};
+
+template <class Chunk>
+Chunk* BinaryTreeDictionary<Chunk>::find_chunk_ends_at(HeapWord* target) const {
+ EndTreeSearchClosure<Chunk> etsc(target);
+ bool found_target = etsc.do_tree(root());
+ assert(found_target || etsc.found() == NULL, "Consistency check");
+ assert(!found_target || etsc.found() != NULL, "Consistency check");
+ return etsc.found();
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::begin_sweep_dict_census(double coalSurplusPercent,
+ float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
+ BeginSweepClosure<Chunk> bsc(coalSurplusPercent, inter_sweep_current,
+ inter_sweep_estimate,
+ intra_sweep_estimate);
+ bsc.do_tree(root());
+}
+
+// Closures and methods for calculating total bytes returned to the
+// free lists in the tree.
+#ifndef PRODUCT
+template <class Chunk>
+class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> {
+ public:
+ void do_list(FreeList<Chunk>* fl) {
+ fl->set_returned_bytes(0);
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::initialize_dict_returned_bytes() {
+ InitializeDictReturnedBytesClosure<Chunk> idrb;
+ idrb.do_tree(root());
+}
+
+template <class Chunk>
+class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> {
+ size_t _dict_returned_bytes;
+ public:
+ ReturnedBytesClosure() { _dict_returned_bytes = 0; }
+ void do_list(FreeList<Chunk>* fl) {
+ _dict_returned_bytes += fl->returned_bytes();
+ }
+ size_t dict_returned_bytes() { return _dict_returned_bytes; }
+};
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::sum_dict_returned_bytes() {
+ ReturnedBytesClosure<Chunk> rbc;
+ rbc.do_tree(root());
+
+ return rbc.dict_returned_bytes();
+}
+
+// Count the number of entries in the tree.
+template <class Chunk>
+class treeCountClosure : public DescendTreeCensusClosure<Chunk> {
+ public:
+ uint count;
+ treeCountClosure(uint c) { count = c; }
+ void do_list(FreeList<Chunk>* fl) {
+ count++;
+ }
+};
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::total_count() {
+ treeCountClosure<Chunk> ctc(0);
+ ctc.do_tree(root());
+ return ctc.count;
+}
+#endif // PRODUCT
+
+// Calculate surpluses for the lists in the tree.
+template <class Chunk>
+class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk> {
+ double percentage;
+ public:
+ setTreeSurplusClosure(double v) { percentage = v; }
+ void do_list(FreeList<Chunk>* fl) {
+ double splitSurplusPercent = percentage;
+ fl->set_surplus(fl->count() -
+ (ssize_t)((double)fl->desired() * splitSurplusPercent));
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::set_tree_surplus(double splitSurplusPercent) {
+ setTreeSurplusClosure<Chunk> sts(splitSurplusPercent);
+ sts.do_tree(root());
+}
+
+// Set hints for the lists in the tree.
+template <class Chunk>
+class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk> {
+ size_t hint;
+ public:
+ setTreeHintsClosure(size_t v) { hint = v; }
+ void do_list(FreeList<Chunk>* fl) {
+ fl->set_hint(hint);
+ assert(fl->hint() == 0 || fl->hint() > fl->size(),
+ "Current hint is inconsistent");
+ if (fl->surplus() > 0) {
+ hint = fl->size();
+ }
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::set_tree_hints(void) {
+ setTreeHintsClosure<Chunk> sth(0);
+ sth.do_tree(root());
+}
+
+// Save count before previous sweep and splits and coalesces.
+template <class Chunk>
+class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk> {
+ void do_list(FreeList<Chunk>* fl) {
+ fl->set_prev_sweep(fl->count());
+ fl->set_coal_births(0);
+ fl->set_coal_deaths(0);
+ fl->set_split_births(0);
+ fl->set_split_deaths(0);
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::clear_tree_census(void) {
+ clearTreeCensusClosure<Chunk> ctc;
+ ctc.do_tree(root());
+}
+
+// Do reporting and post sweep clean up.
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::end_sweep_dict_census(double splitSurplusPercent) {
+ // Does walking the tree 3 times hurt?
+ set_tree_surplus(splitSurplusPercent);
+ set_tree_hints();
+ if (PrintGC && Verbose) {
+ report_statistics();
+ }
+ clear_tree_census();
+}
+
+// Print summary statistics
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::report_statistics() const {
+ FreeBlockDictionary<Chunk>::verify_par_locked();
+ gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
+ "------------------------------------\n");
+ size_t total_size = total_chunk_size(debug_only(NULL));
+ size_t free_blocks = num_free_blocks();
+ gclog_or_tty->print("Total Free Space: %d\n", total_size);
+ gclog_or_tty->print("Max Chunk Size: %d\n", max_chunk_size());
+ gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
+ if (free_blocks > 0) {
+ gclog_or_tty->print("Av. Block Size: %d\n", total_size/free_blocks);
+ }
+ gclog_or_tty->print("Tree Height: %d\n", treeHeight());
+}
+
+// Print census information - counts, births, deaths, etc.
+// for each list in the tree. Also print some summary
+// information.
+template <class Chunk>
+class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk> {
+ int _print_line;
+ size_t _total_free;
+ FreeList<Chunk> _total;
+
+ public:
+ PrintTreeCensusClosure() {
+ _print_line = 0;
+ _total_free = 0;
+ }
+ FreeList<Chunk>* total() { return &_total; }
+ size_t total_free() { return _total_free; }
+ void do_list(FreeList<Chunk>* fl) {
+ if (++_print_line >= 40) {
+ FreeList<Chunk>::print_labels_on(gclog_or_tty, "size");
+ _print_line = 0;
+ }
+ fl->print_on(gclog_or_tty);
+ _total_free += fl->count() * fl->size() ;
+ total()->set_count( total()->count() + fl->count() );
+ total()->set_bfr_surp( total()->bfr_surp() + fl->bfr_surp() );
+ total()->set_surplus( total()->split_deaths() + fl->surplus() );
+ total()->set_desired( total()->desired() + fl->desired() );
+ total()->set_prev_sweep( total()->prev_sweep() + fl->prev_sweep() );
+ total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
+ total()->set_coal_births( total()->coal_births() + fl->coal_births() );
+ total()->set_coal_deaths( total()->coal_deaths() + fl->coal_deaths() );
+ total()->set_split_births(total()->split_births() + fl->split_births());
+ total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::print_dict_census(void) const {
+
+ gclog_or_tty->print("\nBinaryTree\n");
+ FreeList<Chunk>::print_labels_on(gclog_or_tty, "size");
+ PrintTreeCensusClosure<Chunk> ptc;
+ ptc.do_tree(root());
+
+ FreeList<Chunk>* total = ptc.total();
+ FreeList<Chunk>::print_labels_on(gclog_or_tty, " ");
+ total->print_on(gclog_or_tty, "TOTAL\t");
+ gclog_or_tty->print(
+ "total_free(words): " SIZE_FORMAT_W(16)
+ " growth: %8.5f deficit: %8.5f\n",
+ ptc.total_free(),
+ (double)(total->split_births() + total->coal_births()
+ - total->split_deaths() - total->coal_deaths())
+ /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
+ (double)(total->desired() - total->count())
+ /(total->desired() != 0 ? (double)total->desired() : 1.0));
+}
+
+template <class Chunk>
+class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk> {
+ outputStream* _st;
+ int _print_line;
+
+ public:
+ PrintFreeListsClosure(outputStream* st) {
+ _st = st;
+ _print_line = 0;
+ }
+ void do_list(FreeList<Chunk>* fl) {
+ if (++_print_line >= 40) {
+ FreeList<Chunk>::print_labels_on(_st, "size");
+ _print_line = 0;
+ }
+ fl->print_on(gclog_or_tty);
+ size_t sz = fl->size();
+ for (Chunk* fc = fl->head(); fc != NULL;
+ fc = fc->next()) {
+ _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
+ fc, (HeapWord*)fc + sz,
+ fc->cantCoalesce() ? "\t CC" : "");
+ }
+ }
+};
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::print_free_lists(outputStream* st) const {
+
+ FreeList<Chunk>::print_labels_on(st, "size");
+ PrintFreeListsClosure<Chunk> pflc(st);
+ pflc.do_tree(root());
+}
+
+// Verify the following tree invariants:
+// . _root has no parent
+// . parent and child point to each other
+// . each node's key correctly related to that of its child(ren)
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::verify_tree() const {
+ guarantee(root() == NULL || total_free_blocks() == 0 ||
+ total_size() != 0, "_total_size should't be 0?");
+ guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
+ verify_tree_helper(root());
+}
+
+template <class Chunk>
+size_t BinaryTreeDictionary<Chunk>::verify_prev_free_ptrs(TreeList<Chunk>* tl) {
+ size_t ct = 0;
+ for (Chunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
+ ct++;
+ assert(curFC->prev() == NULL || curFC->prev()->is_free(),
+ "Chunk should be free");
+ }
+ return ct;
+}
+
+// Note: this helper is recursive rather than iterative, so use with
+// caution on very deep trees; and watch out for stack overflow errors;
+// In general, to be used only for debugging.
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::verify_tree_helper(TreeList<Chunk>* tl) const {
+ if (tl == NULL)
+ return;
+ guarantee(tl->size() != 0, "A list must has a size");
+ guarantee(tl->left() == NULL || tl->left()->parent() == tl,
+ "parent<-/->left");
+ guarantee(tl->right() == NULL || tl->right()->parent() == tl,
+ "parent<-/->right");;
+ guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
+ "parent !> left");
+ guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
+ "parent !< left");
+ guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
+ guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
+ "list inconsistency");
+ guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
+ "list count is inconsistent");
+ guarantee(tl->count() > 1 || tl->head() == tl->tail(),
+ "list is incorrectly constructed");
+ size_t count = verify_prev_free_ptrs(tl);
+ guarantee(count == (size_t)tl->count(), "Node count is incorrect");
+ if (tl->head() != NULL) {
+ tl->head_as_TreeChunk()->verify_tree_chunk_list();
+ }
+ verify_tree_helper(tl->left());
+ verify_tree_helper(tl->right());
+}
+
+template <class Chunk>
+void BinaryTreeDictionary<Chunk>::verify() const {
+ verify_tree();
+ guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
+}
+
+#ifndef SERIALGC
+// Explicitly instantiate these types for FreeChunk.
+template class BinaryTreeDictionary<FreeChunk>;
+template class TreeChunk<FreeChunk>;
+template class TreeList<FreeChunk>;
+#endif // SERIALGC
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/binaryTreeDictionary.hpp Fri May 04 10:46:32 2012 -0700
@@ -0,0 +1,329 @@
+/*
+ * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
+#define SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
+
+#include "memory/freeBlockDictionary.hpp"
+#include "memory/freeList.hpp"
+
+/*
+ * A binary tree based search structure for free blocks.
+ * This is currently used in the Concurrent Mark&Sweep implementation, but
+ * will be used for free block management for metadata.
+ */
+
+// A TreeList is a FreeList which can be used to maintain a
+// binary tree of free lists.
+
+template <class Chunk> class TreeChunk;
+template <class Chunk> class BinaryTreeDictionary;
+template <class Chunk> class AscendTreeCensusClosure;
+template <class Chunk> class DescendTreeCensusClosure;
+template <class Chunk> class DescendTreeSearchClosure;
+
+template <class Chunk>
+class TreeList: public FreeList<Chunk> {
+ friend class TreeChunk<Chunk>;
+ friend class BinaryTreeDictionary<Chunk>;
+ friend class AscendTreeCensusClosure<Chunk>;
+ friend class DescendTreeCensusClosure<Chunk>;
+ friend class DescendTreeSearchClosure<Chunk>;
+
+ TreeList<Chunk>* _parent;
+ TreeList<Chunk>* _left;
+ TreeList<Chunk>* _right;
+
+ protected:
+ TreeList<Chunk>* parent() const { return _parent; }
+ TreeList<Chunk>* left() const { return _left; }
+ TreeList<Chunk>* right() const { return _right; }
+
+ // Wrapper on call to base class, to get the template to compile.
+ Chunk* head() const { return FreeList<Chunk>::head(); }
+ Chunk* tail() const { return FreeList<Chunk>::tail(); }
+ void set_head(Chunk* head) { FreeList<Chunk>::set_head(head); }
+ void set_tail(Chunk* tail) { FreeList<Chunk>::set_tail(tail); }
+
+ size_t size() const { return FreeList<Chunk>::size(); }
+
+ // Accessors for links in tree.
+
+ void set_left(TreeList<Chunk>* tl) {
+ _left = tl;
+ if (tl != NULL)
+ tl->set_parent(this);
+ }
+ void set_right(TreeList<Chunk>* tl) {
+ _right = tl;
+ if (tl != NULL)
+ tl->set_parent(this);
+ }
+ void set_parent(TreeList<Chunk>* tl) { _parent = tl; }
+
+ void clearLeft() { _left = NULL; }
+ void clear_right() { _right = NULL; }
+ void clear_parent() { _parent = NULL; }
+ void initialize() { clearLeft(); clear_right(), clear_parent(); }
+
+ // For constructing a TreeList from a Tree chunk or
+ // address and size.
+ static TreeList<Chunk>* as_TreeList(TreeChunk<Chunk>* tc);
+ static TreeList<Chunk>* as_TreeList(HeapWord* addr, size_t size);
+
+ // Returns the head of the free list as a pointer to a TreeChunk.
+ TreeChunk<Chunk>* head_as_TreeChunk();
+
+ // Returns the first available chunk in the free list as a pointer
+ // to a TreeChunk.
+ TreeChunk<Chunk>* first_available();
+
+ // Returns the block with the largest heap address amongst
+ // those in the list for this size; potentially slow and expensive,
+ // use with caution!
+ TreeChunk<Chunk>* largest_address();
+
+ // remove_chunk_replace_if_needed() removes the given "tc" from the TreeList.
+ // If "tc" is the first chunk in the list, it is also the
+ // TreeList that is the node in the tree. remove_chunk_replace_if_needed()
+ // returns the possibly replaced TreeList* for the node in
+ // the tree. It also updates the parent of the original
+ // node to point to the new node.
+ TreeList<Chunk>* remove_chunk_replace_if_needed(TreeChunk<Chunk>* tc);
+ // See FreeList.
+ void return_chunk_at_head(TreeChunk<Chunk>* tc);
+ void return_chunk_at_tail(TreeChunk<Chunk>* tc);
+};
+
+// A TreeChunk is a subclass of a Chunk that additionally
+// maintains a pointer to the free list on which it is currently
+// linked.
+// A TreeChunk is also used as a node in the binary tree. This
+// allows the binary tree to be maintained without any additional
+// storage (the free chunks are used). In a binary tree the first
+// chunk in the free list is also the tree node. Note that the
+// TreeChunk has an embedded TreeList for this purpose. Because
+// the first chunk in the list is distinguished in this fashion
+// (also is the node in the tree), it is the last chunk to be found
+// on the free list for a node in the tree and is only removed if
+// it is the last chunk on the free list.
+
+template <class Chunk>
+class TreeChunk : public Chunk {
+ friend class TreeList<Chunk>;
+ TreeList<Chunk>* _list;
+ TreeList<Chunk> _embedded_list; // if non-null, this chunk is on _list
+ protected:
+ TreeList<Chunk>* embedded_list() const { return (TreeList<Chunk>*) &_embedded_list; }
+ void set_embedded_list(TreeList<Chunk>* v) { _embedded_list = *v; }
+ public:
+ TreeList<Chunk>* list() { return _list; }
+ void set_list(TreeList<Chunk>* v) { _list = v; }
+ static TreeChunk<Chunk>* as_TreeChunk(Chunk* fc);
+ // Initialize fields in a TreeChunk that should be
+ // initialized when the TreeChunk is being added to
+ // a free list in the tree.
+ void initialize() { embedded_list()->initialize(); }
+
+ Chunk* next() const { return Chunk::next(); }
+ Chunk* prev() const { return Chunk::prev(); }
+ size_t size() const volatile { return Chunk::size(); }
+
+ // debugging
+ void verify_tree_chunk_list() const;
+};
+
+
+template <class Chunk>
+class BinaryTreeDictionary: public FreeBlockDictionary<Chunk> {
+ friend class VMStructs;
+ bool _splay;
+ size_t _total_size;
+ size_t _total_free_blocks;
+ TreeList<Chunk>* _root;
+ bool _adaptive_freelists;
+
+ // private accessors
+ bool splay() const { return _splay; }
+ void set_splay(bool v) { _splay = v; }
+ void set_total_size(size_t v) { _total_size = v; }
+ virtual void inc_total_size(size_t v);
+ virtual void dec_total_size(size_t v);
+ size_t total_free_blocks() const { return _total_free_blocks; }
+ void set_total_free_blocks(size_t v) { _total_free_blocks = v; }
+ TreeList<Chunk>* root() const { return _root; }
+ void set_root(TreeList<Chunk>* v) { _root = v; }
+ bool adaptive_freelists() { return _adaptive_freelists; }
+
+ // This field is added and can be set to point to the
+ // the Mutex used to synchronize access to the
+ // dictionary so that assertion checking can be done.
+ // For example it is set to point to _parDictionaryAllocLock.
+ NOT_PRODUCT(Mutex* _lock;)
+
+ // Remove a chunk of size "size" or larger from the tree and
+ // return it. If the chunk
+ // is the last chunk of that size, remove the node for that size
+ // from the tree.
+ TreeChunk<Chunk>* get_chunk_from_tree(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither, bool splay);
+ // Return a list of the specified size or NULL from the tree.
+ // The list is not removed from the tree.
+ TreeList<Chunk>* find_list (size_t size) const;
+ // Remove this chunk from the tree. If the removal results
+ // in an empty list in the tree, remove the empty list.
+ TreeChunk<Chunk>* remove_chunk_from_tree(TreeChunk<Chunk>* tc);
+ // Remove the node in the trees starting at tl that has the
+ // minimum value and return it. Repair the tree as needed.
+ TreeList<Chunk>* remove_tree_minimum(TreeList<Chunk>* tl);
+ void semi_splay_step(TreeList<Chunk>* tl);
+ // Add this free chunk to the tree.
+ void insert_chunk_in_tree(Chunk* freeChunk);
+ public:
+
+ static const size_t min_tree_chunk_size = sizeof(TreeChunk<Chunk>)/HeapWordSize;
+
+ void verify_tree() const;
+ // verify that the given chunk is in the tree.
+ bool verify_chunk_in_free_list(Chunk* tc) const;
+ private:
+ void verify_tree_helper(TreeList<Chunk>* tl) const;
+ static size_t verify_prev_free_ptrs(TreeList<Chunk>* tl);
+
+ // Returns the total number of chunks in the list.
+ size_t total_list_length(TreeList<Chunk>* tl) const;
+ // Returns the total number of words in the chunks in the tree
+ // starting at "tl".
+ size_t total_size_in_tree(TreeList<Chunk>* tl) const;
+ // Returns the sum of the square of the size of each block
+ // in the tree starting at "tl".
+ double sum_of_squared_block_sizes(TreeList<Chunk>* const tl) const;
+ // Returns the total number of free blocks in the tree starting
+ // at "tl".
+ size_t total_free_blocks_in_tree(TreeList<Chunk>* tl) const;
+ size_t num_free_blocks() const;
+ size_t treeHeight() const;
+ size_t tree_height_helper(TreeList<Chunk>* tl) const;
+ size_t total_nodes_in_tree(TreeList<Chunk>* tl) const;
+ size_t total_nodes_helper(TreeList<Chunk>* tl) const;
+
+ public:
+ // Constructor
+ BinaryTreeDictionary(bool adaptive_freelists, bool splay = false);
+ BinaryTreeDictionary(MemRegion mr, bool adaptive_freelists, bool splay = false);
+
+ // Public accessors
+ size_t total_size() const { return _total_size; }
+
+ // Reset the dictionary to the initial conditions with
+ // a single free chunk.
+ void reset(MemRegion mr);
+ void reset(HeapWord* addr, size_t size);
+ // Reset the dictionary to be empty.
+ void reset();
+
+ // Return a chunk of size "size" or greater from
+ // the tree.
+ // want a better dynamic splay strategy for the future.
+ Chunk* get_chunk(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither) {
+ FreeBlockDictionary<Chunk>::verify_par_locked();
+ Chunk* res = get_chunk_from_tree(size, dither, splay());
+ assert(res == NULL || res->is_free(),
+ "Should be returning a free chunk");
+ return res;
+ }
+
+ void return_chunk(Chunk* chunk) {
+ FreeBlockDictionary<Chunk>::verify_par_locked();
+ insert_chunk_in_tree(chunk);
+ }
+
+ void remove_chunk(Chunk* chunk) {
+ FreeBlockDictionary<Chunk>::verify_par_locked();
+ remove_chunk_from_tree((TreeChunk<Chunk>*)chunk);
+ assert(chunk->is_free(), "Should still be a free chunk");
+ }
+
+ size_t max_chunk_size() const;
+ size_t total_chunk_size(debug_only(const Mutex* lock)) const {
+ debug_only(
+ if (lock != NULL && lock->owned_by_self()) {
+ assert(total_size_in_tree(root()) == total_size(),
+ "_total_size inconsistency");
+ }
+ )
+ return total_size();
+ }
+
+ size_t min_size() const {
+ return min_tree_chunk_size;
+ }
+
+ double sum_of_squared_block_sizes() const {
+ return sum_of_squared_block_sizes(root());
+ }
+
+ Chunk* find_chunk_ends_at(HeapWord* target) const;
+
+ // Find the list with size "size" in the binary tree and update
+ // the statistics in the list according to "split" (chunk was
+ // split or coalesce) and "birth" (chunk was added or removed).
+ void dict_census_udpate(size_t size, bool split, bool birth);
+ // Return true if the dictionary is overpopulated (more chunks of
+ // this size than desired) for size "size".
+ bool coal_dict_over_populated(size_t size);
+ // Methods called at the beginning of a sweep to prepare the
+ // statistics for the sweep.
+ void begin_sweep_dict_census(double coalSurplusPercent,
+ float inter_sweep_current,
+ float inter_sweep_estimate,
+ float intra_sweep_estimate);
+ // Methods called after the end of a sweep to modify the
+ // statistics for the sweep.
+ void end_sweep_dict_census(double splitSurplusPercent);
+ // Return the largest free chunk in the tree.
+ Chunk* find_largest_dict() const;
+ // Accessors for statistics
+ void set_tree_surplus(double splitSurplusPercent);
+ void set_tree_hints(void);
+ // Reset statistics for all the lists in the tree.
+ void clear_tree_census(void);
+ // Print the statistcis for all the lists in the tree. Also may
+ // print out summaries.
+ void print_dict_census(void) const;
+ void print_free_lists(outputStream* st) const;
+
+ // For debugging. Returns the sum of the _returned_bytes for
+ // all lists in the tree.
+ size_t sum_dict_returned_bytes() PRODUCT_RETURN0;
+ // Sets the _returned_bytes for all the lists in the tree to zero.
+ void initialize_dict_returned_bytes() PRODUCT_RETURN;
+ // For debugging. Return the total number of chunks in the dictionary.
+ size_t total_count() PRODUCT_RETURN0;
+
+ void report_statistics() const;
+
+ void verify() const;
+};
+
+#endif // SHARE_VM_MEMORY_BINARYTREEDICTIONARY_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/freeBlockDictionary.cpp Fri May 04 10:46:32 2012 -0700
@@ -0,0 +1,68 @@
+/*
+ * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#ifndef SERIALGC
+#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
+#endif // SERIALGC
+#include "memory/freeBlockDictionary.hpp"
+#ifdef TARGET_OS_FAMILY_linux
+# include "thread_linux.inline.hpp"
+#endif
+#ifdef TARGET_OS_FAMILY_solaris
+# include "thread_solaris.inline.hpp"
+#endif
+#ifdef TARGET_OS_FAMILY_windows
+# include "thread_windows.inline.hpp"
+#endif
+#ifdef TARGET_OS_FAMILY_bsd
+# include "thread_bsd.inline.hpp"
+#endif
+
+#ifndef PRODUCT
+template <class Chunk> Mutex* FreeBlockDictionary<Chunk>::par_lock() const {
+ return _lock;
+}
+
+template <class Chunk> void FreeBlockDictionary<Chunk>::set_par_lock(Mutex* lock) {
+ _lock = lock;
+}
+
+template <class Chunk> void FreeBlockDictionary<Chunk>::verify_par_locked() const {
+#ifdef ASSERT
+ if (ParallelGCThreads > 0) {
+ Thread* my_thread = Thread::current();
+ if (my_thread->is_GC_task_thread()) {
+ assert(par_lock() != NULL, "Should be using locking?");
+ assert_lock_strong(par_lock());
+ }
+ }
+#endif // ASSERT
+}
+#endif
+
+#ifndef SERIALGC
+// Explicitly instantiate for FreeChunk
+template class FreeBlockDictionary<FreeChunk>;
+#endif // SERIALGC
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/freeBlockDictionary.hpp Fri May 04 10:46:32 2012 -0700
@@ -0,0 +1,102 @@
+/*
+ * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_MEMORY_FREEBLOCKDICTIONARY_HPP
+#define SHARE_VM_MEMORY_FREEBLOCKDICTIONARY_HPP
+
+#include "memory/allocation.hpp"
+#include "runtime/mutex.hpp"
+#include "utilities/debug.hpp"
+#include "utilities/globalDefinitions.hpp"
+#include "utilities/ostream.hpp"
+
+// A FreeBlockDictionary is an abstract superclass that will allow
+// a number of alternative implementations in the future.
+template <class Chunk>
+class FreeBlockDictionary: public CHeapObj {
+ public:
+ enum Dither {
+ atLeast,
+ exactly,
+ roughly
+ };
+ enum DictionaryChoice {
+ dictionaryBinaryTree = 0,
+ dictionarySplayTree = 1,
+ dictionarySkipList = 2
+ };
+
+ private:
+ NOT_PRODUCT(Mutex* _lock;)
+
+ public:
+ virtual void remove_chunk(Chunk* fc) = 0;
+ virtual Chunk* get_chunk(size_t size, Dither dither = atLeast) = 0;
+ virtual void return_chunk(Chunk* chunk) = 0;
+ virtual size_t total_chunk_size(debug_only(const Mutex* lock)) const = 0;
+ virtual size_t max_chunk_size() const = 0;
+ virtual size_t min_size() const = 0;
+ // Reset the dictionary to the initial conditions for a single
+ // block.
+ virtual void reset(HeapWord* addr, size_t size) = 0;
+ virtual void reset() = 0;
+
+ virtual void dict_census_udpate(size_t size, bool split, bool birth) = 0;
+ virtual bool coal_dict_over_populated(size_t size) = 0;
+ virtual void begin_sweep_dict_census(double coalSurplusPercent,
+ float inter_sweep_current, float inter_sweep_estimate,
+ float intra__sweep_current) = 0;
+ virtual void end_sweep_dict_census(double splitSurplusPercent) = 0;
+ virtual Chunk* find_largest_dict() const = 0;
+ // verify that the given chunk is in the dictionary.
+ virtual bool verify_chunk_in_free_list(Chunk* tc) const = 0;
+
+ // Sigma_{all_free_blocks} (block_size^2)
+ virtual double sum_of_squared_block_sizes() const = 0;
+
+ virtual Chunk* find_chunk_ends_at(HeapWord* target) const = 0;
+ virtual void inc_total_size(size_t v) = 0;
+ virtual void dec_total_size(size_t v) = 0;
+
+ NOT_PRODUCT (
+ virtual size_t sum_dict_returned_bytes() = 0;
+ virtual void initialize_dict_returned_bytes() = 0;
+ virtual size_t total_count() = 0;
+ )
+
+ virtual void report_statistics() const {
+ gclog_or_tty->print("No statistics available");
+ }
+
+ virtual void print_dict_census() const = 0;
+ virtual void print_free_lists(outputStream* st) const = 0;
+
+ virtual void verify() const = 0;
+
+ Mutex* par_lock() const PRODUCT_RETURN0;
+ void set_par_lock(Mutex* lock) PRODUCT_RETURN;
+ void verify_par_locked() const PRODUCT_RETURN;
+};
+
+#endif // SHARE_VM_MEMORY_FREEBLOCKDICTIONARY_HPP
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/freeList.cpp Fri May 04 10:46:32 2012 -0700
@@ -0,0 +1,370 @@
+/*
+ * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "memory/freeBlockDictionary.hpp"
+#include "memory/freeList.hpp"
+#include "memory/sharedHeap.hpp"
+#include "runtime/globals.hpp"
+#include "runtime/mutex.hpp"
+#include "runtime/vmThread.hpp"
+
+#ifndef SERIALGC
+#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
+#endif // SERIALGC
+
+// Free list. A FreeList is used to access a linked list of chunks
+// of space in the heap. The head and tail are maintained so that
+// items can be (as in the current implementation) added at the
+// at the tail of the list and removed from the head of the list to
+// maintain a FIFO queue.
+
+template <class Chunk>
+FreeList<Chunk>::FreeList() :
+ _head(NULL), _tail(NULL)
+#ifdef ASSERT
+ , _protecting_lock(NULL)
+#endif
+{
+ _size = 0;
+ _count = 0;
+ _hint = 0;
+ init_statistics();
+}
+
+template <class Chunk>
+FreeList<Chunk>::FreeList(Chunk* fc) :
+ _head(fc), _tail(fc)
+#ifdef ASSERT
+ , _protecting_lock(NULL)
+#endif
+{
+ _size = fc->size();
+ _count = 1;
+ _hint = 0;
+ init_statistics();
+#ifndef PRODUCT
+ _allocation_stats.set_returned_bytes(size() * HeapWordSize);
+#endif
+}
+
+template <class Chunk>
+void FreeList<Chunk>::reset(size_t hint) {
+ set_count(0);
+ set_head(NULL);
+ set_tail(NULL);
+ set_hint(hint);
+}
+
+template <class Chunk>
+void FreeList<Chunk>::init_statistics(bool split_birth) {
+ _allocation_stats.initialize(split_birth);
+}
+
+template <class Chunk>
+Chunk* FreeList<Chunk>::get_chunk_at_head() {
+ assert_proper_lock_protection();
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ Chunk* fc = head();
+ if (fc != NULL) {
+ Chunk* nextFC = fc->next();
+ if (nextFC != NULL) {
+ // The chunk fc being removed has a "next". Set the "next" to the
+ // "prev" of fc.
+ nextFC->link_prev(NULL);
+ } else { // removed tail of list
+ link_tail(NULL);
+ }
+ link_head(nextFC);
+ decrement_count();
+ }
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ return fc;
+}
+
+
+template <class Chunk>
+void FreeList<Chunk>::getFirstNChunksFromList(size_t n, FreeList<Chunk>* fl) {
+ assert_proper_lock_protection();
+ assert(fl->count() == 0, "Precondition");
+ if (count() > 0) {
+ int k = 1;
+ fl->set_head(head()); n--;
+ Chunk* tl = head();
+ while (tl->next() != NULL && n > 0) {
+ tl = tl->next(); n--; k++;
+ }
+ assert(tl != NULL, "Loop Inv.");
+
+ // First, fix up the list we took from.
+ Chunk* new_head = tl->next();
+ set_head(new_head);
+ set_count(count() - k);
+ if (new_head == NULL) {
+ set_tail(NULL);
+ } else {
+ new_head->link_prev(NULL);
+ }
+ // Now we can fix up the tail.
+ tl->link_next(NULL);
+ // And return the result.
+ fl->set_tail(tl);
+ fl->set_count(k);
+ }
+}
+
+// Remove this chunk from the list
+template <class Chunk>
+void FreeList<Chunk>::remove_chunk(Chunk*fc) {
+ assert_proper_lock_protection();
+ assert(head() != NULL, "Remove from empty list");
+ assert(fc != NULL, "Remove a NULL chunk");
+ assert(size() == fc->size(), "Wrong list");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk* prevFC = fc->prev();
+ Chunk* nextFC = fc->next();
+ if (nextFC != NULL) {
+ // The chunk fc being removed has a "next". Set the "next" to the
+ // "prev" of fc.
+ nextFC->link_prev(prevFC);
+ } else { // removed tail of list
+ link_tail(prevFC);
+ }
+ if (prevFC == NULL) { // removed head of list
+ link_head(nextFC);
+ assert(nextFC == NULL || nextFC->prev() == NULL,
+ "Prev of head should be NULL");
+ } else {
+ prevFC->link_next(nextFC);
+ assert(tail() != prevFC || prevFC->next() == NULL,
+ "Next of tail should be NULL");
+ }
+ decrement_count();
+ assert(((head() == NULL) + (tail() == NULL) + (count() == 0)) % 3 == 0,
+ "H/T/C Inconsistency");
+ // clear next and prev fields of fc, debug only
+ NOT_PRODUCT(
+ fc->link_prev(NULL);
+ fc->link_next(NULL);
+ )
+ assert(fc->is_free(), "Should still be a free chunk");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ assert(head() == NULL || head()->size() == size(), "wrong item on list");
+ assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
+}
+
+// Add this chunk at the head of the list.
+template <class Chunk>
+void FreeList<Chunk>::return_chunk_at_head(Chunk* chunk, bool record_return) {
+ assert_proper_lock_protection();
+ assert(chunk != NULL, "insert a NULL chunk");
+ assert(size() == chunk->size(), "Wrong size");
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+
+ Chunk* oldHead = head();
+ assert(chunk != oldHead, "double insertion");
+ chunk->link_after(oldHead);
+ link_head(chunk);
+ if (oldHead == NULL) { // only chunk in list
+ assert(tail() == NULL, "inconsistent FreeList");
+ link_tail(chunk);
+ }
+ increment_count(); // of # of chunks in list
+ DEBUG_ONLY(
+ if (record_return) {
+ increment_returned_bytes_by(size()*HeapWordSize);
+ }
+ )
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ assert(head() == NULL || head()->size() == size(), "wrong item on list");
+ assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
+}
+
+template <class Chunk>
+void FreeList<Chunk>::return_chunk_at_head(Chunk* chunk) {
+ assert_proper_lock_protection();
+ return_chunk_at_head(chunk, true);
+}
+
+// Add this chunk at the tail of the list.
+template <class Chunk>
+void FreeList<Chunk>::return_chunk_at_tail(Chunk* chunk, bool record_return) {
+ assert_proper_lock_protection();
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ assert(chunk != NULL, "insert a NULL chunk");
+ assert(size() == chunk->size(), "wrong size");
+
+ Chunk* oldTail = tail();
+ assert(chunk != oldTail, "double insertion");
+ if (oldTail != NULL) {
+ oldTail->link_after(chunk);
+ } else { // only chunk in list
+ assert(head() == NULL, "inconsistent FreeList");
+ link_head(chunk);
+ }
+ link_tail(chunk);
+ increment_count(); // of # of chunks in list
+ DEBUG_ONLY(
+ if (record_return) {
+ increment_returned_bytes_by(size()*HeapWordSize);
+ }
+ )
+ assert(head() == NULL || head()->prev() == NULL, "list invariant");
+ assert(tail() == NULL || tail()->next() == NULL, "list invariant");
+ assert(head() == NULL || head()->size() == size(), "wrong item on list");
+ assert(tail() == NULL || tail()->size() == size(), "wrong item on list");
+}
+
+template <class Chunk>
+void FreeList<Chunk>::return_chunk_at_tail(Chunk* chunk) {
+ return_chunk_at_tail(chunk, true);
+}
+
+template <class Chunk>
+void FreeList<Chunk>::prepend(FreeList<Chunk>* fl) {
+ assert_proper_lock_protection();
+ if (fl->count() > 0) {
+ if (count() == 0) {
+ set_head(fl->head());
+ set_tail(fl->tail());
+ set_count(fl->count());
+ } else {
+ // Both are non-empty.
+ Chunk* fl_tail = fl->tail();
+ Chunk* this_head = head();
+ assert(fl_tail->next() == NULL, "Well-formedness of fl");
+ fl_tail->link_next(this_head);
+ this_head->link_prev(fl_tail);
+ set_head(fl->head());
+ set_count(count() + fl->count());
+ }
+ fl->set_head(NULL);
+ fl->set_tail(NULL);
+ fl->set_count(0);
+ }
+}
+
+// verify_chunk_in_free_list() is used to verify that an item is in this free list.
+// It is used as a debugging aid.
+template <class Chunk>
+bool FreeList<Chunk>::verify_chunk_in_free_list(Chunk* fc) const {
+ // This is an internal consistency check, not part of the check that the
+ // chunk is in the free lists.
+ guarantee(fc->size() == size(), "Wrong list is being searched");
+ Chunk* curFC = head();
+ while (curFC) {
+ // This is an internal consistency check.
+ guarantee(size() == curFC->size(), "Chunk is in wrong list.");
+ if (fc == curFC) {
+ return true;
+ }
+ curFC = curFC->next();
+ }
+ return false;
+}
+
+#ifndef PRODUCT
+template <class Chunk>
+void FreeList<Chunk>::verify_stats() const {
+ // The +1 of the LH comparand is to allow some "looseness" in
+ // checking: we usually call this interface when adding a block
+ // and we'll subsequently update the stats; we cannot update the
+ // stats beforehand because in the case of the large-block BT
+ // dictionary for example, this might be the first block and
+ // in that case there would be no place that we could record
+ // the stats (which are kept in the block itself).
+ assert((_allocation_stats.prev_sweep() + _allocation_stats.split_births()
+ + _allocation_stats.coal_births() + 1) // Total Production Stock + 1
+ >= (_allocation_stats.split_deaths() + _allocation_stats.coal_deaths()
+ + (ssize_t)count()), // Total Current Stock + depletion
+ err_msg("FreeList " PTR_FORMAT " of size " SIZE_FORMAT
+ " violates Conservation Principle: "
+ "prev_sweep(" SIZE_FORMAT ")"
+ " + split_births(" SIZE_FORMAT ")"
+ " + coal_births(" SIZE_FORMAT ") + 1 >= "
+ " split_deaths(" SIZE_FORMAT ")"
+ " coal_deaths(" SIZE_FORMAT ")"
+ " + count(" SSIZE_FORMAT ")",
+ this, _size, _allocation_stats.prev_sweep(), _allocation_stats.split_births(),
+ _allocation_stats.split_births(), _allocation_stats.split_deaths(),
+ _allocation_stats.coal_deaths(), count()));
+}
+
+template <class Chunk>
+void FreeList<Chunk>::assert_proper_lock_protection_work() const {
+ assert(_protecting_lock != NULL, "Don't call this directly");
+ assert(ParallelGCThreads > 0, "Don't call this directly");
+ Thread* thr = Thread::current();
+ if (thr->is_VM_thread() || thr->is_ConcurrentGC_thread()) {
+ // assert that we are holding the freelist lock
+ } else if (thr->is_GC_task_thread()) {
+ assert(_protecting_lock->owned_by_self(), "FreeList RACE DETECTED");
+ } else if (thr->is_Java_thread()) {
+ assert(!SafepointSynchronize::is_at_safepoint(), "Should not be executing");
+ } else {
+ ShouldNotReachHere(); // unaccounted thread type?
+ }
+}
+#endif
+
+// Print the "label line" for free list stats.
+template <class Chunk>
+void FreeList<Chunk>::print_labels_on(outputStream* st, const char* c) {
+ st->print("%16s\t", c);
+ st->print("%14s\t" "%14s\t" "%14s\t" "%14s\t" "%14s\t"
+ "%14s\t" "%14s\t" "%14s\t" "%14s\t" "%14s\t" "\n",
+ "bfrsurp", "surplus", "desired", "prvSwep", "bfrSwep",
+ "count", "cBirths", "cDeaths", "sBirths", "sDeaths");
+}
+
+// Print the AllocationStats for the given free list. If the second argument
+// to the call is a non-null string, it is printed in the first column;
+// otherwise, if the argument is null (the default), then the size of the
+// (free list) block is printed in the first column.
+template <class Chunk>
+void FreeList<Chunk>::print_on(outputStream* st, const char* c) const {
+ if (c != NULL) {
+ st->print("%16s", c);
+ } else {
+ st->print(SIZE_FORMAT_W(16), size());
+ }
+ st->print("\t"
+ SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t"
+ SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\t" SSIZE_FORMAT_W(14) "\n",
+ bfr_surp(), surplus(), desired(), prev_sweep(), before_sweep(),
+ count(), coal_births(), coal_deaths(), split_births(), split_deaths());
+}
+
+#ifndef SERIALGC
+// Needs to be after the definitions have been seen.
+template class FreeList<FreeChunk>;
+#endif // SERIALGC
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/freeList.hpp Fri May 04 10:46:32 2012 -0700
@@ -0,0 +1,329 @@
+/*
+ * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_MEMORY_FREELIST_HPP
+#define SHARE_VM_MEMORY_FREELIST_HPP
+
+#include "gc_implementation/shared/allocationStats.hpp"
+
+class CompactibleFreeListSpace;
+
+// A class for maintaining a free list of Chunk's. The FreeList
+// maintains a the structure of the list (head, tail, etc.) plus
+// statistics for allocations from the list. The links between items
+// are not part of FreeList. The statistics are
+// used to make decisions about coalescing Chunk's when they
+// are swept during collection.
+//
+// See the corresponding .cpp file for a description of the specifics
+// for that implementation.
+
+class Mutex;
+template <class Chunk> class TreeList;
+template <class Chunk> class PrintTreeCensusClosure;
+
+template <class Chunk>
+class FreeList VALUE_OBJ_CLASS_SPEC {
+ friend class CompactibleFreeListSpace;
+ friend class VMStructs;
+ friend class PrintTreeCensusClosure<Chunk>;
+
+ private:
+ Chunk* _head; // Head of list of free chunks
+ Chunk* _tail; // Tail of list of free chunks
+ size_t _size; // Size in Heap words of each chunk
+ ssize_t _count; // Number of entries in list
+ size_t _hint; // next larger size list with a positive surplus
+
+ AllocationStats _allocation_stats; // allocation-related statistics
+
+#ifdef ASSERT
+ Mutex* _protecting_lock;
+#endif
+
+ // Asserts false if the protecting lock (if any) is not held.
+ void assert_proper_lock_protection_work() const PRODUCT_RETURN;
+ void assert_proper_lock_protection() const {
+#ifdef ASSERT
+ if (_protecting_lock != NULL)
+ assert_proper_lock_protection_work();
+#endif
+ }
+
+ // Initialize the allocation statistics.
+ protected:
+ void init_statistics(bool split_birth = false);
+ void set_count(ssize_t v) { _count = v;}
+ void increment_count() {
+ _count++;
+ }
+
+ void decrement_count() {
+ _count--;
+ assert(_count >= 0, "Count should not be negative");
+ }
+
+ public:
+ // Constructor
+ // Construct a list without any entries.
+ FreeList();
+ // Construct a list with "fc" as the first (and lone) entry in the list.
+ FreeList(Chunk* fc);
+
+ // Reset the head, tail, hint, and count of a free list.
+ void reset(size_t hint);
+
+ // Declare the current free list to be protected by the given lock.
+#ifdef ASSERT
+ void set_protecting_lock(Mutex* protecting_lock) {
+ _protecting_lock = protecting_lock;
+ }
+#endif
+
+ // Accessors.
+ Chunk* head() const {
+ assert_proper_lock_protection();
+ return _head;
+ }
+ void set_head(Chunk* v) {
+ assert_proper_lock_protection();
+ _head = v;
+ assert(!_head || _head->size() == _size, "bad chunk size");
+ }
+ // Set the head of the list and set the prev field of non-null
+ // values to NULL.
+ void link_head(Chunk* v) {
+ assert_proper_lock_protection();
+ set_head(v);
+ // If this method is not used (just set the head instead),
+ // this check can be avoided.
+ if (v != NULL) {
+ v->link_prev(NULL);
+ }
+ }
+
+ Chunk* tail() const {
+ assert_proper_lock_protection();
+ return _tail;
+ }
+ void set_tail(Chunk* v) {
+ assert_proper_lock_protection();
+ _tail = v;
+ assert(!_tail || _tail->size() == _size, "bad chunk size");
+ }
+ // Set the tail of the list and set the next field of non-null
+ // values to NULL.
+ void link_tail(Chunk* v) {
+ assert_proper_lock_protection();
+ set_tail(v);
+ if (v != NULL) {
+ v->clear_next();
+ }
+ }
+
+ // No locking checks in read-accessors: lock-free reads (only) are benign.
+ // Readers are expected to have the lock if they are doing work that
+ // requires atomicity guarantees in sections of code.
+ size_t size() const {
+ return _size;
+ }
+ void set_size(size_t v) {
+ assert_proper_lock_protection();
+ _size = v;
+ }
+ ssize_t count() const {
+ return _count;
+ }
+ size_t hint() const {
+ return _hint;
+ }
+ void set_hint(size_t v) {
+ assert_proper_lock_protection();
+ assert(v == 0 || _size < v, "Bad hint"); _hint = v;
+ }
+
+ // Accessors for statistics
+ AllocationStats* allocation_stats() {
+ assert_proper_lock_protection();
+ return &_allocation_stats;
+ }
+
+ ssize_t desired() const {
+ return _allocation_stats.desired();
+ }
+ void set_desired(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_desired(v);
+ }
+ void compute_desired(float inter_sweep_current,
+ float inter_sweep_estimate,
+ float intra_sweep_estimate) {
+ assert_proper_lock_protection();
+ _allocation_stats.compute_desired(_count,
+ inter_sweep_current,
+ inter_sweep_estimate,
+ intra_sweep_estimate);
+ }
+ ssize_t coal_desired() const {
+ return _allocation_stats.coal_desired();
+ }
+ void set_coal_desired(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_coal_desired(v);
+ }
+
+ ssize_t surplus() const {
+ return _allocation_stats.surplus();
+ }
+ void set_surplus(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_surplus(v);
+ }
+ void increment_surplus() {
+ assert_proper_lock_protection();
+ _allocation_stats.increment_surplus();
+ }
+ void decrement_surplus() {
+ assert_proper_lock_protection();
+ _allocation_stats.decrement_surplus();
+ }
+
+ ssize_t bfr_surp() const {
+ return _allocation_stats.bfr_surp();
+ }
+ void set_bfr_surp(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_bfr_surp(v);
+ }
+ ssize_t prev_sweep() const {
+ return _allocation_stats.prev_sweep();
+ }
+ void set_prev_sweep(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_prev_sweep(v);
+ }
+ ssize_t before_sweep() const {
+ return _allocation_stats.before_sweep();
+ }
+ void set_before_sweep(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_before_sweep(v);
+ }
+
+ ssize_t coal_births() const {
+ return _allocation_stats.coal_births();
+ }
+ void set_coal_births(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_coal_births(v);
+ }
+ void increment_coal_births() {
+ assert_proper_lock_protection();
+ _allocation_stats.increment_coal_births();
+ }
+
+ ssize_t coal_deaths() const {
+ return _allocation_stats.coal_deaths();
+ }
+ void set_coal_deaths(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_coal_deaths(v);
+ }
+ void increment_coal_deaths() {
+ assert_proper_lock_protection();
+ _allocation_stats.increment_coal_deaths();
+ }
+
+ ssize_t split_births() const {
+ return _allocation_stats.split_births();
+ }
+ void set_split_births(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_split_births(v);
+ }
+ void increment_split_births() {
+ assert_proper_lock_protection();
+ _allocation_stats.increment_split_births();
+ }
+
+ ssize_t split_deaths() const {
+ return _allocation_stats.split_deaths();
+ }
+ void set_split_deaths(ssize_t v) {
+ assert_proper_lock_protection();
+ _allocation_stats.set_split_deaths(v);
+ }
+ void increment_split_deaths() {
+ assert_proper_lock_protection();
+ _allocation_stats.increment_split_deaths();
+ }
+
+ NOT_PRODUCT(
+ // For debugging. The "_returned_bytes" in all the lists are summed
+ // and compared with the total number of bytes swept during a
+ // collection.
+ size_t returned_bytes() const { return _allocation_stats.returned_bytes(); }
+ void set_returned_bytes(size_t v) { _allocation_stats.set_returned_bytes(v); }
+ void increment_returned_bytes_by(size_t v) {
+ _allocation_stats.set_returned_bytes(_allocation_stats.returned_bytes() + v);
+ }
+ )
+
+ // Unlink head of list and return it. Returns NULL if
+ // the list is empty.
+ Chunk* get_chunk_at_head();
+
+ // Remove the first "n" or "count", whichever is smaller, chunks from the
+ // list, setting "fl", which is required to be empty, to point to them.
+ void getFirstNChunksFromList(size_t n, FreeList<Chunk>* fl);
+
+ // Unlink this chunk from it's free list
+ void remove_chunk(Chunk* fc);
+
+ // Add this chunk to this free list.
+ void return_chunk_at_head(Chunk* fc);
+ void return_chunk_at_tail(Chunk* fc);
+
+ // Similar to returnChunk* but also records some diagnostic
+ // information.
+ void return_chunk_at_head(Chunk* fc, bool record_return);
+ void return_chunk_at_tail(Chunk* fc, bool record_return);
+
+ // Prepend "fl" (whose size is required to be the same as that of "this")
+ // to the front of "this" list.
+ void prepend(FreeList<Chunk>* fl);
+
+ // Verify that the chunk is in the list.
+ // found. Return NULL if "fc" is not found.
+ bool verify_chunk_in_free_list(Chunk* fc) const;
+
+ // Stats verification
+ void verify_stats() const PRODUCT_RETURN;
+
+ // Printing support
+ static void print_labels_on(outputStream* st, const char* c);
+ void print_on(outputStream* st, const char* c = NULL) const;
+};
+
+#endif // SHARE_VM_MEMORY_FREELIST_HPP
--- a/hotspot/src/share/vm/memory/generationSpec.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/memory/generationSpec.cpp Fri May 04 10:46:32 2012 -0700
@@ -68,7 +68,7 @@
ConcurrentMarkSweepGeneration* g = NULL;
g = new ConcurrentMarkSweepGeneration(rs,
init_size(), level, ctrs, UseCMSAdaptiveFreeLists,
- (FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice);
+ (FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice);
g->initialize_performance_counters();
@@ -88,7 +88,7 @@
ASConcurrentMarkSweepGeneration* g = NULL;
g = new ASConcurrentMarkSweepGeneration(rs,
init_size(), level, ctrs, UseCMSAdaptiveFreeLists,
- (FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice);
+ (FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice);
g->initialize_performance_counters();
@@ -175,7 +175,7 @@
}
// XXXPERM
return new CMSPermGen(perm_rs, init_size, ctrs,
- (FreeBlockDictionary::DictionaryChoice)CMSDictionaryChoice);
+ (FreeBlockDictionary<FreeChunk>::DictionaryChoice)CMSDictionaryChoice);
}
#endif // SERIALGC
default:
--- a/hotspot/src/share/vm/precompiled/precompiled.hpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/precompiled/precompiled.hpp Fri May 04 10:46:32 2012 -0700
@@ -293,13 +293,10 @@
# include "c1/c1_globals.hpp"
#endif // COMPILER1
#ifndef SERIALGC
-# include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
# include "gc_implementation/concurrentMarkSweep/cmsOopClosures.hpp"
# include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
# include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
-# include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
# include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
-# include "gc_implementation/concurrentMarkSweep/freeList.hpp"
# include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
# include "gc_implementation/g1/dirtyCardQueue.hpp"
# include "gc_implementation/g1/g1BlockOffsetTable.hpp"
--- a/hotspot/src/share/vm/runtime/vmStructs.cpp Wed May 02 15:47:06 2012 -0400
+++ b/hotspot/src/share/vm/runtime/vmStructs.cpp Fri May 04 10:46:32 2012 -0700
@@ -44,7 +44,6 @@
#include "code/vmreg.hpp"
#include "compiler/oopMap.hpp"
#include "compiler/compileBroker.hpp"
-#include "gc_implementation/concurrentMarkSweep/freeBlockDictionary.hpp"
#include "gc_implementation/shared/immutableSpace.hpp"
#include "gc_implementation/shared/markSweep.hpp"
#include "gc_implementation/shared/mutableSpace.hpp"
@@ -55,6 +54,7 @@
#include "memory/cardTableRS.hpp"
#include "memory/compactPermGen.hpp"
#include "memory/defNewGeneration.hpp"
+#include "memory/freeBlockDictionary.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/generation.hpp"
#include "memory/generationSpec.hpp"