8058505: BigIntegerTest does not exercise Burnikel-Ziegler division
Summary: Modify divideLarge() method such that the w/z division exercises the B-Z branch.
Reviewed-by: darcy
Contributed-by: Robert Gibson <robbiexgibson@yahoo.com>
--- a/jdk/test/java/math/BigInteger/BigIntegerTest.java Tue Sep 16 18:05:03 2014 +0400
+++ b/jdk/test/java/math/BigInteger/BigIntegerTest.java Mon Sep 15 13:25:08 2014 -0700
@@ -71,6 +71,7 @@
static final int BITS_TOOM_COOK_SQUARE = 6912;
static final int BITS_SCHOENHAGE_BASE = 640;
static final int BITS_BURNIKEL_ZIEGLER = 2560;
+ static final int BITS_BURNIKEL_ZIEGLER_OFFSET = 1280;
static final int ORDER_SMALL = 60;
static final int ORDER_MEDIUM = 100;
@@ -288,19 +289,19 @@
* where {@code abs(u) > abs(v)} and {@code a > b && b > 0}, then if
* {@code w/z = q1*z + r1} and {@code u/v = q2*v + r2}, then
* {@code q1 = q2*pow(2,a-b)} and {@code r1 = r2*pow(2,b)}. The test
- * ensures that {@code v} is just under the B-Z threshold and that {@code w}
- * and {@code z} are both over the threshold. This implies that {@code u/v}
- * uses the standard division algorithm and {@code w/z} uses the B-Z
- * algorithm. The results of the two algorithms are then compared using the
- * observation described in the foregoing and if they are not equal a
- * failure is logged.
+ * ensures that {@code v} is just under the B-Z threshold, that {@code z} is
+ * over the threshold and {@code w} is much larger than {@code z}. This
+ * implies that {@code u/v} uses the standard division algorithm and
+ * {@code w/z} uses the B-Z algorithm. The results of the two algorithms
+ * are then compared using the observation described in the foregoing and
+ * if they are not equal a failure is logged.
*/
public static void divideLarge() {
int failCount = 0;
- BigInteger base = BigInteger.ONE.shiftLeft(BITS_BURNIKEL_ZIEGLER - 33);
+ BigInteger base = BigInteger.ONE.shiftLeft(BITS_BURNIKEL_ZIEGLER + BITS_BURNIKEL_ZIEGLER_OFFSET - 33);
for (int i=0; i<SIZE; i++) {
- BigInteger addend = new BigInteger(BITS_BURNIKEL_ZIEGLER - 34, rnd);
+ BigInteger addend = new BigInteger(BITS_BURNIKEL_ZIEGLER + BITS_BURNIKEL_ZIEGLER_OFFSET - 34, rnd);
BigInteger v = base.add(addend);
BigInteger u = v.multiply(BigInteger.valueOf(2 + rnd.nextInt(Short.MAX_VALUE - 1)));
@@ -312,14 +313,14 @@
v = v.negate();
}
- int a = 17 + rnd.nextInt(16);
+ int a = BITS_BURNIKEL_ZIEGLER_OFFSET + rnd.nextInt(16);
int b = 1 + rnd.nextInt(16);
- BigInteger w = u.multiply(BigInteger.valueOf(1L << a));
- BigInteger z = v.multiply(BigInteger.valueOf(1L << b));
+ BigInteger w = u.multiply(BigInteger.ONE.shiftLeft(a));
+ BigInteger z = v.multiply(BigInteger.ONE.shiftLeft(b));
BigInteger[] divideResult = u.divideAndRemainder(v);
- divideResult[0] = divideResult[0].multiply(BigInteger.valueOf(1L << (a - b)));
- divideResult[1] = divideResult[1].multiply(BigInteger.valueOf(1L << b));
+ divideResult[0] = divideResult[0].multiply(BigInteger.ONE.shiftLeft(a - b));
+ divideResult[1] = divideResult[1].multiply(BigInteger.ONE.shiftLeft(b));
BigInteger[] bzResult = w.divideAndRemainder(z);
if (divideResult[0].compareTo(bzResult[0]) != 0 ||