Merge
authorduke
Wed, 05 Jul 2017 20:51:00 +0200
changeset 32753 79fb83da8f88
parent 32752 43c458023730 (diff)
parent 32721 47d1c2c75fb6 (current diff)
child 32777 04c2d57c8600
Merge
--- a/hotspot/.hgtags	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/.hgtags	Wed Jul 05 20:51:00 2017 +0200
@@ -485,3 +485,4 @@
 8e8377739c06b99b9011c003c77e0bef84c91e09 jdk9-b80
 4142c190cd5ca4fb70ec367b4f97ef936272d8ef jdk9-b81
 1c453a12be3036d482abef1dd470f8aff536b6b9 jdk9-b82
+3ed0df2c553a80e0e26b91a6ce08806ea17a066a jdk9-b83
--- a/hotspot/src/cpu/aarch64/vm/aarch64.ad	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/aarch64/vm/aarch64.ad	Wed Jul 05 20:51:00 2017 +0200
@@ -3803,81 +3803,37 @@
 
   enc_class aarch64_enc_cmpxchg(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{
     MacroAssembler _masm(&cbuf);
-    Register old_reg = as_Register($oldval$$reg);
-    Register new_reg = as_Register($newval$$reg);
-    Register base = as_Register($mem$$base);
-    Register addr_reg;
-    int index = $mem$$index;
-    int scale = $mem$$scale;
-    int disp = $mem$$disp;
-    if (index == -1) {
-       if (disp != 0) {
-        __ lea(rscratch2, Address(base, disp));
-        addr_reg = rscratch2;
-      } else {
-        // TODO
-        // should we ever get anything other than this case?
-        addr_reg = base;
-      }
-    } else {
-      Register index_reg = as_Register(index);
-      if (disp == 0) {
-        __ lea(rscratch2, Address(base, index_reg, Address::lsl(scale)));
-        addr_reg = rscratch2;
-      } else {
-        __ lea(rscratch2, Address(base, disp));
-        __ lea(rscratch2, Address(rscratch2, index_reg, Address::lsl(scale)));
-        addr_reg = rscratch2;
-      }
-    }
-    Label retry_load, done;
-    __ bind(retry_load);
-    __ ldxr(rscratch1, addr_reg);
-    __ cmp(rscratch1, old_reg);
-    __ br(Assembler::NE, done);
-    __ stlxr(rscratch1, new_reg, addr_reg);
-    __ cbnzw(rscratch1, retry_load);
-    __ bind(done);
+    guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
+    __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
+               &Assembler::ldxr, &MacroAssembler::cmp, &Assembler::stlxr);
   %}
 
   enc_class aarch64_enc_cmpxchgw(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
     MacroAssembler _masm(&cbuf);
-    Register old_reg = as_Register($oldval$$reg);
-    Register new_reg = as_Register($newval$$reg);
-    Register base = as_Register($mem$$base);
-    Register addr_reg;
-    int index = $mem$$index;
-    int scale = $mem$$scale;
-    int disp = $mem$$disp;
-    if (index == -1) {
-       if (disp != 0) {
-        __ lea(rscratch2, Address(base, disp));
-        addr_reg = rscratch2;
-      } else {
-        // TODO
-        // should we ever get anything other than this case?
-        addr_reg = base;
-      }
-    } else {
-      Register index_reg = as_Register(index);
-      if (disp == 0) {
-        __ lea(rscratch2, Address(base, index_reg, Address::lsl(scale)));
-        addr_reg = rscratch2;
-      } else {
-        __ lea(rscratch2, Address(base, disp));
-        __ lea(rscratch2, Address(rscratch2, index_reg, Address::lsl(scale)));
-        addr_reg = rscratch2;
-      }
-    }
-    Label retry_load, done;
-    __ bind(retry_load);
-    __ ldxrw(rscratch1, addr_reg);
-    __ cmpw(rscratch1, old_reg);
-    __ br(Assembler::NE, done);
-    __ stlxrw(rscratch1, new_reg, addr_reg);
-    __ cbnzw(rscratch1, retry_load);
-    __ bind(done);
-  %}
+    guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
+    __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
+               &Assembler::ldxrw, &MacroAssembler::cmpw, &Assembler::stlxrw);
+  %}
+
+
+  // The only difference between aarch64_enc_cmpxchg and
+  // aarch64_enc_cmpxchg_acq is that we use load-acquire in the
+  // CompareAndSwap sequence to serve as a barrier on acquiring a
+  // lock.
+  enc_class aarch64_enc_cmpxchg_acq(memory mem, iRegLNoSp oldval, iRegLNoSp newval) %{
+    MacroAssembler _masm(&cbuf);
+    guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
+    __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
+               &Assembler::ldaxr, &MacroAssembler::cmp, &Assembler::stlxr);
+  %}
+
+  enc_class aarch64_enc_cmpxchgw_acq(memory mem, iRegINoSp oldval, iRegINoSp newval) %{
+    MacroAssembler _masm(&cbuf);
+    guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
+    __ cmpxchg($mem$$base$$Register, $oldval$$Register, $newval$$Register,
+               &Assembler::ldaxrw, &MacroAssembler::cmpw, &Assembler::stlxrw);
+  %}
+
 
   // auxiliary used for CompareAndSwapX to set result register
   enc_class aarch64_enc_cset_eq(iRegINoSp res) %{
@@ -4398,13 +4354,10 @@
 
     // Compare object markOop with mark and if equal exchange scratch1
     // with object markOop.
-    // Note that this is simply a CAS: it does not generate any
-    // barriers.  These are separately generated by
-    // membar_acquire_lock().
     {
       Label retry_load;
       __ bind(retry_load);
-      __ ldxr(tmp, oop);
+      __ ldaxr(tmp, oop);
       __ cmp(tmp, disp_hdr);
       __ br(Assembler::NE, cas_failed);
       // use stlxr to ensure update is immediately visible
@@ -4454,7 +4407,7 @@
       {
         Label retry_load, fail;
         __ bind(retry_load);
-        __ ldxr(rscratch1, tmp);
+        __ ldaxr(rscratch1, tmp);
         __ cmp(disp_hdr, rscratch1);
         __ br(Assembler::NE, fail);
         // use stlxr to ensure update is immediately visible
@@ -8017,10 +7970,10 @@
   match(MemBarAcquireLock);
   ins_cost(VOLATILE_REF_COST);
 
-  format %{ "membar_acquire_lock" %}
-
-  ins_encode %{
-    __ membar(Assembler::LoadLoad|Assembler::LoadStore);
+  format %{ "membar_acquire_lock (elided)" %}
+
+  ins_encode %{
+    __ block_comment("membar_acquire_lock (elided)");
   %}
 
   ins_pipe(pipe_serial);
@@ -8080,10 +8033,10 @@
   match(MemBarReleaseLock);
   ins_cost(VOLATILE_REF_COST);
 
-  format %{ "membar_release_lock" %}
-
-  ins_encode %{
-    __ membar(Assembler::LoadStore|Assembler::StoreStore);
+  format %{ "membar_release_lock (elided)" %}
+
+  ins_encode %{
+    __ block_comment("membar_release_lock (elided)");
   %}
 
   ins_pipe(pipe_serial);
@@ -8369,7 +8322,11 @@
   ins_pipe(pipe_serial);
 %}
 
-// this has to be implemented as a CAS
+
+// storeLConditional is used by PhaseMacroExpand::expand_lock_node
+// when attempting to rebias a lock towards the current thread.  We
+// must use the acquire form of cmpxchg in order to guarantee acquire
+// semantics in this case.
 instruct storeLConditional(indirect mem, iRegLNoSp oldval, iRegLNoSp newval, rFlagsReg cr)
 %{
   match(Set cr (StoreLConditional mem (Binary oldval newval)));
@@ -8381,12 +8338,14 @@
     "cmpw rscratch1, zr\t# EQ on successful write"
   %}
 
-  ins_encode(aarch64_enc_cmpxchg(mem, oldval, newval));
+  ins_encode(aarch64_enc_cmpxchg_acq(mem, oldval, newval));
 
   ins_pipe(pipe_slow);
 %}
 
-// this has to be implemented as a CAS
+// storeIConditional also has acquire semantics, for no better reason
+// than matching storeLConditional.  At the time of writing this
+// comment storeIConditional was not used anywhere by AArch64.
 instruct storeIConditional(indirect mem, iRegINoSp oldval, iRegINoSp newval, rFlagsReg cr)
 %{
   match(Set cr (StoreIConditional mem (Binary oldval newval)));
@@ -8398,7 +8357,7 @@
     "cmpw rscratch1, zr\t# EQ on successful write"
   %}
 
-  ins_encode(aarch64_enc_cmpxchgw(mem, oldval, newval));
+  ins_encode(aarch64_enc_cmpxchgw_acq(mem, oldval, newval));
 
   ins_pipe(pipe_slow);
 %}
--- a/hotspot/src/cpu/aarch64/vm/macroAssembler_aarch64.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/aarch64/vm/macroAssembler_aarch64.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -917,6 +917,8 @@
 
   void cmpptr(Register src1, Address src2);
 
+  // Various forms of CAS
+
   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
                   Label &suceed, Label *fail);
 
@@ -938,6 +940,23 @@
     str(rscratch2, adr);
   }
 
+  // A generic CAS; success or failure is in the EQ flag.
+  template <typename T1, typename T2>
+  void cmpxchg(Register addr, Register expected, Register new_val,
+               T1 load_insn,
+               void (MacroAssembler::*cmp_insn)(Register, Register),
+               T2 store_insn,
+               Register tmp = rscratch1) {
+    Label retry_load, done;
+    bind(retry_load);
+    (this->*load_insn)(tmp, addr);
+    (this->*cmp_insn)(tmp, expected);
+    br(Assembler::NE, done);
+    (this->*store_insn)(tmp, new_val, addr);
+    cbnzw(tmp, retry_load);
+    bind(done);
+  }
+
   // Calls
 
   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
--- a/hotspot/src/cpu/x86/vm/assembler_x86.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/assembler_x86.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -394,25 +394,25 @@
   int mod_idx = 0;
   // We will test if the displacement fits the compressed format and if so
   // apply the compression to the displacment iff the result is8bit.
-  if (VM_Version::supports_evex() && is_evex_instruction) {
-    switch (tuple_type) {
+  if (VM_Version::supports_evex() && _is_evex_instruction) {
+    switch (_tuple_type) {
     case EVEX_FV:
-      if ((evex_encoding & VEX_W) == VEX_W) {
-        mod_idx += 2 + ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
+      if ((_evex_encoding & VEX_W) == VEX_W) {
+        mod_idx += 2 + ((_evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
       } else {
-        mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
+        mod_idx = ((_evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
       }
       break;
 
     case EVEX_HV:
-      mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
+      mod_idx = ((_evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
       break;
 
     case EVEX_FVM:
       break;
 
     case EVEX_T1S:
-      switch (input_size_in_bits) {
+      switch (_input_size_in_bits) {
       case EVEX_8bit:
         break;
 
@@ -433,7 +433,7 @@
     case EVEX_T1F:
     case EVEX_T2:
     case EVEX_T4:
-      mod_idx = (input_size_in_bits == EVEX_64bit) ? 1 : 0;
+      mod_idx = (_input_size_in_bits == EVEX_64bit) ? 1 : 0;
       break;
 
     case EVEX_T8:
@@ -459,8 +459,8 @@
       break;
     }
 
-    if (avx_vector_len >= AVX_128bit && avx_vector_len <= AVX_512bit) {
-      int disp_factor = tuple_table[tuple_type + mod_idx][avx_vector_len];
+    if (_avx_vector_len >= AVX_128bit && _avx_vector_len <= AVX_512bit) {
+      int disp_factor = tuple_table[_tuple_type + mod_idx][_avx_vector_len];
       if ((disp % disp_factor) == 0) {
         int new_disp = disp / disp_factor;
         if (is8bit(new_disp)) {
@@ -591,7 +591,7 @@
       emit_data(disp, rspec, disp32_operand);
     }
   }
-  is_evex_instruction = false;
+  _is_evex_instruction = false;
 }
 
 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
@@ -1229,8 +1229,8 @@
 void Assembler::addsd(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
   } else {
     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
@@ -1245,8 +1245,8 @@
 void Assembler::addss(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
 }
@@ -1254,16 +1254,16 @@
 void Assembler::aesdec(XMMRegister dst, Address src) {
   assert(VM_Version::supports_aes(), "");
   InstructionMark im(this);
-  simd_prefix(dst, dst, src, VEX_SIMD_66, false,
-              VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+              VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8((unsigned char)0xDE);
   emit_operand(dst, src);
 }
 
 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
   assert(VM_Version::supports_aes(), "");
-  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
-                                      VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_38,  /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8((unsigned char)0xDE);
   emit_int8(0xC0 | encode);
 }
@@ -1271,16 +1271,16 @@
 void Assembler::aesdeclast(XMMRegister dst, Address src) {
   assert(VM_Version::supports_aes(), "");
   InstructionMark im(this);
-  simd_prefix(dst, dst, src, VEX_SIMD_66, false,
-              VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+              VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit,  /* legacy_mode */ true);
   emit_int8((unsigned char)0xDF);
   emit_operand(dst, src);
 }
 
 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
   assert(VM_Version::supports_aes(), "");
-  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
-                                      VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_38,  /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8((unsigned char)0xDF);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -1288,16 +1288,16 @@
 void Assembler::aesenc(XMMRegister dst, Address src) {
   assert(VM_Version::supports_aes(), "");
   InstructionMark im(this);
-  simd_prefix(dst, dst, src, VEX_SIMD_66, false,
-              VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+              VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8((unsigned char)0xDC);
   emit_operand(dst, src);
 }
 
 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
   assert(VM_Version::supports_aes(), "");
-  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
-                                      VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8((unsigned char)0xDC);
   emit_int8(0xC0 | encode);
 }
@@ -1305,21 +1305,20 @@
 void Assembler::aesenclast(XMMRegister dst, Address src) {
   assert(VM_Version::supports_aes(), "");
   InstructionMark im(this);
-  simd_prefix(dst, dst, src, VEX_SIMD_66, false,
-              VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+              VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit,  /* legacy_mode */ true);
   emit_int8((unsigned char)0xDD);
   emit_operand(dst, src);
 }
 
 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
   assert(VM_Version::supports_aes(), "");
-  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
-                                      VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8((unsigned char)0xDD);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
-
 void Assembler::andl(Address dst, int32_t imm32) {
   InstructionMark im(this);
   prefix(dst);
@@ -1347,7 +1346,7 @@
 
 void Assembler::andnl(Register dst, Register src1, Register src2) {
   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
-  int encode = vex_prefix_0F38_and_encode_legacy(dst, src1, src2, false);
+  int encode = vex_prefix_0F38_and_encode_legacy(dst, src1, src2);
   emit_int8((unsigned char)0xF2);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -1355,7 +1354,7 @@
 void Assembler::andnl(Register dst, Register src1, Address src2) {
   InstructionMark im(this);
   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
-  vex_prefix_0F38_legacy(dst, src1, src2, false);
+  vex_prefix_0F38_legacy(dst, src1, src2);
   emit_int8((unsigned char)0xF2);
   emit_operand(dst, src2);
 }
@@ -1382,7 +1381,7 @@
 
 void Assembler::blsil(Register dst, Register src) {
   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
-  int encode = vex_prefix_0F38_and_encode_legacy(rbx, dst, src, false);
+  int encode = vex_prefix_0F38_and_encode_legacy(rbx, dst, src);
   emit_int8((unsigned char)0xF3);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -1390,14 +1389,14 @@
 void Assembler::blsil(Register dst, Address src) {
   InstructionMark im(this);
   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
-  vex_prefix_0F38_legacy(rbx, dst, src, false);
+  vex_prefix_0F38_legacy(rbx, dst, src);
   emit_int8((unsigned char)0xF3);
   emit_operand(rbx, src);
 }
 
 void Assembler::blsmskl(Register dst, Register src) {
   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
-  int encode = vex_prefix_0F38_and_encode_legacy(rdx, dst, src, false);
+  int encode = vex_prefix_0F38_and_encode_legacy(rdx, dst, src);
   emit_int8((unsigned char)0xF3);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -1405,14 +1404,14 @@
 void Assembler::blsmskl(Register dst, Address src) {
   InstructionMark im(this);
   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
-  vex_prefix_0F38(rdx, dst, src, false);
+  vex_prefix_0F38_legacy(rdx, dst, src);
   emit_int8((unsigned char)0xF3);
   emit_operand(rdx, src);
 }
 
 void Assembler::blsrl(Register dst, Register src) {
   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
-  int encode = vex_prefix_0F38_and_encode_legacy(rcx, dst, src, false);
+  int encode = vex_prefix_0F38_and_encode_legacy(rcx, dst, src);
   emit_int8((unsigned char)0xF3);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -1420,7 +1419,7 @@
 void Assembler::blsrl(Register dst, Address src) {
   InstructionMark im(this);
   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
-  vex_prefix_0F38_legacy(rcx, dst, src, false);
+  vex_prefix_0F38_legacy(rcx, dst, src);
   emit_int8((unsigned char)0xF3);
   emit_operand(rcx, src);
 }
@@ -1569,9 +1568,9 @@
   // 0x66 is there. Strangly ucomisd comes out correct
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
-    emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
+    emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
   } else {
     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
   }
@@ -1580,7 +1579,7 @@
 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
+    emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
   } else {
     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
   }
@@ -1588,16 +1587,16 @@
 
 void Assembler::comiss(XMMRegister dst, Address src) {
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
+  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
 }
 
 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
+  emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
 }
 
 void Assembler::cpuid() {
@@ -1607,12 +1606,12 @@
 
 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
+  emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3, /* no_mask_reg */ false, /* legacy_mode */ true);
 }
 
 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
+  emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ true);
 }
 
 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
@@ -1627,8 +1626,8 @@
 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1F;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_T1F;
+    _input_size_in_bits = EVEX_64bit;
     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
   } else {
     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
@@ -1637,12 +1636,7 @@
 
 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  int encode = 0;
-  if (VM_Version::supports_evex()) {
-    encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
-  } else {
-    encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, false);
-  }
+  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VM_Version::supports_evex());
   emit_int8(0x2A);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -1650,9 +1644,9 @@
 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
-    emit_simd_arith_q(0x2A, dst, src, VEX_SIMD_F2, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
+    emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
   } else {
     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
   }
@@ -1660,23 +1654,23 @@
 
 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, true);
+  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
   emit_int8(0x2A);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, true);
+  emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
 }
 
 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, true);
+  int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
   emit_int8(0x2A);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -1688,8 +1682,8 @@
 
 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
@@ -1698,14 +1692,14 @@
 
 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
+  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, /* no_mask_reg */ true);
   emit_int8(0x2C);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
+  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, /* no_mask_reg */ true);
   emit_int8(0x2C);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -1721,8 +1715,8 @@
 void Assembler::divsd(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
   } else {
     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
@@ -1740,8 +1734,8 @@
 
 void Assembler::divss(XMMRegister dst, Address src) {
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
@@ -1995,8 +1989,16 @@
 
 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  if (VM_Version::supports_evex()) {
-    emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66, true);
+  if (VM_Version::supports_avx512novl()) {
+    int vector_len = AVX_512bit;
+    int dst_enc = dst->encoding();
+    int src_enc = src->encoding();
+    int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F,
+                                       /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
+    emit_int8(0x28);
+    emit_int8((unsigned char)(0xC0 | encode));
+  } else if (VM_Version::supports_evex()) {
+    emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66);
   } else {
     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
   }
@@ -2004,13 +2006,19 @@
 
 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
+  if (VM_Version::supports_avx512novl()) {
+    int vector_len = AVX_512bit;
+    int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, vector_len);
+    emit_int8(0x28);
+    emit_int8((unsigned char)(0xC0 | encode));
+  } else {
+    emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
+  }
 }
 
 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, true, VEX_OPCODE_0F,
-                                      false, AVX_128bit);
+  int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
   emit_int8(0x16);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -2023,48 +2031,54 @@
   emit_operand(dst, src);
 }
 
-void Assembler::kmovq(KRegister dst, KRegister src) {
+void Assembler::kmovql(KRegister dst, KRegister src) {
   NOT_LP64(assert(VM_Version::supports_evex(), ""));
   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
-                                      true, VEX_OPCODE_0F, true);
+                                      /* no_mask_reg */ true, VEX_OPCODE_0F, /* rex_w */ true);
   emit_int8((unsigned char)0x90);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
-void Assembler::kmovq(KRegister dst, Address src) {
+void Assembler::kmovql(KRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_evex(), ""));
   int dst_enc = dst->encoding();
   int nds_enc = 0;
   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
-             VEX_OPCODE_0F, true, AVX_128bit, true, true);
+             VEX_OPCODE_0F, /* vex_w */  true, AVX_128bit, /* legacy_mode */ true, /* no_reg_mask */ true);
   emit_int8((unsigned char)0x90);
   emit_operand((Register)dst, src);
 }
 
-void Assembler::kmovq(Address dst, KRegister src) {
+void Assembler::kmovql(Address dst, KRegister src) {
   NOT_LP64(assert(VM_Version::supports_evex(), ""));
   int src_enc = src->encoding();
   int nds_enc = 0;
   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
-             VEX_OPCODE_0F, true, AVX_128bit, true, true);
+             VEX_OPCODE_0F, /* vex_w */ true, AVX_128bit, /* legacy_mode */ true, /* no_reg_mask */ true);
   emit_int8((unsigned char)0x90);
   emit_operand((Register)src, dst);
 }
 
 void Assembler::kmovql(KRegister dst, Register src) {
   NOT_LP64(assert(VM_Version::supports_evex(), ""));
-  bool supports_bw = VM_Version::supports_avx512bw();
-  VexSimdPrefix pre = supports_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
-  int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true,
-                                      VEX_OPCODE_0F, supports_bw);
+  VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
+  int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, /* no_mask_reg */ true,
+                                      VEX_OPCODE_0F, /* legacy_mode */ !_legacy_mode_bw);
   emit_int8((unsigned char)0x92);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::kmovdl(KRegister dst, Register src) {
   NOT_LP64(assert(VM_Version::supports_evex(), ""));
-  VexSimdPrefix pre = VM_Version::supports_avx512bw() ? VEX_SIMD_F2 : VEX_SIMD_NONE;
-  int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true, VEX_OPCODE_0F, false);
+  VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
+  int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, /* no_mask_reg */ true);
+  emit_int8((unsigned char)0x92);
+  emit_int8((unsigned char)(0xC0 | encode));
+}
+
+void Assembler::kmovwl(KRegister dst, Register src) {
+  NOT_LP64(assert(VM_Version::supports_evex(), ""));
+  int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
   emit_int8((unsigned char)0x92);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -2088,7 +2102,7 @@
 
 void Assembler::movdl(XMMRegister dst, Register src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, true);
+  int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
   emit_int8(0x6E);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -2096,7 +2110,7 @@
 void Assembler::movdl(Register dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   // swap src/dst to get correct prefix
-  int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, true);
+  int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, /* no_mask_reg */ true);
   emit_int8(0x7E);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -2104,11 +2118,11 @@
 void Assembler::movdl(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
-  }
-  InstructionMark im(this);
-  simd_prefix(dst, src, VEX_SIMD_66, true, VEX_OPCODE_0F);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  InstructionMark im(this);
+  simd_prefix(dst, src, VEX_SIMD_66, /* no_reg_mask */ true);
   emit_int8(0x6E);
   emit_operand(dst, src);
 }
@@ -2116,58 +2130,61 @@
 void Assembler::movdl(Address dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
-  }
-  InstructionMark im(this);
-  simd_prefix(dst, src, VEX_SIMD_66, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  InstructionMark im(this);
+  simd_prefix(dst, src, VEX_SIMD_66, /* no_reg_mask */ true);
   emit_int8(0x7E);
   emit_operand(src, dst);
 }
 
 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
 }
 
 void Assembler::movdqa(XMMRegister dst, Address src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
+    _tuple_type = EVEX_FVM;
   }
   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
 }
 
 void Assembler::movdqu(XMMRegister dst, Address src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
+    _tuple_type = EVEX_FVM;
   }
   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
 }
 
 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
 }
 
 void Assembler::movdqu(Address dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-  }
-  InstructionMark im(this);
-  simd_prefix(dst, src, VEX_SIMD_F3, false);
+    _tuple_type = EVEX_FVM;
+  }
+  InstructionMark im(this);
+  simd_prefix(dst, src, VEX_SIMD_F3, /* no_mask_reg */ false);
   emit_int8(0x7F);
   emit_operand(src, dst);
 }
 
 // Move Unaligned 256bit Vector
 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "");
-  if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-  }
   int vector_len = AVX_256bit;
   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
   emit_int8(0x6F);
@@ -2175,67 +2192,100 @@
 }
 
 void Assembler::vmovdqu(XMMRegister dst, Address src) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
+    _tuple_type = EVEX_FVM;
   }
   InstructionMark im(this);
   int vector_len = AVX_256bit;
-  vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
+  vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
   emit_int8(0x6F);
   emit_operand(dst, src);
 }
 
 void Assembler::vmovdqu(Address dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
+    _tuple_type = EVEX_FVM;
   }
   InstructionMark im(this);
   int vector_len = AVX_256bit;
   // swap src<->dst for encoding
   assert(src != xnoreg, "sanity");
-  vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
+  vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len);
   emit_int8(0x7F);
   emit_operand(src, dst);
 }
 
 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
-void Assembler::evmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
+void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "");
   int src_enc = src->encoding();
   int dst_enc = dst->encoding();
   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
-                                     true, vector_len, false, false);
+                                     /* vex_w */ false, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
   emit_int8(0x6F);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
-void Assembler::evmovdqu(XMMRegister dst, Address src, int vector_len) {
+void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "");
   InstructionMark im(this);
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-    vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
-  } else {
-    vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
-  }
+    _tuple_type = EVEX_FVM;
+  }
+  vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
   emit_int8(0x6F);
   emit_operand(dst, src);
 }
 
-void Assembler::evmovdqu(Address dst, XMMRegister src, int vector_len) {
+void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "");
   InstructionMark im(this);
   assert(src != xnoreg, "sanity");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-    // swap src<->dst for encoding
-    vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
-  } else {
-    // swap src<->dst for encoding
-    vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
-  }
+    _tuple_type = EVEX_FVM;
+  }
+  // swap src<->dst for encoding
+  vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len);
+  emit_int8(0x7F);
+  emit_operand(src, dst);
+}
+
+void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
+  assert(UseAVX > 0, "");
+  int src_enc = src->encoding();
+  int dst_enc = dst->encoding();
+  int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
+                                     /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
+  emit_int8(0x6F);
+  emit_int8((unsigned char)(0xC0 | encode));
+}
+
+void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
+  _instruction_uses_vl = true;
+  assert(UseAVX > 2, "");
+  InstructionMark im(this);
+  _tuple_type = EVEX_FVM;
+  vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
+  emit_int8(0x6F);
+  emit_operand(dst, src);
+}
+
+void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
+  assert(UseAVX > 2, "");
+  InstructionMark im(this);
+  assert(src != xnoreg, "sanity");
+  _tuple_type = EVEX_FVM;
+  // swap src<->dst for encoding
+  vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len);
   emit_int8(0x7F);
   emit_operand(src, dst);
 }
@@ -2282,10 +2332,12 @@
 void Assembler::movlpd(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
-  }
-  emit_simd_arith(0x12, dst, src, VEX_SIMD_66, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
+    emit_simd_arith_q(0x12, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
+  } else {
+    emit_simd_arith(0x12, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
+  }
 }
 
 void Assembler::movq( MMXRegister dst, Address src ) {
@@ -2312,11 +2364,11 @@
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   InstructionMark im(this);
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
-    simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
+    simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, /* no_mask_reg */ true);
   } else {
-    simd_prefix(dst, src, VEX_SIMD_F3, true, VEX_OPCODE_0F);
+    simd_prefix(dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
   }
   emit_int8(0x7E);
   emit_operand(dst, src);
@@ -2326,12 +2378,12 @@
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   InstructionMark im(this);
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
-    simd_prefix(src, xnoreg, dst, VEX_SIMD_66, true,
-                VEX_OPCODE_0F, true, AVX_128bit);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
+    simd_prefix(src, xnoreg, dst, VEX_SIMD_66, /* no_mask_reg */ true,
+                VEX_OPCODE_0F, /* rex_w */ true);
   } else {
-    simd_prefix(dst, src, VEX_SIMD_66, true);
+    simd_prefix(dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
   }
   emit_int8((unsigned char)0xD6);
   emit_operand(src, dst);
@@ -2356,7 +2408,7 @@
 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, true);
+    emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
   } else {
     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
   }
@@ -2365,9 +2417,9 @@
 void Assembler::movsd(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
-    emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
+    emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
   } else {
     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
   }
@@ -2377,11 +2429,11 @@
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   InstructionMark im(this);
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
   } else {
-    simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, false);
+    simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, /* no_mask_reg */ false);
   }
   emit_int8(0x11);
   emit_operand(src, dst);
@@ -2389,26 +2441,26 @@
 
 void Assembler::movss(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, true);
+  emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
 }
 
 void Assembler::movss(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
-  }
-  emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
 }
 
 void Assembler::movss(Address dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
-  }
-  InstructionMark im(this);
-  simd_prefix(dst, src, VEX_SIMD_F3, false);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  InstructionMark im(this);
+  simd_prefix(dst, src, VEX_SIMD_F3, /* no_mask_reg */ false);
   emit_int8(0x11);
   emit_operand(src, dst);
 }
@@ -2501,8 +2553,8 @@
 void Assembler::mulsd(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
   } else {
     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
@@ -2521,8 +2573,8 @@
 void Assembler::mulss(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
 }
@@ -2831,29 +2883,27 @@
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
-  }
-  emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
-                  false, (VM_Version::supports_avx512dq() == false));
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  emit_simd_arith(0x67, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
-                  false, (VM_Version::supports_avx512dq() == false));
+  emit_simd_arith(0x67, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(UseAVX > 0, "some form of AVX must be enabled");
-  emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len,
-                 false, (VM_Version::supports_avx512dq() == false));
+  emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx2(), "");
-  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
-                                      VEX_OPCODE_0F_3A, true, vector_len);
+  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_3A, /* rex_w */ true, vector_len);
   emit_int8(0x00);
   emit_int8(0xC0 | encode);
   emit_int8(imm8);
@@ -2867,8 +2917,8 @@
 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
   assert(VM_Version::supports_sse4_2(), "");
   InstructionMark im(this);
-  simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_3A,
-              false, AVX_128bit, true);
+  simd_prefix(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F_3A,
+              /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8(0x61);
   emit_operand(dst, src);
   emit_int8(imm8);
@@ -2876,8 +2926,8 @@
 
 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
   assert(VM_Version::supports_sse4_2(), "");
-  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
-                                      VEX_OPCODE_0F_3A, false, AVX_128bit, true);
+  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8(0x61);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(imm8);
@@ -2885,8 +2935,8 @@
 
 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
   assert(VM_Version::supports_sse4_1(), "");
-  int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
-                                      false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
+  int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ true,
+                                      VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
   emit_int8(0x16);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(imm8);
@@ -2894,8 +2944,8 @@
 
 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
   assert(VM_Version::supports_sse4_1(), "");
-  int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
-                                      false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
+  int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, /* no_mask_reg */  true,
+                                      VEX_OPCODE_0F_3A, /* rex_w */ true, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
   emit_int8(0x16);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(imm8);
@@ -2903,8 +2953,8 @@
 
 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
   assert(VM_Version::supports_sse4_1(), "");
-  int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
-                                      false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
+  int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, /* no_mask_reg */ true,
+                                      VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
   emit_int8(0x22);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(imm8);
@@ -2912,8 +2962,8 @@
 
 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
   assert(VM_Version::supports_sse4_1(), "");
-  int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
-                                      false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
+  int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, /* no_mask_reg */ true,
+                                      VEX_OPCODE_0F_3A, /* rex_w */ true, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
   emit_int8(0x22);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(imm8);
@@ -2922,17 +2972,17 @@
 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
   assert(VM_Version::supports_sse4_1(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_HVM;
-  }
-  InstructionMark im(this);
-  simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
+    _tuple_type = EVEX_HVM;
+  }
+  InstructionMark im(this);
+  simd_prefix(dst, src, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F_38);
   emit_int8(0x30);
   emit_operand(dst, src);
 }
 
 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
   assert(VM_Version::supports_sse4_1(), "");
-  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
+  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F_38);
   emit_int8(0x30);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -3035,8 +3085,8 @@
 
 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
   assert(VM_Version::supports_ssse3(), "");
-  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
-                                      false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
+  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(0x00);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -3044,33 +3094,34 @@
 void Assembler::pshufb(XMMRegister dst, Address src) {
   assert(VM_Version::supports_ssse3(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-  }
-  InstructionMark im(this);
-  simd_prefix(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
-              false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
+    _tuple_type = EVEX_FVM;
+  }
+  InstructionMark im(this);
+  simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+              VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(0x00);
   emit_operand(dst, src);
 }
 
 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
+  _instruction_uses_vl = true;
   assert(isByte(mode), "invalid value");
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
   emit_int8(mode & 0xFF);
-
 }
 
 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
+  _instruction_uses_vl = true;
   assert(isByte(mode), "invalid value");
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
-  }
-  InstructionMark im(this);
-  simd_prefix(dst, src, VEX_SIMD_66, false);
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  InstructionMark im(this);
+  simd_prefix(dst, src, VEX_SIMD_66, /* no_mask_reg */ false);
   emit_int8(0x70);
   emit_operand(dst, src);
   emit_int8(mode & 0xFF);
@@ -3079,8 +3130,7 @@
 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
   assert(isByte(mode), "invalid value");
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, false,
-                        (VM_Version::supports_avx512bw() == false));
+  emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(mode & 0xFF);
 }
 
@@ -3089,29 +3139,33 @@
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-  }
-  InstructionMark im(this);
-  simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, false, VEX_OPCODE_0F,
-              false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
+    _tuple_type = EVEX_FVM;
+  }
+  InstructionMark im(this);
+  simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, /* no_mask_reg */ false,
+              VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(0x70);
   emit_operand(dst, src);
   emit_int8(mode & 0xFF);
 }
 
 void Assembler::psrldq(XMMRegister dst, int shift) {
-  // Shift 128 bit value in xmm register by number of bytes.
+  // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
+  // XMM3 is for /3 encoding: 66 0F 73 /3 ib
+  int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, /* no_mask_reg */ true,
+                                      VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(0x73);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(shift);
 }
 
 void Assembler::pslldq(XMMRegister dst, int shift) {
-  // Shift left 128 bit value in xmm register by number of bytes.
+  // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
+  // XMM7 is for /7 encoding: 66 0F 73 /7 ib
+  int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, /* no_mask_reg */ true,
+                                      VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(0x73);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(shift);
@@ -3121,16 +3175,16 @@
   assert(VM_Version::supports_sse4_1(), "");
   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
   InstructionMark im(this);
-  simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false,
-              VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  simd_prefix(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
+              VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8(0x17);
   emit_operand(dst, src);
 }
 
 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
   assert(VM_Version::supports_sse4_1(), "");
-  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
-                                      VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8(0x17);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -3142,7 +3196,8 @@
   assert(dst != xnoreg, "sanity");
   int dst_enc = dst->encoding();
   // swap src<->dst for encoding
-  vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len, true, false);
+  vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* rex_w */ false,
+             vector_len, /* legacy_mode  */ true, /* no_mask_reg */ false);
   emit_int8(0x17);
   emit_operand(dst, src);
 }
@@ -3150,8 +3205,7 @@
 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
   assert(VM_Version::supports_avx(), "");
   int vector_len = AVX_256bit;
-  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
-                                     vector_len, VEX_OPCODE_0F_38, true, false);
+  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38, /* legacy_mode */ true);
   emit_int8(0x17);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -3160,34 +3214,41 @@
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-  }
-  emit_simd_arith(0x60, dst, src, VEX_SIMD_66, false, (VM_Version::supports_avx512vlbw() == false));
+    _tuple_type = EVEX_FVM;
+  }
+  emit_simd_arith(0x60, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_vlbw);
 }
 
 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0x60, dst, src, VEX_SIMD_66, false, (VM_Version::supports_avx512vlbw() == false));
+  emit_simd_arith(0x60, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_vlbw);
 }
 
 void Assembler::punpckldq(XMMRegister dst, Address src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
 }
 
 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
 }
 
 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
+  if (VM_Version::supports_evex()) {
+    emit_simd_arith_q(0x6C, dst, src, VEX_SIMD_66);
+  } else {
+    emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
+  }
 }
 
 void Assembler::push(int32_t imm32) {
@@ -3396,8 +3457,8 @@
 void Assembler::sqrtsd(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
   } else {
     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
@@ -3416,8 +3477,8 @@
 void Assembler::sqrtss(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
 }
@@ -3479,10 +3540,14 @@
 void Assembler::subsd(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
-  }
-  emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
+  }
+  if (VM_Version::supports_evex()) {
+    emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
+  } else {
+    emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
+  }
 }
 
 void Assembler::subss(XMMRegister dst, XMMRegister src) {
@@ -3493,8 +3558,8 @@
 void Assembler::subss(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
 }
@@ -3553,9 +3618,9 @@
 void Assembler::ucomisd(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
-    emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
+    emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
   } else {
     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
   }
@@ -3564,7 +3629,7 @@
 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
+    emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
   } else {
     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
   }
@@ -3573,15 +3638,15 @@
 void Assembler::ucomiss(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
-  }
-  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
 }
 
 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
+  emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
 }
 
 void Assembler::xabort(int8_t imm8) {
@@ -3664,8 +3729,8 @@
 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
   } else {
     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
@@ -3684,8 +3749,8 @@
 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
 }
@@ -3698,8 +3763,8 @@
 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
   } else {
     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
@@ -3718,8 +3783,8 @@
 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
 }
@@ -3732,8 +3797,8 @@
 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
   } else {
     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
@@ -3752,8 +3817,8 @@
 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
 }
@@ -3766,8 +3831,8 @@
 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
   } else {
     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
@@ -3786,8 +3851,8 @@
 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
 }
@@ -3802,6 +3867,7 @@
 // Float-point vector arithmetic
 
 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
@@ -3811,11 +3877,13 @@
 }
 
 void Assembler::addps(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
 }
 
 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -3825,15 +3893,17 @@
 }
 
 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
 }
 
 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
   } else {
     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -3841,15 +3911,17 @@
 }
 
 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
 }
 
 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
@@ -3859,11 +3931,13 @@
 }
 
 void Assembler::subps(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
 }
 
 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -3873,15 +3947,17 @@
 }
 
 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
 }
 
 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
   } else {
     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -3889,15 +3965,17 @@
 }
 
 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
 }
 
 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
@@ -3907,11 +3985,13 @@
 }
 
 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
 }
 
 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -3921,15 +4001,17 @@
 }
 
 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
 }
 
 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
   } else {
     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -3937,15 +4019,17 @@
 }
 
 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
 }
 
 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
@@ -3955,11 +4039,13 @@
 }
 
 void Assembler::divps(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
 }
 
 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -3969,15 +4055,17 @@
 }
 
 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
 }
 
 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
   } else {
     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -3985,164 +4073,178 @@
 }
 
 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
+  assert(VM_Version::supports_avx(), "");
+  if (VM_Version::supports_evex()) {
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
+}
+
+void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
-  }
-  emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
+    emit_vex_arith_q(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
+  } else {
+    emit_vex_arith(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
+  }
+}
+
+void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
+  _instruction_uses_vl = true;
+  assert(VM_Version::supports_avx(), "");
+  if (VM_Version::supports_evex()) {
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
+    emit_vex_arith_q(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
+  } else {
+    emit_vex_arith(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
+  }
 }
 
 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
+  if (VM_Version::supports_avx512dq()) {
     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
   } else {
-    emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
+    emit_simd_arith(0x54, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
   }
 }
 
 void Assembler::andps(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, false,
-                  (VM_Version::supports_avx512dq() == false));
+  emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
 }
 
 void Assembler::andps(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
-  }
-  emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE,
-                  false, (VM_Version::supports_avx512dq() == false));
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
 }
 
 void Assembler::andpd(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+  if (VM_Version::supports_avx512dq()) {
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
   } else {
-    emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
+    emit_simd_arith(0x54, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
   }
 }
 
 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(VM_Version::supports_avx(), "");
-  if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
+  if (VM_Version::supports_avx512dq()) {
     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
   } else {
-    emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
+    emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
   }
 }
 
 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(VM_Version::supports_avx(), "");
-  bool legacy_mode = (VM_Version::supports_avx512dq() == false);
-  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, legacy_mode);
+  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false,  /* legacy_mode */ _legacy_mode_dq);
 }
 
 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
   assert(VM_Version::supports_avx(), "");
-  if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+  if (VM_Version::supports_avx512dq()) {
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
   } else {
-    emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
+    emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
   }
 }
 
 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
-  }
-  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len,
-                 (VM_Version::supports_avx512dq() == false));
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
 }
 
 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
+  if (VM_Version::supports_avx512dq()) {
     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
   } else {
-    emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
+    emit_simd_arith(0x57, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
   }
 }
 
 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE,
-                  false, (VM_Version::supports_avx512dq() == false));
+  emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
 }
 
 void Assembler::xorpd(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+  if (VM_Version::supports_avx512dq()) {
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
   } else {
-    emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
+    emit_simd_arith(0x57, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
   }
 }
 
 void Assembler::xorps(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
-  }
-  emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, false,
-                  (VM_Version::supports_avx512dq() == false));
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
 }
 
 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(VM_Version::supports_avx(), "");
-  if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
+  if (VM_Version::supports_avx512dq()) {
     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
   } else {
-    emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
+    emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
   }
 }
 
 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(VM_Version::supports_avx(), "");
-  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
-                 (VM_Version::supports_avx512dq() == false));
+  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
 }
 
 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
   assert(VM_Version::supports_avx(), "");
-  if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+  if (VM_Version::supports_avx512dq()) {
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
   } else {
-    emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
+    emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
   }
 }
 
 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
   assert(VM_Version::supports_avx(), "");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
-  }
-  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
-                 (VM_Version::supports_avx512dq() == false));
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
 }
 
 // Integer vector arithmetic
 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(VM_Version::supports_avx() && (vector_len == 0) ||
          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
-  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
-                                     VEX_OPCODE_0F_38, true, false);
+  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38, /* legacy_mode */ true);
   emit_int8(0x01);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -4150,28 +4252,29 @@
 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(VM_Version::supports_avx() && (vector_len == 0) ||
          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
-  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
-                                     VEX_OPCODE_0F_38, true, false);
+  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38, /* legacy_mode */ true);
   emit_int8(0x02);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
+  emit_simd_arith(0xFC, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
+  emit_simd_arith(0xFD, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
 }
 
 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
@@ -4182,38 +4285,38 @@
 
 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
-  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
-                                      VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8(0x01);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
-  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
-                                      VEX_OPCODE_0F_38, false, AVX_128bit, true);
+  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8(0x02);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
-  emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
-  emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -4225,33 +4328,35 @@
 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-  }
-  emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len);
+    _tuple_type = EVEX_FVM;
+  }
+  emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-  }
-  emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len);
+    _tuple_type = EVEX_FVM;
+  }
+  emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
   } else {
     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -4260,20 +4365,22 @@
 
 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
+  emit_simd_arith(0xF8, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
+  emit_simd_arith(0xF9, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
 }
 
 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
@@ -4284,22 +4391,22 @@
 
 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
-  emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
-  emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -4311,35 +4418,35 @@
 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-  }
-  emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+    _tuple_type = EVEX_FVM;
+  }
+  emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-  }
-  emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+    _tuple_type = EVEX_FVM;
+  }
+  emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
   } else {
     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
@@ -4348,28 +4455,27 @@
 
 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0xD5, dst, src, VEX_SIMD_66,
-                  (VM_Version::supports_avx512bw() == false));
+  emit_simd_arith(0xD5, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_sse4_1(), "");
   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
-                                      false, VEX_OPCODE_0F_38);
+                                      /* no_mask_reg */ false, VEX_OPCODE_0F_38);
   emit_int8(0x40);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
-  emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
-  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
-                                     vector_len, VEX_OPCODE_0F_38);
+  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
   emit_int8(0x40);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -4379,8 +4485,8 @@
   int src_enc = src->encoding();
   int dst_enc = dst->encoding();
   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
-  int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
-                                     VEX_OPCODE_0F_38, true, vector_len, false, false);
+  int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_38,
+                                     /* vex_w */ true, vector_len, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false);
   emit_int8(0x40);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -4388,22 +4494,23 @@
 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FVM;
-  }
-  emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len);
+    _tuple_type = EVEX_FVM;
+  }
+  emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
   }
   InstructionMark im(this);
   int dst_enc = dst->encoding();
   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
-             VEX_OPCODE_0F_38, false, vector_len);
+             VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
   emit_int8(0x40);
   emit_operand(dst, src);
 }
@@ -4411,13 +4518,14 @@
 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_64bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_64bit;
   }
   InstructionMark im(this);
   int dst_enc = dst->encoding();
   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
-  vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
+  vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
+             VEX_OPCODE_0F_38, /* vex_w */ true, vector_len, /* legacy_mode */ _legacy_mode_dq);
   emit_int8(0x40);
   emit_operand(dst, src);
 }
@@ -4426,26 +4534,28 @@
 void Assembler::psllw(XMMRegister dst, int shift) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
-  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
-                                      false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
+  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F,
+                                      /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(0x71);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(shift & 0xFF);
 }
 
 void Assembler::pslld(XMMRegister dst, int shift) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
-  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false);
+  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false);
   emit_int8(0x72);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(shift & 0xFF);
 }
 
 void Assembler::psllq(XMMRegister dst, int shift) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
-  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
+  int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F, /* rex_w */ true);
   emit_int8(0x73);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(shift & 0xFF);
@@ -4453,16 +4563,17 @@
 
 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, false,
-                  (VM_Version::supports_avx512bw() == false));
+  emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
 }
 
 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
@@ -4474,12 +4585,12 @@
 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
-  emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(shift & 0xFF);
 }
 
 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
@@ -4487,6 +4598,7 @@
 }
 
 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
   if (VM_Version::supports_evex()) {
@@ -4499,16 +4611,17 @@
 
 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
-  emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
@@ -4521,33 +4634,31 @@
 void Assembler::psrlw(XMMRegister dst, int shift) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
-  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
-                                      (VM_Version::supports_avx512bw() == false));
+  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(0x71);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(shift & 0xFF);
 }
 
 void Assembler::psrld(XMMRegister dst, int shift) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
-  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false);
+  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false);
   emit_int8(0x72);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(shift & 0xFF);
 }
 
 void Assembler::psrlq(XMMRegister dst, int shift) {
+  _instruction_uses_vl = true;
   // Do not confuse it with psrldq SSE2 instruction which
   // shifts 128 bit value in xmm register by number of bytes.
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
-  int encode = 0;
-  if (VM_Version::supports_evex() && VM_Version::supports_avx512bw()) {
-    encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false);
-  } else {
-    encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
-  }
+  int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F, /* rex_w */ VM_Version::supports_evex());
   emit_int8(0x73);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(shift & 0xFF);
@@ -4555,16 +4666,17 @@
 
 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, false,
-                  (VM_Version::supports_avx512bw() == false));
+  emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
 }
 
 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
@@ -4575,20 +4687,21 @@
 
 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
-  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
-  emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  // XMM2 is for /2 encoding: 66 0F 71 /2 ib
+  emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(shift & 0xFF);
 }
 
 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
-  // XMM2 is for /2 encoding: 66 0F 73 /2 ib
+  // XMM2 is for /2 encoding: 66 0F 72 /2 ib
   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
   emit_int8(shift & 0xFF);
 }
 
 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
   if (VM_Version::supports_evex()) {
@@ -4601,16 +4714,17 @@
 
 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
-  emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
@@ -4623,17 +4737,18 @@
 void Assembler::psraw(XMMRegister dst, int shift) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
-  int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
-                                      (VM_Version::supports_avx512bw() == false));
+  int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(0x71);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(shift & 0xFF);
 }
 
 void Assembler::psrad(XMMRegister dst, int shift) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
-  int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false);
+  int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false);
   emit_int8(0x72);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(shift & 0xFF);
@@ -4641,11 +4756,11 @@
 
 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66,
-                  (VM_Version::supports_avx512bw() == false));
+  emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
 }
@@ -4653,12 +4768,12 @@
 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
-  emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
   emit_int8(shift & 0xFF);
 }
 
 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
@@ -4667,11 +4782,11 @@
 
 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
   assert(UseAVX > 0, "requires some form of AVX");
-  emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len,
-                 (VM_Version::supports_avx512bw() == false));
+  emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
 }
 
 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
 }
@@ -4684,53 +4799,61 @@
 }
 
 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::por(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
 }
 
 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
+  _instruction_uses_vl = true;
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
 }
 
 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
 }
 
 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(UseAVX > 0, "requires some form of AVX");
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_FV;
-    input_size_in_bits = EVEX_32bit;
+    _tuple_type = EVEX_FV;
+    _input_size_in_bits = EVEX_32bit;
   }
   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
 }
@@ -4739,6 +4862,9 @@
 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
   assert(VM_Version::supports_avx(), "");
   int vector_len = AVX_256bit;
+  if (VM_Version::supports_evex()) {
+    vector_len = AVX_512bit;
+  }
   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
   emit_int8(0x18);
   emit_int8((unsigned char)(0xC0 | encode));
@@ -4753,8 +4879,8 @@
   int src_enc = src->encoding();
   int dst_enc = dst->encoding();
   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
-  int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
-                                     VEX_OPCODE_0F_3A, true, vector_len, false, false);
+  int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
+                                     /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
   emit_int8(0x1A);
   emit_int8((unsigned char)(0xC0 | encode));
   // 0x00 - insert into lower 256 bits
@@ -4763,35 +4889,70 @@
 }
 
 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
-  assert(VM_Version::supports_avx(), "");
-  if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T4;
-    input_size_in_bits = EVEX_64bit;
-  }
+  assert(VM_Version::supports_evex(), "");
+  _tuple_type = EVEX_T4;
+  _input_size_in_bits = EVEX_64bit;
   InstructionMark im(this);
   int vector_len = AVX_512bit;
   assert(dst != xnoreg, "sanity");
   int dst_enc = dst->encoding();
   // swap src<->dst for encoding
-  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector_len);
+  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ true, vector_len);
   emit_int8(0x1A);
   emit_operand(dst, src);
   // 0x01 - insert into upper 128 bits
   emit_int8(0x01);
 }
 
+void Assembler::vinsertf32x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
+  assert(VM_Version::supports_evex(), "");
+  int vector_len = AVX_512bit;
+  int src_enc = src->encoding();
+  int dst_enc = dst->encoding();
+  int nds_enc = nds->is_valid() ? nds->encoding() : 0;
+  int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
+                                     /* vex_w */ false, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
+  emit_int8(0x18);
+  emit_int8((unsigned char)(0xC0 | encode));
+  // 0x00 - insert into q0 128 bits (0..127)
+  // 0x01 - insert into q1 128 bits (128..255)
+  // 0x02 - insert into q2 128 bits (256..383)
+  // 0x03 - insert into q3 128 bits (384..511)
+  emit_int8(value & 0x3);
+}
+
+void Assembler::vinsertf32x4h(XMMRegister dst, Address src, int value) {
+  assert(VM_Version::supports_evex(), "");
+  _tuple_type = EVEX_T4;
+  _input_size_in_bits = EVEX_32bit;
+  InstructionMark im(this);
+  int vector_len = AVX_512bit;
+  assert(dst != xnoreg, "sanity");
+  int dst_enc = dst->encoding();
+  // swap src<->dst for encoding
+  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
+  emit_int8(0x18);
+  emit_operand(dst, src);
+  // 0x00 - insert into q0 128 bits (0..127)
+  // 0x01 - insert into q1 128 bits (128..255)
+  // 0x02 - insert into q2 128 bits (256..383)
+  // 0x03 - insert into q3 128 bits (384..511)
+  emit_int8(value & 0x3);
+}
+
 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
   assert(VM_Version::supports_avx(), "");
+  int vector_len = AVX_256bit;
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T4;
-    input_size_in_bits = EVEX_32bit;
-  }
-  InstructionMark im(this);
-  int vector_len = AVX_256bit;
+    _tuple_type = EVEX_T4;
+    _input_size_in_bits = EVEX_32bit;
+    vector_len = AVX_512bit;
+  }
+  InstructionMark im(this);
   assert(dst != xnoreg, "sanity");
   int dst_enc = dst->encoding();
   // swap src<->dst for encoding
-  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
+  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
   emit_int8(0x18);
   emit_operand(dst, src);
   // 0x01 - insert into upper 128 bits
@@ -4801,6 +4962,9 @@
 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
   assert(VM_Version::supports_avx(), "");
   int vector_len = AVX_256bit;
+  if (VM_Version::supports_evex()) {
+    vector_len = AVX_512bit;
+  }
   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
   emit_int8(0x19);
   emit_int8((unsigned char)(0xC0 | encode));
@@ -4811,15 +4975,16 @@
 
 void Assembler::vextractf128h(Address dst, XMMRegister src) {
   assert(VM_Version::supports_avx(), "");
+  int vector_len = AVX_256bit;
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T4;
-    input_size_in_bits = EVEX_32bit;
-  }
-  InstructionMark im(this);
-  int vector_len = AVX_256bit;
+    _tuple_type = EVEX_T4;
+    _input_size_in_bits = EVEX_32bit;
+    vector_len = AVX_512bit;
+  }
+  InstructionMark im(this);
   assert(src != xnoreg, "sanity");
   int src_enc = src->encoding();
-  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
+  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
   emit_int8(0x19);
   emit_operand(src, dst);
   // 0x01 - extract from upper 128 bits
@@ -4829,6 +4994,9 @@
 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
   assert(VM_Version::supports_avx2(), "");
   int vector_len = AVX_256bit;
+  if (VM_Version::supports_evex()) {
+    vector_len = AVX_512bit;
+  }
   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
   emit_int8(0x38);
   emit_int8((unsigned char)(0xC0 | encode));
@@ -4844,7 +5012,7 @@
   int dst_enc = dst->encoding();
   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
-                                     VM_Version::supports_avx512dq(), vector_len, false, false);
+                                     /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_reg_mask */ false);
   emit_int8(0x38);
   emit_int8((unsigned char)(0xC0 | encode));
   // 0x00 - insert into lower 256 bits
@@ -4854,16 +5022,17 @@
 
 void Assembler::vinserti128h(XMMRegister dst, Address src) {
   assert(VM_Version::supports_avx2(), "");
+  int vector_len = AVX_256bit;
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T4;
-    input_size_in_bits = EVEX_32bit;
-  }
-  InstructionMark im(this);
-  int vector_len = AVX_256bit;
+    _tuple_type = EVEX_T4;
+    _input_size_in_bits = EVEX_32bit;
+    vector_len = AVX_512bit;
+  }
+  InstructionMark im(this);
   assert(dst != xnoreg, "sanity");
   int dst_enc = dst->encoding();
   // swap src<->dst for encoding
-  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
+  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
   emit_int8(0x38);
   emit_operand(dst, src);
   // 0x01 - insert into upper 128 bits
@@ -4873,6 +5042,9 @@
 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
   assert(VM_Version::supports_avx(), "");
   int vector_len = AVX_256bit;
+  if (VM_Version::supports_evex()) {
+    vector_len = AVX_512bit;
+  }
   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
   emit_int8(0x39);
   emit_int8((unsigned char)(0xC0 | encode));
@@ -4883,15 +5055,16 @@
 
 void Assembler::vextracti128h(Address dst, XMMRegister src) {
   assert(VM_Version::supports_avx2(), "");
+  int vector_len = AVX_256bit;
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T4;
-    input_size_in_bits = EVEX_32bit;
-  }
-  InstructionMark im(this);
-  int vector_len = AVX_256bit;
+    _tuple_type = EVEX_T4;
+    _input_size_in_bits = EVEX_32bit;
+    vector_len = AVX_512bit;
+  }
+  InstructionMark im(this);
   assert(src != xnoreg, "sanity");
   int src_enc = src->encoding();
-  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
+  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
   emit_int8(0x39);
   emit_operand(src, dst);
   // 0x01 - extract from upper 128 bits
@@ -4904,7 +5077,7 @@
   int src_enc = src->encoding();
   int dst_enc = dst->encoding();
   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
-                                     true, vector_len, false, false);
+                                     /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
   emit_int8(0x3B);
   emit_int8((unsigned char)(0xC0 | encode));
   // 0x01 - extract from upper 256 bits
@@ -4916,8 +5089,14 @@
   int vector_len = AVX_512bit;
   int src_enc = src->encoding();
   int dst_enc = dst->encoding();
-  int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
-                                     VM_Version::supports_avx512dq(), vector_len, false, false);
+  int encode;
+  if (VM_Version::supports_avx512dq()) {
+    encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
+                                   /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
+  } else {
+    encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
+                                   /* vex_w */ false, vector_len, /* legacy_mode */ true, /* no_mask_reg */ false);
+  }
   emit_int8(0x39);
   emit_int8((unsigned char)(0xC0 | encode));
   // 0x01 - extract from bits 255:128
@@ -4932,7 +5111,7 @@
   int src_enc = src->encoding();
   int dst_enc = dst->encoding();
   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
-                                     VM_Version::supports_avx512dq(), vector_len, false, false);
+                                     /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
   emit_int8(0x1B);
   emit_int8((unsigned char)(0xC0 | encode));
   // 0x01 - extract from upper 256 bits
@@ -4940,18 +5119,18 @@
 }
 
 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
-  assert(VM_Version::supports_avx2(), "");
-  tuple_type = EVEX_T4;
-  input_size_in_bits = EVEX_64bit;
+  assert(VM_Version::supports_evex(), "");
+  _tuple_type = EVEX_T4;
+  _input_size_in_bits = EVEX_64bit;
   InstructionMark im(this);
   int vector_len = AVX_512bit;
   assert(src != xnoreg, "sanity");
   int src_enc = src->encoding();
   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
-             VM_Version::supports_avx512dq(), vector_len);
+             /* vex_w */ true, vector_len);
   emit_int8(0x1B);
   emit_operand(src, dst);
-  // 0x01 - extract from upper 128 bits
+  // 0x01 - extract from upper 256 bits
   emit_int8(0x01);
 }
 
@@ -4960,10 +5139,29 @@
   int vector_len = AVX_512bit;
   int src_enc = src->encoding();
   int dst_enc = dst->encoding();
-  int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66,
-                                     VEX_OPCODE_0F_3A, false, vector_len, false, false);
+  int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
+                                     /* vex_w */ false, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
   emit_int8(0x19);
   emit_int8((unsigned char)(0xC0 | encode));
+  // 0x00 - extract from bits 127:0
+  // 0x01 - extract from bits 255:128
+  // 0x02 - extract from bits 383:256
+  // 0x03 - extract from bits 511:384
+  emit_int8(value & 0x3);
+}
+
+void Assembler::vextractf32x4h(Address dst, XMMRegister src, int value) {
+  assert(VM_Version::supports_evex(), "");
+  _tuple_type = EVEX_T4;
+  _input_size_in_bits = EVEX_32bit;
+  InstructionMark im(this);
+  int vector_len = AVX_512bit;
+  assert(src != xnoreg, "sanity");
+  int src_enc = src->encoding();
+  vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
+  emit_int8(0x19);
+  emit_operand(src, dst);
+  // 0x00 - extract from bits 127:0
   // 0x01 - extract from bits 255:128
   // 0x02 - extract from bits 383:256
   // 0x03 - extract from bits 511:384
@@ -4976,7 +5174,7 @@
   int src_enc = src->encoding();
   int dst_enc = dst->encoding();
   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
-                                     VM_Version::supports_avx512dq(), vector_len, false, false);
+                                     /* vex_w */ !_legacy_mode_dq, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
   emit_int8(0x19);
   emit_int8((unsigned char)(0xC0 | encode));
   // 0x01 - extract from bits 255:128
@@ -4987,178 +5185,190 @@
 
 // duplicate 4-bytes integer data from src into 8 locations in dest
 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
-  assert(VM_Version::supports_avx2(), "");
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
   int vector_len = AVX_256bit;
-  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
-                                     vector_len, VEX_OPCODE_0F_38, false);
+  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
   emit_int8(0x58);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
-                                     vector_len, VEX_OPCODE_0F_38, false);
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
   emit_int8(0x78);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  tuple_type = EVEX_T1S;
-  input_size_in_bits = EVEX_8bit;
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  _tuple_type = EVEX_T1S;
+  _input_size_in_bits = EVEX_8bit;
   InstructionMark im(this);
   assert(dst != xnoreg, "sanity");
   int dst_enc = dst->encoding();
   // swap src<->dst for encoding
-  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
+  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
   emit_int8(0x78);
   emit_operand(dst, src);
 }
 
 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
-                                     vector_len, VEX_OPCODE_0F_38, false);
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
   emit_int8(0x79);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  tuple_type = EVEX_T1S;
-  input_size_in_bits = EVEX_16bit;
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  _tuple_type = EVEX_T1S;
+  _input_size_in_bits = EVEX_16bit;
   InstructionMark im(this);
   assert(dst != xnoreg, "sanity");
   int dst_enc = dst->encoding();
   // swap src<->dst for encoding
-  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
+  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
   emit_int8(0x79);
   emit_operand(dst, src);
 }
 
 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
-                                     vector_len, VEX_OPCODE_0F_38, false);
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
   emit_int8(0x58);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  tuple_type = EVEX_T1S;
-  input_size_in_bits = EVEX_32bit;
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  _tuple_type = EVEX_T1S;
+  _input_size_in_bits = EVEX_32bit;
   InstructionMark im(this);
   assert(dst != xnoreg, "sanity");
   int dst_enc = dst->encoding();
   // swap src<->dst for encoding
-  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
+  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
   emit_int8(0x58);
   emit_operand(dst, src);
 }
 
 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
-                                     VEX_OPCODE_0F_38, true, vector_len, false, false);
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
+                                     /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
   emit_int8(0x59);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  tuple_type = EVEX_T1S;
-  input_size_in_bits = EVEX_64bit;
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  _tuple_type = EVEX_T1S;
+  _input_size_in_bits = EVEX_64bit;
   InstructionMark im(this);
   assert(dst != xnoreg, "sanity");
   int dst_enc = dst->encoding();
   // swap src<->dst for encoding
-  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
+  vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ true, vector_len);
   emit_int8(0x59);
   emit_operand(dst, src);
 }
 
 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
-                                     VEX_OPCODE_0F_38, false, vector_len, false, false);
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
+                                     /* vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
   emit_int8(0x18);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  tuple_type = EVEX_T1S;
-  input_size_in_bits = EVEX_32bit;
+  assert(UseAVX > 1, "");
+  _tuple_type = EVEX_T1S;
+  _input_size_in_bits = EVEX_32bit;
   InstructionMark im(this);
   assert(dst != xnoreg, "sanity");
   int dst_enc = dst->encoding();
   // swap src<->dst for encoding
-  vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
+  vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
   emit_int8(0x18);
   emit_operand(dst, src);
 }
 
 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
-                                     VEX_OPCODE_0F_38, true, vector_len, false, false);
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
+                                     /*vex_w */ true, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
   emit_int8(0x19);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
-  assert(VM_Version::supports_evex(), "");
-  tuple_type = EVEX_T1S;
-  input_size_in_bits = EVEX_64bit;
+  _instruction_uses_vl = true;
+  assert(UseAVX > 1, "");
+  _tuple_type = EVEX_T1S;
+  _input_size_in_bits = EVEX_64bit;
   InstructionMark im(this);
   assert(dst != xnoreg, "sanity");
   int dst_enc = dst->encoding();
   // swap src<->dst for encoding
-  vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
+  vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ true, vector_len);
   emit_int8(0x19);
   emit_operand(dst, src);
 }
 
 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_evex(), "");
-  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
-                                     VEX_OPCODE_0F_38, false, vector_len, false, false);
+  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
+                                     /*vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
   emit_int8(0x7A);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_evex(), "");
-  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
-                                     VEX_OPCODE_0F_38, false, vector_len, false, false);
+  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
+                                     /* vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
   emit_int8(0x7B);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_evex(), "");
-  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
-                                     VEX_OPCODE_0F_38, false, vector_len, false, false);
+  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
+                                     /* vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
   emit_int8(0x7C);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
+  _instruction_uses_vl = true;
   assert(VM_Version::supports_evex(), "");
-  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
-                                     VEX_OPCODE_0F_38, true, vector_len, false, false);
+  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
+                                     /* vex_w */ true, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
   emit_int8(0x7C);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -5166,8 +5376,8 @@
 // Carry-Less Multiplication Quadword
 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
   assert(VM_Version::supports_clmul(), "");
-  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
-                                      VEX_OPCODE_0F_3A, false, AVX_128bit, true);
+  int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
+                                      VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
   emit_int8(0x44);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8((unsigned char)mask);
@@ -5177,8 +5387,7 @@
 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
   int vector_len = AVX_128bit;
-  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
-                                     vector_len, VEX_OPCODE_0F_3A, true);
+  int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A, /* legacy_mode */ true);
   emit_int8(0x44);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8((unsigned char)mask);
@@ -5737,7 +5946,7 @@
                             int vector_len, bool no_mask_reg ){
   // EVEX 0x62 prefix
   prefix(EVEX_4bytes);
-  evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
+  _evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
 
   // P0: byte 2, initialized to RXBR`00mm
   // instead of not'd
@@ -5776,10 +5985,10 @@
   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
   bool vex_b = adr.base_needs_rex();
   bool vex_x = adr.index_needs_rex();
-  avx_vector_len = vector_len;
-
-  // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
-  if (VM_Version::supports_avx512vl() == false) {
+  _avx_vector_len = vector_len;
+
+  // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
+  if (_legacy_mode_vl && _instruction_uses_vl) {
     switch (vector_len) {
     case AVX_128bit:
     case AVX_256bit:
@@ -5792,11 +6001,12 @@
   {
     bool evex_r = (xreg_enc >= 16);
     bool evex_v = (nds_enc >= 16);
-    is_evex_instruction = true;
+    _is_evex_instruction = true;
     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
   } else {
     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
   }
+  _instruction_uses_vl = false;
 }
 
 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
@@ -5804,10 +6014,10 @@
   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
   bool vex_x = false;
-  avx_vector_len = vector_len;
-
-  // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
-  if (VM_Version::supports_avx512vl() == false) {
+  _avx_vector_len = vector_len;
+
+  // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
+  if (_legacy_mode_vl && _instruction_uses_vl) {
     switch (vector_len) {
     case AVX_128bit:
     case AVX_256bit:
@@ -5827,6 +6037,8 @@
     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
   }
 
+  _instruction_uses_vl = false;
+
   // return modrm byte components for operands
   return (((dst_enc & 7) << 3) | (src_enc & 7));
 }
@@ -5915,13 +6127,13 @@
 }
 
 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
-  int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, legacy_mode, AVX_128bit);
+  int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
   emit_int8(opcode);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
-  int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
+  int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true);
   emit_int8(opcode);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -5945,7 +6157,7 @@
 
 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
-  int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, false, no_mask_reg);
+  int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, legacy_mode, no_mask_reg);
   emit_int8(opcode);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -6594,7 +6806,7 @@
 
 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
+  int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
   emit_int8(0x2A);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -6602,11 +6814,11 @@
 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
-  }
-  InstructionMark im(this);
-  simd_prefix_q(dst, dst, src, VEX_SIMD_F2, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  InstructionMark im(this);
+  simd_prefix_q(dst, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
   emit_int8(0x2A);
   emit_operand(dst, src);
 }
@@ -6614,25 +6826,25 @@
 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   if (VM_Version::supports_evex()) {
-    tuple_type = EVEX_T1S;
-    input_size_in_bits = EVEX_32bit;
-  }
-  InstructionMark im(this);
-  simd_prefix_q(dst, dst, src, VEX_SIMD_F3, true);
+    _tuple_type = EVEX_T1S;
+    _input_size_in_bits = EVEX_32bit;
+  }
+  InstructionMark im(this);
+  simd_prefix_q(dst, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
   emit_int8(0x2A);
   emit_operand(dst, src);
 }
 
 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
+  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, /* no_mask_reg */ true);
   emit_int8(0x2C);
   emit_int8((unsigned char)(0xC0 | encode));
 }
 
 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
   NOT_LP64(assert(VM_Version::supports_sse(), ""));
-  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
+  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, /* no_mask_reg */ true);
   emit_int8(0x2C);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -6668,6 +6880,13 @@
   emit_operand(as_Register(1), src);
 }
 
+void Assembler::xrstor(Address src) {
+  prefixq(src);
+  emit_int8(0x0F);
+  emit_int8((unsigned char)0xAE);
+  emit_operand(as_Register(5), src);
+}
+
 void Assembler::fxsave(Address dst) {
   prefixq(dst);
   emit_int8(0x0F);
@@ -6675,6 +6894,13 @@
   emit_operand(as_Register(0), dst);
 }
 
+void Assembler::xsave(Address dst) {
+  prefixq(dst);
+  emit_int8(0x0F);
+  emit_int8((unsigned char)0xAE);
+  emit_operand(as_Register(4), dst);
+}
+
 void Assembler::idivq(Register src) {
   int encode = prefixq_and_encode(src->encoding());
   emit_int8((unsigned char)0xF7);
@@ -6801,7 +7027,7 @@
 void Assembler::movdq(XMMRegister dst, Register src) {
   // table D-1 says MMX/SSE2
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
-  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, true);
+  int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
   emit_int8(0x6E);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -6810,7 +7036,7 @@
   // table D-1 says MMX/SSE2
   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   // swap src/dst to get correct prefix
-  int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, true);
+  int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, /* no_mask_reg */ true);
   emit_int8(0x7E);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -6943,8 +7169,8 @@
 
 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
-  int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(),
-                                     VEX_SIMD_F2, VEX_OPCODE_0F_38, true, AVX_128bit, true, false);
+  int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38,
+                                    /* vex_w */ true, AVX_128bit, /* legacy_mode */ true, /* no_mask_reg */ false);
   emit_int8((unsigned char)0xF6);
   emit_int8((unsigned char)(0xC0 | encode));
 }
@@ -7106,8 +7332,8 @@
 
 void Assembler::rorxq(Register dst, Register src, int imm8) {
   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
-  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2,
-                                     VEX_OPCODE_0F_3A, true, AVX_128bit, true, false);
+  int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A,
+                                     /* vex_w */ true, AVX_128bit, /* legacy_mode */ true, /* no_mask_reg */ false);
   emit_int8((unsigned char)0xF0);
   emit_int8((unsigned char)(0xC0 | encode));
   emit_int8(imm8);
--- a/hotspot/src/cpu/x86/vm/assembler_x86.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/assembler_x86.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -438,7 +438,9 @@
 
 };
 
-const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512*2 / wordSize);
+// 64-bit refect the fxsave size which is 512 bytes and the new xsave area on EVEX which is another 2176 bytes
+// See fxsave and xsave(EVEX enabled) documentation for layout
+const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY(2688 / wordSize);
 
 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
@@ -594,11 +596,16 @@
 
 private:
 
-  int evex_encoding;
-  int input_size_in_bits;
-  int avx_vector_len;
-  int tuple_type;
-  bool is_evex_instruction;
+  int _evex_encoding;
+  int _input_size_in_bits;
+  int _avx_vector_len;
+  int _tuple_type;
+  bool _is_evex_instruction;
+  bool _legacy_mode_bw;
+  bool _legacy_mode_dq;
+  bool _legacy_mode_vl;
+  bool _legacy_mode_vlbw;
+  bool _instruction_uses_vl;
 
   // 64bit prefixes
   int prefix_and_encode(int reg_enc, bool byteinst = false);
@@ -972,11 +979,16 @@
   // belong in macro assembler but there is no need for both varieties to exist
 
   void init_attributes(void) {
-    evex_encoding = 0;
-    input_size_in_bits = 0;
-    avx_vector_len = AVX_NoVec;
-    tuple_type = EVEX_ETUP;
-    is_evex_instruction = false;
+    _evex_encoding = 0;
+    _input_size_in_bits = 0;
+    _avx_vector_len = AVX_NoVec;
+    _tuple_type = EVEX_ETUP;
+    _is_evex_instruction = false;
+    _legacy_mode_bw = (VM_Version::supports_avx512bw() == false);
+    _legacy_mode_dq = (VM_Version::supports_avx512dq() == false);
+    _legacy_mode_vl = (VM_Version::supports_avx512vl() == false);
+    _legacy_mode_vlbw = (VM_Version::supports_avx512vlbw() == false);
+    _instruction_uses_vl = false;
   }
 
   void lea(Register dst, Address src);
@@ -1344,8 +1356,10 @@
   void fxch(int i = 1);
 
   void fxrstor(Address src);
+  void xrstor(Address src);
 
   void fxsave(Address dst);
+  void xsave(Address dst);
 
   void fyl2x();
   void frndint();
@@ -1479,11 +1493,12 @@
   void movb(Address dst, int imm8);
   void movb(Register dst, Address src);
 
-  void kmovq(KRegister dst, KRegister src);
+  void kmovql(KRegister dst, KRegister src);
   void kmovql(KRegister dst, Register src);
   void kmovdl(KRegister dst, Register src);
-  void kmovq(Address dst, KRegister src);
-  void kmovq(KRegister dst, Address src);
+  void kmovwl(KRegister dst, Register src);
+  void kmovql(Address dst, KRegister src);
+  void kmovql(KRegister dst, Address src);
 
   void movdl(XMMRegister dst, Register src);
   void movdl(Register dst, XMMRegister src);
@@ -1509,9 +1524,12 @@
   void vmovdqu(XMMRegister dst, XMMRegister src);
 
    // Move Unaligned 512bit Vector
-  void evmovdqu(Address dst, XMMRegister src, int vector_len);
-  void evmovdqu(XMMRegister dst, Address src, int vector_len);
-  void evmovdqu(XMMRegister dst, XMMRegister src, int vector_len);
+  void evmovdqul(Address dst, XMMRegister src, int vector_len);
+  void evmovdqul(XMMRegister dst, Address src, int vector_len);
+  void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len);
+  void evmovdquq(Address dst, XMMRegister src, int vector_len);
+  void evmovdquq(XMMRegister dst, Address src, int vector_len);
+  void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len);
 
   // Move lower 64bit to high 64bit in 128bit register
   void movlhps(XMMRegister dst, XMMRegister src);
@@ -1643,6 +1661,7 @@
 
   // Pemutation of 64bit words
   void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len);
+  void vpermq(XMMRegister dst, XMMRegister src, int imm8);
 
   void pause();
 
@@ -1920,6 +1939,10 @@
   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
   void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
 
+  // Sqrt Packed Floating-Point Values - Double precision only
+  void vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len);
+  void vsqrtpd(XMMRegister dst, Address src, int vector_len);
+
   // Bitwise Logical AND of Packed Floating-Point Values
   void andpd(XMMRegister dst, XMMRegister src);
   void andps(XMMRegister dst, XMMRegister src);
@@ -2057,6 +2080,9 @@
   void vextracti64x2h(XMMRegister dst, XMMRegister src, int value);
   void vextractf64x2h(XMMRegister dst, XMMRegister src, int value);
   void vextractf32x4h(XMMRegister dst, XMMRegister src, int value);
+  void vextractf32x4h(Address dst, XMMRegister src, int value);
+  void vinsertf32x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value);
+  void vinsertf32x4h(XMMRegister dst, Address src, int value);
 
   // duplicate 4-bytes integer data from src into 8 locations in dest
   void vpbroadcastd(XMMRegister dst, XMMRegister src);
--- a/hotspot/src/cpu/x86/vm/c1_LIRAssembler_x86.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/c1_LIRAssembler_x86.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -3798,16 +3798,24 @@
     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
     }
-    __ xorps(dest->as_xmm_float_reg(),
-             ExternalAddress((address)float_signflip_pool));
-
+    if (UseAVX > 1) {
+      __ vnegatess(dest->as_xmm_float_reg(), dest->as_xmm_float_reg(),
+                   ExternalAddress((address)float_signflip_pool));
+    } else {
+      __ xorps(dest->as_xmm_float_reg(),
+               ExternalAddress((address)float_signflip_pool));
+    }
   } else if (dest->is_double_xmm()) {
     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
     }
-    __ xorpd(dest->as_xmm_double_reg(),
-             ExternalAddress((address)double_signflip_pool));
-
+    if (UseAVX > 1) {
+      __ vnegatesd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg(),
+                   ExternalAddress((address)double_signflip_pool));
+    } else {
+      __ xorpd(dest->as_xmm_double_reg(),
+               ExternalAddress((address)double_signflip_pool));
+    }
   } else if (left->is_single_fpu() || left->is_double_fpu()) {
     assert(left->fpu() == 0, "arg must be on TOS");
     assert(dest->fpu() == 0, "dest must be TOS");
--- a/hotspot/src/cpu/x86/vm/c1_Runtime1_x86.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/c1_Runtime1_x86.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -401,11 +401,9 @@
 
     } else if (UseSSE == 1) {
       int xmm_off = xmm_regs_as_doubles_off;
-      for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
-        if (n < xmm_bypass_limit) {
-          VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
-          map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
-        }
+      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
+        VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
+        map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
         xmm_off += 2;
       }
       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
@@ -452,14 +450,11 @@
       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 
       // Save the FPU registers in de-opt-able form
-      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
-      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
-      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
-      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
-      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
-      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
-      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
-      __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
+      int offset = 0;
+      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
+        __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
+        offset += 8;
+      }
     }
 
     if (UseSSE >= 2) {
@@ -468,52 +463,26 @@
       // so always save them as doubles.
       // note that float values are _not_ converted automatically, so for float values
       // the second word contains only garbage data.
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
+      int xmm_bypass_limit = FrameMap::nof_xmm_regs;
+      int offset = 0;
 #ifdef _LP64
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
-      __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
-      if (UseAVX > 2) {
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 128), xmm16);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 136), xmm17);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 144), xmm18);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 152), xmm19);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 160), xmm20);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 168), xmm21);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 176), xmm22);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 184), xmm23);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 192), xmm24);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 200), xmm25);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 208), xmm26);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 216), xmm27);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 224), xmm28);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 232), xmm29);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 240), xmm30);
-        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 248), xmm31);
+      if (UseAVX < 3) {
+        xmm_bypass_limit = xmm_bypass_limit / 2;
+      }
+#endif
+      for (int n = 0; n < xmm_bypass_limit; n++) {
+        XMMRegister xmm_name = as_XMMRegister(n);
+        __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
+        offset += 8;
       }
-#endif // _LP64
     } else if (UseSSE == 1) {
-      // save XMM registers as float because double not supported without SSE2
-      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
-      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
-      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
-      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
-      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
-      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
-      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
-      __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
+      // save XMM registers as float because double not supported without SSE2(num MMX == num fpu)
+      int offset = 0;
+      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
+        XMMRegister xmm_name = as_XMMRegister(n);
+        __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
+        offset += 8;
+      }
     }
   }
 
@@ -528,52 +497,26 @@
   if (restore_fpu_registers) {
     if (UseSSE >= 2) {
       // restore XMM registers
-      __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
-      __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
-      __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
-      __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
-      __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
-      __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
-      __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
-      __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
+      int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 #ifdef _LP64
-      __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
-      __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
-      __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
-      __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
-      __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
-      __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
-      __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
-      __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
-      if (UseAVX > 2) {
-        __ movdbl(xmm16, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 128));
-        __ movdbl(xmm17, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 136));
-        __ movdbl(xmm18, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 144));
-        __ movdbl(xmm19, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 152));
-        __ movdbl(xmm20, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 160));
-        __ movdbl(xmm21, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 168));
-        __ movdbl(xmm22, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 176));
-        __ movdbl(xmm23, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 184));
-        __ movdbl(xmm24, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 192));
-        __ movdbl(xmm25, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 200));
-        __ movdbl(xmm26, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 208));
-        __ movdbl(xmm27, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 216));
-        __ movdbl(xmm28, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 224));
-        __ movdbl(xmm29, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 232));
-        __ movdbl(xmm30, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 240));
-        __ movdbl(xmm31, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 248));
+      if (UseAVX < 3) {
+        xmm_bypass_limit = xmm_bypass_limit / 2;
       }
-#endif // _LP64
+#endif
+      int offset = 0;
+      for (int n = 0; n < xmm_bypass_limit; n++) {
+        XMMRegister xmm_name = as_XMMRegister(n);
+        __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
+        offset += 8;
+      }
     } else if (UseSSE == 1) {
-      // restore XMM registers
-      __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
-      __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
-      __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
-      __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
-      __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
-      __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
-      __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
-      __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
+      // restore XMM registers(num MMX == num fpu)
+      int offset = 0;
+      for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
+        XMMRegister xmm_name = as_XMMRegister(n);
+        __ movflt(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
+        offset += 8;
+      }
     }
 
     if (UseSSE < 2) {
--- a/hotspot/src/cpu/x86/vm/macroAssembler_x86.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/macroAssembler_x86.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -3751,8 +3751,31 @@
 }
 
 void MacroAssembler::pop_FPU_state() {
-  NOT_LP64(frstor(Address(rsp, 0));)
-  LP64_ONLY(fxrstor(Address(rsp, 0));)
+#ifndef _LP64
+  frstor(Address(rsp, 0));
+#else
+  // AVX will continue to use the fxsave area.
+  // EVEX needs to utilize the xsave area, which is under different
+  // management.
+  if(VM_Version::supports_evex()) {
+    // EDX:EAX describe the XSAVE header and
+    // are obtained while fetching info for XCR0 via cpuid.
+    // These two registers make up 64-bits in the header for which bits
+    // 62:10 are currently reserved for future implementations and unused.  Bit 63
+    // is unused for our implementation as we do not utilize
+    // compressed XSAVE areas.  Bits 9..8 are currently ignored as we do not use
+    // the functionality for PKRU state and MSR tracing.
+    // Ergo we are primarily concerned with bits 7..0, which define
+    // which ISA extensions and features are enabled for a given machine and are
+    // defined in XemXcr0Eax and is used to map the XSAVE area
+    // for restoring registers as described via XCR0.
+    movl(rdx,VM_Version::get_xsave_header_upper_segment());
+    movl(rax,VM_Version::get_xsave_header_lower_segment());
+    xrstor(Address(rsp, 0));
+  } else {
+    fxrstor(Address(rsp, 0));
+  }
+#endif
   addptr(rsp, FPUStateSizeInWords * wordSize);
 }
 
@@ -3769,13 +3792,49 @@
   push_FPU_state();
 }
 
+#ifdef _LP64
+#define XSTATE_BV 0x200
+#endif
+
 void MacroAssembler::push_FPU_state() {
   subptr(rsp, FPUStateSizeInWords * wordSize);
 #ifndef _LP64
   fnsave(Address(rsp, 0));
   fwait();
 #else
-  fxsave(Address(rsp, 0));
+  // AVX will continue to use the fxsave area.
+  // EVEX needs to utilize the xsave area, which is under different
+  // management.
+  if(VM_Version::supports_evex()) {
+    // Save a copy of EAX and EDX
+    push(rax);
+    push(rdx);
+    // EDX:EAX describe the XSAVE header and
+    // are obtained while fetching info for XCR0 via cpuid.
+    // These two registers make up 64-bits in the header for which bits
+    // 62:10 are currently reserved for future implementations and unused.  Bit 63
+    // is unused for our implementation as we do not utilize
+    // compressed XSAVE areas.  Bits 9..8 are currently ignored as we do not use
+    // the functionality for PKRU state and MSR tracing.
+    // Ergo we are primarily concerned with bits 7..0, which define
+    // which ISA extensions and features are enabled for a given machine and are
+    // defined in XemXcr0Eax and is used to program XSAVE area
+    // for saving the required registers as defined in XCR0.
+    int xcr0_edx = VM_Version::get_xsave_header_upper_segment();
+    int xcr0_eax = VM_Version::get_xsave_header_lower_segment();
+    movl(rdx,xcr0_edx);
+    movl(rax,xcr0_eax);
+    xsave(Address(rsp, wordSize*2));
+    // now Apply control bits and clear bytes 8..23 in the header
+    pop(rdx);
+    pop(rax);
+    movl(Address(rsp, XSTATE_BV), xcr0_eax);
+    movl(Address(rsp, XSTATE_BV+4), xcr0_edx);
+    andq(Address(rsp, XSTATE_BV+8), 0);
+    andq(Address(rsp, XSTATE_BV+16), 0);
+  } else {
+    fxsave(Address(rsp, 0));
+  }
 #endif // LP64
 }
 
@@ -4082,6 +4141,84 @@
   }
 }
 
+void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  int nds_enc = nds->encoding();
+  int dst_enc = dst->encoding();
+  bool dst_upper_bank = (dst_enc > 15);
+  bool nds_upper_bank = (nds_enc > 15);
+  if (VM_Version::supports_avx512novl() &&
+      (nds_upper_bank || dst_upper_bank)) {
+    if (dst_upper_bank) {
+      subptr(rsp, 64);
+      evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+      movflt(xmm0, nds);
+      if (reachable(src)) {
+        vxorps(xmm0, xmm0, as_Address(src), Assembler::AVX_128bit);
+      } else {
+        lea(rscratch1, src);
+        vxorps(xmm0, xmm0, Address(rscratch1, 0), Assembler::AVX_128bit);
+      }
+      movflt(dst, xmm0);
+      evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+      addptr(rsp, 64);
+    } else {
+      movflt(dst, nds);
+      if (reachable(src)) {
+        vxorps(dst, dst, as_Address(src), Assembler::AVX_128bit);
+      } else {
+        lea(rscratch1, src);
+        vxorps(dst, dst, Address(rscratch1, 0), Assembler::AVX_128bit);
+      }
+    }
+  } else {
+    if (reachable(src)) {
+      vxorps(dst, nds, as_Address(src), Assembler::AVX_128bit);
+    } else {
+      lea(rscratch1, src);
+      vxorps(dst, nds, Address(rscratch1, 0), Assembler::AVX_128bit);
+    }
+  }
+}
+
+void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
+  int nds_enc = nds->encoding();
+  int dst_enc = dst->encoding();
+  bool dst_upper_bank = (dst_enc > 15);
+  bool nds_upper_bank = (nds_enc > 15);
+  if (VM_Version::supports_avx512novl() &&
+      (nds_upper_bank || dst_upper_bank)) {
+    if (dst_upper_bank) {
+      subptr(rsp, 64);
+      evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
+      movdbl(xmm0, nds);
+      if (reachable(src)) {
+        vxorps(xmm0, xmm0, as_Address(src), Assembler::AVX_128bit);
+      } else {
+        lea(rscratch1, src);
+        vxorps(xmm0, xmm0, Address(rscratch1, 0), Assembler::AVX_128bit);
+      }
+      movdbl(dst, xmm0);
+      evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
+      addptr(rsp, 64);
+    } else {
+      movdbl(dst, nds);
+      if (reachable(src)) {
+        vxorps(dst, dst, as_Address(src), Assembler::AVX_128bit);
+      } else {
+        lea(rscratch1, src);
+        vxorps(dst, dst, Address(rscratch1, 0), Assembler::AVX_128bit);
+      }
+    }
+  } else {
+    if (reachable(src)) {
+      vxorpd(dst, nds, as_Address(src), Assembler::AVX_128bit);
+    } else {
+      lea(rscratch1, src);
+      vxorpd(dst, nds, Address(rscratch1, 0), Assembler::AVX_128bit);
+    }
+  }
+}
+
 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
   if (reachable(src)) {
     vxorpd(dst, nds, as_Address(src), vector_len);
@@ -4318,7 +4455,6 @@
 void MacroAssembler::store_check(Register obj) {
   // Does a store check for the oop in register obj. The content of
   // register obj is destroyed afterwards.
-
   BarrierSet* bs = Universe::heap()->barrier_set();
   assert(bs->kind() == BarrierSet::CardTableForRS ||
          bs->kind() == BarrierSet::CardTableExtension,
@@ -4572,69 +4708,58 @@
 
   // if we are coming from c1, xmm registers may be live
   int off = 0;
+  int num_xmm_regs = LP64_ONLY(16) NOT_LP64(8);
+  if (UseAVX > 2) {
+    num_xmm_regs = LP64_ONLY(32) NOT_LP64(8);
+  }
+
   if (UseSSE == 1)  {
     subptr(rsp, sizeof(jdouble)*8);
-    movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
-    movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
-    movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
-    movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
-    movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
-    movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
-    movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
-    movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
+    for (int n = 0; n < 8; n++) {
+      movflt(Address(rsp, off++*sizeof(jdouble)), as_XMMRegister(n));
+    }
   } else if (UseSSE >= 2)  {
     if (UseAVX > 2) {
+      push(rbx);
       movl(rbx, 0xffff);
-#ifdef _LP64
-      kmovql(k1, rbx);
-#else
-      kmovdl(k1, rbx);
-#endif
+      kmovwl(k1, rbx);
+      pop(rbx);
     }
 #ifdef COMPILER2
     if (MaxVectorSize > 16) {
-      assert(UseAVX > 0, "256bit vectors are supported only with AVX");
+      if(UseAVX > 2) {
+        // Save upper half of ZMM registes
+        subptr(rsp, 32*num_xmm_regs);
+        for (int n = 0; n < num_xmm_regs; n++) {
+          vextractf64x4h(Address(rsp, off++*32), as_XMMRegister(n));
+        }
+        off = 0;
+      }
+      assert(UseAVX > 0, "256 bit vectors are supported only with AVX");
       // Save upper half of YMM registes
-      subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
-      vextractf128h(Address(rsp,  0),xmm0);
-      vextractf128h(Address(rsp, 16),xmm1);
-      vextractf128h(Address(rsp, 32),xmm2);
-      vextractf128h(Address(rsp, 48),xmm3);
-      vextractf128h(Address(rsp, 64),xmm4);
-      vextractf128h(Address(rsp, 80),xmm5);
-      vextractf128h(Address(rsp, 96),xmm6);
-      vextractf128h(Address(rsp,112),xmm7);
-#ifdef _LP64
-      vextractf128h(Address(rsp,128),xmm8);
-      vextractf128h(Address(rsp,144),xmm9);
-      vextractf128h(Address(rsp,160),xmm10);
-      vextractf128h(Address(rsp,176),xmm11);
-      vextractf128h(Address(rsp,192),xmm12);
-      vextractf128h(Address(rsp,208),xmm13);
-      vextractf128h(Address(rsp,224),xmm14);
-      vextractf128h(Address(rsp,240),xmm15);
-#endif
+      subptr(rsp, 16*num_xmm_regs);
+      for (int n = 0; n < num_xmm_regs; n++) {
+        vextractf128h(Address(rsp, off++*16), as_XMMRegister(n));
+      }
     }
 #endif
-    // Save whole 128bit (16 bytes) XMM regiters
-    subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
-    movdqu(Address(rsp,off++*16),xmm0);
-    movdqu(Address(rsp,off++*16),xmm1);
-    movdqu(Address(rsp,off++*16),xmm2);
-    movdqu(Address(rsp,off++*16),xmm3);
-    movdqu(Address(rsp,off++*16),xmm4);
-    movdqu(Address(rsp,off++*16),xmm5);
-    movdqu(Address(rsp,off++*16),xmm6);
-    movdqu(Address(rsp,off++*16),xmm7);
+    // Save whole 128bit (16 bytes) XMM registers
+    subptr(rsp, 16*num_xmm_regs);
+    off = 0;
 #ifdef _LP64
-    movdqu(Address(rsp,off++*16),xmm8);
-    movdqu(Address(rsp,off++*16),xmm9);
-    movdqu(Address(rsp,off++*16),xmm10);
-    movdqu(Address(rsp,off++*16),xmm11);
-    movdqu(Address(rsp,off++*16),xmm12);
-    movdqu(Address(rsp,off++*16),xmm13);
-    movdqu(Address(rsp,off++*16),xmm14);
-    movdqu(Address(rsp,off++*16),xmm15);
+    if (VM_Version::supports_avx512novl()) {
+      for (int n = 0; n < num_xmm_regs; n++) {
+        vextractf32x4h(Address(rsp, off++*16), as_XMMRegister(n), 0);
+      }
+    } else {
+      for (int n = 0; n < num_xmm_regs; n++) {
+        movdqu(Address(rsp, off++*16), as_XMMRegister(n));
+      }
+    }
+#else
+    for (int n = 0; n < num_xmm_regs; n++) {
+      movdqu(Address(rsp, off++*16), as_XMMRegister(n));
+    }
 #endif
   }
 
@@ -4689,7 +4814,7 @@
   movsd(Address(rsp, 0), xmm0);
   fld_d(Address(rsp, 0));
 #endif // _LP64
-  addptr(rsp, sizeof(jdouble) * nb_args);
+  addptr(rsp, sizeof(jdouble)*nb_args);
   if (num_fpu_regs_in_use > 1) {
     // Must save return value to stack and then restore entire FPU
     // stack except incoming arguments
@@ -4699,63 +4824,50 @@
       addptr(rsp, sizeof(jdouble));
     }
     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
-    addptr(rsp, sizeof(jdouble) * nb_args);
+    addptr(rsp, sizeof(jdouble)*nb_args);
   }
 
   off = 0;
   if (UseSSE == 1)  {
-    movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
-    movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
-    movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
-    movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
-    movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
-    movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
-    movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
-    movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
+    for (int n = 0; n < 8; n++) {
+      movflt(as_XMMRegister(n), Address(rsp, off++*sizeof(jdouble)));
+    }
     addptr(rsp, sizeof(jdouble)*8);
   } else if (UseSSE >= 2)  {
     // Restore whole 128bit (16 bytes) XMM regiters
-    movdqu(xmm0, Address(rsp,off++*16));
-    movdqu(xmm1, Address(rsp,off++*16));
-    movdqu(xmm2, Address(rsp,off++*16));
-    movdqu(xmm3, Address(rsp,off++*16));
-    movdqu(xmm4, Address(rsp,off++*16));
-    movdqu(xmm5, Address(rsp,off++*16));
-    movdqu(xmm6, Address(rsp,off++*16));
-    movdqu(xmm7, Address(rsp,off++*16));
 #ifdef _LP64
-    movdqu(xmm8, Address(rsp,off++*16));
-    movdqu(xmm9, Address(rsp,off++*16));
-    movdqu(xmm10, Address(rsp,off++*16));
-    movdqu(xmm11, Address(rsp,off++*16));
-    movdqu(xmm12, Address(rsp,off++*16));
-    movdqu(xmm13, Address(rsp,off++*16));
-    movdqu(xmm14, Address(rsp,off++*16));
-    movdqu(xmm15, Address(rsp,off++*16));
+    if (VM_Version::supports_avx512novl()) {
+      for (int n = 0; n < num_xmm_regs; n++) {
+        vinsertf32x4h(as_XMMRegister(n), Address(rsp, off++*16), 0);
+      }
+    }
+    else {
+      for (int n = 0; n < num_xmm_regs; n++) {
+        movdqu(as_XMMRegister(n), Address(rsp, off++*16));
+      }
+    }
+#else
+    for (int n = 0; n < num_xmm_regs; n++) {
+      movdqu(as_XMMRegister(n), Address(rsp, off++ * 16));
+    }
 #endif
-    addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
+    addptr(rsp, 16*num_xmm_regs);
+
 #ifdef COMPILER2
     if (MaxVectorSize > 16) {
       // Restore upper half of YMM registes.
-      vinsertf128h(xmm0, Address(rsp,  0));
-      vinsertf128h(xmm1, Address(rsp, 16));
-      vinsertf128h(xmm2, Address(rsp, 32));
-      vinsertf128h(xmm3, Address(rsp, 48));
-      vinsertf128h(xmm4, Address(rsp, 64));
-      vinsertf128h(xmm5, Address(rsp, 80));
-      vinsertf128h(xmm6, Address(rsp, 96));
-      vinsertf128h(xmm7, Address(rsp,112));
-#ifdef _LP64
-      vinsertf128h(xmm8, Address(rsp,128));
-      vinsertf128h(xmm9, Address(rsp,144));
-      vinsertf128h(xmm10, Address(rsp,160));
-      vinsertf128h(xmm11, Address(rsp,176));
-      vinsertf128h(xmm12, Address(rsp,192));
-      vinsertf128h(xmm13, Address(rsp,208));
-      vinsertf128h(xmm14, Address(rsp,224));
-      vinsertf128h(xmm15, Address(rsp,240));
-#endif
-      addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
+      off = 0;
+      for (int n = 0; n < num_xmm_regs; n++) {
+        vinsertf128h(as_XMMRegister(n), Address(rsp, off++*16));
+      }
+      addptr(rsp, 16*num_xmm_regs);
+      if(UseAVX > 2) {
+        off = 0;
+        for (int n = 0; n < num_xmm_regs; n++) {
+          vinsertf64x4h(as_XMMRegister(n), Address(rsp, off++*32));
+        }
+        addptr(rsp, 32*num_xmm_regs);
+      }
     }
 #endif
   }
@@ -7095,11 +7207,7 @@
       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
       if (UseAVX > 2) {
         movl(rtmp, 0xffff);
-#ifdef _LP64
-        kmovql(k1, rtmp);
-#else
-        kmovdl(k1, rtmp);
-#endif
+        kmovwl(k1, rtmp);
       }
       movdl(xtmp, value);
       if (UseAVX > 2 && UseUnalignedLoadStores) {
@@ -7112,7 +7220,7 @@
         align(16);
 
         BIND(L_fill_64_bytes_loop);
-        evmovdqu(Address(to, 0), xtmp, Assembler::AVX_512bit);
+        evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
         addptr(to, 64);
         subl(count, 16 << shift);
         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
@@ -7120,7 +7228,7 @@
         BIND(L_check_fill_32_bytes);
         addl(count, 8 << shift);
         jccb(Assembler::less, L_check_fill_8_bytes);
-        evmovdqu(Address(to, 0), xtmp, Assembler::AVX_256bit);
+        evmovdqul(Address(to, 0), xtmp, Assembler::AVX_256bit);
         addptr(to, 32);
         subl(count, 8 << shift);
 
@@ -8399,6 +8507,14 @@
   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
 
+  // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+  // context for the registers used, where all instructions below are using 128-bit mode
+  // On EVEX without VL and BW, these instructions will all be AVX.
+  if (VM_Version::supports_avx512vlbw()) {
+    movl(tmp, 0xffff);
+    kmovwl(k1, tmp);
+  }
+
   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
   notl(crc); // ~crc
   cmpl(len, 16);
--- a/hotspot/src/cpu/x86/vm/macroAssembler_x86.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/macroAssembler_x86.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -1069,6 +1069,9 @@
   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
 
+  void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+  void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
+
   // AVX Vector instructions
 
   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
--- a/hotspot/src/cpu/x86/vm/sharedRuntime_x86_32.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/sharedRuntime_x86_32.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -115,6 +115,7 @@
 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
                                            int* total_frame_words, bool verify_fpu, bool save_vectors) {
   int vect_words = 0;
+  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 #ifdef COMPILER2
   if (save_vectors) {
     assert(UseAVX > 0, "512bit vectors are supported only with EVEX");
@@ -173,59 +174,50 @@
     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   }
 
+  int off = st0_off;
+  int delta = st1_off - off;
+
   // Save the FPU registers in de-opt-able form
-
-  __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
-  __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
-  __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
-  __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
-  __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
-  __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
-  __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
-  __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
-
-  if( UseSSE == 1 ) {           // Save the XMM state
-    __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
-    __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
-    __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
-    __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
-    __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
-    __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
-    __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
-    __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
-  } else if( UseSSE >= 2 ) {
+  for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
+    __ fstp_d(Address(rsp, off*wordSize));
+    off += delta;
+  }
+
+  off = xmm0_off;
+  delta = xmm1_off - off;
+  if(UseSSE == 1) {           // Save the XMM state
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ movflt(Address(rsp, off*wordSize), as_XMMRegister(n));
+      off += delta;
+    }
+  } else if(UseSSE >= 2) {
     // Save whole 128bit (16 bytes) XMM regiters
-    __ movdqu(Address(rsp,xmm0_off*wordSize),xmm0);
-    __ movdqu(Address(rsp,xmm1_off*wordSize),xmm1);
-    __ movdqu(Address(rsp,xmm2_off*wordSize),xmm2);
-    __ movdqu(Address(rsp,xmm3_off*wordSize),xmm3);
-    __ movdqu(Address(rsp,xmm4_off*wordSize),xmm4);
-    __ movdqu(Address(rsp,xmm5_off*wordSize),xmm5);
-    __ movdqu(Address(rsp,xmm6_off*wordSize),xmm6);
-    __ movdqu(Address(rsp,xmm7_off*wordSize),xmm7);
+    if (VM_Version::supports_avx512novl()) {
+      for (int n = 0; n < num_xmm_regs; n++) {
+        __ vextractf32x4h(Address(rsp, off*wordSize), as_XMMRegister(n), 0);
+        off += delta;
+      }
+    } else {
+      for (int n = 0; n < num_xmm_regs; n++) {
+        __ movdqu(Address(rsp, off*wordSize), as_XMMRegister(n));
+        off += delta;
+      }
+    }
   }
 
   if (vect_words > 0) {
     assert(vect_words*wordSize == 128, "");
     __ subptr(rsp, 128); // Save upper half of YMM registes
-    __ vextractf128h(Address(rsp,  0),xmm0);
-    __ vextractf128h(Address(rsp, 16),xmm1);
-    __ vextractf128h(Address(rsp, 32),xmm2);
-    __ vextractf128h(Address(rsp, 48),xmm3);
-    __ vextractf128h(Address(rsp, 64),xmm4);
-    __ vextractf128h(Address(rsp, 80),xmm5);
-    __ vextractf128h(Address(rsp, 96),xmm6);
-    __ vextractf128h(Address(rsp,112),xmm7);
+    off = 0;
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ vextractf128h(Address(rsp, off++*16), as_XMMRegister(n));
+    }
     if (UseAVX > 2) {
       __ subptr(rsp, 256); // Save upper half of ZMM registes
-      __ vextractf64x4h(Address(rsp, 0), xmm0);
-      __ vextractf64x4h(Address(rsp, 32), xmm1);
-      __ vextractf64x4h(Address(rsp, 64), xmm2);
-      __ vextractf64x4h(Address(rsp, 96), xmm3);
-      __ vextractf64x4h(Address(rsp, 128), xmm4);
-      __ vextractf64x4h(Address(rsp, 160), xmm5);
-      __ vextractf64x4h(Address(rsp, 192), xmm6);
-      __ vextractf64x4h(Address(rsp, 224), xmm7);
+      off = 0;
+      for (int n = 0; n < num_xmm_regs; n++) {
+        __ vextractf64x4h(Address(rsp, off++*32), as_XMMRegister(n));
+      }
     }
   }
 
@@ -238,58 +230,40 @@
   OopMap* map =  new OopMap( frame_words, 0 );
 
 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
-
-  map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
+#define NEXTREG(x) (x)->as_VMReg()->next()
+
+  map->set_callee_saved(STACK_OFFSET(rax_off), rax->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(rcx_off), rcx->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(rdx_off), rdx->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(rbx_off), rbx->as_VMReg());
   // rbp, location is known implicitly, no oopMap
-  map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
-  // %%% This is really a waste but we'll keep things as they were for now
-  if (true) {
-#define NEXTREG(x) (x)->as_VMReg()->next()
-    map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
-    map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
-    map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
-    map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
-    map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
-    map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
-    map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
-    map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
-    map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
-    map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
-    map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
-    map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
-    map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
-    map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
-    map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
-    map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
+  map->set_callee_saved(STACK_OFFSET(rsi_off), rsi->as_VMReg());
+  map->set_callee_saved(STACK_OFFSET(rdi_off), rdi->as_VMReg());
+  // %%% This is really a waste but we'll keep things as they were for now for the upper component
+  off = st0_off;
+  delta = st1_off - off;
+  for (int n = 0; n < FloatRegisterImpl::number_of_registers; n++) {
+    FloatRegister freg_name = as_FloatRegister(n);
+    map->set_callee_saved(STACK_OFFSET(off), freg_name->as_VMReg());
+    map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(freg_name));
+    off += delta;
+  }
+  off = xmm0_off;
+  delta = xmm1_off - off;
+  for (int n = 0; n < num_xmm_regs; n++) {
+    XMMRegister xmm_name = as_XMMRegister(n);
+    map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
+    map->set_callee_saved(STACK_OFFSET(off+1), NEXTREG(xmm_name));
+    off += delta;
+  }
 #undef NEXTREG
 #undef STACK_OFFSET
-  }
 
   return map;
-
 }
 
 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
+  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
   // Recover XMM & FPU state
   int additional_frame_bytes = 0;
 #ifdef COMPILER2
@@ -301,52 +275,43 @@
 #else
   assert(!restore_vectors, "vectors are generated only by C2");
 #endif
+  int off = xmm0_off;
+  int delta = xmm1_off - off;
+
   if (UseSSE == 1) {
     assert(additional_frame_bytes == 0, "");
-    __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
-    __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
-    __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
-    __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
-    __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
-    __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
-    __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
-    __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ movflt(as_XMMRegister(n), Address(rsp, off*wordSize));
+      off += delta;
+    }
   } else if (UseSSE >= 2) {
-#define STACK_ADDRESS(x) Address(rsp,(x)*wordSize + additional_frame_bytes)
-    __ movdqu(xmm0,STACK_ADDRESS(xmm0_off));
-    __ movdqu(xmm1,STACK_ADDRESS(xmm1_off));
-    __ movdqu(xmm2,STACK_ADDRESS(xmm2_off));
-    __ movdqu(xmm3,STACK_ADDRESS(xmm3_off));
-    __ movdqu(xmm4,STACK_ADDRESS(xmm4_off));
-    __ movdqu(xmm5,STACK_ADDRESS(xmm5_off));
-    __ movdqu(xmm6,STACK_ADDRESS(xmm6_off));
-    __ movdqu(xmm7,STACK_ADDRESS(xmm7_off));
-#undef STACK_ADDRESS
+    if (VM_Version::supports_avx512novl()) {
+      for (int n = 0; n < num_xmm_regs; n++) {
+        __ vinsertf32x4h(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes), 0);
+        off += delta;
+      }
+    } else {
+      for (int n = 0; n < num_xmm_regs; n++) {
+        __ movdqu(as_XMMRegister(n), Address(rsp, off*wordSize+additional_frame_bytes));
+        off += delta;
+      }
+    }
   }
   if (restore_vectors) {
+    if (UseAVX > 2) {
+      off = 0;
+      for (int n = 0; n < num_xmm_regs; n++) {
+        __ vinsertf64x4h(as_XMMRegister(n), Address(rsp, off++*32));
+      }
+      __ addptr(rsp, additional_frame_bytes*2); // Save upper half of ZMM registes
+    }
     // Restore upper half of YMM registes.
     assert(additional_frame_bytes == 128, "");
-    __ vinsertf128h(xmm0, Address(rsp,  0));
-    __ vinsertf128h(xmm1, Address(rsp, 16));
-    __ vinsertf128h(xmm2, Address(rsp, 32));
-    __ vinsertf128h(xmm3, Address(rsp, 48));
-    __ vinsertf128h(xmm4, Address(rsp, 64));
-    __ vinsertf128h(xmm5, Address(rsp, 80));
-    __ vinsertf128h(xmm6, Address(rsp, 96));
-    __ vinsertf128h(xmm7, Address(rsp,112));
-    __ addptr(rsp, additional_frame_bytes);
-    if (UseAVX > 2) {
-      additional_frame_bytes = 256;
-      __ vinsertf64x4h(xmm0, Address(rsp, 0));
-      __ vinsertf64x4h(xmm1, Address(rsp, 32));
-      __ vinsertf64x4h(xmm2, Address(rsp, 64));
-      __ vinsertf64x4h(xmm3, Address(rsp, 96));
-      __ vinsertf64x4h(xmm4, Address(rsp, 128));
-      __ vinsertf64x4h(xmm5, Address(rsp, 160));
-      __ vinsertf64x4h(xmm6, Address(rsp, 192));
-      __ vinsertf64x4h(xmm7, Address(rsp, 224));
-      __ addptr(rsp, additional_frame_bytes);
+    off = 0;
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ vinsertf128h(as_XMMRegister(n), Address(rsp, off++*16));
     }
+    __ addptr(rsp, additional_frame_bytes); // Save upper half of YMM registes
   }
   __ pop_FPU_state();
   __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
--- a/hotspot/src/cpu/x86/vm/sharedRuntime_x86_64.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/sharedRuntime_x86_64.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -69,7 +69,9 @@
 class RegisterSaver {
   // Capture info about frame layout.  Layout offsets are in jint
   // units because compiler frame slots are jints.
+#define HALF_ZMM_BANK_WORDS 128
 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
+#define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
   enum layout {
     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
@@ -89,23 +91,24 @@
     DEF_XMM_OFFS(13),
     DEF_XMM_OFFS(14),
     DEF_XMM_OFFS(15),
-    DEF_XMM_OFFS(16),
-    DEF_XMM_OFFS(17),
-    DEF_XMM_OFFS(18),
-    DEF_XMM_OFFS(19),
-    DEF_XMM_OFFS(20),
-    DEF_XMM_OFFS(21),
-    DEF_XMM_OFFS(22),
-    DEF_XMM_OFFS(23),
-    DEF_XMM_OFFS(24),
-    DEF_XMM_OFFS(25),
-    DEF_XMM_OFFS(26),
-    DEF_XMM_OFFS(27),
-    DEF_XMM_OFFS(28),
-    DEF_XMM_OFFS(29),
-    DEF_XMM_OFFS(30),
-    DEF_XMM_OFFS(31),
-    fpu_state_end = fpu_state_off + ((FPUStateSizeInWords - 1)*wordSize / BytesPerInt),
+    zmm_off = fpu_state_off + ((FPUStateSizeInWords - (HALF_ZMM_BANK_WORDS + 1))*wordSize / BytesPerInt),
+    DEF_ZMM_OFFS(16),
+    DEF_ZMM_OFFS(17),
+    DEF_ZMM_OFFS(18),
+    DEF_ZMM_OFFS(19),
+    DEF_ZMM_OFFS(20),
+    DEF_ZMM_OFFS(21),
+    DEF_ZMM_OFFS(22),
+    DEF_ZMM_OFFS(23),
+    DEF_ZMM_OFFS(24),
+    DEF_ZMM_OFFS(25),
+    DEF_ZMM_OFFS(26),
+    DEF_ZMM_OFFS(27),
+    DEF_ZMM_OFFS(28),
+    DEF_ZMM_OFFS(29),
+    DEF_ZMM_OFFS(30),
+    DEF_ZMM_OFFS(31),
+    fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
     fpu_stateH_end,
     r15_off, r15H_off,
     r14_off, r14H_off,
@@ -155,9 +158,10 @@
 
 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
   int vect_words = 0;
-  int num_xmm_regs = 16;
-  if (UseAVX > 2) {
-    num_xmm_regs = 32;
+  int off = 0;
+  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
+  if (UseAVX < 3) {
+    num_xmm_regs = num_xmm_regs/2;
   }
 #ifdef COMPILER2
   if (save_vectors) {
@@ -165,9 +169,7 @@
     assert(MaxVectorSize == 64, "only 512bit vectors are supported now");
     // Save upper half of YMM registers
     vect_words = 16 * num_xmm_regs / wordSize;
-    additional_frame_words += vect_words;
-    if (UseAVX > 2) {
-      // Save upper half of ZMM registers as well
+    if (UseAVX < 3) {
       additional_frame_words += vect_words;
     }
   }
@@ -195,77 +197,13 @@
   __ enter();          // rsp becomes 16-byte aligned here
   __ push_CPU_state(); // Push a multiple of 16 bytes
 
-  if (vect_words > 0) {
+  // push cpu state handles this on EVEX enabled targets
+  if ((vect_words > 0) && (UseAVX < 3)) {
     assert(vect_words*wordSize >= 256, "");
-    __ subptr(rsp, 256); // Save upper half of YMM registes(0..15)
-    __ vextractf128h(Address(rsp, 0), xmm0);
-    __ vextractf128h(Address(rsp, 16), xmm1);
-    __ vextractf128h(Address(rsp, 32), xmm2);
-    __ vextractf128h(Address(rsp, 48), xmm3);
-    __ vextractf128h(Address(rsp, 64), xmm4);
-    __ vextractf128h(Address(rsp, 80), xmm5);
-    __ vextractf128h(Address(rsp, 96), xmm6);
-    __ vextractf128h(Address(rsp, 112), xmm7);
-    __ vextractf128h(Address(rsp, 128), xmm8);
-    __ vextractf128h(Address(rsp, 144), xmm9);
-    __ vextractf128h(Address(rsp, 160), xmm10);
-    __ vextractf128h(Address(rsp, 176), xmm11);
-    __ vextractf128h(Address(rsp, 192), xmm12);
-    __ vextractf128h(Address(rsp, 208), xmm13);
-    __ vextractf128h(Address(rsp, 224), xmm14);
-    __ vextractf128h(Address(rsp, 240), xmm15);
-    if (UseAVX > 2) {
-      __ subptr(rsp, 256); // Save upper half of YMM registes(16..31)
-      __ vextractf128h(Address(rsp, 0), xmm16);
-      __ vextractf128h(Address(rsp, 16), xmm17);
-      __ vextractf128h(Address(rsp, 32), xmm18);
-      __ vextractf128h(Address(rsp, 48), xmm19);
-      __ vextractf128h(Address(rsp, 64), xmm20);
-      __ vextractf128h(Address(rsp, 80), xmm21);
-      __ vextractf128h(Address(rsp, 96), xmm22);
-      __ vextractf128h(Address(rsp, 112), xmm23);
-      __ vextractf128h(Address(rsp, 128), xmm24);
-      __ vextractf128h(Address(rsp, 144), xmm25);
-      __ vextractf128h(Address(rsp, 160), xmm26);
-      __ vextractf128h(Address(rsp, 176), xmm27);
-      __ vextractf128h(Address(rsp, 192), xmm28);
-      __ vextractf128h(Address(rsp, 208), xmm29);
-      __ vextractf128h(Address(rsp, 224), xmm30);
-      __ vextractf128h(Address(rsp, 240), xmm31);
-      // Now handle the ZMM registers (0..31)
-      __ subptr(rsp, 1024); // Save upper half of ZMM registes
-      __ vextractf64x4h(Address(rsp, 0), xmm0);
-      __ vextractf64x4h(Address(rsp, 32), xmm1);
-      __ vextractf64x4h(Address(rsp, 64), xmm2);
-      __ vextractf64x4h(Address(rsp, 96), xmm3);
-      __ vextractf64x4h(Address(rsp, 128), xmm4);
-      __ vextractf64x4h(Address(rsp, 160), xmm5);
-      __ vextractf64x4h(Address(rsp, 192), xmm6);
-      __ vextractf64x4h(Address(rsp, 224), xmm7);
-      __ vextractf64x4h(Address(rsp, 256), xmm8);
-      __ vextractf64x4h(Address(rsp, 288), xmm9);
-      __ vextractf64x4h(Address(rsp, 320), xmm10);
-      __ vextractf64x4h(Address(rsp, 352), xmm11);
-      __ vextractf64x4h(Address(rsp, 384), xmm12);
-      __ vextractf64x4h(Address(rsp, 416), xmm13);
-      __ vextractf64x4h(Address(rsp, 448), xmm14);
-      __ vextractf64x4h(Address(rsp, 480), xmm15);
-      __ vextractf64x4h(Address(rsp, 512), xmm16);
-      __ vextractf64x4h(Address(rsp, 544), xmm17);
-      __ vextractf64x4h(Address(rsp, 576), xmm18);
-      __ vextractf64x4h(Address(rsp, 608), xmm19);
-      __ vextractf64x4h(Address(rsp, 640), xmm20);
-      __ vextractf64x4h(Address(rsp, 672), xmm21);
-      __ vextractf64x4h(Address(rsp, 704), xmm22);
-      __ vextractf64x4h(Address(rsp, 736), xmm23);
-      __ vextractf64x4h(Address(rsp, 768), xmm24);
-      __ vextractf64x4h(Address(rsp, 800), xmm25);
-      __ vextractf64x4h(Address(rsp, 832), xmm26);
-      __ vextractf64x4h(Address(rsp, 864), xmm27);
-      __ vextractf64x4h(Address(rsp, 896), xmm28);
-      __ vextractf64x4h(Address(rsp, 928), xmm29);
-      __ vextractf64x4h(Address(rsp, 960), xmm30);
-      __ vextractf64x4h(Address(rsp, 992), xmm31);
+    // Save upper half of YMM registes(0..num_xmm_regs)
+    __ subptr(rsp, num_xmm_regs*16);
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ vextractf128h(Address(rsp, off++*16), as_XMMRegister(n));
     }
   }
   if (frame::arg_reg_save_area_bytes != 0) {
@@ -299,39 +237,24 @@
   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
-  map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
-  if (UseAVX > 2) {
-    map->set_callee_saved(STACK_OFFSET(xmm16_off), xmm16->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm17_off), xmm17->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm18_off), xmm18->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm19_off), xmm19->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm20_off), xmm20->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm21_off), xmm21->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm22_off), xmm22->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm23_off), xmm23->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm24_off), xmm24->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm25_off), xmm25->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm26_off), xmm26->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm27_off), xmm27->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm28_off), xmm28->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm29_off), xmm29->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm30_off), xmm30->as_VMReg());
-    map->set_callee_saved(STACK_OFFSET(xmm31_off), xmm31->as_VMReg());
+  // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
+  // on EVEX enabled targets, we get it included in the xsave area
+  off = xmm0_off;
+  int delta = xmm1_off - off;
+  for (int n = 0; n < 16; n++) {
+    XMMRegister xmm_name = as_XMMRegister(n);
+    map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
+    off += delta;
+  }
+  if(UseAVX > 2) {
+    // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
+    off = zmm16_off;
+    delta = zmm17_off - off;
+    for (int n = 16; n < num_xmm_regs; n++) {
+      XMMRegister xmm_name = as_XMMRegister(n);
+      map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
+      off += delta;
+    }
   }
 
   // %%% These should all be a waste but we'll keep things as they were for now
@@ -351,39 +274,24 @@
     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
-    map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
+    // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
+    // on EVEX enabled targets, we get it included in the xsave area
+    off = xmm0H_off;
+    delta = xmm1H_off - off;
+    for (int n = 0; n < 16; n++) {
+      XMMRegister xmm_name = as_XMMRegister(n);
+      map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
+      off += delta;
+    }
     if (UseAVX > 2) {
-      map->set_callee_saved(STACK_OFFSET(xmm16H_off), xmm16->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm17H_off), xmm17->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm18H_off), xmm18->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm19H_off), xmm19->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm20H_off), xmm20->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm21H_off), xmm21->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm22H_off), xmm22->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm23H_off), xmm23->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm24H_off), xmm24->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm25H_off), xmm25->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm26H_off), xmm26->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm27H_off), xmm27->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm28H_off), xmm28->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm29H_off), xmm29->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm30H_off), xmm30->as_VMReg()->next());
-      map->set_callee_saved(STACK_OFFSET(xmm31H_off), xmm31->as_VMReg()->next());
+      // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
+      off = zmm16H_off;
+      delta = zmm17H_off - off;
+      for (int n = 16; n < num_xmm_regs; n++) {
+        XMMRegister xmm_name = as_XMMRegister(n);
+        map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
+        off += delta;
+      }
     }
   }
 
@@ -391,86 +299,25 @@
 }
 
 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
+  int num_xmm_regs = XMMRegisterImpl::number_of_registers;
+  if (UseAVX < 3) {
+    num_xmm_regs = num_xmm_regs/2;
+  }
   if (frame::arg_reg_save_area_bytes != 0) {
     // Pop arg register save area
     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   }
 #ifdef COMPILER2
-  if (restore_vectors) {
-    // Restore upper half of YMM registes (0..15)
-    assert(UseAVX > 0, "512bit vectors are supported only with AVX");
-    assert(MaxVectorSize == 64, "only 512bit vectors are supported now");
-    __ vinsertf128h(xmm0, Address(rsp,  0));
-    __ vinsertf128h(xmm1, Address(rsp, 16));
-    __ vinsertf128h(xmm2, Address(rsp, 32));
-    __ vinsertf128h(xmm3, Address(rsp, 48));
-    __ vinsertf128h(xmm4, Address(rsp, 64));
-    __ vinsertf128h(xmm5, Address(rsp, 80));
-    __ vinsertf128h(xmm6, Address(rsp, 96));
-    __ vinsertf128h(xmm7, Address(rsp,112));
-    __ vinsertf128h(xmm8, Address(rsp,128));
-    __ vinsertf128h(xmm9, Address(rsp,144));
-    __ vinsertf128h(xmm10, Address(rsp,160));
-    __ vinsertf128h(xmm11, Address(rsp,176));
-    __ vinsertf128h(xmm12, Address(rsp,192));
-    __ vinsertf128h(xmm13, Address(rsp,208));
-    __ vinsertf128h(xmm14, Address(rsp,224));
-    __ vinsertf128h(xmm15, Address(rsp,240));
-    __ addptr(rsp, 256);
-    if (UseAVX > 2) {
-      // Restore upper half of YMM registes (16..31)
-      __ vinsertf128h(xmm16, Address(rsp,  0));
-      __ vinsertf128h(xmm17, Address(rsp, 16));
-      __ vinsertf128h(xmm18, Address(rsp, 32));
-      __ vinsertf128h(xmm19, Address(rsp, 48));
-      __ vinsertf128h(xmm20, Address(rsp, 64));
-      __ vinsertf128h(xmm21, Address(rsp, 80));
-      __ vinsertf128h(xmm22, Address(rsp, 96));
-      __ vinsertf128h(xmm23, Address(rsp,112));
-      __ vinsertf128h(xmm24, Address(rsp,128));
-      __ vinsertf128h(xmm25, Address(rsp,144));
-      __ vinsertf128h(xmm26, Address(rsp,160));
-      __ vinsertf128h(xmm27, Address(rsp,176));
-      __ vinsertf128h(xmm28, Address(rsp,192));
-      __ vinsertf128h(xmm29, Address(rsp,208));
-      __ vinsertf128h(xmm30, Address(rsp,224));
-      __ vinsertf128h(xmm31, Address(rsp,240));
-      __ addptr(rsp, 256);
-      // Restore upper half of ZMM registes.
-      __ vinsertf64x4h(xmm0, Address(rsp, 0));
-      __ vinsertf64x4h(xmm1, Address(rsp, 32));
-      __ vinsertf64x4h(xmm2, Address(rsp, 64));
-      __ vinsertf64x4h(xmm3, Address(rsp, 96));
-      __ vinsertf64x4h(xmm4, Address(rsp, 128));
-      __ vinsertf64x4h(xmm5, Address(rsp, 160));
-      __ vinsertf64x4h(xmm6, Address(rsp, 192));
-      __ vinsertf64x4h(xmm7, Address(rsp, 224));
-      __ vinsertf64x4h(xmm8, Address(rsp, 256));
-      __ vinsertf64x4h(xmm9, Address(rsp, 288));
-      __ vinsertf64x4h(xmm10, Address(rsp, 320));
-      __ vinsertf64x4h(xmm11, Address(rsp, 352));
-      __ vinsertf64x4h(xmm12, Address(rsp, 384));
-      __ vinsertf64x4h(xmm13, Address(rsp, 416));
-      __ vinsertf64x4h(xmm14, Address(rsp, 448));
-      __ vinsertf64x4h(xmm15, Address(rsp, 480));
-      __ vinsertf64x4h(xmm16, Address(rsp, 512));
-      __ vinsertf64x4h(xmm17, Address(rsp, 544));
-      __ vinsertf64x4h(xmm18, Address(rsp, 576));
-      __ vinsertf64x4h(xmm19, Address(rsp, 608));
-      __ vinsertf64x4h(xmm20, Address(rsp, 640));
-      __ vinsertf64x4h(xmm21, Address(rsp, 672));
-      __ vinsertf64x4h(xmm22, Address(rsp, 704));
-      __ vinsertf64x4h(xmm23, Address(rsp, 736));
-      __ vinsertf64x4h(xmm24, Address(rsp, 768));
-      __ vinsertf64x4h(xmm25, Address(rsp, 800));
-      __ vinsertf64x4h(xmm26, Address(rsp, 832));
-      __ vinsertf64x4h(xmm27, Address(rsp, 864));
-      __ vinsertf64x4h(xmm28, Address(rsp, 896));
-      __ vinsertf64x4h(xmm29, Address(rsp, 928));
-      __ vinsertf64x4h(xmm30, Address(rsp, 960));
-      __ vinsertf64x4h(xmm31, Address(rsp, 992));
-      __ addptr(rsp, 1024);
+  // On EVEX enabled targets everything is handled in pop fpu state
+  if ((restore_vectors) && (UseAVX < 3)) {
+    assert(UseAVX > 0, "256/512-bit vectors are supported only with AVX");
+    assert(MaxVectorSize == 64, "up to 512bit vectors are supported now");
+    int off = 0;
+    // Restore upper half of YMM registes (0..num_xmm_regs)
+    for (int n = 0; n < num_xmm_regs; n++) {
+      __ vinsertf128h(as_XMMRegister(n), Address(rsp,  off++*16));
     }
+    __ addptr(rsp, num_xmm_regs*16);
   }
 #else
   assert(!restore_vectors, "vectors are generated only by C2");
--- a/hotspot/src/cpu/x86/vm/stubGenerator_x86_32.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/stubGenerator_x86_32.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -795,6 +795,12 @@
   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
     assert( UseSSE >= 2, "supported cpu only" );
     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
+    if (UseAVX > 2) {
+      __ push(rbx);
+      __ movl(rbx, 0xffff);
+      __ kmovdl(k1, rbx);
+      __ pop(rbx);
+    }
     // Copy 64-byte chunks
     __ jmpb(L_copy_64_bytes);
     __ align(OptoLoopAlignment);
@@ -802,8 +808,8 @@
 
     if (UseUnalignedLoadStores) {
       if (UseAVX > 2) {
-        __ evmovdqu(xmm0, Address(from, 0), Assembler::AVX_512bit);
-        __ evmovdqu(Address(from, to_from, Address::times_1, 0), xmm0, Assembler::AVX_512bit);
+        __ evmovdqul(xmm0, Address(from, 0), Assembler::AVX_512bit);
+        __ evmovdqul(Address(from, to_from, Address::times_1, 0), xmm0, Assembler::AVX_512bit);
       } else if (UseAVX == 2) {
         __ vmovdqu(xmm0, Address(from,  0));
         __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
@@ -2217,6 +2223,15 @@
     const XMMRegister xmm_temp4  = xmm5;
 
     __ enter();   // required for proper stackwalking of RuntimeStub frame
+
+    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+    // context for the registers used, where all instructions below are using 128-bit mode
+    // On EVEX without VL and BW, these instructions will all be AVX.
+    if (VM_Version::supports_avx512vlbw()) {
+      __ movl(rdx, 0xffff);
+      __ kmovdl(k1, rdx);
+    }
+
     __ movptr(from, from_param);
     __ movptr(key, key_param);
 
@@ -2315,6 +2330,15 @@
     const XMMRegister xmm_temp4  = xmm5;
 
     __ enter(); // required for proper stackwalking of RuntimeStub frame
+
+    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+    // context for the registers used, where all instructions below are using 128-bit mode
+    // On EVEX without VL and BW, these instructions will all be AVX.
+    if (VM_Version::supports_avx512vlbw()) {
+      __ movl(rdx, 0xffff);
+      __ kmovdl(k1, rdx);
+    }
+
     __ movptr(from, from_param);
     __ movptr(key, key_param);
 
@@ -2441,6 +2465,14 @@
     __ enter(); // required for proper stackwalking of RuntimeStub frame
     handleSOERegisters(true /*saving*/);
 
+    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+    // context for the registers used, where all instructions below are using 128-bit mode
+    // On EVEX without VL and BW, these instructions will all be AVX.
+    if (VM_Version::supports_avx512vlbw()) {
+      __ movl(rdx, 0xffff);
+      __ kmovdl(k1, rdx);
+    }
+
     // load registers from incoming parameters
     const Address  from_param(rbp, 8+0);
     const Address  to_param  (rbp, 8+4);
@@ -2602,6 +2634,14 @@
     __ enter(); // required for proper stackwalking of RuntimeStub frame
     handleSOERegisters(true /*saving*/);
 
+    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+    // context for the registers used, where all instructions below are using 128-bit mode
+    // On EVEX without VL and BW, these instructions will all be AVX.
+    if (VM_Version::supports_avx512vlbw()) {
+      __ movl(rdx, 0xffff);
+      __ kmovdl(k1, rdx);
+    }
+
     // load registers from incoming parameters
     const Address  from_param(rbp, 8+0);
     const Address  to_param  (rbp, 8+4);
@@ -2782,6 +2822,14 @@
     __ enter();
     handleSOERegisters(true);  // Save registers
 
+    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+    // context for the registers used, where all instructions below are using 128-bit mode
+    // On EVEX without VL and BW, these instructions will all be AVX.
+    if (VM_Version::supports_avx512vlbw()) {
+      __ movl(rdx, 0xffff);
+      __ kmovdl(k1, rdx);
+    }
+
     __ movptr(state, state_param);
     __ movptr(subkeyH, subkeyH_param);
     __ movptr(data, data_param);
--- a/hotspot/src/cpu/x86/vm/stubGenerator_x86_64.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/stubGenerator_x86_64.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -269,12 +269,16 @@
       __ kmovql(k1, rbx);
     }
 #ifdef _WIN64
+    int last_reg = 15;
     if (UseAVX > 2) {
-      for (int i = 6; i <= 31; i++) {
-        __ movdqu(xmm_save(i), as_XMMRegister(i));
+      last_reg = 31;
+    }
+    if (VM_Version::supports_avx512novl()) {
+      for (int i = xmm_save_first; i <= last_reg; i++) {
+        __ vextractf32x4h(xmm_save(i), as_XMMRegister(i), 0);
       }
     } else {
-      for (int i = 6; i <= 15; i++) {
+      for (int i = xmm_save_first; i <= last_reg; i++) {
         __ movdqu(xmm_save(i), as_XMMRegister(i));
       }
     }
@@ -386,13 +390,15 @@
 
     // restore regs belonging to calling function
 #ifdef _WIN64
-    int xmm_ub = 15;
-    if (UseAVX > 2) {
-      xmm_ub = 31;
-    }
     // emit the restores for xmm regs
-    for (int i = 6; i <= xmm_ub; i++) {
-      __ movdqu(as_XMMRegister(i), xmm_save(i));
+    if (VM_Version::supports_avx512novl()) {
+      for (int i = xmm_save_first; i <= last_reg; i++) {
+        __ vinsertf32x4h(as_XMMRegister(i), xmm_save(i), 0);
+      }
+    } else {
+      for (int i = xmm_save_first; i <= last_reg; i++) {
+        __ movdqu(as_XMMRegister(i), xmm_save(i));
+      }
     }
 #endif
     __ movptr(r15, r15_save);
@@ -1342,11 +1348,15 @@
     __ align(OptoLoopAlignment);
     if (UseUnalignedLoadStores) {
       Label L_end;
+      if (UseAVX > 2) {
+        __ movl(to, 0xffff);
+        __ kmovql(k1, to);
+      }
       // Copy 64-bytes per iteration
       __ BIND(L_loop);
       if (UseAVX > 2) {
-        __ evmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56), Assembler::AVX_512bit);
-        __ evmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0, Assembler::AVX_512bit);
+        __ evmovdqul(xmm0, Address(end_from, qword_count, Address::times_8, -56), Assembler::AVX_512bit);
+        __ evmovdqul(Address(end_to, qword_count, Address::times_8, -56), xmm0, Assembler::AVX_512bit);
       } else if (UseAVX == 2) {
         __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
@@ -1422,11 +1432,15 @@
     __ align(OptoLoopAlignment);
     if (UseUnalignedLoadStores) {
       Label L_end;
+      if (UseAVX > 2) {
+        __ movl(to, 0xffff);
+        __ kmovql(k1, to);
+      }
       // Copy 64-bytes per iteration
       __ BIND(L_loop);
       if (UseAVX > 2) {
-        __ evmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32), Assembler::AVX_512bit);
-        __ evmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0, Assembler::AVX_512bit);
+        __ evmovdqul(xmm0, Address(from, qword_count, Address::times_8, 32), Assembler::AVX_512bit);
+        __ evmovdqul(Address(dest, qword_count, Address::times_8, 32), xmm0, Assembler::AVX_512bit);
       } else if (UseAVX == 2) {
         __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
         __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
@@ -3106,6 +3120,14 @@
 
     __ enter(); // required for proper stackwalking of RuntimeStub frame
 
+    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+    // context for the registers used, where all instructions below are using 128-bit mode
+    // On EVEX without VL and BW, these instructions will all be AVX.
+    if (VM_Version::supports_avx512vlbw()) {
+      __ movl(rax, 0xffff);
+      __ kmovql(k1, rax);
+    }
+
     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
 
@@ -3200,6 +3222,14 @@
 
     __ enter(); // required for proper stackwalking of RuntimeStub frame
 
+    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+    // context for the registers used, where all instructions below are using 128-bit mode
+    // On EVEX without VL and BW, these instructions will all be AVX.
+    if (VM_Version::supports_avx512vlbw()) {
+      __ movl(rax, 0xffff);
+      __ kmovql(k1, rax);
+    }
+
     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
 
@@ -3312,6 +3342,14 @@
 
     __ enter(); // required for proper stackwalking of RuntimeStub frame
 
+    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+    // context for the registers used, where all instructions below are using 128-bit mode
+    // On EVEX without VL and BW, these instructions will all be AVX.
+    if (VM_Version::supports_avx512vlbw()) {
+      __ movl(rax, 0xffff);
+      __ kmovql(k1, rax);
+    }
+
 #ifdef _WIN64
     // on win64, fill len_reg from stack position
     __ movl(len_reg, len_mem);
@@ -3508,6 +3546,14 @@
 
     __ enter(); // required for proper stackwalking of RuntimeStub frame
 
+    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+    // context for the registers used, where all instructions below are using 128-bit mode
+    // On EVEX without VL and BW, these instructions will all be AVX.
+    if (VM_Version::supports_avx512vlbw()) {
+      __ movl(rax, 0xffff);
+      __ kmovql(k1, rax);
+    }
+
 #ifdef _WIN64
     // on win64, fill len_reg from stack position
     __ movl(len_reg, len_mem);
@@ -3746,6 +3792,14 @@
 
     __ enter();
 
+    // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
+    // context for the registers used, where all instructions below are using 128-bit mode
+    // On EVEX without VL and BW, these instructions will all be AVX.
+    if (VM_Version::supports_avx512vlbw()) {
+      __ movl(rax, 0xffff);
+      __ kmovql(k1, rax);
+    }
+
 #ifdef _WIN64
     // save the xmm registers which must be preserved 6-10
     __ subptr(rsp, -rsp_after_call_off * wordSize);
--- a/hotspot/src/cpu/x86/vm/stubRoutines_x86_32.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/stubRoutines_x86_32.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -31,7 +31,7 @@
 
 enum platform_dependent_constants {
   code_size1 =  9000,           // simply increase if too small (assembler will crash if too small)
-  code_size2 = 22000            // simply increase if too small (assembler will crash if too small)
+  code_size2 = 30000            // simply increase if too small (assembler will crash if too small)
 };
 
 class x86 {
--- a/hotspot/src/cpu/x86/vm/stubRoutines_x86_64.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/stubRoutines_x86_64.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -33,7 +33,7 @@
 
 enum platform_dependent_constants {
   code_size1 = 19000,          // simply increase if too small (assembler will crash if too small)
-  code_size2 = 24000           // simply increase if too small (assembler will crash if too small)
+  code_size2 = 32000           // simply increase if too small (assembler will crash if too small)
 };
 
 class x86 {
--- a/hotspot/src/cpu/x86/vm/vm_version_x86.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/vm_version_x86.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -367,16 +367,12 @@
     __ movl(rcx, VM_Version::ymm_test_value());
     __ movdl(xmm0, rcx);
     __ movl(rcx, 0xffff);
+    __ kmovwl(k1, rcx);
+    __ evpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
+    __ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit);
 #ifdef _LP64
-    __ kmovql(k1, rcx);
-#else
-    __ kmovdl(k1, rcx);
-#endif
-    __ evpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit);
-    __ evmovdqu(xmm7, xmm0, Assembler::AVX_512bit);
-#ifdef _LP64
-    __ evmovdqu(xmm8, xmm0, Assembler::AVX_512bit);
-    __ evmovdqu(xmm31, xmm0, Assembler::AVX_512bit);
+    __ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit);
+    __ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit);
 #endif
     VM_Version::clean_cpuFeatures();
     __ jmp(save_restore_except);
@@ -427,11 +423,11 @@
     UseAVX = 3;
     UseSSE = 2;
     __ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset())));
-    __ evmovdqu(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
-    __ evmovdqu(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
+    __ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit);
+    __ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit);
 #ifdef _LP64
-    __ evmovdqu(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
-    __ evmovdqu(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
+    __ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit);
+    __ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit);
 #endif
     VM_Version::clean_cpuFeatures();
     UseAVX = saved_useavx;
--- a/hotspot/src/cpu/x86/vm/vm_version_x86.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/vm_version_x86.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -227,14 +227,15 @@
   union XemXcr0Eax {
     uint32_t value;
     struct {
-      uint32_t x87    : 1,
-               sse    : 1,
-               ymm    : 1,
-                      : 2,
-               opmask : 1,
-               zmm512 : 1,
-                zmm32 : 1,
-                      : 24;
+      uint32_t x87     : 1,
+               sse     : 1,
+               ymm     : 1,
+               bndregs : 1,
+               bndcsr  : 1,
+               opmask  : 1,
+               zmm512  : 1,
+               zmm32   : 1,
+                       : 24;
     } bits;
   };
 
@@ -703,6 +704,7 @@
   static bool supports_avx512bw() { return (_cpuFeatures & CPU_AVX512BW) != 0; }
   static bool supports_avx512vl() { return (_cpuFeatures & CPU_AVX512VL) != 0; }
   static bool supports_avx512vlbw() { return (supports_avx512bw() && supports_avx512vl()); }
+  static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); }
   // Intel features
   static bool is_intel_family_core() { return is_intel() &&
                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
@@ -817,6 +819,12 @@
     intx count = PrefetchFieldsAhead;
     return count >= 0 ? count : 1;
   }
+  static uint32_t get_xsave_header_lower_segment() {
+    return _cpuid_info.xem_xcr0_eax.value;
+  }
+  static uint32_t get_xsave_header_upper_segment() {
+    return _cpuid_info.xem_xcr0_edx;
+  }
 };
 
 #endif // CPU_X86_VM_VM_VERSION_X86_HPP
--- a/hotspot/src/cpu/x86/vm/x86.ad	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/x86.ad	Wed Jul 05 20:51:00 2017 +0200
@@ -1661,46 +1661,55 @@
   if (!has_match_rule(opcode))
     return false;
 
+  bool ret_value = true;
   switch (opcode) {
     case Op_PopCountI:
     case Op_PopCountL:
       if (!UsePopCountInstruction)
-        return false;
-    break;
+        ret_value = false;
+      break;
     case Op_MulVI:
       if ((UseSSE < 4) && (UseAVX < 1)) // only with SSE4_1 or AVX
-        return false;
-    break;
+        ret_value = false;
+      break;
     case Op_MulVL:
     case Op_MulReductionVL:
       if (VM_Version::supports_avx512dq() == false)
-        return false;
+        ret_value = false;
+      break;
     case Op_AddReductionVL:
       if (UseAVX < 3) // only EVEX : vector connectivity becomes an issue here
-        return false;
+        ret_value = false;
+      break;
     case Op_AddReductionVI:
       if (UseSSE < 3) // requires at least SSE3
-        return false;
+        ret_value = false;
+      break;
     case Op_MulReductionVI:
       if (UseSSE < 4) // requires at least SSE4
-        return false;
+        ret_value = false;
+      break;
     case Op_AddReductionVF:
     case Op_AddReductionVD:
     case Op_MulReductionVF:
     case Op_MulReductionVD:
       if (UseSSE < 1) // requires at least SSE
-        return false;
-    break;
+        ret_value = false;
+      break;
+    case Op_SqrtVD:
+      if (UseAVX < 1) // enabled for AVX only
+        ret_value = false;
+      break;
     case Op_CompareAndSwapL:
 #ifdef _LP64
     case Op_CompareAndSwapP:
 #endif
       if (!VM_Version::supports_cx8())
-        return false;
-    break;
+        ret_value = false;
+      break;
   }
 
-  return true;  // Per default match rules are supported.
+  return ret_value;  // Per default match rules are supported.
 }
 
 // Max vector size in bytes. 0 if not supported.
@@ -1721,14 +1730,24 @@
   case T_DOUBLE:
   case T_LONG:
     if (size < 16) return 0;
+    break;
   case T_FLOAT:
   case T_INT:
     if (size < 8) return 0;
+    break;
   case T_BOOLEAN:
+    if (size < 4) return 0;
+    break;
+  case T_CHAR:
+    if (size < 4) return 0;
+    break;
   case T_BYTE:
-  case T_CHAR:
+    if (size < 4) return 0;
+    if ((size > 32) && !VM_Version::supports_avx512bw()) return 0;
+    break;
   case T_SHORT:
     if (size < 4) return 0;
+    if ((size > 16) && !VM_Version::supports_avx512bw()) return 0;
     break;
   default:
     ShouldNotReachHere();
@@ -1800,7 +1819,7 @@
       __ vmovdqu(as_XMMRegister(Matcher::_regEncode[dst_lo]), as_XMMRegister(Matcher::_regEncode[src_lo]));
       break;
     case Op_VecZ:
-      __ evmovdqu(as_XMMRegister(Matcher::_regEncode[dst_lo]), as_XMMRegister(Matcher::_regEncode[src_lo]), 2);
+      __ evmovdqul(as_XMMRegister(Matcher::_regEncode[dst_lo]), as_XMMRegister(Matcher::_regEncode[src_lo]), 2);
       break;
     default:
       ShouldNotReachHere();
@@ -1855,7 +1874,7 @@
         __ vmovdqu(as_XMMRegister(Matcher::_regEncode[reg]), Address(rsp, stack_offset));
         break;
       case Op_VecZ:
-        __ evmovdqu(as_XMMRegister(Matcher::_regEncode[reg]), Address(rsp, stack_offset), 2);
+        __ evmovdqul(as_XMMRegister(Matcher::_regEncode[reg]), Address(rsp, stack_offset), 2);
         break;
       default:
         ShouldNotReachHere();
@@ -1875,7 +1894,7 @@
         __ vmovdqu(Address(rsp, stack_offset), as_XMMRegister(Matcher::_regEncode[reg]));
         break;
       case Op_VecZ:
-        __ evmovdqu(Address(rsp, stack_offset), as_XMMRegister(Matcher::_regEncode[reg]), 2);
+        __ evmovdqul(Address(rsp, stack_offset), as_XMMRegister(Matcher::_regEncode[reg]), 2);
         break;
       default:
         ShouldNotReachHere();
@@ -1929,9 +1948,40 @@
     }
 #endif
   }
-  int offset_size = (stack_offset == 0) ? 0 : ((stack_offset < 0x80) ? 1 : (UseAVX > 2) ? 6 : 4);
+  bool is_single_byte = false;
+  int vec_len = 0;
+  if ((UseAVX > 2) && (stack_offset != 0)) {
+    switch (ireg) {
+	case Op_VecS:
+    case Op_VecD:
+    case Op_VecX:
+	  break;
+	case Op_VecY:
+	  vec_len = 1;
+	  break;
+    case Op_VecZ:
+	  vec_len = 2;
+	  break;
+    }
+    is_single_byte = Assembler::query_compressed_disp_byte(stack_offset, true, vec_len, Assembler::EVEX_FVM, Assembler::EVEX_32bit, 0);
+  }
+  int offset_size = 0;
+  int size = 5;
+  if (UseAVX > 2 ) {
+    if ((VM_Version::supports_avx512vl() == false) && (vec_len == 2)) { 
+      offset_size = (stack_offset == 0) ? 0 : ((is_single_byte) ? 1 : 4);
+      size += 2; // Need an additional two bytes for EVEX encoding
+    } else if ((VM_Version::supports_avx512vl() == false) && (vec_len < 2)) { 
+      offset_size = (stack_offset == 0) ? 0 : ((stack_offset <= 127) ? 1 : 4);
+    } else {
+      offset_size = (stack_offset == 0) ? 0 : ((is_single_byte) ? 1 : 4);
+      size += 2; // Need an additional two bytes for EVEX encodding
+    }
+  } else {
+    offset_size = (stack_offset == 0) ? 0 : ((stack_offset <= 127) ? 1 : 4);
+  }
   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
-  return 5+offset_size;
+  return size+offset_size;
 }
 
 static inline jfloat replicate4_imm(int con, int width) {
@@ -2675,11 +2725,10 @@
   predicate(UseAVX > 0);
   match(Set dst (NegF src));
   ins_cost(150);
-  format %{ "vxorps  $dst, $src, [0x80000000]\t# neg float by sign flipping" %}
-  ins_encode %{
-    int vector_len = 0;
-    __ vxorps($dst$$XMMRegister, $src$$XMMRegister,
-              ExternalAddress(float_signflip()), vector_len);
+  format %{ "vnegatess  $dst, $src, [0x80000000]\t# neg float by sign flipping" %}
+  ins_encode %{
+    __ vnegatess($dst$$XMMRegister, $src$$XMMRegister,
+                 ExternalAddress(float_signflip()));
   %}
   ins_pipe(pipe_slow);
 %}
@@ -2700,12 +2749,11 @@
   predicate(UseAVX > 0);
   match(Set dst (NegD src));
   ins_cost(150);
-  format %{ "vxorpd  $dst, $src, [0x8000000000000000]\t"
+  format %{ "vnegatess  $dst, $src, [0x8000000000000000]\t"
             "# neg double by sign flipping" %}
   ins_encode %{
-    int vector_len = 0;
-    __ vxorpd($dst$$XMMRegister, $src$$XMMRegister,
-              ExternalAddress(double_signflip()), vector_len);
+    __ vnegatesd($dst$$XMMRegister, $src$$XMMRegister,
+                 ExternalAddress(double_signflip()));
   %}
   ins_pipe(pipe_slow);
 %}
@@ -2838,7 +2886,7 @@
   format %{ "vmovdqu $dst k0,$mem\t! load vector (64 bytes)" %}
   ins_encode %{
     int vector_len = 2;
-    __ evmovdqu($dst$$XMMRegister, $mem$$Address, vector_len);
+    __ evmovdqul($dst$$XMMRegister, $mem$$Address, vector_len);
   %}
   ins_pipe( pipe_slow );
 %}
@@ -2895,7 +2943,7 @@
   format %{ "vmovdqu $mem k0,$src\t! store vector (64 bytes)" %}
   ins_encode %{
     int vector_len = 2;
-    __ evmovdqu($mem$$Address, $src$$XMMRegister, vector_len);
+    __ evmovdqul($mem$$Address, $src$$XMMRegister, vector_len);
   %}
   ins_pipe( pipe_slow );
 %}
@@ -3315,6 +3363,37 @@
   ins_pipe( pipe_slow );
 %}
 
+instruct Repl2F_zero(vecD dst, immF0 zero) %{
+  predicate(n->as_Vector()->length() == 2 && UseAVX < 3);
+  match(Set dst (ReplicateF zero));
+  format %{ "xorps   $dst,$dst\t! replicate2F zero" %}
+  ins_encode %{
+    __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
+  %}
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct Repl4F_zero(vecX dst, immF0 zero) %{
+  predicate(n->as_Vector()->length() == 4 && UseAVX < 3);
+  match(Set dst (ReplicateF zero));
+  format %{ "xorps   $dst,$dst\t! replicate4F zero" %}
+  ins_encode %{
+    __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
+  %}
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct Repl8F_zero(vecY dst, immF0 zero) %{
+  predicate(n->as_Vector()->length() == 8 && UseAVX < 3);
+  match(Set dst (ReplicateF zero));
+  format %{ "vxorps  $dst,$dst,$dst\t! replicate8F zero" %}
+  ins_encode %{
+    int vector_len = 1;
+    __ vxorps($dst$$XMMRegister, $dst$$XMMRegister, $dst$$XMMRegister, vector_len);
+  %}
+  ins_pipe( fpu_reg_reg );
+%}
+
 instruct Repl2D_mem(vecX dst, memory mem) %{
   predicate(n->as_Vector()->length() == 2 && UseAVX > 0 && !VM_Version::supports_avx512vl());
   match(Set dst (ReplicateD (LoadD mem)));
@@ -3349,6 +3428,28 @@
   ins_pipe( pipe_slow );
 %}
 
+// Replicate double (8 byte) scalar zero to be vector
+instruct Repl2D_zero(vecX dst, immD0 zero) %{
+  predicate(n->as_Vector()->length() == 2 && UseAVX < 3);
+  match(Set dst (ReplicateD zero));
+  format %{ "xorpd   $dst,$dst\t! replicate2D zero" %}
+  ins_encode %{
+    __ xorpd($dst$$XMMRegister, $dst$$XMMRegister);
+  %}
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct Repl4D_zero(vecY dst, immD0 zero) %{
+  predicate(n->as_Vector()->length() == 4 && UseAVX < 3);
+  match(Set dst (ReplicateD zero));
+  format %{ "vxorpd  $dst,$dst,$dst,vect256\t! replicate4D zero" %}
+  ins_encode %{
+    int vector_len = 1;
+    __ vxorpd($dst$$XMMRegister, $dst$$XMMRegister, $dst$$XMMRegister, vector_len);
+  %}
+  ins_pipe( fpu_reg_reg );
+%}
+
 // ====================GENERIC REPLICATE==========================================
 
 // Replicate byte scalar to be vector
@@ -3680,38 +3781,6 @@
   ins_pipe( pipe_slow );
 %}
 
-// Replicate float (4 byte) scalar zero to be vector
-instruct Repl2F_zero(vecD dst, immF0 zero) %{
-  predicate(n->as_Vector()->length() == 2);
-  match(Set dst (ReplicateF zero));
-  format %{ "xorps   $dst,$dst\t! replicate2F zero" %}
-  ins_encode %{
-    __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
-  %}
-  ins_pipe( fpu_reg_reg );
-%}
-
-instruct Repl4F_zero(vecX dst, immF0 zero) %{
-  predicate(n->as_Vector()->length() == 4);
-  match(Set dst (ReplicateF zero));
-  format %{ "xorps   $dst,$dst\t! replicate4F zero" %}
-  ins_encode %{
-    __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
-  %}
-  ins_pipe( fpu_reg_reg );
-%}
-
-instruct Repl8F_zero(vecY dst, immF0 zero) %{
-  predicate(n->as_Vector()->length() == 8);
-  match(Set dst (ReplicateF zero));
-  format %{ "vxorps  $dst,$dst,$dst\t! replicate8F zero" %}
-  ins_encode %{
-    int vector_len = 1;
-    __ vxorps($dst$$XMMRegister, $dst$$XMMRegister, $dst$$XMMRegister, vector_len);
-  %}
-  ins_pipe( fpu_reg_reg );
-%}
-
 // Replicate double (8 bytes) scalar to be vector
 instruct Repl2D(vecX dst, regD src) %{
   predicate(n->as_Vector()->length() == 2);
@@ -3723,28 +3792,6 @@
   ins_pipe( pipe_slow );
 %}
 
-// Replicate double (8 byte) scalar zero to be vector
-instruct Repl2D_zero(vecX dst, immD0 zero) %{
-  predicate(n->as_Vector()->length() == 2);
-  match(Set dst (ReplicateD zero));
-  format %{ "xorpd   $dst,$dst\t! replicate2D zero" %}
-  ins_encode %{
-    __ xorpd($dst$$XMMRegister, $dst$$XMMRegister);
-  %}
-  ins_pipe( fpu_reg_reg );
-%}
-
-instruct Repl4D_zero(vecY dst, immD0 zero) %{
-  predicate(n->as_Vector()->length() == 4);
-  match(Set dst (ReplicateD zero));
-  format %{ "vxorpd  $dst,$dst,$dst,vect256\t! replicate4D zero" %}
-  ins_encode %{
-    int vector_len = 1;
-    __ vxorpd($dst$$XMMRegister, $dst$$XMMRegister, $dst$$XMMRegister, vector_len);
-  %}
-  ins_pipe( fpu_reg_reg );
-%}
-
 // ====================EVEX REPLICATE=============================================
 
 instruct Repl4B_mem_evex(vecS dst, memory mem) %{
@@ -3814,7 +3861,7 @@
 %}
 
 instruct Repl64B_evex(vecZ dst, rRegI src) %{
-  predicate(n->as_Vector()->length() == 64 && UseAVX > 2);
+  predicate(n->as_Vector()->length() == 64 && VM_Version::supports_avx512bw());
   match(Set dst (ReplicateB src));
   format %{ "vpbroadcastb $dst,$src\t! upper replicate64B" %}
   ins_encode %{
@@ -3825,7 +3872,7 @@
 %}
 
 instruct Repl64B_mem_evex(vecZ dst, memory mem) %{
-  predicate(n->as_Vector()->length() == 64 && VM_Version::supports_avx512vlbw());
+  predicate(n->as_Vector()->length() == 64 && VM_Version::supports_avx512bw());
   match(Set dst (ReplicateB (LoadB mem)));
   format %{ "vpbroadcastb  $dst,$mem\t! replicate64B" %}
   ins_encode %{
@@ -3862,7 +3909,7 @@
 %}
 
 instruct Repl64B_imm_evex(vecZ dst, immI con) %{
-  predicate(n->as_Vector()->length() == 64 && UseAVX > 2);
+  predicate(n->as_Vector()->length() == 64 && VM_Version::supports_avx512bw());
   match(Set dst (ReplicateB con));
   format %{ "movq    $dst,[$constantaddress]\n\t"
             "vpbroadcastb $dst,$dst\t! upper replicate64B" %}
@@ -3953,7 +4000,7 @@
 %}
 
 instruct Repl32S_evex(vecZ dst, rRegI src) %{
-  predicate(n->as_Vector()->length() == 32 && UseAVX > 2);
+  predicate(n->as_Vector()->length() == 32 && VM_Version::supports_avx512bw());
   match(Set dst (ReplicateS src));
   format %{ "vpbroadcastw $dst,$src\t! replicate32S" %}
   ins_encode %{
@@ -3964,7 +4011,7 @@
 %}
 
 instruct Repl32S_mem_evex(vecZ dst, memory mem) %{
-  predicate(n->as_Vector()->length() == 32 && UseAVX > 2);
+  predicate(n->as_Vector()->length() == 32 && VM_Version::supports_avx512bw());
   match(Set dst (ReplicateS (LoadS mem)));
   format %{ "vpbroadcastw  $dst,$mem\t! replicate32S" %}
   ins_encode %{
@@ -4001,7 +4048,7 @@
 %}
 
 instruct Repl32S_imm_evex(vecZ dst, immI con) %{
-  predicate(n->as_Vector()->length() == 32 && UseAVX > 2);
+  predicate(n->as_Vector()->length() == 32 && VM_Version::supports_avx512bw());
   match(Set dst (ReplicateS con));
   format %{ "movq    $dst,[$constantaddress]\n\t"
             "vpbroadcastw $dst,$dst\t! replicate32S" %}
@@ -4318,13 +4365,50 @@
   ins_pipe( pipe_slow );
 %}
 
+instruct Repl2F_zero_evex(vecD dst, immF0 zero) %{
+  predicate(n->as_Vector()->length() == 2 && UseAVX > 2);
+  match(Set dst (ReplicateF zero));
+  format %{ "vpxor  $dst k0,$dst,$dst\t! replicate2F zero" %}
+  ins_encode %{
+    // Use vpxor in place of vxorps since EVEX has a constriant on dq for vxorps: this is a 512-bit operation
+    int vector_len = 2;
+    __ vpxor($dst$$XMMRegister,$dst$$XMMRegister, $dst$$XMMRegister, vector_len);
+  %}
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct Repl4F_zero_evex(vecX dst, immF0 zero) %{
+  predicate(n->as_Vector()->length() == 4 && UseAVX > 2);
+  match(Set dst (ReplicateF zero));
+  format %{ "vpxor  $dst k0,$dst,$dst\t! replicate4F zero" %}
+  ins_encode %{
+    // Use vpxor in place of vxorps since EVEX has a constriant on dq for vxorps: this is a 512-bit operation
+    int vector_len = 2;
+    __ vpxor($dst$$XMMRegister,$dst$$XMMRegister, $dst$$XMMRegister, vector_len);
+  %}
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct Repl8F_zero_evex(vecY dst, immF0 zero) %{
+  predicate(n->as_Vector()->length() == 8 && UseAVX > 2);
+  match(Set dst (ReplicateF zero));
+  format %{ "vpxor  $dst k0,$dst,$dst\t! replicate8F zero" %}
+  ins_encode %{
+    // Use vpxor in place of vxorps since EVEX has a constriant on dq for vxorps: this is a 512-bit operation
+    int vector_len = 2;
+    __ vpxor($dst$$XMMRegister,$dst$$XMMRegister, $dst$$XMMRegister, vector_len);
+  %}
+  ins_pipe( fpu_reg_reg );
+%}
+
 instruct Repl16F_zero_evex(vecZ dst, immF0 zero) %{
   predicate(n->as_Vector()->length() == 16 && UseAVX > 2);
   match(Set dst (ReplicateF zero));
-  format %{ "vxorps  $dst k0,$dst,$dst\t! replicate16F zero" %}
-  ins_encode %{
+  format %{ "vpxor  $dst k0,$dst,$dst\t! replicate16F zero" %}
+  ins_encode %{
+    // Use vpxor in place of vxorps since EVEX has a constriant on dq for vxorps: this is a 512-bit operation
     int vector_len = 2;
-    __ vxorps($dst$$XMMRegister, $dst$$XMMRegister, $dst$$XMMRegister, vector_len);
+    __ vpxor($dst$$XMMRegister,$dst$$XMMRegister, $dst$$XMMRegister, vector_len);
   %}
   ins_pipe( fpu_reg_reg );
 %}
@@ -4373,13 +4457,38 @@
   ins_pipe( pipe_slow );
 %}
 
+instruct Repl2D_zero_evex(vecX dst, immD0 zero) %{
+  predicate(n->as_Vector()->length() == 2 && UseAVX > 2);
+  match(Set dst (ReplicateD zero));
+  format %{ "vpxor  $dst k0,$dst,$dst\t! replicate2D zero" %}
+  ins_encode %{
+    // Use vpxor in place of vxorpd since EVEX has a constriant on dq for vxorpd: this is a 512-bit operation
+    int vector_len = 2;
+    __ vpxor($dst$$XMMRegister,$dst$$XMMRegister, $dst$$XMMRegister, vector_len);
+  %}
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct Repl4D_zero_evex(vecY dst, immD0 zero) %{
+  predicate(n->as_Vector()->length() == 4 && UseAVX > 2);
+  match(Set dst (ReplicateD zero));
+  format %{ "vpxor  $dst k0,$dst,$dst\t! replicate4D zero" %}
+  ins_encode %{
+    // Use vpxor in place of vxorpd since EVEX has a constriant on dq for vxorpd: this is a 512-bit operation
+    int vector_len = 2;
+    __ vpxor($dst$$XMMRegister,$dst$$XMMRegister, $dst$$XMMRegister, vector_len);
+  %}
+  ins_pipe( fpu_reg_reg );
+%}
+
 instruct Repl8D_zero_evex(vecZ dst, immD0 zero) %{
   predicate(n->as_Vector()->length() == 8 && UseAVX > 2);
   match(Set dst (ReplicateD zero));
-  format %{ "vxorpd  $dst k0,$dst,$dst,vect512\t! replicate8D zero" %}
-  ins_encode %{
+  format %{ "vpxor  $dst k0,$dst,$dst,vect512\t! replicate8D zero" %}
+  ins_encode %{
+    // Use vpxor in place of vxorpd since EVEX has a constriant on dq for vxorpd: this is a 512-bit operation
     int vector_len = 2;
-    __ vxorpd($dst$$XMMRegister, $dst$$XMMRegister, $dst$$XMMRegister, vector_len);
+    __ vpxor($dst$$XMMRegister,$dst$$XMMRegister, $dst$$XMMRegister, vector_len);
   %}
   ins_pipe( fpu_reg_reg );
 %}
@@ -7474,6 +7583,75 @@
   ins_pipe( pipe_slow );
 %}
 
+// --------------------------------- Sqrt --------------------------------------
+
+// Floating point vector sqrt - double precision only
+instruct vsqrt2D_reg(vecX dst, vecX src) %{
+  predicate(UseAVX > 0 && n->as_Vector()->length() == 2);
+  match(Set dst (SqrtVD src));
+  format %{ "vsqrtpd  $dst,$src\t! sqrt packed2D" %}
+  ins_encode %{
+    int vector_len = 0;
+    __ vsqrtpd($dst$$XMMRegister, $src$$XMMRegister, vector_len);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+instruct vsqrt2D_mem(vecX dst, memory mem) %{
+  predicate(UseAVX > 0 && n->as_Vector()->length() == 2);
+  match(Set dst (SqrtVD (LoadVector mem)));
+  format %{ "vsqrtpd  $dst,$mem\t! sqrt packed2D" %}
+  ins_encode %{
+    int vector_len = 0;
+    __ vsqrtpd($dst$$XMMRegister, $mem$$Address, vector_len);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+instruct vsqrt4D_reg(vecY dst, vecY src) %{
+  predicate(UseAVX > 0 && n->as_Vector()->length() == 4);
+  match(Set dst (SqrtVD src));
+  format %{ "vsqrtpd  $dst,$src\t! sqrt packed4D" %}
+  ins_encode %{
+    int vector_len = 1;
+    __ vsqrtpd($dst$$XMMRegister, $src$$XMMRegister, vector_len);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+instruct vsqrt4D_mem(vecY dst, memory mem) %{
+  predicate(UseAVX > 0 && n->as_Vector()->length() == 4);
+  match(Set dst (SqrtVD (LoadVector mem)));
+  format %{ "vsqrtpd  $dst,$mem\t! sqrt packed4D" %}
+  ins_encode %{
+    int vector_len = 1;
+    __ vsqrtpd($dst$$XMMRegister, $mem$$Address, vector_len);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+instruct vsqrt8D_reg(vecZ dst, vecZ src) %{
+  predicate(UseAVX > 2 && n->as_Vector()->length() == 8);
+  match(Set dst (SqrtVD src));
+  format %{ "vsqrtpd  $dst,$src\t! sqrt packed8D" %}
+  ins_encode %{
+    int vector_len = 2;
+    __ vsqrtpd($dst$$XMMRegister, $src$$XMMRegister, vector_len);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+instruct vsqrt8D_mem(vecZ dst, memory mem) %{
+  predicate(UseAVX > 2 && n->as_Vector()->length() == 8);
+  match(Set dst (SqrtVD (LoadVector mem)));
+  format %{ "vsqrtpd  $dst,$mem\t! sqrt packed8D" %}
+  ins_encode %{
+    int vector_len = 2;
+    __ vsqrtpd($dst$$XMMRegister, $mem$$Address, vector_len);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
 // ------------------------------ LeftShift -----------------------------------
 
 // Shorts/Chars vector left shift
--- a/hotspot/src/cpu/x86/vm/x86_32.ad	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/x86_32.ad	Wed Jul 05 20:51:00 2017 +0200
@@ -1004,10 +1004,10 @@
       __ vmovdqu(Address(rsp, dst_offset), xmm0);
       __ vmovdqu(xmm0, Address(rsp, -32));
     case Op_VecZ:
-      __ evmovdqu(Address(rsp, -64), xmm0, 2);
-      __ evmovdqu(xmm0, Address(rsp, src_offset), 2);
-      __ evmovdqu(Address(rsp, dst_offset), xmm0, 2);
-      __ evmovdqu(xmm0, Address(rsp, -64), 2);
+      __ evmovdqul(Address(rsp, -64), xmm0, 2);
+      __ evmovdqul(xmm0, Address(rsp, src_offset), 2);
+      __ evmovdqul(Address(rsp, dst_offset), xmm0, 2);
+      __ evmovdqul(xmm0, Address(rsp, -64), 2);
       break;
     default:
       ShouldNotReachHere();
--- a/hotspot/src/cpu/x86/vm/x86_64.ad	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/cpu/x86/vm/x86_64.ad	Wed Jul 05 20:51:00 2017 +0200
@@ -1075,10 +1075,10 @@
       __ vmovdqu(Address(rsp, dst_offset), xmm0);
       __ vmovdqu(xmm0, Address(rsp, -32));
     case Op_VecZ:
-      __ evmovdqu(Address(rsp, -64), xmm0, 2);
-      __ evmovdqu(xmm0, Address(rsp, src_offset), 2);
-      __ evmovdqu(Address(rsp, dst_offset), xmm0, 2);
-      __ evmovdqu(xmm0, Address(rsp, -64), 2);
+      __ evmovdqul(Address(rsp, -64), xmm0, 2);
+      __ evmovdqul(xmm0, Address(rsp, src_offset), 2);
+      __ evmovdqul(Address(rsp, dst_offset), xmm0, 2);
+      __ evmovdqul(xmm0, Address(rsp, -64), 2);
       break;
     default:
       ShouldNotReachHere();
--- a/hotspot/src/os/linux/vm/os_linux.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/os/linux/vm/os_linux.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -2211,9 +2211,13 @@
   }
 }
 
-const char* search_string = IA32_ONLY("model name") AMD64_ONLY("model name")
-                            IA64_ONLY("") SPARC_ONLY("cpu")
-                            ARM32_ONLY("Processor") PPC_ONLY("Processor") AARCH64_ONLY("Processor");
+#if defined(AMD64) || defined(IA32) || defined(X32)
+const char* search_string = "model name";
+#elif defined(SPARC)
+const char* search_string = "cpu";
+#else
+const char* search_string = "Processor";
+#endif
 
 // Parses the cpuinfo file for string representing the model name.
 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
@@ -2248,9 +2252,25 @@
   }
   // cpuinfo not found or parsing failed, just print generic string.  The entire
   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
-  strncpy(cpuinfo, IA32_ONLY("x86_32") AMD64_ONLY("x86_32")
-                   IA64_ONLY("IA64") SPARC_ONLY("sparcv9")
-                   ARM32_ONLY("ARM") PPC_ONLY("PPC64") AARCH64_ONLY("AArch64"), length);
+#if defined(AMD64)
+  strncpy(cpuinfo, "x86_64", length);
+#elif defined(IA32)
+  strncpy(cpuinfo, "x86_32", length);
+#elif defined(IA64)
+  strncpy(cpuinfo, "IA64", length);
+#elif defined(SPARC)
+  strncpy(cpuinfo, "sparcv9", length);
+#elif defined(AARCH64)
+  strncpy(cpuinfo, "AArch64", length);
+#elif defined(ARM)
+  strncpy(cpuinfo, "ARM", length);
+#elif defined(PPC)
+  strncpy(cpuinfo, "PPC64", length);
+#elif defined(ZERO_LIBARCH)
+  strncpy(cpuinfo, ZERO_LIBARCH, length);
+#else
+  strncpy(cpuinfo, "unknown", length);
+#endif
 }
 
 void os::print_siginfo(outputStream* st, void* siginfo) {
--- a/hotspot/src/os/windows/vm/os_windows.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/os/windows/vm/os_windows.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -4877,6 +4877,26 @@
 // Returns true=success, otherwise false.
 
 bool os::pd_unmap_memory(char* addr, size_t bytes) {
+  MEMORY_BASIC_INFORMATION mem_info;
+  if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
+    if (PrintMiscellaneous && Verbose) {
+      DWORD err = GetLastError();
+      tty->print_cr("VirtualQuery() failed: GetLastError->%ld.", err);
+    }
+    return false;
+  }
+
+  // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
+  // Instead, executable region was allocated using VirtualAlloc(). See
+  // pd_map_memory() above.
+  //
+  // The following flags should match the 'exec_access' flages used for
+  // VirtualProtect() in pd_map_memory().
+  if (mem_info.Protect == PAGE_EXECUTE_READ ||
+      mem_info.Protect == PAGE_EXECUTE_READWRITE) {
+    return pd_release_memory(addr, bytes);
+  }
+
   BOOL result = UnmapViewOfFile(addr);
   if (result == 0) {
     if (PrintMiscellaneous && Verbose) {
--- a/hotspot/src/share/vm/adlc/formssel.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/adlc/formssel.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -4143,6 +4143,7 @@
     "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
     "MulVS","MulVI","MulVL","MulVF","MulVD",
     "DivVF","DivVD",
+    "SqrtVD",
     "AndV" ,"XorV" ,"OrV",
     "AddReductionVI", "AddReductionVL",
     "AddReductionVF", "AddReductionVD",
--- a/hotspot/src/share/vm/gc/cms/concurrentMarkSweepGeneration.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/cms/concurrentMarkSweepGeneration.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -304,8 +304,7 @@
 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 
   const char* gen_name = "old";
-  GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
-
+  GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
   // Generation Counters - generation 1, 1 subspace
   _gen_counters = new GenerationCounters(gen_name, 1, 1,
       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
--- a/hotspot/src/share/vm/gc/g1/collectionSetChooser.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/collectionSetChooser.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -83,7 +83,7 @@
   _regions((ResourceObj::set_allocation_type((address) &_regions,
                                              ResourceObj::C_HEAP),
                   100), true /* C_Heap */),
-    _curr_index(0), _length(0), _first_par_unreserved_idx(0),
+    _front(0), _end(0), _first_par_unreserved_idx(0),
     _region_live_threshold_bytes(0), _remaining_reclaimable_bytes(0) {
   _region_live_threshold_bytes =
     HeapRegion::GrainBytes * (size_t) G1MixedGCLiveThresholdPercent / 100;
@@ -91,19 +91,19 @@
 
 #ifndef PRODUCT
 void CollectionSetChooser::verify() {
-  guarantee(_length <= regions_length(),
-         err_msg("_length: %u regions length: %u", _length, regions_length()));
-  guarantee(_curr_index <= _length,
-            err_msg("_curr_index: %u _length: %u", _curr_index, _length));
+  guarantee(_end <= regions_length(),
+         err_msg("_end: %u regions length: %u", _end, regions_length()));
+  guarantee(_front <= _end,
+            err_msg("_front: %u _end: %u", _front, _end));
   uint index = 0;
   size_t sum_of_reclaimable_bytes = 0;
-  while (index < _curr_index) {
+  while (index < _front) {
     guarantee(regions_at(index) == NULL,
-              "all entries before _curr_index should be NULL");
+              "all entries before _front should be NULL");
     index += 1;
   }
   HeapRegion *prev = NULL;
-  while (index < _length) {
+  while (index < _end) {
     HeapRegion *curr = regions_at(index++);
     guarantee(curr != NULL, "Regions in _regions array cannot be NULL");
     guarantee(!curr->is_young(), "should not be young!");
@@ -132,15 +132,15 @@
     regions_trunc_to(_first_par_unreserved_idx);
   }
   _regions.sort(order_regions);
-  assert(_length <= regions_length(), "Requirement");
+  assert(_end <= regions_length(), "Requirement");
 #ifdef ASSERT
-  for (uint i = 0; i < _length; i++) {
+  for (uint i = 0; i < _end; i++) {
     assert(regions_at(i) != NULL, "Should be true by sorting!");
   }
 #endif // ASSERT
   if (G1PrintRegionLivenessInfo) {
     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Sorting");
-    for (uint i = 0; i < _length; ++i) {
+    for (uint i = 0; i < _end; ++i) {
       HeapRegion* r = regions_at(i);
       cl.doHeapRegion(r);
     }
@@ -154,11 +154,19 @@
          err_msg("Pinned region shouldn't be added to the collection set (index %u)", hr->hrm_index()));
   assert(!hr->is_young(), "should not be young!");
   _regions.append(hr);
-  _length++;
+  _end++;
   _remaining_reclaimable_bytes += hr->reclaimable_bytes();
   hr->calc_gc_efficiency();
 }
 
+void CollectionSetChooser::push(HeapRegion* hr) {
+  assert(hr != NULL, "Can't put back a NULL region");
+  assert(_front >= 1, "Too many regions have been put back");
+  _front--;
+  regions_at_put(_front, hr);
+  _remaining_reclaimable_bytes += hr->reclaimable_bytes();
+}
+
 void CollectionSetChooser::prepare_for_par_region_addition(uint n_threads,
                                                            uint n_regions,
                                                            uint chunk_size) {
@@ -193,7 +201,7 @@
     // We could have just used atomics instead of taking the
     // lock. However, we currently don't have an atomic add for size_t.
     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
-    _length += region_num;
+    _end += region_num;
     _remaining_reclaimable_bytes += reclaimable_bytes;
   } else {
     assert(reclaimable_bytes == 0, "invariant");
@@ -202,7 +210,7 @@
 
 void CollectionSetChooser::clear() {
   _regions.clear();
-  _curr_index = 0;
-  _length = 0;
+  _front = 0;
+  _end = 0;
   _remaining_reclaimable_bytes = 0;
 };
--- a/hotspot/src/share/vm/gc/g1/collectionSetChooser.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/collectionSetChooser.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -48,12 +48,10 @@
 
   // The index of the next candidate old region to be considered for
   // addition to the CSet.
-  uint _curr_index;
+  uint _front;
 
-  // The number of candidate old regions added to the CSet chooser.
-  // Note: this is not updated when removing a region using
-  // remove_and_move_to_next() below.
-  uint _length;
+  // The index of the last candidate old region
+  uint _end;
 
   // Keeps track of the start of the next array chunk to be claimed by
   // parallel GC workers.
@@ -73,31 +71,33 @@
   // collection without removing it from the CSet chooser.
   HeapRegion* peek() {
     HeapRegion* res = NULL;
-    if (_curr_index < _length) {
-      res = regions_at(_curr_index);
+    if (_front < _end) {
+      res = regions_at(_front);
       assert(res != NULL,
              err_msg("Unexpected NULL hr in _regions at index %u",
-                     _curr_index));
+                     _front));
     }
     return res;
   }
 
   // Remove the given region from the CSet chooser and move to the
-  // next one. The given region should be the current candidate region
-  // in the CSet chooser.
-  void remove_and_move_to_next(HeapRegion* hr) {
+  // next one.
+  HeapRegion* pop() {
+    HeapRegion* hr = regions_at(_front);
     assert(hr != NULL, "pre-condition");
-    assert(_curr_index < _length, "pre-condition");
-    assert(regions_at(_curr_index) == hr, "pre-condition");
-    regions_at_put(_curr_index, NULL);
+    assert(_front < _end, "pre-condition");
+    regions_at_put(_front, NULL);
     assert(hr->reclaimable_bytes() <= _remaining_reclaimable_bytes,
            err_msg("remaining reclaimable bytes inconsistent "
                    "from region: " SIZE_FORMAT " remaining: " SIZE_FORMAT,
                    hr->reclaimable_bytes(), _remaining_reclaimable_bytes));
     _remaining_reclaimable_bytes -= hr->reclaimable_bytes();
-    _curr_index += 1;
+    _front += 1;
+    return hr;
   }
 
+  void push(HeapRegion* hr);
+
   CollectionSetChooser();
 
   void sort_regions();
@@ -113,7 +113,7 @@
   }
 
   // Returns the number candidate old regions added
-  uint length() { return _length; }
+  uint length() { return _end; }
 
   // Serial version.
   void add_region(HeapRegion *hr);
@@ -135,7 +135,7 @@
   void clear();
 
   // Return the number of candidate regions that remain to be collected.
-  uint remaining_regions() { return _length - _curr_index; }
+  uint remaining_regions() { return _end - _front; }
 
   // Determine whether the CSet chooser has more candidate regions or not.
   bool is_empty() { return remaining_regions() == 0; }
--- a/hotspot/src/share/vm/gc/g1/concurrentG1Refine.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/concurrentG1Refine.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -29,7 +29,7 @@
 #include "gc/g1/g1HotCardCache.hpp"
 #include "runtime/java.hpp"
 
-ConcurrentG1Refine::ConcurrentG1Refine(G1CollectedHeap* g1h, CardTableEntryClosure* refine_closure) :
+ConcurrentG1Refine::ConcurrentG1Refine(G1CollectedHeap* g1h) :
   _threads(NULL), _n_threads(0),
   _hot_card_cache(g1h)
 {
@@ -48,29 +48,46 @@
     FLAG_SET_DEFAULT(G1ConcRefinementRedZone, yellow_zone() * 2);
   }
   set_red_zone(MAX2<int>(G1ConcRefinementRedZone, yellow_zone()));
+}
 
-  _n_worker_threads = thread_num();
+ConcurrentG1Refine* ConcurrentG1Refine::create(G1CollectedHeap* g1h, CardTableEntryClosure* refine_closure, jint* ecode) {
+  ConcurrentG1Refine* cg1r = new ConcurrentG1Refine(g1h);
+  if (cg1r == NULL) {
+    *ecode = JNI_ENOMEM;
+    vm_shutdown_during_initialization("Could not create ConcurrentG1Refine");
+    return NULL;
+  }
+  cg1r->_n_worker_threads = thread_num();
   // We need one extra thread to do the young gen rset size sampling.
-  _n_threads = _n_worker_threads + 1;
+  cg1r->_n_threads = cg1r->_n_worker_threads + 1;
+
+  cg1r->reset_threshold_step();
 
-  reset_threshold_step();
-
-  _threads = NEW_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _n_threads, mtGC);
+  cg1r->_threads = NEW_C_HEAP_ARRAY_RETURN_NULL(ConcurrentG1RefineThread*, cg1r->_n_threads, mtGC);
+  if (cg1r->_threads == NULL) {
+    *ecode = JNI_ENOMEM;
+    vm_shutdown_during_initialization("Could not allocate an array for ConcurrentG1RefineThread");
+    return NULL;
+  }
 
   uint worker_id_offset = DirtyCardQueueSet::num_par_ids();
 
   ConcurrentG1RefineThread *next = NULL;
-  for (uint i = _n_threads - 1; i != UINT_MAX; i--) {
-    ConcurrentG1RefineThread* t = new ConcurrentG1RefineThread(this, next, refine_closure, worker_id_offset, i);
+  for (uint i = cg1r->_n_threads - 1; i != UINT_MAX; i--) {
+    ConcurrentG1RefineThread* t = new ConcurrentG1RefineThread(cg1r, next, refine_closure, worker_id_offset, i);
     assert(t != NULL, "Conc refine should have been created");
     if (t->osthread() == NULL) {
-        vm_shutdown_during_initialization("Could not create ConcurrentG1RefineThread");
+      *ecode = JNI_ENOMEM;
+      vm_shutdown_during_initialization("Could not create ConcurrentG1RefineThread");
+      return NULL;
     }
 
-    assert(t->cg1r() == this, "Conc refine thread should refer to this");
-    _threads[i] = t;
+    assert(t->cg1r() == cg1r, "Conc refine thread should refer to this");
+    cg1r->_threads[i] = t;
     next = t;
   }
+  *ecode = JNI_OK;
+  return cg1r;
 }
 
 void ConcurrentG1Refine::reset_threshold_step() {
--- a/hotspot/src/share/vm/gc/g1/concurrentG1Refine.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/concurrentG1Refine.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -71,10 +71,15 @@
   // Reset the threshold step value based of the current zone boundaries.
   void reset_threshold_step();
 
+  ConcurrentG1Refine(G1CollectedHeap* g1h);
+
  public:
-  ConcurrentG1Refine(G1CollectedHeap* g1h, CardTableEntryClosure* refine_closure);
   ~ConcurrentG1Refine();
 
+  // Returns ConcurrentG1Refine instance if succeeded to create/initialize ConcurrentG1Refine and ConcurrentG1RefineThread.
+  // Otherwise, returns NULL with error code.
+  static ConcurrentG1Refine* create(G1CollectedHeap* g1h, CardTableEntryClosure* refine_closure, jint* ecode);
+
   void init(G1RegionToSpaceMapper* card_counts_storage);
   void stop();
 
--- a/hotspot/src/share/vm/gc/g1/g1CollectedHeap.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/g1CollectedHeap.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -2025,7 +2025,6 @@
   _survivor_evac_stats(YoungPLABSize, PLABWeight),
   _old_evac_stats(OldPLABSize, PLABWeight),
   _expand_heap_after_alloc_failure(true),
-  _surviving_young_words(NULL),
   _old_marking_cycles_started(0),
   _old_marking_cycles_completed(0),
   _heap_summary_sent(false),
@@ -2126,7 +2125,11 @@
 
   _refine_cte_cl = new RefineCardTableEntryClosure();
 
-  _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
+  jint ecode = JNI_OK;
+  _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
+  if (_cg1r == NULL) {
+    return ecode;
+  }
 
   // Reserve the maximum.
 
@@ -2397,6 +2400,10 @@
                                 // (for efficiency/performance)
 }
 
+CollectorPolicy* G1CollectedHeap::collector_policy() const {
+  return g1_policy();
+}
+
 size_t G1CollectedHeap::capacity() const {
   return _hrm.length() * HeapRegion::GrainBytes;
 }
@@ -3694,10 +3701,6 @@
   return (buffer_size * buffer_num + extra_cards) / oopSize;
 }
 
-size_t G1CollectedHeap::cards_scanned() {
-  return g1_rem_set()->cardsScanned();
-}
-
 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
  private:
   size_t _total_humongous;
@@ -3838,36 +3841,6 @@
   cl.flush_rem_set_entries();
 }
 
-void G1CollectedHeap::setup_surviving_young_words() {
-  assert(_surviving_young_words == NULL, "pre-condition");
-  uint array_length = g1_policy()->young_cset_region_length();
-  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
-  if (_surviving_young_words == NULL) {
-    vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
-                          "Not enough space for young surv words summary.");
-  }
-  memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
-#ifdef ASSERT
-  for (uint i = 0;  i < array_length; ++i) {
-    assert( _surviving_young_words[i] == 0, "memset above" );
-  }
-#endif // !ASSERT
-}
-
-void G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
-  assert_at_safepoint(true);
-  uint array_length = g1_policy()->young_cset_region_length();
-  for (uint i = 0; i < array_length; ++i) {
-    _surviving_young_words[i] += surv_young_words[i];
-  }
-}
-
-void G1CollectedHeap::cleanup_surviving_young_words() {
-  guarantee( _surviving_young_words != NULL, "pre-condition" );
-  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
-  _surviving_young_words = NULL;
-}
-
 #ifdef ASSERT
 class VerifyCSetClosure: public HeapRegionClosure {
 public:
@@ -4129,7 +4102,8 @@
         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
 #endif // YOUNG_LIST_VERBOSE
 
-        g1_policy()->finalize_cset(target_pause_time_ms);
+        double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
+        g1_policy()->finalize_old_cset_part(time_remaining_ms);
 
         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
 
@@ -4155,22 +4129,20 @@
         collection_set_iterate(&cl);
 #endif // ASSERT
 
-        setup_surviving_young_words();
-
         // Initialize the GC alloc regions.
         _allocator->init_gc_alloc_regions(evacuation_info);
 
+        G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
         // Actually do the work...
-        evacuate_collection_set(evacuation_info);
-
-        free_collection_set(g1_policy()->collection_set(), evacuation_info);
+        evacuate_collection_set(evacuation_info, &per_thread_states);
+
+        const size_t* surviving_young_words = per_thread_states.surviving_young_words();
+        free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
 
         eagerly_reclaim_humongous_regions();
 
         g1_policy()->clear_collection_set();
 
-        cleanup_surviving_young_words();
-
         // Start a new incremental collection set for the next pause.
         g1_policy()->start_incremental_cset_building();
 
@@ -4255,7 +4227,8 @@
         // investigate this in CR 7178365.
         double sample_end_time_sec = os::elapsedTime();
         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
-        g1_policy()->record_collection_pause_end(pause_time_ms);
+        size_t total_cards_scanned = per_thread_states.total_cards_scanned();
+        g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
 
         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
@@ -4541,15 +4514,15 @@
 
 class G1ParTask : public AbstractGangTask {
 protected:
-  G1CollectedHeap*       _g1h;
-  G1ParScanThreadState** _pss;
-  RefToScanQueueSet*     _queues;
-  G1RootProcessor*       _root_processor;
-  ParallelTaskTerminator _terminator;
-  uint _n_workers;
+  G1CollectedHeap*         _g1h;
+  G1ParScanThreadStateSet* _pss;
+  RefToScanQueueSet*       _queues;
+  G1RootProcessor*         _root_processor;
+  ParallelTaskTerminator   _terminator;
+  uint                     _n_workers;
 
 public:
-  G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadState** per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
+  G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
     : AbstractGangTask("G1 collection"),
       _g1h(g1h),
       _pss(per_thread_states),
@@ -4607,7 +4580,7 @@
 
       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
 
-      G1ParScanThreadState*           pss = _pss[worker_id];
+      G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
       pss->set_ref_processor(rp);
 
       bool only_young = _g1h->collector_state()->gcs_are_young();
@@ -4664,9 +4637,12 @@
                                       worker_id);
 
       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
-      _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
-                                                      weak_root_cl,
-                                                      worker_id);
+      size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
+                                                                             weak_root_cl,
+                                                                             worker_id);
+
+      _pss->add_cards_scanned(worker_id, cards_scanned);
+
       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
 
       double term_sec = 0.0;
@@ -5263,15 +5239,15 @@
 
 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 private:
-  G1CollectedHeap*        _g1h;
-  G1ParScanThreadState**  _pss;
-  RefToScanQueueSet*      _queues;
-  WorkGang*               _workers;
-  uint                    _active_workers;
+  G1CollectedHeap*          _g1h;
+  G1ParScanThreadStateSet*  _pss;
+  RefToScanQueueSet*        _queues;
+  WorkGang*                 _workers;
+  uint                      _active_workers;
 
 public:
   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
-                           G1ParScanThreadState** per_thread_states,
+                           G1ParScanThreadStateSet* per_thread_states,
                            WorkGang* workers,
                            RefToScanQueueSet *task_queues,
                            uint n_workers) :
@@ -5295,14 +5271,14 @@
   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
   ProcessTask&     _proc_task;
   G1CollectedHeap* _g1h;
-  G1ParScanThreadState** _pss;
+  G1ParScanThreadStateSet* _pss;
   RefToScanQueueSet* _task_queues;
   ParallelTaskTerminator* _terminator;
 
 public:
   G1STWRefProcTaskProxy(ProcessTask& proc_task,
                         G1CollectedHeap* g1h,
-                        G1ParScanThreadState** per_thread_states,
+                        G1ParScanThreadStateSet* per_thread_states,
                         RefToScanQueueSet *task_queues,
                         ParallelTaskTerminator* terminator) :
     AbstractGangTask("Process reference objects in parallel"),
@@ -5320,7 +5296,7 @@
 
     G1STWIsAliveClosure is_alive(_g1h);
 
-    G1ParScanThreadState*           pss = _pss[worker_id];
+    G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
     pss->set_ref_processor(NULL);
 
     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, pss);
@@ -5399,14 +5375,14 @@
 
 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
 protected:
-  G1CollectedHeap*       _g1h;
-  G1ParScanThreadState** _pss;
-  RefToScanQueueSet*     _queues;
-  ParallelTaskTerminator _terminator;
-  uint _n_workers;
+  G1CollectedHeap*         _g1h;
+  G1ParScanThreadStateSet* _pss;
+  RefToScanQueueSet*       _queues;
+  ParallelTaskTerminator   _terminator;
+  uint                     _n_workers;
 
 public:
-  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadState** per_thread_states, int workers, RefToScanQueueSet *task_queues) :
+  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
     AbstractGangTask("ParPreserveCMReferents"),
     _g1h(g1h),
     _pss(per_thread_states),
@@ -5419,7 +5395,7 @@
     ResourceMark rm;
     HandleMark   hm;
 
-    G1ParScanThreadState*          pss = _pss[worker_id];
+    G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
     pss->set_ref_processor(NULL);
     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
 
@@ -5480,7 +5456,7 @@
 };
 
 // Weak Reference processing during an evacuation pause (part 1).
-void G1CollectedHeap::process_discovered_references(G1ParScanThreadState** per_thread_states) {
+void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
   double ref_proc_start = os::elapsedTime();
 
   ReferenceProcessor* rp = _ref_processor_stw;
@@ -5525,7 +5501,7 @@
   // JNI refs.
 
   // Use only a single queue for this PSS.
-  G1ParScanThreadState*           pss = per_thread_states[0];
+  G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
   pss->set_ref_processor(NULL);
   assert(pss->queue_is_empty(), "pre-condition");
 
@@ -5586,7 +5562,7 @@
 }
 
 // Weak Reference processing during an evacuation pause (part 2).
-void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadState** per_thread_states) {
+void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
   double ref_enq_start = os::elapsedTime();
 
   ReferenceProcessor* rp = _ref_processor_stw;
@@ -5621,7 +5597,7 @@
   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
 }
 
-void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
+void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
   _expand_heap_after_alloc_failure = true;
   _evacuation_failed = false;
 
@@ -5641,11 +5617,6 @@
   double start_par_time_sec = os::elapsedTime();
   double end_par_time_sec;
 
-  G1ParScanThreadState** per_thread_states = NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC);
-  for (uint i = 0; i < n_workers; i++) {
-    per_thread_states[i] = new_par_scan_state(i);
-  }
-
   {
     G1RootProcessor root_processor(this, n_workers);
     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
@@ -5699,11 +5670,7 @@
   _allocator->release_gc_alloc_regions(evacuation_info);
   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
 
-  for (uint i = 0; i < n_workers; i++) {
-    G1ParScanThreadState* pss = per_thread_states[i];
-    delete pss;
-  }
-  FREE_C_HEAP_ARRAY(G1ParScanThreadState*, per_thread_states);
+  per_thread_states->flush();
 
   record_obj_copy_mem_stats();
 
@@ -6054,7 +6021,7 @@
   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
 }
 
-void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
+void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
   size_t pre_used = 0;
   FreeRegionList local_free_list("Local List for CSet Freeing");
 
@@ -6108,7 +6075,7 @@
       int index = cur->young_index_in_cset();
       assert(index != -1, "invariant");
       assert((uint) index < policy->young_cset_region_length(), "invariant");
-      size_t words_survived = _surviving_young_words[index];
+      size_t words_survived = surviving_young_words[index];
       cur->record_surv_words_in_group(words_survived);
 
       // At this point the we have 'popped' cur from the collection set
--- a/hotspot/src/share/vm/gc/g1/g1CollectedHeap.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/g1CollectedHeap.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -56,6 +56,7 @@
 class GenerationSpec;
 class OopsInHeapRegionClosure;
 class G1ParScanThreadState;
+class G1ParScanThreadStateSet;
 class G1KlassScanClosure;
 class G1ParScanThreadState;
 class ObjectClosure;
@@ -192,6 +193,7 @@
 
   // Closures used in implementation.
   friend class G1ParScanThreadState;
+  friend class G1ParScanThreadStateSet;
   friend class G1ParTask;
   friend class G1PLABAllocator;
   friend class G1PrepareCompactClosure;
@@ -309,14 +311,8 @@
 
   volatile unsigned _gc_time_stamp;
 
-  size_t* _surviving_young_words;
-
   G1HRPrinter _hr_printer;
 
-  void setup_surviving_young_words();
-  void update_surviving_young_words(size_t* surv_young_words);
-  void cleanup_surviving_young_words();
-
   // It decides whether an explicit GC should start a concurrent cycle
   // instead of doing a STW GC. Currently, a concurrent cycle is
   // explicitly started if:
@@ -584,11 +580,11 @@
 
   // Process any reference objects discovered during
   // an incremental evacuation pause.
-  void process_discovered_references(G1ParScanThreadState** per_thread_states);
+  void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 
   // Enqueue any remaining discovered references
   // after processing.
-  void enqueue_discovered_references(G1ParScanThreadState** per_thread_states);
+  void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 
 public:
   WorkGang* workers() const { return _workers; }
@@ -683,9 +679,6 @@
   // Allocates a new heap region instance.
   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 
-  // Allocates a new per thread par scan state for the given thread id.
-  G1ParScanThreadState* new_par_scan_state(uint worker_id);
-
   // Allocate the highest free region in the reserved heap. This will commit
   // regions as necessary.
   HeapRegion* alloc_highest_free_region();
@@ -799,7 +792,7 @@
   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 
   // Actually do the work of evacuating the collection set.
-  void evacuate_collection_set(EvacuationInfo& evacuation_info);
+  void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 
   // Print the header for the per-thread termination statistics.
   static void print_termination_stats_hdr(outputStream* const st);
@@ -833,7 +826,7 @@
 
   // After a collection pause, make the regions in the CS into free
   // regions.
-  void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
+  void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 
   // Abandon the current collection set without recording policy
   // statistics or updating free lists.
@@ -1057,7 +1050,7 @@
   // The current policy object for the collector.
   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
 
-  virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
+  virtual CollectorPolicy* collector_policy() const;
 
   // Adaptive size policy.  No such thing for g1.
   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
@@ -1610,7 +1603,6 @@
 
 public:
   size_t pending_card_num();
-  size_t cards_scanned();
 
 protected:
   size_t _max_heap_capacity;
--- a/hotspot/src/share/vm/gc/g1/g1CollectedHeap_ext.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/g1CollectedHeap_ext.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -38,7 +38,3 @@
                                              MemRegion mr) {
   return new HeapRegion(hrs_index, bot_shared(), mr);
 }
-
-G1ParScanThreadState* G1CollectedHeap::new_par_scan_state(uint worker_id) {
-  return new G1ParScanThreadState(this, worker_id);
-}
--- a/hotspot/src/share/vm/gc/g1/g1CollectorPolicy.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/g1CollectorPolicy.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -923,7 +923,7 @@
 // Anything below that is considered to be zero
 #define MIN_TIMER_GRANULARITY 0.0000001
 
-void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms) {
+void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned) {
   double end_time_sec = os::elapsedTime();
   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
          "otherwise, the subtraction below does not make sense");
@@ -1052,8 +1052,6 @@
       _cost_per_card_ms_seq->add(cost_per_card_ms);
     }
 
-    size_t cards_scanned = _g1->cards_scanned();
-
     double cost_per_entry_ms = 0.0;
     if (cards_scanned > 10) {
       cost_per_entry_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
@@ -1871,7 +1869,7 @@
 }
 
 
-void G1CollectorPolicy::finalize_cset(double target_pause_time_ms) {
+double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
   double young_start_time_sec = os::elapsedTime();
 
   YoungList* young_list = _g1->young_list();
@@ -1883,7 +1881,6 @@
   guarantee(_collection_set == NULL, "Precondition");
 
   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
-  double predicted_pause_time_ms = base_time_ms;
   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
 
   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
@@ -1927,15 +1924,16 @@
   _collection_set = _inc_cset_head;
   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
-  predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
 
-  ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
+  ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
                 "add young regions to CSet",
                 ergo_format_region("eden")
                 ergo_format_region("survivors")
-                ergo_format_ms("predicted young region time"),
+                ergo_format_ms("predicted young region time")
+                ergo_format_ms("target pause time"),
                 eden_region_length, survivor_region_length,
-                _inc_cset_predicted_elapsed_time_ms);
+                _inc_cset_predicted_elapsed_time_ms,
+                target_pause_time_ms);
 
   // The number of recorded young regions is the incremental
   // collection set's current size
@@ -1944,8 +1942,13 @@
   double young_end_time_sec = os::elapsedTime();
   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
 
-  // Set the start of the non-young choice time.
-  double non_young_start_time_sec = young_end_time_sec;
+  return time_remaining_ms;
+}
+
+void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
+  double non_young_start_time_sec = os::elapsedTime();
+  double predicted_old_time_ms = 0.0;
+
 
   if (!collector_state()->gcs_are_young()) {
     CollectionSetChooser* cset_chooser = _collectionSetChooser;
@@ -2033,8 +2036,8 @@
 
       // We will add this region to the CSet.
       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
-      predicted_pause_time_ms += predicted_time_ms;
-      cset_chooser->remove_and_move_to_next(hr);
+      predicted_old_time_ms += predicted_time_ms;
+      cset_chooser->pop(); // already have region via peek()
       _g1->old_set_remove(hr);
       add_old_region_to_cset(hr);
 
@@ -2068,16 +2071,13 @@
 
   stop_incremental_cset_building();
 
-  ergo_verbose5(ErgoCSetConstruction,
+  ergo_verbose3(ErgoCSetConstruction,
                 "finish choosing CSet",
-                ergo_format_region("eden")
-                ergo_format_region("survivors")
                 ergo_format_region("old")
-                ergo_format_ms("predicted pause time")
-                ergo_format_ms("target pause time"),
-                eden_region_length, survivor_region_length,
+                ergo_format_ms("predicted old region time")
+                ergo_format_ms("time remaining"),
                 old_cset_region_length(),
-                predicted_pause_time_ms, target_pause_time_ms);
+                predicted_old_time_ms, time_remaining_ms);
 
   double non_young_end_time_sec = os::elapsedTime();
   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
--- a/hotspot/src/share/vm/gc/g1/g1CollectorPolicy.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/g1CollectorPolicy.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -473,7 +473,7 @@
 
   // The number of bytes in the collection set before the pause. Set from
   // the incrementally built collection set at the start of an evacuation
-  // pause, and incremented in finalize_cset() when adding old regions
+  // pause, and incremented in finalize_old_cset_part() when adding old regions
   // (if any) to the collection set.
   size_t _collection_set_bytes_used_before;
 
@@ -634,7 +634,7 @@
 
   // Record the start and end of an evacuation pause.
   void record_collection_pause_start(double start_time_sec);
-  void record_collection_pause_end(double pause_time_ms);
+  void record_collection_pause_end(double pause_time_ms, size_t cards_scanned);
 
   // Record the start and end of a full collection.
   void record_full_collection_start();
@@ -689,7 +689,8 @@
   // Choose a new collection set.  Marks the chosen regions as being
   // "in_collection_set", and links them together.  The head and number of
   // the collection set are available via access methods.
-  void finalize_cset(double target_pause_time_ms);
+  double finalize_young_cset_part(double target_pause_time_ms);
+  virtual void finalize_old_cset_part(double time_remaining_ms);
 
   // The head of the list (via "next_in_collection_set()") representing the
   // current collection set.
@@ -865,8 +866,8 @@
     return _recorded_survivor_regions;
   }
 
-  void record_thread_age_table(ageTable* age_table) {
-    _survivors_age_table.merge_par(age_table);
+  void record_age_table(ageTable* age_table) {
+    _survivors_age_table.merge(age_table);
   }
 
   void update_max_gc_locker_expansion();
--- a/hotspot/src/share/vm/gc/g1/g1EvacStats.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/g1EvacStats.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -46,11 +46,11 @@
     if (_allocated == 0) {
       assert((_unused == 0),
              err_msg("Inconsistency in PLAB stats: "
-                     "_allocated: "SIZE_FORMAT", "
-                     "_wasted: "SIZE_FORMAT", "
-                     "_region_end_waste: "SIZE_FORMAT", "
-                     "_unused: "SIZE_FORMAT", "
-                     "_used  : "SIZE_FORMAT,
+                     "_allocated: " SIZE_FORMAT ", "
+                     "_wasted: " SIZE_FORMAT ", "
+                     "_region_end_waste: " SIZE_FORMAT ", "
+                     "_unused: " SIZE_FORMAT ", "
+                     "_used  : " SIZE_FORMAT,
                      _allocated, _wasted, _region_end_waste, _unused, used()));
       _allocated = 1;
     }
--- a/hotspot/src/share/vm/gc/g1/g1ParScanThreadState.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/g1ParScanThreadState.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -32,7 +32,7 @@
 #include "oops/oop.inline.hpp"
 #include "runtime/prefetch.inline.hpp"
 
-G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id)
+G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length)
   : _g1h(g1h),
     _refs(g1h->task_queue(worker_id)),
     _dcq(&g1h->dirty_card_queue_set()),
@@ -51,8 +51,8 @@
   // non-young regions (where the age is -1)
   // We also add a few elements at the beginning and at the end in
   // an attempt to eliminate cache contention
-  uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
-  uint array_length = PADDING_ELEM_NUM +
+  size_t real_length = 1 + young_cset_length;
+  size_t array_length = PADDING_ELEM_NUM +
                       real_length +
                       PADDING_ELEM_NUM;
   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
@@ -60,7 +60,7 @@
     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
                           "Not enough space for young surv histo.");
   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
-  memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
+  memset(_surviving_young_words, 0, real_length * sizeof(size_t));
 
   _plab_allocator = G1PLABAllocator::create_allocator(_g1h->allocator());
 
@@ -71,13 +71,21 @@
   _dest[InCSetState::Old]          = InCSetState::Old;
 }
 
-G1ParScanThreadState::~G1ParScanThreadState() {
+// Pass locally gathered statistics to global state.
+void G1ParScanThreadState::flush(size_t* surviving_young_words) {
+  _dcq.flush();
   // Update allocation statistics.
   _plab_allocator->flush_and_retire_stats();
+  _g1h->g1_policy()->record_age_table(&_age_table);
+
+  uint length = _g1h->g1_policy()->young_cset_region_length();
+  for (uint region_index = 0; region_index < length; region_index++) {
+    surviving_young_words[region_index] += _surviving_young_words[region_index];
+  }
+}
+
+G1ParScanThreadState::~G1ParScanThreadState() {
   delete _plab_allocator;
-  _g1h->g1_policy()->record_thread_age_table(&_age_table);
-  // Update heap statistics.
-  _g1h->update_surviving_young_words(_surviving_young_words);
   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
 }
 
@@ -314,6 +322,42 @@
   }
 }
 
+G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
+  assert(worker_id < _n_workers, "out of bounds access");
+  return _states[worker_id];
+}
+
+void G1ParScanThreadStateSet::add_cards_scanned(uint worker_id, size_t cards_scanned) {
+  assert(worker_id < _n_workers, "out of bounds access");
+  _cards_scanned[worker_id] += cards_scanned;
+}
+
+size_t G1ParScanThreadStateSet::total_cards_scanned() const {
+  assert(_flushed, "thread local state from the per thread states should have been flushed");
+  return _total_cards_scanned;
+}
+
+const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
+  assert(_flushed, "thread local state from the per thread states should have been flushed");
+  return _surviving_young_words_total;
+}
+
+void G1ParScanThreadStateSet::flush() {
+  assert(!_flushed, "thread local state from the per thread states should be flushed once");
+  assert(_total_cards_scanned == 0, "should have been cleared");
+
+  for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
+    G1ParScanThreadState* pss = _states[worker_index];
+
+    _total_cards_scanned += _cards_scanned[worker_index];
+
+    pss->flush(_surviving_young_words_total);
+    delete pss;
+    _states[worker_index] = NULL;
+  }
+  _flushed = true;
+}
+
 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
   assert(_g1h->obj_in_cs(old),
          err_msg("Object " PTR_FORMAT " should be in the CSet", p2i(old)));
--- a/hotspot/src/share/vm/gc/g1/g1ParScanThreadState.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/g1ParScanThreadState.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -82,7 +82,7 @@
   }
 
  public:
-  G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id);
+  G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length);
   ~G1ParScanThreadState();
 
   void set_ref_processor(ReferenceProcessor* rp) { _scanner.set_ref_processor(rp); }
@@ -121,6 +121,8 @@
     return _surviving_young_words + 1;
   }
 
+  void flush(size_t* surviving_young_words);
+
  private:
   #define G1_PARTIAL_ARRAY_MASK 0x2
 
@@ -189,4 +191,48 @@
   oop handle_evacuation_failure_par(oop obj, markOop m);
 };
 
+class G1ParScanThreadStateSet : public StackObj {
+  G1CollectedHeap* _g1h;
+  G1ParScanThreadState** _states;
+  size_t* _surviving_young_words_total;
+  size_t* _cards_scanned;
+  size_t _total_cards_scanned;
+  uint _n_workers;
+  bool _flushed;
+
+ public:
+  G1ParScanThreadStateSet(G1CollectedHeap* g1h, uint n_workers, size_t young_cset_length) :
+      _g1h(g1h),
+      _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
+      _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length, mtGC)),
+      _cards_scanned(NEW_C_HEAP_ARRAY(size_t, n_workers, mtGC)),
+      _total_cards_scanned(0),
+      _n_workers(n_workers),
+      _flushed(false) {
+    for (uint i = 0; i < n_workers; ++i) {
+      _states[i] = new_par_scan_state(i, young_cset_length);
+    }
+    memset(_surviving_young_words_total, 0, young_cset_length * sizeof(size_t));
+    memset(_cards_scanned, 0, n_workers * sizeof(size_t));
+  }
+
+  ~G1ParScanThreadStateSet() {
+    assert(_flushed, "thread local state from the per thread states should have been flushed");
+    FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
+    FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
+    FREE_C_HEAP_ARRAY(size_t, _cards_scanned);
+  }
+
+  void flush();
+
+  G1ParScanThreadState* state_for_worker(uint worker_id);
+
+  void add_cards_scanned(uint worker_id, size_t cards_scanned);
+  size_t total_cards_scanned() const;
+  const size_t* surviving_young_words() const;
+
+ private:
+  G1ParScanThreadState* new_par_scan_state(uint worker_id, size_t young_cset_length);
+};
+
 #endif // SHARE_VM_GC_G1_G1PARSCANTHREADSTATE_HPP
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc/g1/g1ParScanThreadState_ext.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -0,0 +1,31 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+
+#include "gc/g1/g1ParScanThreadState.hpp"
+
+G1ParScanThreadState* G1ParScanThreadStateSet::new_par_scan_state(uint worker_id, size_t young_cset_length) {
+  return new G1ParScanThreadState(_g1h, worker_id, young_cset_length);
+}
--- a/hotspot/src/share/vm/gc/g1/g1RemSet.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/g1RemSet.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -76,7 +76,6 @@
     _ct_bs(ct_bs), _g1p(_g1->g1_policy()),
     _cg1r(g1->concurrent_g1_refine()),
     _cset_rs_update_cl(NULL),
-    _cards_scanned(NULL), _total_cards_scanned(0),
     _prev_period_summary()
 {
   _cset_rs_update_cl = NEW_C_HEAP_ARRAY(G1ParPushHeapRSClosure*, n_workers(), mtGC);
@@ -228,9 +227,9 @@
   size_t cards_looked_up() { return _cards;}
 };
 
-void G1RemSet::scanRS(G1ParPushHeapRSClosure* oc,
-                      OopClosure* non_heap_roots,
-                      uint worker_i) {
+size_t G1RemSet::scanRS(G1ParPushHeapRSClosure* oc,
+                        OopClosure* non_heap_roots,
+                        uint worker_i) {
   double rs_time_start = os::elapsedTime();
 
   G1CodeBlobClosure code_root_cl(non_heap_roots);
@@ -246,11 +245,10 @@
   double scan_rs_time_sec = (os::elapsedTime() - rs_time_start)
                             - scanRScl.strong_code_root_scan_time_sec();
 
-  assert(_cards_scanned != NULL, "invariant");
-  _cards_scanned[worker_i] = scanRScl.cards_done();
-
   _g1p->phase_times()->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec);
   _g1p->phase_times()->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, scanRScl.strong_code_root_scan_time_sec());
+
+  return scanRScl.cards_done();
 }
 
 // Closure used for updating RSets and recording references that
@@ -298,9 +296,9 @@
   HeapRegionRemSet::cleanup();
 }
 
-void G1RemSet::oops_into_collection_set_do(G1ParPushHeapRSClosure* oc,
-                                           OopClosure* non_heap_roots,
-                                           uint worker_i) {
+size_t G1RemSet::oops_into_collection_set_do(G1ParPushHeapRSClosure* oc,
+                                             OopClosure* non_heap_roots,
+                                             uint worker_i) {
 #if CARD_REPEAT_HISTO
   ct_freq_update_histo_and_reset();
 #endif
@@ -322,10 +320,11 @@
   DirtyCardQueue into_cset_dcq(&_g1->into_cset_dirty_card_queue_set());
 
   updateRS(&into_cset_dcq, worker_i);
-  scanRS(oc, non_heap_roots, worker_i);
+  size_t cards_scanned = scanRS(oc, non_heap_roots, worker_i);
 
   // We now clear the cached values of _cset_rs_update_cl for this worker
   _cset_rs_update_cl[worker_i] = NULL;
+  return cards_scanned;
 }
 
 void G1RemSet::prepare_for_oops_into_collection_set_do() {
@@ -333,23 +332,9 @@
   _g1->set_refine_cte_cl_concurrency(false);
   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   dcqs.concatenate_logs();
-
-  guarantee( _cards_scanned == NULL, "invariant" );
-  _cards_scanned = NEW_C_HEAP_ARRAY(size_t, n_workers(), mtGC);
-  for (uint i = 0; i < n_workers(); ++i) {
-    _cards_scanned[i] = 0;
-  }
-  _total_cards_scanned = 0;
 }
 
 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
-  guarantee( _cards_scanned != NULL, "invariant" );
-  _total_cards_scanned = 0;
-  for (uint i = 0; i < n_workers(); ++i) {
-    _total_cards_scanned += _cards_scanned[i];
-  }
-  FREE_C_HEAP_ARRAY(size_t, _cards_scanned);
-  _cards_scanned = NULL;
   // Cleanup after copy
   _g1->set_refine_cte_cl_concurrency(true);
   // Set all cards back to clean.
--- a/hotspot/src/share/vm/gc/g1/g1RemSet.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/g1/g1RemSet.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -62,9 +62,6 @@
 
   ConcurrentG1Refine*    _cg1r;
 
-  size_t*                _cards_scanned;
-  size_t                 _total_cards_scanned;
-
   // Used for caching the closure that is responsible for scanning
   // references into the collection set.
   G1ParPushHeapRSClosure** _cset_rs_update_cl;
@@ -94,9 +91,12 @@
   // partitioning the work to be done. It should be the same as
   // the "i" passed to the calling thread's work(i) function.
   // In the sequential case this param will be ignored.
-  void oops_into_collection_set_do(G1ParPushHeapRSClosure* blk,
-                                   OopClosure* non_heap_roots,
-                                   uint worker_i);
+  //
+  // Returns the number of cards scanned while looking for pointers
+  // into the collection set.
+  size_t oops_into_collection_set_do(G1ParPushHeapRSClosure* blk,
+                                     OopClosure* non_heap_roots,
+                                     uint worker_i);
 
   // Prepare for and cleanup after an oops_into_collection_set_do
   // call.  Must call each of these once before and after (in sequential
@@ -106,14 +106,13 @@
   void prepare_for_oops_into_collection_set_do();
   void cleanup_after_oops_into_collection_set_do();
 
-  void scanRS(G1ParPushHeapRSClosure* oc,
-              OopClosure* non_heap_roots,
-              uint worker_i);
+  size_t scanRS(G1ParPushHeapRSClosure* oc,
+                OopClosure* non_heap_roots,
+                uint worker_i);
 
   void updateRS(DirtyCardQueue* into_cset_dcq, uint worker_i);
 
   CardTableModRefBS* ct_bs() { return _ct_bs; }
-  size_t cardsScanned() { return _total_cards_scanned; }
 
   // Record, if necessary, the fact that *p (where "p" is in region "from",
   // which is required to be non-NULL) has changed to a new non-NULL value.
--- a/hotspot/src/share/vm/gc/parallel/parallelScavengeHeap.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/parallel/parallelScavengeHeap.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -87,7 +87,7 @@
     return CollectedHeap::ParallelScavengeHeap;
   }
 
-  virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; }
+  virtual CollectorPolicy* collector_policy() const { return _collector_policy; }
 
   static PSYoungGen* young_gen() { return _young_gen; }
   static PSOldGen* old_gen()     { return _old_gen; }
--- a/hotspot/src/share/vm/gc/serial/defNewGeneration.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/serial/defNewGeneration.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -213,7 +213,7 @@
   _max_eden_size = size - (2*_max_survivor_size);
 
   // allocate the performance counters
-  GenCollectorPolicy* gcp = (GenCollectorPolicy*)gch->collector_policy();
+  GenCollectorPolicy* gcp = gch->gen_policy();
 
   // Generation counters -- generation 0, 3 subspaces
   _gen_counters = new GenerationCounters("new", 0, 3,
--- a/hotspot/src/share/vm/gc/serial/tenuredGeneration.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/serial/tenuredGeneration.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -57,8 +57,7 @@
   // initialize performance counters
 
   const char* gen_name = "old";
-  GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
-
+  GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
   // Generation Counters -- generation 1, 1 subspace
   _gen_counters = new GenerationCounters(gen_name, 1, 1,
       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
--- a/hotspot/src/share/vm/gc/shared/ageTable.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/shared/ageTable.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -28,7 +28,6 @@
 #include "gc/shared/collectorPolicy.hpp"
 #include "gc/shared/gcPolicyCounters.hpp"
 #include "memory/resourceArea.hpp"
-#include "runtime/atomic.inline.hpp"
 #include "utilities/copy.hpp"
 
 /* Copyright (c) 1992, 2015, Oracle and/or its affiliates, and Stanford University.
@@ -73,12 +72,6 @@
   }
 }
 
-void ageTable::merge_par(ageTable* subTable) {
-  for (int i = 0; i < table_size; i++) {
-    Atomic::add_ptr(subTable->sizes[i], &sizes[i]);
-  }
-}
-
 uint ageTable::compute_tenuring_threshold(size_t survivor_capacity, GCPolicyCounters* gc_counters) {
   size_t desired_survivor_size = (size_t)((((double) survivor_capacity)*TargetSurvivorRatio)/100);
   uint result;
--- a/hotspot/src/share/vm/gc/shared/ageTable.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/shared/ageTable.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -68,7 +68,6 @@
   // Merge another age table with the current one.  Used
   // for parallel young generation gc.
   void merge(ageTable* subTable);
-  void merge_par(ageTable* subTable);
 
   // calculate new tenuring threshold based on age information
   uint compute_tenuring_threshold(size_t survivor_capacity, GCPolicyCounters* gc_counters);
--- a/hotspot/src/share/vm/gc/shared/blockOffsetTable.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/shared/blockOffsetTable.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -447,14 +447,16 @@
       } else {
         // Unilaterally fix the first (num_pref_cards - 1) following
         // the "offset card" in the suffix block.
+        const size_t right_most_fixed_index = suff_index + num_pref_cards - 1;
         set_remainder_to_point_to_start_incl(suff_index + 1,
-          suff_index + num_pref_cards - 1, true /* reducing */);
+          right_most_fixed_index, true /* reducing */);
         // Fix the appropriate cards in the remainder of the
         // suffix block -- these are the last num_pref_cards
         // cards in each power block of the "new" range plumbed
         // from suff_addr.
         bool more = true;
         uint i = 1;
+        // Fix the first power block with  back_by > num_pref_cards.
         while (more && (i < N_powers)) {
           size_t back_by = power_to_cards_back(i);
           size_t right_index = suff_index + back_by - 1;
@@ -463,6 +465,9 @@
             right_index = end_index - 1;
             more = false;
           }
+          if (left_index <= right_most_fixed_index) {
+                left_index = right_most_fixed_index + 1;
+          }
           if (back_by > num_pref_cards) {
             // Fill in the remainder of this "power block", if it
             // is non-null.
@@ -471,12 +476,14 @@
                                      N_words + i - 1, true /* reducing */);
             } else {
               more = false; // we are done
+              assert((end_index - 1) == right_index, "Must be at the end.");
             }
             i++;
             break;
           }
           i++;
         }
+        // Fix the rest of the power blocks.
         while (more && (i < N_powers)) {
           size_t back_by = power_to_cards_back(i);
           size_t right_index = suff_index + back_by - 1;
--- a/hotspot/src/share/vm/gc/shared/genCollectedHeap.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/shared/genCollectedHeap.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -172,8 +172,6 @@
 void GenCollectedHeap::post_initialize() {
   CollectedHeap::post_initialize();
   ref_processing_init();
-  GenCollectorPolicy *policy = (GenCollectorPolicy *)collector_policy();
-  guarantee(policy->is_generation_policy(), "Illegal policy type");
   assert((_young_gen->kind() == Generation::DefNew) ||
          (_young_gen->kind() == Generation::ParNew),
     "Wrong youngest generation type");
@@ -183,10 +181,10 @@
          _old_gen->kind() == Generation::MarkSweepCompact,
     "Wrong generation kind");
 
-  policy->initialize_size_policy(def_new_gen->eden()->capacity(),
-                                 _old_gen->capacity(),
-                                 def_new_gen->from()->capacity());
-  policy->initialize_gc_policy_counters();
+  _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
+                                      _old_gen->capacity(),
+                                      def_new_gen->from()->capacity());
+  _gen_policy->initialize_gc_policy_counters();
 }
 
 void GenCollectedHeap::ref_processing_init() {
@@ -822,10 +820,11 @@
          "Unexpected generation kinds");
   // Skip two header words in the block content verification
   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
-  CMSCollector* collector = new CMSCollector(
-    (ConcurrentMarkSweepGeneration*)_old_gen,
-    _rem_set->as_CardTableRS(),
-    (ConcurrentMarkSweepPolicy*) collector_policy());
+  assert(_gen_policy->is_concurrent_mark_sweep_policy(), "Unexpected policy type");
+  CMSCollector* collector =
+    new CMSCollector((ConcurrentMarkSweepGeneration*)_old_gen,
+                     _rem_set->as_CardTableRS(),
+                     _gen_policy->as_concurrent_mark_sweep_policy());
 
   if (collector == NULL || !collector->completed_initialization()) {
     if (collector) {
--- a/hotspot/src/share/vm/gc/shared/genCollectedHeap.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/gc/shared/genCollectedHeap.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -153,7 +153,7 @@
   // The generational collector policy.
   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 
-  virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
+  virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 
   // Adaptive size policy
   virtual AdaptiveSizePolicy* size_policy() {
--- a/hotspot/src/share/vm/opto/classes.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/opto/classes.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -290,6 +290,7 @@
 macro(MulReductionVD)
 macro(DivVF)
 macro(DivVD)
+macro(SqrtVD)
 macro(LShiftCntV)
 macro(RShiftCntV)
 macro(LShiftVB)
--- a/hotspot/src/share/vm/opto/ifnode.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/opto/ifnode.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -858,18 +858,29 @@
     // this_bool = <=
     //   dom_bool = >= (proj = True) or dom_bool = < (proj = False)
     //     x in [a, b] on the fail (= True) projection, b+1 > a-1:
-    //     lo = a, hi = b, adjusted_lim = b-a, cond = <=u
+    //     lo = a, hi = b, adjusted_lim = b-a+1, cond = <u
+    //     lo = a, hi = b, adjusted_lim = b-a, cond = <=u doesn't work because b = a - 1 is possible, then b-a = -1
     //   dom_bool = > (proj = True) or dom_bool = <= (proj = False)
     //     x in ]a, b] on the fail (= True) projection b+1 > a:
     //     lo = a+1, hi = b, adjusted_lim = b-a, cond = <u
-    //     lo = a+1, hi = b, adjusted_lim = b-a-1, cond = <=u doesn't work because a = b is possible, then hi-lo = -1
+    //     lo = a+1, hi = b, adjusted_lim = b-a-1, cond = <=u doesn't work because a = b is possible, then b-a-1 = -1
 
-    if (lo_test == BoolTest::gt || lo_test == BoolTest::le) {
-      if (hi_test == BoolTest::le) {
+    if (hi_test == BoolTest::lt) {
+      if (lo_test == BoolTest::gt || lo_test == BoolTest::le) {
+        lo = igvn->transform(new AddINode(lo, igvn->intcon(1)));
+      }
+    } else {
+      assert(hi_test == BoolTest::le, "bad test");
+      if (lo_test == BoolTest::ge || lo_test == BoolTest::lt) {
         adjusted_lim = igvn->transform(new SubINode(hi, lo));
+        adjusted_lim = igvn->transform(new AddINode(adjusted_lim, igvn->intcon(1)));
+        cond = BoolTest::lt;
+      } else {
+        assert(lo_test == BoolTest::gt || lo_test == BoolTest::le, "bad test");
+        adjusted_lim = igvn->transform(new SubINode(hi, lo));
+        lo = igvn->transform(new AddINode(lo, igvn->intcon(1)));
         cond = BoolTest::lt;
       }
-      lo = igvn->transform(new AddINode(lo, igvn->intcon(1)));
     }
   } else if (lo_type->_lo > hi_type->_hi && lo_type->_hi == max_jint && hi_type->_lo == min_jint) {
 
@@ -879,7 +890,8 @@
     //     lo = b, hi = a, adjusted_lim = a-b, cond = >=u
     //   dom_bool = <= (proj = True) or dom_bool = > (proj = False)
     //     x in [b, a] on the fail (= False) projection, a+1 > b-1:
-    //     lo = b, hi = a, adjusted_lim = a-b, cond = >u
+    //     lo = b, hi = a, adjusted_lim = a-b+1, cond = >=u
+    //     lo = b, hi = a, adjusted_lim = a-b, cond = >u doesn't work because a = b - 1 is possible, then b-a = -1
     // this_bool = <=
     //   dom_bool = < (proj = True) or dom_bool = >= (proj = False)
     //     x in ]b, a[ on the fail (= False) projection, a > b:
@@ -887,7 +899,7 @@
     //   dom_bool = <= (proj = True) or dom_bool = > (proj = False)
     //     x in ]b, a] on the fail (= False) projection, a+1 > b:
     //     lo = b+1, hi = a, adjusted_lim = a-b, cond = >=u
-    //     lo = b+1, hi = a, adjusted_lim = a-b-1, cond = >u doesn't work because a = b is possible, then hi-lo = -1
+    //     lo = b+1, hi = a, adjusted_lim = a-b-1, cond = >u doesn't work because a = b is possible, then b-a-1 = -1
 
     swap(lo, hi);
     swap(lo_type, hi_type);
@@ -900,14 +912,26 @@
 
     cond = (hi_test == BoolTest::le || hi_test == BoolTest::gt) ? BoolTest::gt : BoolTest::ge;
 
-    if (lo_test == BoolTest::le) {
-      if (cond == BoolTest::gt) {
+    if (lo_test == BoolTest::lt) {
+      if (hi_test == BoolTest::lt || hi_test == BoolTest::ge) {
+        cond = BoolTest::ge;
+      } else {
+        assert(hi_test == BoolTest::le || hi_test == BoolTest::gt, "bad test");
         adjusted_lim = igvn->transform(new SubINode(hi, lo));
+        adjusted_lim = igvn->transform(new AddINode(adjusted_lim, igvn->intcon(1)));
         cond = BoolTest::ge;
       }
-      lo = igvn->transform(new AddINode(lo, igvn->intcon(1)));
+    } else if (lo_test == BoolTest::le) {
+      if (hi_test == BoolTest::lt || hi_test == BoolTest::ge) {
+        lo = igvn->transform(new AddINode(lo, igvn->intcon(1)));
+        cond = BoolTest::ge;
+      } else {
+        assert(hi_test == BoolTest::le || hi_test == BoolTest::gt, "bad test");
+        adjusted_lim = igvn->transform(new SubINode(hi, lo));
+        lo = igvn->transform(new AddINode(lo, igvn->intcon(1)));
+        cond = BoolTest::ge;
+      }
     }
-
   } else {
     const TypeInt* failtype  = filtered_int_type(igvn, n, proj);
     if (failtype != NULL) {
--- a/hotspot/src/share/vm/opto/loopPredicate.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/opto/loopPredicate.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -112,6 +112,13 @@
     if (_idom != NULL) {
       set_idom(call, rgn, dom_depth(rgn));
     }
+    for (DUIterator_Fast imax, i = uncommon_proj->fast_outs(imax); i < imax; i++) {
+      Node* n = uncommon_proj->fast_out(i);
+      if (n->is_Load() || n->is_Store()) {
+        _igvn.replace_input_of(n, 0, rgn);
+        --i; --imax;
+      }
+    }
   } else {
     // Find region's edge corresponding to uncommon_proj
     for (; proj_index < rgn->req(); proj_index++)
--- a/hotspot/src/share/vm/opto/loopnode.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/opto/loopnode.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -1901,7 +1901,7 @@
     if (stride_con > 0) tty->print("+");
     tty->print("%d", stride_con);
 
-    tty->print(" (%d iters) ", (int)cl->profile_trip_cnt());
+    tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
 
     if (cl->is_pre_loop ()) tty->print(" pre" );
     if (cl->is_main_loop()) tty->print(" main");
--- a/hotspot/src/share/vm/opto/superword.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/opto/superword.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -1858,6 +1858,11 @@
           vn = VectorNode::make(opc, in1, in2, vlen, velt_basic_type(n));
           vlen_in_bytes = vn->as_Vector()->length_in_bytes();
         }
+      } else if (opc == Op_SqrtD) {
+        // Promote operand to vector (Sqrt is a 2 address instruction)
+        Node* in = vector_opd(p, 1);
+        vn = VectorNode::make(opc, in, NULL, vlen, velt_basic_type(n));
+        vlen_in_bytes = vn->as_Vector()->length_in_bytes();
       } else {
         ShouldNotReachHere();
       }
--- a/hotspot/src/share/vm/opto/vectornode.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/opto/vectornode.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -92,6 +92,9 @@
   case Op_DivD:
     assert(bt == T_DOUBLE, "must be");
     return Op_DivVD;
+  case Op_SqrtD:
+    assert(bt == T_DOUBLE, "must be");
+    return Op_SqrtVD;
   case Op_LShiftI:
     switch (bt) {
     case T_BOOLEAN:
@@ -277,6 +280,9 @@
   case Op_DivVF: return new DivVFNode(n1, n2, vt);
   case Op_DivVD: return new DivVDNode(n1, n2, vt);
 
+  // Currently only supports double precision sqrt
+  case Op_SqrtVD: return new SqrtVDNode(n1, vt);
+
   case Op_LShiftVB: return new LShiftVBNode(n1, n2, vt);
   case Op_LShiftVS: return new LShiftVSNode(n1, n2, vt);
   case Op_LShiftVI: return new LShiftVINode(n1, n2, vt);
--- a/hotspot/src/share/vm/opto/vectornode.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/opto/vectornode.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -309,6 +309,14 @@
   virtual int Opcode() const;
 };
 
+//------------------------------SqrtVDNode--------------------------------------
+// Vector Sqrt double
+class SqrtVDNode : public VectorNode {
+ public:
+  SqrtVDNode(Node* in, const TypeVect* vt) : VectorNode(in,vt) {}
+  virtual int Opcode() const;
+};
+
 //------------------------------LShiftVBNode-----------------------------------
 // Vector left shift bytes
 class LShiftVBNode : public VectorNode {
--- a/hotspot/src/share/vm/prims/whitebox.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/prims/whitebox.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -1041,11 +1041,18 @@
 }
 
 WB_ENTRY(jlong, WB_AllocateCodeBlob(JNIEnv* env, jobject o, jint size, jint blob_type))
-    return (jlong) WhiteBox::allocate_code_blob(size, blob_type);
+  if (size < 0) {
+    THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
+      err_msg("WB_AllocateCodeBlob: size is negative: " INT32_FORMAT, size));
+  }
+  return (jlong) WhiteBox::allocate_code_blob(size, blob_type);
 WB_END
 
 WB_ENTRY(void, WB_FreeCodeBlob(JNIEnv* env, jobject o, jlong addr))
-    BufferBlob::free((BufferBlob*) addr);
+  if (addr == 0) {
+    return;
+  }
+  BufferBlob::free((BufferBlob*) addr);
 WB_END
 
 WB_ENTRY(jobjectArray, WB_GetCodeHeapEntries(JNIEnv* env, jobject o, jint blob_type))
@@ -1090,9 +1097,13 @@
 WB_END
 
 WB_ENTRY(jobjectArray, WB_GetCodeBlob(JNIEnv* env, jobject o, jlong addr))
-    ThreadToNativeFromVM ttn(thread);
-    CodeBlobStub stub((CodeBlob*) addr);
-    return codeBlob2objectArray(thread, env, &stub);
+  if (addr == 0) {
+    THROW_MSG_NULL(vmSymbols::java_lang_NullPointerException(),
+      "WB_GetCodeBlob: addr is null");
+  }
+  ThreadToNativeFromVM ttn(thread);
+  CodeBlobStub stub((CodeBlob*) addr);
+  return codeBlob2objectArray(thread, env, &stub);
 WB_END
 
 WB_ENTRY(jlong, WB_GetThreadStackSize(JNIEnv* env, jobject o))
--- a/hotspot/src/share/vm/services/lowMemoryDetector.cpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/services/lowMemoryDetector.cpp	Wed Jul 05 20:51:00 2017 +0200
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
@@ -200,9 +200,10 @@
 // any clears unless the usage becomes greater than or equal
 // to the high threshold.
 //
-// If the current level is between high and low threhsold, no change.
+// If the current level is between high and low threshold, no change.
 //
 void SensorInfo::set_gauge_sensor_level(MemoryUsage usage, ThresholdSupport* high_low_threshold) {
+  assert(Service_lock->owned_by_self(), "Must own Service_lock");
   assert(high_low_threshold->is_high_threshold_supported(), "just checking");
 
   bool is_over_high = high_low_threshold->is_high_threshold_crossed(usage);
@@ -257,6 +258,7 @@
 //      the sensor will be on (i.e. sensor is currently off
 //      and has pending trigger requests).
 void SensorInfo::set_counter_sensor_level(MemoryUsage usage, ThresholdSupport* counter_threshold) {
+  assert(Service_lock->owned_by_self(), "Must own Service_lock");
   assert(counter_threshold->is_high_threshold_supported(), "just checking");
 
   bool is_over_high = counter_threshold->is_high_threshold_crossed(usage);
@@ -278,9 +280,7 @@
 }
 
 void SensorInfo::process_pending_requests(TRAPS) {
-  if (!has_pending_requests()) {
-    return;
-  }
+  assert(has_pending_requests(), "Must have pending request");
 
   int pending_count = pending_trigger_count();
   if (pending_clear_count() > 0) {
@@ -293,7 +293,6 @@
 
 void SensorInfo::trigger(int count, TRAPS) {
   assert(count <= _pending_trigger_count, "just checking");
-
   if (_sensor_obj != NULL) {
     Klass* k = Management::sun_management_Sensor_klass(CHECK);
     instanceKlassHandle sensorKlass (THREAD, k);
@@ -316,6 +315,7 @@
   {
     // Holds Service_lock and update the sensor state
     MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
+    assert(_pending_trigger_count > 0, "Must have pending trigger");
     _sensor_on = true;
     _sensor_count += count;
     _pending_trigger_count = _pending_trigger_count - count;
@@ -323,6 +323,20 @@
 }
 
 void SensorInfo::clear(int count, TRAPS) {
+  {
+    // Holds Service_lock and update the sensor state
+    MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
+    if (_pending_clear_count == 0) {
+      // Bail out if we lost a race to set_*_sensor_level() which may have
+      // reactivated the sensor in the meantime because it was triggered again.
+      return;
+    }
+    _sensor_on = false;
+    _sensor_count += count;
+    _pending_clear_count = 0;
+    _pending_trigger_count = _pending_trigger_count - count;
+  }
+
   if (_sensor_obj != NULL) {
     Klass* k = Management::sun_management_Sensor_klass(CHECK);
     instanceKlassHandle sensorKlass (THREAD, k);
@@ -338,14 +352,6 @@
                             &args,
                             CHECK);
   }
-
-  {
-    // Holds Service_lock and update the sensor state
-    MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
-    _sensor_on = false;
-    _pending_clear_count = 0;
-    _pending_trigger_count = _pending_trigger_count - count;
-  }
 }
 
 //--------------------------------------------------------------
--- a/hotspot/src/share/vm/services/lowMemoryDetector.hpp	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/src/share/vm/services/lowMemoryDetector.hpp	Wed Jul 05 20:51:00 2017 +0200
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
@@ -180,7 +180,7 @@
   // any clears unless the usage becomes greater than or equal
   // to the high threshold.
   //
-  // If the current level is between high and low threhsold, no change.
+  // If the current level is between high and low threshold, no change.
   //
   void set_gauge_sensor_level(MemoryUsage usage, ThresholdSupport* high_low_threshold);
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/test/compiler/arraycopy/TestEliminatedArrayLoopPredicateCopyDeopt.java	Wed Jul 05 20:51:00 2017 +0200
@@ -0,0 +1,53 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * @test
+ * @bug 8134974
+ * @summary Cannot pin eliminated arraycopy loads for deopt state in uncommon trap path if it is a loop predicate unc
+ * @run main/othervm -XX:-BackgroundCompilation -XX:-UseOnStackReplacement TestEliminatedArrayLoopPredicateCopyDeopt
+ *
+ */
+
+public class TestEliminatedArrayLoopPredicateCopyDeopt {
+
+    static boolean test(int[] array_src) {
+        int[] array_dst = new int[10];
+        System.arraycopy(array_src, 0, array_dst, 0, 10);
+
+        for (int i = 0; i < 100; i++) {
+            array_src[i] = i;
+        }
+        if (array_dst[0] == 0) {
+            return true;
+        }
+        return false;
+    }
+
+    static public void main(String[] args) {
+        int[] array_src = new int[100];
+        for (int i = 0; i < 20000; i++) {
+            test(array_src);
+        }
+    }
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/test/compiler/loopopts/superword/SumRedSqrt_Double.java	Wed Jul 05 20:51:00 2017 +0200
@@ -0,0 +1,95 @@
+/*
+ * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+/**
+* @test
+* @summary Add C2 x86 Superword support for scalar sum reduction optimizations : double sqrt test
+*
+* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:+SuperWordReductions -XX:LoopUnrollLimit=250 -XX:LoopMaxUnroll=2 -XX:CompileThresholdScaling=0.1 SumRedSqrt_Double
+* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:-SuperWordReductions -XX:LoopUnrollLimit=250 -XX:LoopMaxUnroll=2 -XX:CompileThresholdScaling=0.1 SumRedSqrt_Double
+*
+* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:+SuperWordReductions -XX:LoopUnrollLimit=250 -XX:LoopMaxUnroll=4 -XX:CompileThresholdScaling=0.1 SumRedSqrt_Double
+* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:-SuperWordReductions -XX:LoopUnrollLimit=250 -XX:LoopMaxUnroll=4 -XX:CompileThresholdScaling=0.1 SumRedSqrt_Double
+*
+* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:+SuperWordReductions -XX:LoopUnrollLimit=250 -XX:LoopMaxUnroll=8 -XX:CompileThresholdScaling=0.1 SumRedSqrt_Double
+* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:-SuperWordReductions -XX:LoopUnrollLimit=250 -XX:LoopMaxUnroll=8 -XX:CompileThresholdScaling=0.1 SumRedSqrt_Double
+*
+* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:+SuperWordReductions -XX:LoopUnrollLimit=250 -XX:LoopMaxUnroll=16 -XX:CompileThresholdScaling=0.1 SumRedSqrt_Double
+* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:-SuperWordReductions -XX:LoopUnrollLimit=250 -XX:LoopMaxUnroll=16 -XX:CompileThresholdScaling=0.1 SumRedSqrt_Double
+*/
+
+public class SumRedSqrt_Double
+{
+  public static void main(String[] args) throws Exception {
+    double[] a = new double[256*1024];
+    double[] b = new double[256*1024];
+    double[] c = new double[256*1024];
+    double[] d = new double[256*1024];
+    sumReductionInit(a,b,c);
+    double total = 0;
+    double valid = 2.06157643776E14;
+    for(int j = 0; j < 2000; j++) {
+      total = sumReductionImplement(a,b,c,d,total);
+    }
+    if(total == valid) {
+      System.out.println("Success");
+    } else {
+      System.out.println("Invalid sum of elements variable in total: " + total);
+      System.out.println("Expected value = " + valid);
+      throw new Exception("Failed");
+    }
+  }
+
+  public static void sumReductionInit(
+    double[] a,
+    double[] b,
+    double[] c)
+  {
+    for(int j = 0; j < 1; j++)
+    {
+      for(int i = 0; i < a.length; i++)
+      {
+        a[i] = i * 1 + j;
+        b[i] = i * 1 - j;
+        c[i] = i + j;
+      }
+    }
+  }
+
+  public static double sumReductionImplement(
+    double[] a,
+    double[] b,
+    double[] c,
+    double[] d,
+    double total)
+  {
+    for(int i = 0; i < a.length; i++)
+    {
+      d[i]= Math.sqrt(a[i] * b[i]) + Math.sqrt(a[i] * c[i]) + Math.sqrt(b[i] * c[i]);
+      total += d[i];
+    }
+    return total;
+  }
+
+}
--- a/hotspot/test/compiler/rangechecks/TestBadFoldCompare.java	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/test/compiler/rangechecks/TestBadFoldCompare.java	Wed Jul 05 20:51:00 2017 +0200
@@ -24,7 +24,8 @@
 /*
  * @test
  * @bug 8085832
- * @summary x <= 0 || x > 0 wrongly folded as (x-1) >u -1
+ * @bug 8135069
+ * @summary x <= 0 || x > 0 wrongly folded as (x-1) >u -1 and x < 0 || x > -1 wrongly folded as x >u -1
  * @run main/othervm -XX:-BackgroundCompilation -XX:-UseOnStackReplacement TestBadFoldCompare
  */
 
@@ -58,6 +59,34 @@
         helper2(i, 0, 0, flag);
     }
 
+    static boolean test3_taken;
+
+    static void helper3(int i, int a, int b, boolean flag) {
+        if (flag) {
+            if (i < a || i > b - 1) {
+                test3_taken = true;
+            }
+        }
+    }
+
+    static void test3(int i, boolean flag) {
+        helper3(i, 0, 0, flag);
+    }
+
+    static boolean test4_taken;
+
+    static void helper4(int i, int a, int b, boolean flag) {
+        if (flag) {
+            if (i > b - 1 || i < a) {
+                test4_taken = true;
+            }
+        }
+    }
+
+    static void test4(int i, boolean flag) {
+        helper4(i, 0, 0, flag);
+    }
+
     static public void main(String[] args) {
         boolean success = true;
 
@@ -87,6 +116,35 @@
             System.out.println("Test2 failed");
             success = false;
         }
+
+        for (int i = 0; i < 20000; i++) {
+            helper3(5, 0,  10, (i%2)==0);
+            helper3(-1, 0,  10, (i%2)==0);
+            helper3(15, 0,  10, (i%2)==0);
+            test3(0, false);
+        }
+        test3_taken = false;
+        test3(0, true);
+
+        if (!test3_taken) {
+            System.out.println("Test3 failed");
+            success = false;
+        }
+
+        for (int i = 0; i < 20000; i++) {
+            helper4(5, 0,  10, (i%2)==0);
+            helper4(-1, 0,  10, (i%2)==0);
+            helper4(15, 0,  10, (i%2)==0);
+            test4(0, false);
+        }
+        test4_taken = false;
+        test4(0, true);
+
+        if (!test4_taken) {
+            System.out.println("Test4 failed");
+            success = false;
+        }
+
         if (!success) {
             throw new RuntimeException("Some tests failed");
         }
--- a/hotspot/test/gc/g1/humongousObjects/TestHumongousThreshold.java	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/test/gc/g1/humongousObjects/TestHumongousThreshold.java	Wed Jul 05 20:51:00 2017 +0200
@@ -56,11 +56,11 @@
  * gc.g1.humongousObjects.TestHumongousThreshold
  *
  * @run main/othervm -XX:+UseG1GC -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -Xbootclasspath/a:.
- * -XX:G1HeapRegionSize=16M
+ * -Xms128M -XX:G1HeapRegionSize=16M
  * gc.g1.humongousObjects.TestHumongousThreshold
  *
  * @run main/othervm -XX:+UseG1GC -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -Xbootclasspath/a:.
- * -XX:G1HeapRegionSize=32M
+ * -Xms200M -XX:G1HeapRegionSize=32M
  * gc.g1.humongousObjects.TestHumongousThreshold
  *
  */
--- a/hotspot/test/serviceability/dcmd/compiler/CodelistTest.java	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/test/serviceability/dcmd/compiler/CodelistTest.java	Wed Jul 05 20:51:00 2017 +0200
@@ -90,6 +90,9 @@
             if (methodPrintedInLogFormat.contains("MethodHandle")) {
                 continue;
             }
+            if (methodPrintedInLogFormat.contains("sun.misc.Unsafe.getUnsafe")) {
+                continue;
+            }
 
             MethodIdentifierParser mf = new MethodIdentifierParser(methodPrintedInLogFormat);
             Method m = null;
--- a/hotspot/test/testlibrary/jdk/test/lib/Utils.java	Sat Sep 26 09:21:07 2015 -0700
+++ b/hotspot/test/testlibrary/jdk/test/lib/Utils.java	Wed Jul 05 20:51:00 2017 +0200
@@ -428,4 +428,28 @@
     public static long adjustTimeout(long tOut) {
         return Math.round(tOut * Utils.TIMEOUT_FACTOR);
     }
+
+    /**
+     * Runs runnable and checks that it throws expected exception. If exceptionException is null it means
+     * that we expect no exception to be thrown.
+     * @param runnable what we run
+     * @param expectedException expected exception
+     */
+    public static void runAndCheckException(Runnable runnable, Class<? extends Throwable> expectedException) {
+        try {
+            runnable.run();
+            if (expectedException != null) {
+                throw new AssertionError("Didn't get expected exception " + expectedException.getSimpleName());
+            }
+        } catch (Throwable t) {
+            if (expectedException == null) {
+                throw new AssertionError("Got unexpected exception ", t);
+            }
+            if (!expectedException.isAssignableFrom(t.getClass())) {
+                throw new AssertionError(String.format("Got unexpected exception %s instead of %s",
+                        t.getClass().getSimpleName(), expectedException.getSimpleName()), t);
+            }
+        }
+    }
+
 }
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/test/testlibrary_tests/whitebox/BlobSanityTest.java	Wed Jul 05 20:51:00 2017 +0200
@@ -0,0 +1,60 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * @test BlobSanityTest
+ * @bug 8132980
+ * @library /testlibrary /../../test/lib
+ * @modules java.management/sun.management
+ * @build BlobSanityTest
+ * @run main ClassFileInstaller sun.hotspot.WhiteBox
+ *                              sun.hotspot.WhiteBox$WhiteBoxPermission
+ * @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI BlobSanityTest
+ * @summary sanity testing of allocateCodeBlob, freeCodeBlob and getCodeBlob
+ */
+
+
+import sun.hotspot.WhiteBox;
+
+import java.util.function.Consumer;
+import jdk.test.lib.Utils;
+
+public class BlobSanityTest {
+
+    private static void runTest(Consumer<Integer> consumer, int val, String testCaseName, Class<? extends Throwable>
+            expectedException) {
+            System.out.println("Calling " + testCaseName);
+            Utils.runAndCheckException(() -> consumer.accept(val), expectedException);
+            System.out.println("Looks ok");
+    }
+
+    public static void main(String[] args) throws Exception {
+        System.out.println("Crash means that sanity check failed");
+
+        WhiteBox wb = WhiteBox.getWhiteBox();
+
+        runTest(wb::freeCodeBlob, 0, "wb::freeCodeBlob(0)", null);
+        runTest(wb::getCodeBlob, 0, "wb::getCodeBlob(0)", NullPointerException.class);
+        runTest(x -> wb.allocateCodeBlob(x, 0), -1, "wb::allocateCodeBlob(-1,0)", IllegalArgumentException.class);
+    }
+}