8016117: New sun.misc.FDBigInteger class as part of 7032154
authorbpb
Thu, 06 Jun 2013 16:45:25 -0700
changeset 18145 39484c6a0c61
parent 18144 b085ffaf3abb
child 18146 47760e45a1dd
8016117: New sun.misc.FDBigInteger class as part of 7032154 Reviewed-by: martin, iris Contributed-by: Sergey Kuksenko <sergey.kuksenko@oracle.com>, Brian Burkhalter <brian.burkhalter@oracle.com>, Dmitry Nadezhin <dmitry.nadezhin@oracle.com>, Olivier Lagneau <olivier.lagneau@oracle.com>
jdk/src/share/classes/sun/misc/FDBigInteger.java
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/sun/misc/FDBigInteger.java	Thu Jun 06 16:45:25 2013 -0700
@@ -0,0 +1,1508 @@
+/*
+ * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package sun.misc;
+
+import java.math.BigInteger;
+import java.util.Arrays;
+//@ model import org.jmlspecs.models.JMLMath;
+
+/**
+ * A simple big integer package specifically for floating point base conversion.
+ */
+public /*@ spec_bigint_math @*/ class FDBigInteger {
+
+    //
+    // This class contains many comments that start with "/*@" mark.
+    // They are behavourial specification in
+    // the Java Modelling Language (JML):
+    // http://www.eecs.ucf.edu/~leavens/JML//index.shtml
+    //
+
+    /*@
+    @ public pure model static \bigint UNSIGNED(int v) {
+    @     return v >= 0 ? v : v + (((\bigint)1) << 32);
+    @ }
+    @
+    @ public pure model static \bigint UNSIGNED(long v) {
+    @     return v >= 0 ? v : v + (((\bigint)1) << 64);
+    @ }
+    @
+    @ public pure model static \bigint AP(int[] data, int len) {
+    @     return (\sum int i; 0 <= 0 && i < len; UNSIGNED(data[i]) << (i*32));
+    @ }
+    @
+    @ public pure model static \bigint pow52(int p5, int p2) {
+    @     ghost \bigint v = 1;
+    @     for (int i = 0; i < p5; i++) v *= 5;
+    @     return v << p2;
+    @ }
+    @
+    @ public pure model static \bigint pow10(int p10) {
+    @     return pow52(p10, p10);
+    @ }
+    @*/
+
+    static final int[] SMALL_5_POW = {
+            1,
+            5,
+            5 * 5,
+            5 * 5 * 5,
+            5 * 5 * 5 * 5,
+            5 * 5 * 5 * 5 * 5,
+            5 * 5 * 5 * 5 * 5 * 5,
+            5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5
+    };
+
+    static final long[] LONG_5_POW = {
+            1L,
+            5L,
+            5L * 5,
+            5L * 5 * 5,
+            5L * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+            5L * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+    };
+
+    // Maximum size of cache of powers of 5 as FDBigIntegers.
+    private static final int MAX_FIVE_POW = 340;
+
+    // Cache of big powers of 5 as FDBigIntegers.
+    private static final FDBigInteger POW_5_CACHE[];
+
+    // Initialize FDBigInteger cache of powers of 5.
+    static {
+        POW_5_CACHE = new FDBigInteger[MAX_FIVE_POW];
+        int i = 0;
+        while (i < SMALL_5_POW.length) {
+            FDBigInteger pow5 = new FDBigInteger(new int[]{SMALL_5_POW[i]}, 0);
+            pow5.makeImmutable();
+            POW_5_CACHE[i] = pow5;
+            i++;
+        }
+        FDBigInteger prev = POW_5_CACHE[i - 1];
+        while (i < MAX_FIVE_POW) {
+            POW_5_CACHE[i] = prev = prev.mult(5);
+            prev.makeImmutable();
+            i++;
+        }
+    }
+
+    // Zero as an FDBigInteger.
+    public static final FDBigInteger ZERO = new FDBigInteger(new int[0], 0);
+
+    // Ensure ZERO is immutable.
+    static {
+        ZERO.makeImmutable();
+    }
+
+    // Constant for casting an int to a long via bitwise AND.
+    private final static long LONG_MASK = 0xffffffffL;
+
+    //@ spec_public non_null;
+    private int data[];  // value: data[0] is least significant
+    //@ spec_public;
+    private int offset;  // number of least significant zero padding ints
+    //@ spec_public;
+    private int nWords;  // data[nWords-1]!=0, all values above are zero
+                 // if nWords==0 -> this FDBigInteger is zero
+    //@ spec_public;
+    private boolean isImmutable = false;
+
+    /*@
+     @ public invariant 0 <= nWords && nWords <= data.length && offset >= 0;
+     @ public invariant nWords == 0 ==> offset == 0;
+     @ public invariant nWords > 0 ==> data[nWords - 1] != 0;
+     @ public invariant (\forall int i; nWords <= i && i < data.length; data[i] == 0);
+     @ public pure model \bigint value() {
+     @     return AP(data, nWords) << (offset*32);
+     @ }
+     @*/
+
+    /**
+     * Constructs an <code>FDBigInteger</code> from data and padding. The
+     * <code>data</code> parameter has the least significant <code>int</code> at
+     * the zeroth index. The <code>offset</code> parameter gives the number of
+     * zero <code>int</code>s to be inferred below the least significant element
+     * of <code>data</code>.
+     *
+     * @param data An array containing all non-zero <code>int</code>s of the value.
+     * @param offset An offset indicating the number of zero <code>int</code>s to pad
+     * below the least significant element of <code>data</code>.
+     */
+    /*@
+     @ requires data != null && offset >= 0;
+     @ ensures this.value() == \old(AP(data, data.length) << (offset*32));
+     @ ensures this.data == \old(data);
+     @*/
+    private FDBigInteger(int[] data, int offset) {
+        this.data = data;
+        this.offset = offset;
+        this.nWords = data.length;
+        trimLeadingZeros();
+    }
+
+    /**
+     * Constructs an <code>FDBigInteger</code> from a starting value and some
+     * decimal digits.
+     *
+     * @param lValue The starting value.
+     * @param digits The decimal digits.
+     * @param kDigits The initial index into <code>digits</code>.
+     * @param nDigits The final index into <code>digits</code>.
+     */
+    /*@
+     @ requires digits != null;
+     @ requires 0 <= kDigits && kDigits <= nDigits && nDigits <= digits.length;
+     @ requires (\forall int i; 0 <= i && i < nDigits; '0' <= digits[i] && digits[i] <= '9');
+     @ ensures this.value() == \old(lValue * pow10(nDigits - kDigits) + (\sum int i; kDigits <= i && i < nDigits; (digits[i] - '0') * pow10(nDigits - i - 1)));
+     @*/
+    public FDBigInteger(long lValue, char[] digits, int kDigits, int nDigits) {
+        int n = Math.max((nDigits + 8) / 9, 2);        // estimate size needed.
+        data = new int[n];      // allocate enough space
+        data[0] = (int) lValue;    // starting value
+        data[1] = (int) (lValue >>> 32);
+        offset = 0;
+        nWords = 2;
+        int i = kDigits;
+        int limit = nDigits - 5;       // slurp digits 5 at a time.
+        int v;
+        while (i < limit) {
+            int ilim = i + 5;
+            v = (int) digits[i++] - (int) '0';
+            while (i < ilim) {
+                v = 10 * v + (int) digits[i++] - (int) '0';
+            }
+            multAddMe(100000, v); // ... where 100000 is 10^5.
+        }
+        int factor = 1;
+        v = 0;
+        while (i < nDigits) {
+            v = 10 * v + (int) digits[i++] - (int) '0';
+            factor *= 10;
+        }
+        if (factor != 1) {
+            multAddMe(factor, v);
+        }
+        trimLeadingZeros();
+    }
+
+    /**
+     * Returns an <code>FDBigInteger</code> with the numerical value
+     * <code>5<sup>p5</sup> * 2<sup>p2</sup></code>.
+     *
+     * @param p5 The exponent of the power-of-five factor.
+     * @param p2 The exponent of the power-of-two factor.
+     * @return <code>5<sup>p5</sup> * 2<sup>p2</sup></code>
+     */
+    /*@
+     @ requires p5 >= 0 && p2 >= 0;
+     @ assignable \nothing;
+     @ ensures \result.value() == \old(pow52(p5, p2));
+     @*/
+    public static FDBigInteger valueOfPow52(int p5, int p2) {
+        if (p5 != 0) {
+            if (p2 == 0) {
+                return big5pow(p5);
+            } else if (p5 < SMALL_5_POW.length) {
+                int pow5 = SMALL_5_POW[p5];
+                int wordcount = p2 >> 5;
+                int bitcount = p2 & 0x1f;
+                if (bitcount == 0) {
+                    return new FDBigInteger(new int[]{pow5}, wordcount);
+                } else {
+                    return new FDBigInteger(new int[]{
+                            pow5 << bitcount,
+                            pow5 >>> (32 - bitcount)
+                    }, wordcount);
+                }
+            } else {
+                return big5pow(p5).leftShift(p2);
+            }
+        } else {
+            return valueOfPow2(p2);
+        }
+    }
+
+    /**
+     * Returns an <code>FDBigInteger</code> with the numerical value
+     * <code>value * 5<sup>p5</sup> * 2<sup>p2</sup></code>.
+     *
+     * @param value The constant factor.
+     * @param p5 The exponent of the power-of-five factor.
+     * @param p2 The exponent of the power-of-two factor.
+     * @return <code>value * 5<sup>p5</sup> * 2<sup>p2</sup></code>
+     */
+    /*@
+     @ requires p5 >= 0 && p2 >= 0;
+     @ assignable \nothing;
+     @ ensures \result.value() == \old(UNSIGNED(value) * pow52(p5, p2));
+     @*/
+    public static FDBigInteger valueOfMulPow52(long value, int p5, int p2) {
+        assert p5 >= 0 : p5;
+        assert p2 >= 0 : p2;
+        int v0 = (int) value;
+        int v1 = (int) (value >>> 32);
+        int wordcount = p2 >> 5;
+        int bitcount = p2 & 0x1f;
+        if (p5 != 0) {
+            if (p5 < SMALL_5_POW.length) {
+                long pow5 = SMALL_5_POW[p5] & LONG_MASK;
+                long carry = (v0 & LONG_MASK) * pow5;
+                v0 = (int) carry;
+                carry >>>= 32;
+                carry = (v1 & LONG_MASK) * pow5 + carry;
+                v1 = (int) carry;
+                int v2 = (int) (carry >>> 32);
+                if (bitcount == 0) {
+                    return new FDBigInteger(new int[]{v0, v1, v2}, wordcount);
+                } else {
+                    return new FDBigInteger(new int[]{
+                            v0 << bitcount,
+                            (v1 << bitcount) | (v0 >>> (32 - bitcount)),
+                            (v2 << bitcount) | (v1 >>> (32 - bitcount)),
+                            v2 >>> (32 - bitcount)
+                    }, wordcount);
+                }
+            } else {
+                FDBigInteger pow5 = big5pow(p5);
+                int[] r;
+                if (v1 == 0) {
+                    r = new int[pow5.nWords + 1 + ((p2 != 0) ? 1 : 0)];
+                    mult(pow5.data, pow5.nWords, v0, r);
+                } else {
+                    r = new int[pow5.nWords + 2 + ((p2 != 0) ? 1 : 0)];
+                    mult(pow5.data, pow5.nWords, v0, v1, r);
+                }
+                return (new FDBigInteger(r, pow5.offset)).leftShift(p2);
+            }
+        } else if (p2 != 0) {
+            if (bitcount == 0) {
+                return new FDBigInteger(new int[]{v0, v1}, wordcount);
+            } else {
+                return new FDBigInteger(new int[]{
+                         v0 << bitcount,
+                        (v1 << bitcount) | (v0 >>> (32 - bitcount)),
+                        v1 >>> (32 - bitcount)
+                }, wordcount);
+            }
+        }
+        return new FDBigInteger(new int[]{v0, v1}, 0);
+    }
+
+    /**
+     * Returns an <code>FDBigInteger</code> with the numerical value
+     * <code>2<sup>p2</sup></code>.
+     *
+     * @param p2 The exponent of 2.
+     * @return <code>2<sup>p2</sup></code>
+     */
+    /*@
+     @ requires p2 >= 0;
+     @ assignable \nothing;
+     @ ensures \result.value() == pow52(0, p2);
+     @*/
+    private static FDBigInteger valueOfPow2(int p2) {
+        int wordcount = p2 >> 5;
+        int bitcount = p2 & 0x1f;
+        return new FDBigInteger(new int[]{1 << bitcount}, wordcount);
+    }
+
+    /**
+     * Removes all leading zeros from this <code>FDBigInteger</code> adjusting
+     * the offset and number of non-zero leading words accordingly.
+     */
+    /*@
+     @ requires data != null;
+     @ requires 0 <= nWords && nWords <= data.length && offset >= 0;
+     @ requires nWords == 0 ==> offset == 0;
+     @ ensures nWords == 0 ==> offset == 0;
+     @ ensures nWords > 0 ==> data[nWords - 1] != 0;
+     @*/
+    private /*@ helper @*/ void trimLeadingZeros() {
+        int i = nWords;
+        if (i > 0 && (data[--i] == 0)) {
+            //for (; i > 0 && data[i - 1] == 0; i--) ;
+            while(i > 0 && data[i - 1] == 0) {
+                i--;
+            }
+            this.nWords = i;
+            if (i == 0) { // all words are zero
+                this.offset = 0;
+            }
+        }
+    }
+
+    /**
+     * Retrieves the normalization bias of the <code>FDBigIntger</code>. The
+     * normalization bias is a left shift such that after it the highest word
+     * of the value will have the 4 highest bits equal to zero:
+     * <code>(highestWord & 0xf0000000) == 0</code>, but the next bit should be 1
+     * <code>(highestWord & 0x08000000) != 0</code>.
+     *
+     * @return The normalization bias.
+     */
+    /*@
+     @ requires this.value() > 0;
+     @*/
+    public /*@ pure @*/ int getNormalizationBias() {
+        if (nWords == 0) {
+            throw new IllegalArgumentException("Zero value cannot be normalized");
+        }
+        int zeros = Integer.numberOfLeadingZeros(data[nWords - 1]);
+        return (zeros < 4) ? 28 + zeros : zeros - 4;
+    }
+
+    // TODO: Why is anticount param needed if it is always 32 - bitcount?
+    /**
+     * Left shifts the contents of one int array into another.
+     *
+     * @param src The source array.
+     * @param idx The initial index of the source array.
+     * @param result The destination array.
+     * @param bitcount The left shift.
+     * @param anticount The left anti-shift, e.g., <code>32-bitcount</code>.
+     * @param prev The prior source value.
+     */
+    /*@
+     @ requires 0 < bitcount && bitcount < 32 && anticount == 32 - bitcount;
+     @ requires src.length >= idx && result.length > idx;
+     @ assignable result[*];
+     @ ensures AP(result, \old(idx + 1)) == \old((AP(src, idx) + UNSIGNED(prev) << (idx*32)) << bitcount);
+     @*/
+    private static void leftShift(int[] src, int idx, int result[], int bitcount, int anticount, int prev){
+        for (; idx > 0; idx--) {
+            int v = (prev << bitcount);
+            prev = src[idx - 1];
+            v |= (prev >>> anticount);
+            result[idx] = v;
+        }
+        int v = prev << bitcount;
+        result[0] = v;
+    }
+
+    /**
+     * Shifts this <code>FDBigInteger</code> to the left. The shift is performed
+     * in-place unless the <code>FDBigInteger</code> is immutable in which case
+     * a new instance of <code>FDBigInteger</code> is returned.
+     *
+     * @param shift The number of bits to shift left.
+     * @return The shifted <code>FDBigInteger</code>.
+     */
+    /*@
+     @ requires this.value() == 0 || shift == 0;
+     @ assignable \nothing;
+     @ ensures \result == this;
+     @
+     @  also
+     @
+     @ requires this.value() > 0 && shift > 0 && this.isImmutable;
+     @ assignable \nothing;
+     @ ensures \result.value() == \old(this.value() << shift);
+     @
+     @  also
+     @
+     @ requires this.value() > 0 && shift > 0 && this.isImmutable;
+     @ assignable \nothing;
+     @ ensures \result == this;
+     @ ensures \result.value() == \old(this.value() << shift);
+     @*/
+    public FDBigInteger leftShift(int shift) {
+        if (shift == 0 || nWords == 0) {
+            return this;
+        }
+        int wordcount = shift >> 5;
+        int bitcount = shift & 0x1f;
+        if (this.isImmutable) {
+            if (bitcount == 0) {
+                return new FDBigInteger(Arrays.copyOf(data, nWords), offset + wordcount);
+            } else {
+                int anticount = 32 - bitcount;
+                int idx = nWords - 1;
+                int prev = data[idx];
+                int hi = prev >>> anticount;
+                int[] result;
+                if (hi != 0) {
+                    result = new int[nWords + 1];
+                    result[nWords] = hi;
+                } else {
+                    result = new int[nWords];
+                }
+                leftShift(data,idx,result,bitcount,anticount,prev);
+                return new FDBigInteger(result, offset + wordcount);
+            }
+        } else {
+            if (bitcount != 0) {
+                int anticount = 32 - bitcount;
+                if ((data[0] << bitcount) == 0) {
+                    int idx = 0;
+                    int prev = data[idx];
+                    for (; idx < nWords - 1; idx++) {
+                        int v = (prev >>> anticount);
+                        prev = data[idx + 1];
+                        v |= (prev << bitcount);
+                        data[idx] = v;
+                    }
+                    int v = prev >>> anticount;
+                    data[idx] = v;
+                    if(v==0) {
+                        nWords--;
+                    }
+                    offset++;
+                } else {
+                    int idx = nWords - 1;
+                    int prev = data[idx];
+                    int hi = prev >>> anticount;
+                    int[] result = data;
+                    int[] src = data;
+                    if (hi != 0) {
+                        if(nWords == data.length) {
+                            data = result = new int[nWords + 1];
+                        }
+                        result[nWords++] = hi;
+                    }
+                    leftShift(src,idx,result,bitcount,anticount,prev);
+                }
+            }
+            offset += wordcount;
+            return this;
+        }
+    }
+
+    /**
+     * Returns the number of <code>int</code>s this <code>FDBigInteger</code> represents.
+     *
+     * @return Number of <code>int</code>s required to represent this <code>FDBigInteger</code>.
+     */
+    /*@
+     @ requires this.value() == 0;
+     @ ensures \result == 0;
+     @
+     @  also
+     @
+     @ requires this.value() > 0;
+     @ ensures ((\bigint)1) << (\result - 1) <= this.value() && this.value() <= ((\bigint)1) << \result;
+     @*/
+    private /*@ pure @*/ int size() {
+        return nWords + offset;
+    }
+
+
+    /**
+     * Computes
+     * <pre>
+     * q = (int)( this / S )
+     * this = 10 * ( this mod S )
+     * Return q.
+     * </pre>
+     * This is the iteration step of digit development for output.
+     * We assume that S has been normalized, as above, and that
+     * "this" has been left-shifted accordingly.
+     * Also assumed, of course, is that the result, q, can be expressed
+     * as an integer, 0 <= q < 10.
+     *
+     * @param The divisor of this <code>FDBigInteger</code>.
+     * @return <code>q = (int)(this / S)</code>.
+     */
+    /*@
+     @ requires !this.isImmutable;
+     @ requires this.size() <= S.size();
+     @ requires this.data.length + this.offset >= S.size();
+     @ requires S.value() >= ((\bigint)1) << (S.size()*32 - 4);
+     @ assignable this.nWords, this.offset, this.data, this.data[*];
+     @ ensures \result == \old(this.value() / S.value());
+     @ ensures this.value() == \old(10 * (this.value() % S.value()));
+     @*/
+    public int quoRemIteration(FDBigInteger S) throws IllegalArgumentException {
+        assert !this.isImmutable : "cannot modify immutable value";
+        // ensure that this and S have the same number of
+        // digits. If S is properly normalized and q < 10 then
+        // this must be so.
+        int thSize = this.size();
+        int sSize = S.size();
+        if (thSize < sSize) {
+            // this value is significantly less than S, result of division is zero.
+            // just mult this by 10.
+            int p = multAndCarryBy10(this.data, this.nWords, this.data);
+            if(p!=0) {
+                this.data[nWords++] = p;
+            } else {
+                trimLeadingZeros();
+            }
+            return 0;
+        } else if (thSize > sSize) {
+            throw new IllegalArgumentException("disparate values");
+        }
+        // estimate q the obvious way. We will usually be
+        // right. If not, then we're only off by a little and
+        // will re-add.
+        long q = (this.data[this.nWords - 1] & LONG_MASK) / (S.data[S.nWords - 1] & LONG_MASK);
+        long diff = multDiffMe(q, S);
+        if (diff != 0L) {
+            //@ assert q != 0;
+            //@ assert this.offset == \old(Math.min(this.offset, S.offset));
+            //@ assert this.offset <= S.offset;
+
+            // q is too big.
+            // add S back in until this turns +. This should
+            // not be very many times!
+            long sum = 0L;
+            int tStart = S.offset - this.offset;
+            //@ assert tStart >= 0;
+            int[] sd = S.data;
+            int[] td = this.data;
+            while (sum == 0L) {
+                for (int sIndex = 0, tIndex = tStart; tIndex < this.nWords; sIndex++, tIndex++) {
+                    sum += (td[tIndex] & LONG_MASK) + (sd[sIndex] & LONG_MASK);
+                    td[tIndex] = (int) sum;
+                    sum >>>= 32; // Signed or unsigned, answer is 0 or 1
+                }
+                //
+                // Originally the following line read
+                // "if ( sum !=0 && sum != -1 )"
+                // but that would be wrong, because of the
+                // treatment of the two values as entirely unsigned,
+                // it would be impossible for a carry-out to be interpreted
+                // as -1 -- it would have to be a single-bit carry-out, or +1.
+                //
+                assert sum == 0 || sum == 1 : sum; // carry out of division correction
+                q -= 1;
+            }
+        }
+        // finally, we can multiply this by 10.
+        // it cannot overflow, right, as the high-order word has
+        // at least 4 high-order zeros!
+        int p = multAndCarryBy10(this.data, this.nWords, this.data);
+        assert p == 0 : p; // Carry out of *10
+        trimLeadingZeros();
+        return (int) q;
+    }
+
+    /**
+     * Multiplies this <code>FDBigInteger</code> by 10. The operation will be
+     * performed in place unless the <code>FDBigInteger</code> is immutable in
+     * which case a new <code>FDBigInteger</code> will be returned.
+     *
+     * @return The <code>FDBigInteger</code> multiplied by 10.
+     */
+    /*@
+     @ requires this.value() == 0;
+     @ assignable \nothing;
+     @ ensures \result == this;
+     @
+     @  also
+     @
+     @ requires this.value() > 0 && this.isImmutable;
+     @ assignable \nothing;
+     @ ensures \result.value() == \old(this.value() * 10);
+     @
+     @  also
+     @
+     @ requires this.value() > 0 && !this.isImmutable;
+     @ assignable this.nWords, this.data, this.data[*];
+     @ ensures \result == this;
+     @ ensures \result.value() == \old(this.value() * 10);
+     @*/
+    public FDBigInteger multBy10() {
+        if (nWords == 0) {
+            return this;
+        }
+        if (isImmutable) {
+            int[] res = new int[nWords + 1];
+            res[nWords] = multAndCarryBy10(data, nWords, res);
+            return new FDBigInteger(res, offset);
+        } else {
+            int p = multAndCarryBy10(this.data, this.nWords, this.data);
+            if (p != 0) {
+                if (nWords == data.length) {
+                    if (data[0] == 0) {
+                        System.arraycopy(data, 1, data, 0, --nWords);
+                        offset++;
+                    } else {
+                        data = Arrays.copyOf(data, data.length + 1);
+                    }
+                }
+                data[nWords++] = p;
+            } else {
+                trimLeadingZeros();
+            }
+            return this;
+        }
+    }
+
+    /**
+     * Multiplies this <code>FDBigInteger</code> by
+     * <code>5<sup>p5</sup> * 2<sup>p2</sup></code>. The operation will be
+     * performed in place if possible, otherwise a new <code>FDBigInteger</code>
+     * will be returned.
+     *
+     * @param p5 The exponent of the power-of-five factor.
+     * @param p2 The exponent of the power-of-two factor.
+     * @return
+     */
+    /*@
+     @ requires this.value() == 0 || p5 == 0 && p2 == 0;
+     @ assignable \nothing;
+     @ ensures \result == this;
+     @
+     @  also
+     @
+     @ requires this.value() > 0 && (p5 > 0 && p2 >= 0 || p5 == 0 && p2 > 0 && this.isImmutable);
+     @ assignable \nothing;
+     @ ensures \result.value() == \old(this.value() * pow52(p5, p2));
+     @
+     @  also
+     @
+     @ requires this.value() > 0 && p5 == 0 && p2 > 0 && !this.isImmutable;
+     @ assignable this.nWords, this.data, this.data[*];
+     @ ensures \result == this;
+     @ ensures \result.value() == \old(this.value() * pow52(p5, p2));
+     @*/
+    public FDBigInteger multByPow52(int p5, int p2) {
+        if (this.nWords == 0) {
+            return this;
+        }
+        FDBigInteger res = this;
+        if (p5 != 0) {
+            int[] r;
+            int extraSize = (p2 != 0) ? 1 : 0;
+            if (p5 < SMALL_5_POW.length) {
+                r = new int[this.nWords + 1 + extraSize];
+                mult(this.data, this.nWords, SMALL_5_POW[p5], r);
+                res = new FDBigInteger(r, this.offset);
+            } else {
+                FDBigInteger pow5 = big5pow(p5);
+                r = new int[this.nWords + pow5.size() + extraSize];
+                mult(this.data, this.nWords, pow5.data, pow5.nWords, r);
+                res = new FDBigInteger(r, this.offset + pow5.offset);
+            }
+        }
+        return res.leftShift(p2);
+    }
+
+    /**
+     * Multiplies two big integers represented as int arrays.
+     *
+     * @param s1 The first array factor.
+     * @param s1Len The number of elements of <code>s1</code> to use.
+     * @param s2 The second array factor.
+     * @param s2Len The number of elements of <code>s2</code> to use.
+     * @param dst The product array.
+     */
+    /*@
+     @ requires s1 != dst && s2 != dst;
+     @ requires s1.length >= s1Len && s2.length >= s2Len && dst.length >= s1Len + s2Len;
+     @ assignable dst[0 .. s1Len + s2Len - 1];
+     @ ensures AP(dst, s1Len + s2Len) == \old(AP(s1, s1Len) * AP(s2, s2Len));
+     @*/
+    private static void mult(int[] s1, int s1Len, int[] s2, int s2Len, int[] dst) {
+        for (int i = 0; i < s1Len; i++) {
+            long v = s1[i] & LONG_MASK;
+            long p = 0L;
+            for (int j = 0; j < s2Len; j++) {
+                p += (dst[i + j] & LONG_MASK) + v * (s2[j] & LONG_MASK);
+                dst[i + j] = (int) p;
+                p >>>= 32;
+            }
+            dst[i + s2Len] = (int) p;
+        }
+    }
+
+    /**
+     * Subtracts the supplied <code>FDBigInteger</code> subtrahend from this
+     * <code>FDBigInteger</code>. Assert that the result is positive.
+     * If the subtrahend is immutable, store the result in this(minuend).
+     * If this(minuend) is immutable a new <code>FDBigInteger</code> is created.
+     *
+     * @param subtrahend The <code>FDBigInteger</code> to be subtracted.
+     * @return This <code>FDBigInteger</code> less the subtrahend.
+     */
+    /*@
+     @ requires this.isImmutable;
+     @ requires this.value() >= subtrahend.value();
+     @ assignable \nothing;
+     @ ensures \result.value() == \old(this.value() - subtrahend.value());
+     @
+     @  also
+     @
+     @ requires !subtrahend.isImmutable;
+     @ requires this.value() >= subtrahend.value();
+     @ assignable this.nWords, this.offset, this.data, this.data[*];
+     @ ensures \result == this;
+     @ ensures \result.value() == \old(this.value() - subtrahend.value());
+     @*/
+    public FDBigInteger leftInplaceSub(FDBigInteger subtrahend) {
+        assert this.size() >= subtrahend.size() : "result should be positive";
+        FDBigInteger minuend;
+        if (this.isImmutable) {
+            minuend = new FDBigInteger(this.data, this.offset);
+        } else {
+            minuend = this;
+        }
+        int offsetDiff = subtrahend.offset - minuend.offset;
+        int[] sData = subtrahend.data;
+        int[] mData = minuend.data;
+        int subLen = subtrahend.nWords;
+        int minLen = minuend.nWords;
+        if (offsetDiff < 0) {
+            // need to expand minuend
+            int rLen = minLen - offsetDiff;
+            if (rLen < mData.length) {
+                System.arraycopy(mData, 0, mData, -offsetDiff, minLen);
+                Arrays.fill(mData, 0, -offsetDiff, 0);
+            } else {
+                int[] r = new int[rLen];
+                System.arraycopy(mData, 0, r, -offsetDiff, minLen);
+                minuend.data = mData = r;
+            }
+            minuend.offset = subtrahend.offset;
+            minuend.nWords = minLen = rLen;
+            offsetDiff = 0;
+        }
+        long borrow = 0L;
+        int mIndex = offsetDiff;
+        for (int sIndex = 0; sIndex < subLen && mIndex < minLen; sIndex++, mIndex++) {
+            long diff = (mData[mIndex] & LONG_MASK) - (sData[sIndex] & LONG_MASK) + borrow;
+            mData[mIndex] = (int) diff;
+            borrow = diff >> 32; // signed shift
+        }
+        for (; borrow != 0 && mIndex < minLen; mIndex++) {
+            long diff = (mData[mIndex] & LONG_MASK) + borrow;
+            mData[mIndex] = (int) diff;
+            borrow = diff >> 32; // signed shift
+        }
+        assert borrow == 0L : borrow; // borrow out of subtract,
+        // result should be positive
+        minuend.trimLeadingZeros();
+        return minuend;
+    }
+
+    /**
+     * Subtracts the supplied <code>FDBigInteger</code> subtrahend from this
+     * <code>FDBigInteger</code>. Assert that the result is positive.
+     * If the this(minuend) is immutable, store the result in subtrahend.
+     * If subtrahend is immutable a new <code>FDBigInteger</code> is created.
+     *
+     * @param subtrahend The <code>FDBigInteger</code> to be subtracted.
+     * @return This <code>FDBigInteger</code> less the subtrahend.
+     */
+    /*@
+     @ requires subtrahend.isImmutable;
+     @ requires this.value() >= subtrahend.value();
+     @ assignable \nothing;
+     @ ensures \result.value() == \old(this.value() - subtrahend.value());
+     @
+     @  also
+     @
+     @ requires !subtrahend.isImmutable;
+     @ requires this.value() >= subtrahend.value();
+     @ assignable subtrahend.nWords, subtrahend.offset, subtrahend.data, subtrahend.data[*];
+     @ ensures \result == subtrahend;
+     @ ensures \result.value() == \old(this.value() - subtrahend.value());
+     @*/
+    public FDBigInteger rightInplaceSub(FDBigInteger subtrahend) {
+        assert this.size() >= subtrahend.size() : "result should be positive";
+        FDBigInteger minuend = this;
+        if (subtrahend.isImmutable) {
+            subtrahend = new FDBigInteger(subtrahend.data, subtrahend.offset);
+        }
+        int offsetDiff = minuend.offset - subtrahend.offset;
+        int[] sData = subtrahend.data;
+        int[] mData = minuend.data;
+        int subLen = subtrahend.nWords;
+        int minLen = minuend.nWords;
+        if (offsetDiff < 0) {
+            int rLen = minLen;
+            if (rLen < sData.length) {
+                System.arraycopy(sData, 0, sData, -offsetDiff, subLen);
+                Arrays.fill(sData, 0, -offsetDiff, 0);
+            } else {
+                int[] r = new int[rLen];
+                System.arraycopy(sData, 0, r, -offsetDiff, subLen);
+                subtrahend.data = sData = r;
+            }
+            subtrahend.offset = minuend.offset;
+            subLen -= offsetDiff;
+            offsetDiff = 0;
+        } else {
+            int rLen = minLen + offsetDiff;
+            if (rLen >= sData.length) {
+                subtrahend.data = sData = Arrays.copyOf(sData, rLen);
+            }
+        }
+        //@ assert minuend == this && minuend.value() == \old(this.value());
+        //@ assert mData == minuend.data && minLen == minuend.nWords;
+        //@ assert subtrahend.offset + subtrahend.data.length >= minuend.size();
+        //@ assert sData == subtrahend.data;
+        //@ assert AP(subtrahend.data, subtrahend.data.length) << subtrahend.offset == \old(subtrahend.value());
+        //@ assert subtrahend.offset == Math.min(\old(this.offset), minuend.offset);
+        //@ assert offsetDiff == minuend.offset - subtrahend.offset;
+        //@ assert 0 <= offsetDiff && offsetDiff + minLen <= sData.length;
+        int sIndex = 0;
+        long borrow = 0L;
+        for (; sIndex < offsetDiff; sIndex++) {
+            long diff = 0L - (sData[sIndex] & LONG_MASK) + borrow;
+            sData[sIndex] = (int) diff;
+            borrow = diff >> 32; // signed shift
+        }
+        //@ assert sIndex == offsetDiff;
+        for (int mIndex = 0; mIndex < minLen; sIndex++, mIndex++) {
+            //@ assert sIndex == offsetDiff + mIndex;
+            long diff = (mData[mIndex] & LONG_MASK) - (sData[sIndex] & LONG_MASK) + borrow;
+            sData[sIndex] = (int) diff;
+            borrow = diff >> 32; // signed shift
+        }
+        assert borrow == 0L : borrow; // borrow out of subtract,
+        // result should be positive
+        subtrahend.nWords = sIndex;
+        subtrahend.trimLeadingZeros();
+        return subtrahend;
+
+    }
+
+    /**
+     * Determines whether all elements of an array are zero for all indices less
+     * than a given index.
+     *
+     * @param a The array to be examined.
+     * @param from The index strictly below which elements are to be examined.
+     * @return Zero if all elements in range are zero, 1 otherwise.
+     */
+    /*@
+     @ requires 0 <= from && from <= a.length;
+     @ ensures \result == (AP(a, from) == 0 ? 0 : 1);
+     @*/
+    private /*@ pure @*/ static int checkZeroTail(int[] a, int from) {
+        while (from > 0) {
+            if (a[--from] != 0) {
+                return 1;
+            }
+        }
+        return 0;
+    }
+
+    /**
+     * Compares the parameter with this <code>FDBigInteger</code>. Returns an
+     * integer accordingly as:
+     * <pre>
+     * >0: this > other
+     *  0: this == other
+     * <0: this < other
+     * </pre>
+     *
+     * @param other The <code>FDBigInteger</code> to compare.
+     * @return A negative value, zero, or a positive value according to the
+     * result of the comparison.
+     */
+    /*@
+     @ ensures \result == (this.value() < other.value() ? -1 : this.value() > other.value() ? +1 : 0);
+     @*/
+    public /*@ pure @*/ int cmp(FDBigInteger other) {
+        int aSize = nWords + offset;
+        int bSize = other.nWords + other.offset;
+        if (aSize > bSize) {
+            return 1;
+        } else if (aSize < bSize) {
+            return -1;
+        }
+        int aLen = nWords;
+        int bLen = other.nWords;
+        while (aLen > 0 && bLen > 0) {
+            int a = data[--aLen];
+            int b = other.data[--bLen];
+            if (a != b) {
+                return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
+            }
+        }
+        if (aLen > 0) {
+            return checkZeroTail(data, aLen);
+        }
+        if (bLen > 0) {
+            return -checkZeroTail(other.data, bLen);
+        }
+        return 0;
+    }
+
+    /**
+     * Compares this <code>FDBigInteger</code> with
+     * <code>5<sup>p5</sup> * 2<sup>p2</sup></code>.
+     * Returns an integer accordingly as:
+     * <pre>
+     * >0: this > other
+     *  0: this == other
+     * <0: this < other
+     * </pre>
+     * @param p5 The exponent of the power-of-five factor.
+     * @param p2 The exponent of the power-of-two factor.
+     * @return A negative value, zero, or a positive value according to the
+     * result of the comparison.
+     */
+    /*@
+     @ requires p5 >= 0 && p2 >= 0;
+     @ ensures \result == (this.value() < pow52(p5, p2) ? -1 : this.value() >  pow52(p5, p2) ? +1 : 0);
+     @*/
+    public /*@ pure @*/ int cmpPow52(int p5, int p2) {
+        if (p5 == 0) {
+            int wordcount = p2 >> 5;
+            int bitcount = p2 & 0x1f;
+            int size = this.nWords + this.offset;
+            if (size > wordcount + 1) {
+                return 1;
+            } else if (size < wordcount + 1) {
+                return -1;
+            }
+            int a = this.data[this.nWords -1];
+            int b = 1 << bitcount;
+            if (a != b) {
+                return ( (a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
+            }
+            return checkZeroTail(this.data, this.nWords - 1);
+        }
+        return this.cmp(big5pow(p5).leftShift(p2));
+    }
+
+    /**
+     * Compares this <code>FDBigInteger</code> with <code>x + y</code>. Returns a
+     * value according to the comparison as:
+     * <pre>
+     * -1: this <  x + y
+     *  0: this == x + y
+     *  1: this >  x + y
+     * </pre>
+     * @param x The first addend of the sum to compare.
+     * @param y The second addend of the sum to compare.
+     * @return -1, 0, or 1 according to the result of the comparison.
+     */
+    /*@
+     @ ensures \result == (this.value() < x.value() + y.value() ? -1 : this.value() > x.value() + y.value() ? +1 : 0);
+     @*/
+    public /*@ pure @*/ int addAndCmp(FDBigInteger x, FDBigInteger y) {
+        FDBigInteger big;
+        FDBigInteger small;
+        int xSize = x.size();
+        int ySize = y.size();
+        int bSize;
+        int sSize;
+        if (xSize >= ySize) {
+            big = x;
+            small = y;
+            bSize = xSize;
+            sSize = ySize;
+        } else {
+            big = y;
+            small = x;
+            bSize = ySize;
+            sSize = xSize;
+        }
+        int thSize = this.size();
+        if (bSize == 0) {
+            return thSize == 0 ? 0 : 1;
+        }
+        if (sSize == 0) {
+            return this.cmp(big);
+        }
+        if (bSize > thSize) {
+            return -1;
+        }
+        if (bSize + 1 < thSize) {
+            return 1;
+        }
+        long top = (big.data[big.nWords - 1] & LONG_MASK);
+        if (sSize == bSize) {
+            top += (small.data[small.nWords - 1] & LONG_MASK);
+        }
+        if ((top >>> 32) == 0) {
+            if (((top + 1) >>> 32) == 0) {
+                // good case - no carry extension
+                if (bSize < thSize) {
+                    return 1;
+                }
+                // here sum.nWords == this.nWords
+                long v = (this.data[this.nWords - 1] & LONG_MASK);
+                if (v < top) {
+                    return -1;
+                }
+                if (v > top + 1) {
+                    return 1;
+                }
+            }
+        } else { // (top>>>32)!=0 guaranteed carry extension
+            if (bSize + 1 > thSize) {
+                return -1;
+            }
+            // here sum.nWords == this.nWords
+            top >>>= 32;
+            long v = (this.data[this.nWords - 1] & LONG_MASK);
+            if (v < top) {
+                return -1;
+            }
+            if (v > top + 1) {
+                return 1;
+            }
+        }
+        return this.cmp(big.add(small));
+    }
+
+    /**
+     * Makes this <code>FDBigInteger</code> immutable.
+     */
+    /*@
+     @ assignable this.isImmutable;
+     @ ensures this.isImmutable;
+     @*/
+    public void makeImmutable() {
+        this.isImmutable = true;
+    }
+
+    /**
+     * Multiplies this <code>FDBigInteger</code> by an integer.
+     *
+     * @param i The factor by which to multiply this <code>FDBigInteger</code>.
+     * @return This <code>FDBigInteger</code> multiplied by an integer.
+     */
+    /*@
+     @ requires this.value() == 0;
+     @ assignable \nothing;
+     @ ensures \result == this;
+     @
+     @  also
+     @
+     @ requires this.value() != 0;
+     @ assignable \nothing;
+     @ ensures \result.value() == \old(this.value() * UNSIGNED(i));
+     @*/
+    private FDBigInteger mult(int i) {
+        if (this.nWords == 0) {
+            return this;
+        }
+        int[] r = new int[nWords + 1];
+        mult(data, nWords, i, r);
+        return new FDBigInteger(r, offset);
+    }
+
+    /**
+     * Multiplies this <code>FDBigInteger</code> by another <code>FDBigInteger</code>.
+     *
+     * @param other The <code>FDBigInteger</code> factor by which to multiply.
+     * @return The product of this and the parameter <code>FDBigInteger</code>s.
+     */
+    /*@
+     @ requires this.value() == 0;
+     @ assignable \nothing;
+     @ ensures \result == this;
+     @
+     @  also
+     @
+     @ requires this.value() != 0 && other.value() == 0;
+     @ assignable \nothing;
+     @ ensures \result == other;
+     @
+     @  also
+     @
+     @ requires this.value() != 0 && other.value() != 0;
+     @ assignable \nothing;
+     @ ensures \result.value() == \old(this.value() * other.value());
+     @*/
+    private FDBigInteger mult(FDBigInteger other) {
+        if (this.nWords == 0) {
+            return this;
+        }
+        if (this.size() == 1) {
+            return other.mult(data[0]);
+        }
+        if (other.nWords == 0) {
+            return other;
+        }
+        if (other.size() == 1) {
+            return this.mult(other.data[0]);
+        }
+        int[] r = new int[nWords + other.nWords];
+        mult(this.data, this.nWords, other.data, other.nWords, r);
+        return new FDBigInteger(r, this.offset + other.offset);
+    }
+
+    /**
+     * Adds another <code>FDBigInteger</code> to this <code>FDBigInteger</code>.
+     *
+     * @param other The <code>FDBigInteger</code> to add.
+     * @return The sum of the <code>FDBigInteger</code>s.
+     */
+    /*@
+     @ assignable \nothing;
+     @ ensures \result.value() == \old(this.value() + other.value());
+     @*/
+    private FDBigInteger add(FDBigInteger other) {
+        FDBigInteger big, small;
+        int bigLen, smallLen;
+        int tSize = this.size();
+        int oSize = other.size();
+        if (tSize >= oSize) {
+            big = this;
+            bigLen = tSize;
+            small = other;
+            smallLen = oSize;
+        } else {
+            big = other;
+            bigLen = oSize;
+            small = this;
+            smallLen = tSize;
+        }
+        int[] r = new int[bigLen + 1];
+        int i = 0;
+        long carry = 0L;
+        for (; i < smallLen; i++) {
+            carry += (i < big.offset   ? 0L : (big.data[i - big.offset] & LONG_MASK) )
+                   + ((i < small.offset ? 0L : (small.data[i - small.offset] & LONG_MASK)));
+            r[i] = (int) carry;
+            carry >>= 32; // signed shift.
+        }
+        for (; i < bigLen; i++) {
+            carry += (i < big.offset ? 0L : (big.data[i - big.offset] & LONG_MASK) );
+            r[i] = (int) carry;
+            carry >>= 32; // signed shift.
+        }
+        r[bigLen] = (int) carry;
+        return new FDBigInteger(r, 0);
+    }
+
+
+    /**
+     * Multiplies a <code>FDBigInteger</code> by an int and adds another int. The
+     * result is computed in place. This method is intended only to be invoked
+     * from
+     * <code>
+     * FDBigInteger(long lValue, char[] digits, int kDigits, int nDigits)
+     * </code>.
+     *
+     * @param iv The factor by which to multiply this <code>FDBigInteger</code>.
+     * @param addend The value to add to the product of this
+     * <code>FDBigInteger</code> and <code>iv</code>.
+     */
+    /*@
+     @ requires this.value()*UNSIGNED(iv) + UNSIGNED(addend) < ((\bigint)1) << ((this.data.length + this.offset)*32);
+     @ assignable this.data[*];
+     @ ensures this.value() == \old(this.value()*UNSIGNED(iv) + UNSIGNED(addend));
+     @*/
+    private /*@ helper @*/ void multAddMe(int iv, int addend) {
+        long v = iv & LONG_MASK;
+        // unroll 0th iteration, doing addition.
+        long p = v * (data[0] & LONG_MASK) + (addend & LONG_MASK);
+        data[0] = (int) p;
+        p >>>= 32;
+        for (int i = 1; i < nWords; i++) {
+            p += v * (data[i] & LONG_MASK);
+            data[i] = (int) p;
+            p >>>= 32;
+        }
+        if (p != 0L) {
+            data[nWords++] = (int) p; // will fail noisily if illegal!
+        }
+    }
+
+    //
+    // original doc:
+    //
+    // do this -=q*S
+    // returns borrow
+    //
+    /**
+     * Multiplies the parameters and subtracts them from this
+     * <code>FDBigInteger</code>.
+     *
+     * @param q The integer parameter.
+     * @param S The <code>FDBigInteger</code> parameter.
+     * @return <code>this - q*S</code>.
+     */
+    /*@
+     @ ensures nWords == 0 ==> offset == 0;
+     @ ensures nWords > 0 ==> data[nWords - 1] != 0;
+     @*/
+    /*@
+     @ requires 0 < q && q <= (1L << 31);
+     @ requires data != null;
+     @ requires 0 <= nWords && nWords <= data.length && offset >= 0;
+     @ requires !this.isImmutable;
+     @ requires this.size() == S.size();
+     @ requires this != S;
+     @ assignable this.nWords, this.offset, this.data, this.data[*];
+     @ ensures -q <= \result && \result <= 0;
+     @ ensures this.size() == \old(this.size());
+     @ ensures this.value() + (\result << (this.size()*32)) == \old(this.value() - q*S.value());
+     @ ensures this.offset == \old(Math.min(this.offset, S.offset));
+     @ ensures \old(this.offset <= S.offset) ==> this.nWords == \old(this.nWords);
+     @ ensures \old(this.offset <= S.offset) ==> this.offset == \old(this.offset);
+     @ ensures \old(this.offset <= S.offset) ==> this.data == \old(this.data);
+     @
+     @  also
+     @
+     @ requires q == 0;
+     @ assignable \nothing;
+     @ ensures \result == 0;
+     @*/
+    private /*@ helper @*/ long multDiffMe(long q, FDBigInteger S) {
+        long diff = 0L;
+        if (q != 0) {
+            int deltaSize = S.offset - this.offset;
+            if (deltaSize >= 0) {
+                int[] sd = S.data;
+                int[] td = this.data;
+                for (int sIndex = 0, tIndex = deltaSize; sIndex < S.nWords; sIndex++, tIndex++) {
+                    diff += (td[tIndex] & LONG_MASK) - q * (sd[sIndex] & LONG_MASK);
+                    td[tIndex] = (int) diff;
+                    diff >>= 32; // N.B. SIGNED shift.
+                }
+            } else {
+                deltaSize = -deltaSize;
+                int[] rd = new int[nWords + deltaSize];
+                int sIndex = 0;
+                int rIndex = 0;
+                int[] sd = S.data;
+                for (; rIndex < deltaSize && sIndex < S.nWords; sIndex++, rIndex++) {
+                    diff -= q * (sd[sIndex] & LONG_MASK);
+                    rd[rIndex] = (int) diff;
+                    diff >>= 32; // N.B. SIGNED shift.
+                }
+                int tIndex = 0;
+                int[] td = this.data;
+                for (; sIndex < S.nWords; sIndex++, tIndex++, rIndex++) {
+                    diff += (td[tIndex] & LONG_MASK) - q * (sd[sIndex] & LONG_MASK);
+                    rd[rIndex] = (int) diff;
+                    diff >>= 32; // N.B. SIGNED shift.
+                }
+                this.nWords += deltaSize;
+                this.offset -= deltaSize;
+                this.data = rd;
+            }
+        }
+        return diff;
+    }
+
+
+    /**
+     * Multiplies by 10 a big integer represented as an array. The final carry
+     * is returned.
+     *
+     * @param src The array representation of the big integer.
+     * @param srcLen The number of elements of <code>src</code> to use.
+     * @param dst The product array.
+     * @return The final carry of the multiplication.
+     */
+    /*@
+     @ requires src.length >= srcLen && dst.length >= srcLen;
+     @ assignable dst[0 .. srcLen - 1];
+     @ ensures 0 <= \result && \result < 10;
+     @ ensures AP(dst, srcLen) + (\result << (srcLen*32)) == \old(AP(src, srcLen) * 10);
+     @*/
+    private static int multAndCarryBy10(int[] src, int srcLen, int[] dst) {
+        long carry = 0;
+        for (int i = 0; i < srcLen; i++) {
+            long product = (src[i] & LONG_MASK) * 10L + carry;
+            dst[i] = (int) product;
+            carry = product >>> 32;
+        }
+        return (int) carry;
+    }
+
+    /**
+     * Multiplies by a constant value a big integer represented as an array.
+     * The constant factor is an <code>int</code>.
+     *
+     * @param src The array representation of the big integer.
+     * @param srcLen The number of elements of <code>src</code> to use.
+     * @param value The constant factor by which to multiply.
+     * @param dst The product array.
+     */
+    /*@
+     @ requires src.length >= srcLen && dst.length >= srcLen + 1;
+     @ assignable dst[0 .. srcLen];
+     @ ensures AP(dst, srcLen + 1) == \old(AP(src, srcLen) * UNSIGNED(value));
+     @*/
+    private static void mult(int[] src, int srcLen, int value, int[] dst) {
+        long val = value & LONG_MASK;
+        long carry = 0;
+        for (int i = 0; i < srcLen; i++) {
+            long product = (src[i] & LONG_MASK) * val + carry;
+            dst[i] = (int) product;
+            carry = product >>> 32;
+        }
+        dst[srcLen] = (int) carry;
+    }
+
+    /**
+     * Multiplies by a constant value a big integer represented as an array.
+     * The constant factor is a long represent as two <code>int</code>s.
+     *
+     * @param src The array representation of the big integer.
+     * @param srcLen The number of elements of <code>src</code> to use.
+     * @param v0 The lower 32 bits of the long factor.
+     * @param v1 The upper 32 bits of the long factor.
+     * @param dst The product array.
+     */
+    /*@
+     @ requires src != dst;
+     @ requires src.length >= srcLen && dst.length >= srcLen + 2;
+     @ assignable dst[0 .. srcLen + 1];
+     @ ensures AP(dst, srcLen + 2) == \old(AP(src, srcLen) * (UNSIGNED(v0) + (UNSIGNED(v1) << 32)));
+     @*/
+    private static void mult(int[] src, int srcLen, int v0, int v1, int[] dst) {
+        long v = v0 & LONG_MASK;
+        long carry = 0;
+        for (int j = 0; j < srcLen; j++) {
+            long product = v * (src[j] & LONG_MASK) + carry;
+            dst[j] = (int) product;
+            carry = product >>> 32;
+        }
+        dst[srcLen] = (int) carry;
+        v = v1 & LONG_MASK;
+        carry = 0;
+        for (int j = 0; j < srcLen; j++) {
+            long product = (dst[j + 1] & LONG_MASK) + v * (src[j] & LONG_MASK) + carry;
+            dst[j + 1] = (int) product;
+            carry = product >>> 32;
+        }
+        dst[srcLen + 1] = (int) carry;
+    }
+
+    // Fails assertion for negative exponent.
+    /**
+     * Computes <code>5</code> raised to a given power.
+     *
+     * @param p The exponent of 5.
+     * @return <code>5<sup>p</sup></code>.
+     */
+    private static FDBigInteger big5pow(int p) {
+        assert p >= 0 : p; // negative power of 5
+        if (p < MAX_FIVE_POW) {
+            return POW_5_CACHE[p];
+        }
+        return big5powRec(p);
+    }
+
+    // slow path
+    /**
+     * Computes <code>5</code> raised to a given power.
+     *
+     * @param p The exponent of 5.
+     * @return <code>5<sup>p</sup></code>.
+     */
+    private static FDBigInteger big5powRec(int p) {
+        if (p < MAX_FIVE_POW) {
+            return POW_5_CACHE[p];
+        }
+        // construct the value.
+        // recursively.
+        int q, r;
+        // in order to compute 5^p,
+        // compute its square root, 5^(p/2) and square.
+        // or, let q = p / 2, r = p -q, then
+        // 5^p = 5^(q+r) = 5^q * 5^r
+        q = p >> 1;
+        r = p - q;
+        FDBigInteger bigq = big5powRec(q);
+        if (r < SMALL_5_POW.length) {
+            return bigq.mult(SMALL_5_POW[r]);
+        } else {
+            return bigq.mult(big5powRec(r));
+        }
+    }
+
+    // for debugging ...
+    /**
+     * Converts this <code>FDBigInteger</code> to a hexadecimal string.
+     *
+     * @return The hexadecimal string representation.
+     */
+    public String toHexString(){
+        if(nWords ==0) {
+            return "0";
+        }
+        StringBuilder sb = new StringBuilder((nWords +offset)*8);
+        for(int i= nWords -1; i>=0; i--) {
+            String subStr = Integer.toHexString(data[i]);
+            for(int j = subStr.length(); j<8; j++) {
+                sb.append('0');
+            }
+            sb.append(subStr);
+        }
+        for(int i=offset; i>0; i--) {
+            sb.append("00000000");
+        }
+        return sb.toString();
+    }
+
+    // for debugging ...
+    /**
+     * Converts this <code>FDBigInteger</code> to a <code>BigInteger</code>.
+     *
+     * @return The <code>BigInteger</code> representation.
+     */
+    public BigInteger toBigInteger() {
+        byte[] magnitude = new byte[nWords * 4 + 1];
+        for (int i = 0; i < nWords; i++) {
+            int w = data[i];
+            magnitude[magnitude.length - 4 * i - 1] = (byte) w;
+            magnitude[magnitude.length - 4 * i - 2] = (byte) (w >> 8);
+            magnitude[magnitude.length - 4 * i - 3] = (byte) (w >> 16);
+            magnitude[magnitude.length - 4 * i - 4] = (byte) (w >> 24);
+        }
+        return new BigInteger(magnitude).shiftLeft(offset * 32);
+    }
+
+    // for debugging ...
+    /**
+     * Converts this <code>FDBigInteger</code> to a string.
+     *
+     * @return The string representation.
+     */
+    @Override
+    public String toString(){
+        return toBigInteger().toString();
+    }
+}