# HG changeset patch # User roland # Date 1455527673 -3600 # Node ID a49f85edc43fbbffc3d4323a77d18d8de0c2e15d # Parent 9f5f62a4357777a718a505b6ca4f14fa67f97faa 8087341: C2 doesn't optimize redundant memory operations with G1 Summary: effect of memory barrier in post barrier is too wide Reviewed-by: kvn, aph Contributed-by: adinn diff -r 9f5f62a43577 -r a49f85edc43f hotspot/src/cpu/aarch64/vm/aarch64.ad --- a/hotspot/src/cpu/aarch64/vm/aarch64.ad Mon Feb 22 08:04:12 2016 +0100 +++ b/hotspot/src/cpu/aarch64/vm/aarch64.ad Mon Feb 15 10:14:33 2016 +0100 @@ -1041,10 +1041,8 @@ bool is_card_mark_membar(const MemBarNode *barrier); bool is_CAS(int opcode); - MemBarNode *leading_to_normal(MemBarNode *leading); - MemBarNode *normal_to_leading(const MemBarNode *barrier); - MemBarNode *card_mark_to_trailing(const MemBarNode *barrier); - MemBarNode *trailing_to_card_mark(const MemBarNode *trailing); + MemBarNode *leading_to_trailing(MemBarNode *leading); + MemBarNode *card_mark_to_leading(const MemBarNode *barrier); MemBarNode *trailing_to_leading(const MemBarNode *trailing); // predicates controlling emit of ldr/ldar and associated dmb @@ -1418,23 +1416,28 @@ // leading MemBarRelease and a trailing MemBarVolatile as follows // // MemBarRelease - // { || } -- optional + // { || } -- optional // {MemBarCPUOrder} - // || \\ - // || StoreX[mo_release] - // | \ / - // | MergeMem - // | / + // || \\ + // || StoreX[mo_release] + // | \ Bot / ??? + // | MergeMem + // | / // MemBarVolatile // // where // || and \\ represent Ctl and Mem feeds via Proj nodes // | \ and / indicate further routing of the Ctl and Mem feeds // - // this is the graph we see for non-object stores. however, for a - // volatile Object store (StoreN/P) we may see other nodes below the - // leading membar because of the need for a GC pre- or post-write - // barrier. + // Note that the memory feed from the CPUOrder membar to the + // MergeMem node is an AliasIdxBot slice while the feed from the + // StoreX is for a slice determined by the type of value being + // written. + // + // the diagram above shows the graph we see for non-object stores. + // for a volatile Object store (StoreN/P) we may see other nodes + // below the leading membar because of the need for a GC pre- or + // post-write barrier. // // with most GC configurations we with see this simple variant which // includes a post-write barrier card mark. @@ -1442,7 +1445,7 @@ // MemBarRelease______________________________ // || \\ Ctl \ \\ // || StoreN/P[mo_release] CastP2X StoreB/CM - // | \ / . . . / + // | \ Bot / oop . . . / // | MergeMem // | / // || / @@ -1452,152 +1455,142 @@ // the object address to an int used to compute the card offset) and // Ctl+Mem to a StoreB node (which does the actual card mark). // - // n.b. a StoreCM node will only appear in this configuration when - // using CMS. StoreCM differs from a normal card mark write (StoreB) - // because it implies a requirement to order visibility of the card - // mark (StoreCM) relative to the object put (StoreP/N) using a - // StoreStore memory barrier (arguably this ought to be represented - // explicitly in the ideal graph but that is not how it works). This - // ordering is required for both non-volatile and volatile - // puts. Normally that means we need to translate a StoreCM using - // the sequence + // n.b. a StoreCM node is only ever used when CMS (with or without + // CondCardMark) or G1 is configured. This abstract instruction + // differs from a normal card mark write (StoreB) because it implies + // a requirement to order visibility of the card mark (StoreCM) + // after that of the object put (StoreP/N) using a StoreStore memory + // barrier. Note that this is /not/ a requirement to order the + // instructions in the generated code (that is already guaranteed by + // the order of memory dependencies). Rather it is a requirement to + // ensure visibility order which only applies on architectures like + // AArch64 which do not implement TSO. This ordering is required for + // both non-volatile and volatile puts. + // + // That implies that we need to translate a StoreCM using the + // sequence // // dmb ishst // stlrb // - // However, in the case of a volatile put if we can recognise this - // configuration and plant an stlr for the object write then we can - // omit the dmb and just plant an strb since visibility of the stlr - // is ordered before visibility of subsequent stores. StoreCM nodes - // also arise when using G1 or using CMS with conditional card - // marking. In these cases (as we shall see) we don't need to insert - // the dmb when translating StoreCM because there is already an - // intervening StoreLoad barrier between it and the StoreP/N. - // - // It is also possible to perform the card mark conditionally on it - // currently being unmarked in which case the volatile put graph - // will look slightly different + // This dmb cannot be omitted even when the associated StoreX or + // CompareAndSwapX is implemented using stlr. However, as described + // below there are circumstances where a specific GC configuration + // requires a stronger barrier in which case it can be omitted. + // + // With the Serial or Parallel GC using +CondCardMark the card mark + // is performed conditionally on it currently being unmarked in + // which case the volatile put graph looks slightly different // // MemBarRelease____________________________________________ // || \\ Ctl \ Ctl \ \\ Mem \ // || StoreN/P[mo_release] CastP2X If LoadB | - // | \ / \ | + // | \ Bot / oop \ | // | MergeMem . . . StoreB // | / / // || / // MemBarVolatile // - // It is worth noting at this stage that both the above + // It is worth noting at this stage that all the above // configurations can be uniquely identified by checking that the // memory flow includes the following subgraph: // // MemBarRelease // {MemBarCPUOrder} - // | \ . . . - // | StoreX[mo_release] . . . - // | / - // MergeMem - // | + // | \ . . . + // | StoreX[mo_release] . . . + // Bot | / oop + // MergeMem + // | // MemBarVolatile // - // This is referred to as a *normal* subgraph. It can easily be - // detected starting from any candidate MemBarRelease, - // StoreX[mo_release] or MemBarVolatile. - // - // A simple variation on this normal case occurs for an unsafe CAS - // operation. The basic graph for a non-object CAS is + // This is referred to as a *normal* volatile store subgraph. It can + // easily be detected starting from any candidate MemBarRelease, + // StoreX[mo_release] or MemBarVolatile node. + // + // A small variation on this normal case occurs for an unsafe CAS + // operation. The basic memory flow subgraph for a non-object CAS is + // as follows // // MemBarRelease // || // MemBarCPUOrder - // || \\ . . . - // || CompareAndSwapX - // || | - // || SCMemProj - // | \ / - // | MergeMem - // | / + // | \\ . . . + // | CompareAndSwapX + // | | + // Bot | SCMemProj + // \ / Bot + // MergeMem + // / // MemBarCPUOrder // || // MemBarAcquire // // The same basic variations on this arrangement (mutatis mutandis) - // occur when a card mark is introduced. i.e. we se the same basic - // shape but the StoreP/N is replaced with CompareAndSawpP/N and the - // tail of the graph is a pair comprising a MemBarCPUOrder + - // MemBarAcquire. - // - // So, in the case of a CAS the normal graph has the variant form - // - // MemBarRelease - // MemBarCPUOrder - // | \ . . . - // | CompareAndSwapX . . . - // | | - // | SCMemProj - // | / . . . - // MergeMem - // | - // MemBarCPUOrder - // MemBarAcquire - // - // This graph can also easily be detected starting from any - // candidate MemBarRelease, CompareAndSwapX or MemBarAcquire. - // - // the code below uses two helper predicates, leading_to_normal and - // normal_to_leading to identify these normal graphs, one validating - // the layout starting from the top membar and searching down and - // the other validating the layout starting from the lower membar - // and searching up. - // - // There are two special case GC configurations when a normal graph - // may not be generated: when using G1 (which always employs a - // conditional card mark); and when using CMS with conditional card - // marking configured. These GCs are both concurrent rather than - // stop-the world GCs. So they introduce extra Ctl+Mem flow into the - // graph between the leading and trailing membar nodes, in - // particular enforcing stronger memory serialisation beween the - // object put and the corresponding conditional card mark. CMS - // employs a post-write GC barrier while G1 employs both a pre- and - // post-write GC barrier. Of course the extra nodes may be absent -- - // they are only inserted for object puts. This significantly - // complicates the task of identifying whether a MemBarRelease, - // StoreX[mo_release] or MemBarVolatile forms part of a volatile put - // when using these GC configurations (see below). It adds similar - // complexity to the task of identifying whether a MemBarRelease, - // CompareAndSwapX or MemBarAcquire forms part of a CAS. - // - // In both cases the post-write subtree includes an auxiliary - // MemBarVolatile (StoreLoad barrier) separating the object put and - // the read of the corresponding card. This poses two additional - // problems. - // - // Firstly, a card mark MemBarVolatile needs to be distinguished - // from a normal trailing MemBarVolatile. Resolving this first - // problem is straightforward: a card mark MemBarVolatile always - // projects a Mem feed to a StoreCM node and that is a unique marker + // occur when a card mark is introduced. i.e. the CPUOrder MemBar + // feeds the extra CastP2X, LoadB etc nodes but the above memory + // flow subgraph is still present. + // + // This is referred to as a *normal* CAS subgraph. It can easily be + // detected starting from any candidate MemBarRelease, + // StoreX[mo_release] or MemBarAcquire node. + // + // The code below uses two helper predicates, leading_to_trailing + // and trailing_to_leading to identify these normal graphs, one + // validating the layout starting from the top membar and searching + // down and the other validating the layout starting from the lower + // membar and searching up. + // + // There are two special case GC configurations when the simple + // normal graphs above may not be generated: when using G1 (which + // always employs a conditional card mark); and when using CMS with + // conditional card marking (+CondCardMark) configured. These GCs + // are both concurrent rather than stop-the world GCs. So they + // introduce extra Ctl+Mem flow into the graph between the leading + // and trailing membar nodes, in particular enforcing stronger + // memory serialisation beween the object put and the corresponding + // conditional card mark. CMS employs a post-write GC barrier while + // G1 employs both a pre- and post-write GC barrier. + // + // The post-write barrier subgraph for these configurations includes + // a MemBarVolatile node -- referred to as a card mark membar -- + // which is needed to order the card write (StoreCM) operation in + // the barrier, the preceding StoreX (or CompareAndSwapX) and Store + // operations performed by GC threads i.e. a card mark membar + // constitutes a StoreLoad barrier hence must be translated to a dmb + // ish (whether or not it sits inside a volatile store sequence). + // + // Of course, the use of the dmb ish for the card mark membar also + // implies theat the StoreCM which follows can omit the dmb ishst + // instruction. The necessary visibility ordering will already be + // guaranteed by the dmb ish. In sum, the dmb ishst instruction only + // needs to be generated for as part of the StoreCM sequence with GC + // configuration +CMS -CondCardMark. + // + // Of course all these extra barrier nodes may well be absent -- + // they are only inserted for object puts. Their potential presence + // significantly complicates the task of identifying whether a + // MemBarRelease, StoreX[mo_release], MemBarVolatile or + // MemBarAcquire forms part of a volatile put or CAS when using + // these GC configurations (see below) and also complicates the + // decision as to how to translate a MemBarVolatile and StoreCM. + // + // So, thjis means that a card mark MemBarVolatile occurring in the + // post-barrier graph it needs to be distinguished from a normal + // trailing MemBarVolatile. Resolving this is straightforward: a + // card mark MemBarVolatile always projects a Mem feed to a StoreCM + // node and that is a unique marker // // MemBarVolatile (card mark) // C | \ . . . // | StoreCM . . . // . . . // - // The second problem is how the code generator is to translate the - // card mark barrier? It always needs to be translated to a "dmb - // ish" instruction whether or not it occurs as part of a volatile - // put. A StoreLoad barrier is needed after the object put to ensure - // i) visibility to GC threads of the object put and ii) visibility - // to the mutator thread of any card clearing write by a GC - // thread. Clearly a normal store (str) will not guarantee this - // ordering but neither will a releasing store (stlr). The latter - // guarantees that the object put is visible but does not guarantee - // that writes by other threads have also been observed. - // - // So, returning to the task of translating the object put and the - // leading/trailing membar nodes: what do the non-normal node graph - // look like for these 2 special cases? and how can we determine the - // status of a MemBarRelease, StoreX[mo_release] or MemBarVolatile - // in both normal and non-normal cases? + // Returning to the task of translating the object put and the + // leading/trailing membar nodes: what do the node graphs look like + // for these 2 special cases? and how can we determine the status of + // a MemBarRelease, StoreX[mo_release] or MemBarVolatile in both + // normal and non-normal cases? // // A CMS GC post-barrier wraps its card write (StoreCM) inside an If // which selects conditonal execution based on the value loaded @@ -1608,91 +1601,117 @@ // which looks like this // // MemBarRelease - // MemBarCPUOrder_(leading)__________________ - // C | M \ \\ C \ - // | \ StoreN/P[mo_release] CastP2X - // | Bot \ / - // | MergeMem - // | / - // MemBarVolatile (card mark) - // C | || M | - // | LoadB | - // | | | - // | Cmp |\ - // | / | \ - // If | \ - // | \ | \ - // IfFalse IfTrue | \ - // \ / \ | \ - // \ / StoreCM | - // \ / | | - // Region . . . | - // | \ / - // | . . . \ / Bot + // MemBarCPUOrder_(leading)____________________ + // C | | M \ \\ M | C \ + // | | \ StoreN/P[mo_release] | CastP2X + // | | Bot \ / oop \ | + // | | MergeMem \ / + // | | / | / + // MemBarVolatile (card mark) | / + // C | || M | | / + // | LoadB | Bot oop | / Bot + // | | | / / + // | Cmp |\ / / + // | / | \ / / + // If | \ / / + // | \ | \ / / + // IfFalse IfTrue | \ / / + // \ / \ | | / / + // \ / StoreCM | / / + // \ / \ / / / + // Region Phi / / + // | \ Raw | / / + // | . . . | / / // | MergeMem - // | | + // | | // MemBarVolatile (trailing) // - // The first MergeMem merges the AliasIdxBot Mem slice from the - // leading membar and the oopptr Mem slice from the Store into the - // card mark membar. The trailing MergeMem merges the AliasIdxBot - // Mem slice from the card mark membar and the AliasIdxRaw slice - // from the StoreCM into the trailing membar (n.b. the latter - // proceeds via a Phi associated with the If region). - // - // The graph for a CAS varies slightly, the obvious difference being - // that the StoreN/P node is replaced by a CompareAndSwapP/N node - // and the trailing MemBarVolatile by a MemBarCPUOrder + - // MemBarAcquire pair. The other important difference is that the - // CompareAndSwap node's SCMemProj is not merged into the card mark - // membar - it still feeds the trailing MergeMem. This also means - // that the card mark membar receives its Mem feed directly from the - // leading membar rather than via a MergeMem. + // Notice that there are two MergeMem nodes below the leading + // membar. The first MergeMem merges the AliasIdxBot Mem slice from + // the leading membar and the oopptr Mem slice from the Store into + // the card mark membar. The trailing MergeMem merges the + // AliasIdxBot Mem slice from the leading membar, the AliasIdxRaw + // slice from the StoreCM and an oop slice from the StoreN/P node + // into the trailing membar (n.b. the raw slice proceeds via a Phi + // associated with the If region). + // + // So, in the case of CMS + CondCardMark the volatile object store + // graph still includes a normal volatile store subgraph from the + // leading membar to the trailing membar. However, it also contains + // the same shape memory flow to the card mark membar. The two flows + // can be distinguished by testing whether or not the downstream + // membar is a card mark membar. + // + // The graph for a CAS also varies with CMS + CondCardMark, in + // particular employing a control feed from the CompareAndSwapX node + // through a CmpI and If to the card mark membar and StoreCM which + // updates the associated card. This avoids executing the card mark + // if the CAS fails. However, it can be seen from the diagram below + // that the presence of the barrier does not alter the normal CAS + // memory subgraph where the leading membar feeds a CompareAndSwapX, + // an SCMemProj, a MergeMem then a final trailing MemBarCPUOrder and + // MemBarAcquire pair. // // MemBarRelease - // MemBarCPUOrder__(leading)_________________________ - // || \\ C \ - // MemBarVolatile (card mark) CompareAndSwapN/P CastP2X - // C | || M | | - // | LoadB | ______/| - // | | | / | - // | Cmp | / SCMemProj - // | / | / | - // If | / / - // | \ | / / - // IfFalse IfTrue | / / - // \ / \ |/ prec / - // \ / StoreCM / - // \ / | / - // Region . . . / - // | \ / - // | . . . \ / Bot - // | MergeMem - // | | - // MemBarCPUOrder - // MemBarAcquire (trailing) + // MemBarCPUOrder__(leading)_______________________ + // C / M | \\ C \ + // . . . | Bot CompareAndSwapN/P CastP2X + // | C / M | + // | CmpI | + // | / | + // | . . . | + // | IfTrue | + // | / | + // MemBarVolatile (card mark) | + // C | || M | | + // | LoadB | Bot ______/| + // | | | / | + // | Cmp | / SCMemProj + // | / | / | + // If | / / + // | \ | / / Bot + // IfFalse IfTrue | / / + // | / \ / / prec / + // . . . | / StoreCM / + // \ | / | raw / + // Region . . . / + // | \ / + // | . . . \ / Bot + // | MergeMem + // | / + // MemBarCPUOrder + // MemBarAcquire (trailing) // // This has a slightly different memory subgraph to the one seen - // previously but the core of it is the same as for the CAS normal - // sungraph + // previously but the core of it has a similar memory flow to the + // CAS normal subgraph: // // MemBarRelease // MemBarCPUOrder____ - // || \ . . . - // MemBarVolatile CompareAndSwapX . . . - // | \ | - // . . . SCMemProj - // | / . . . - // MergeMem - // | + // | \ . . . + // | CompareAndSwapX . . . + // | C / M | + // | CmpI | + // | / | + // | . . / + // Bot | IfTrue / + // | / / + // MemBarVolatile / + // | ... / + // StoreCM ... / + // | / + // . . . SCMemProj + // Raw \ / Bot + // MergeMem + // | // MemBarCPUOrder // MemBarAcquire // - // - // G1 is quite a lot more complicated. The nodes inserted on behalf - // of G1 may comprise: a pre-write graph which adds the old value to - // the SATB queue; the releasing store itself; and, finally, a - // post-write graph which performs a card mark. + // The G1 graph for a volatile object put is a lot more complicated. + // Nodes inserted on behalf of G1 may comprise: a pre-write graph + // which adds the old value to the SATB queue; the releasing store + // itself; and, finally, a post-write graph which performs a card + // mark. // // The pre-write graph may be omitted, but only when the put is // writing to a newly allocated (young gen) object and then only if @@ -1730,25 +1749,60 @@ // | CastP2X | StoreN/P[mo_release] | // | | | | // C | M | M | M | - // \ | | / + // \ | Raw | oop / Bot // . . . // (post write subtree elided) // . . . // C \ M / // MemBarVolatile (trailing) // + // Note that the three memory feeds into the post-write tree are an + // AliasRawIdx slice associated with the writes in the pre-write + // tree, an oop type slice from the StoreX specific to the type of + // the volatile field and the AliasBotIdx slice emanating from the + // leading membar. + // // n.b. the LoadB in this subgraph is not the card read -- it's a // read of the SATB queue active flag. // - // Once again the CAS graph is a minor variant on the above with the - // expected substitutions of CompareAndSawpX for StoreN/P and - // MemBarCPUOrder + MemBarAcquire for trailing MemBarVolatile. + // The CAS graph is once again a variant of the above with a + // CompareAndSwapX node and SCMemProj in place of the StoreX. The + // value from the CompareAndSwapX node is fed into the post-write + // graph aling with the AliasIdxRaw feed from the pre-barrier and + // the AliasIdxBot feeds from the leading membar and the ScMemProj. + // + // MemBarRelease (leading)____________ + // C | || M \ M \ M \ M \ . . . + // | LoadB \ LoadL LoadN \ + // | / \ \ + // If |\ \ + // | \ | \ \ + // IfFalse IfTrue | \ \ + // | | | \ \ + // | If | \ | + // | | \ | + // | \ | + // | . . . \ | + // | / | / \ | + // Region Phi[M] \ | + // | \ | \ | + // | \_____ | | | + // C | C \ | | | + // | CastP2X | CompareAndSwapX | + // | | res | | | + // C | M | | SCMemProj M | + // \ | Raw | | Bot / Bot + // . . . + // (post write subtree elided) + // . . . + // C \ M / + // MemBarVolatile (trailing) // // The G1 post-write subtree is also optional, this time when the // new value being written is either null or can be identified as a // newly allocated (young gen) object with no intervening control // flow. The latter cannot happen but the former may, in which case - // the card mark membar is omitted and the memory feeds form the + // the card mark membar is omitted and the memory feeds from the // leading membar and the SToreN/P are merged direct into the // trailing membar as per the normal subgraph. So, the only special // case which arises is when the post-write subgraph is generated. @@ -1770,94 +1824,106 @@ // // (pre-write subtree elided) // . . . . . . . . . . . . - // C | M | M | M | - // Region Phi[M] StoreN | - // | / \ | | - // / \_______ / \ | | - // C / C \ . . . \ | | - // If CastP2X . . . | | | - // / \ | | | - // / \ | | | - // IfFalse IfTrue | | | - // | | | | /| - // | If | | / | - // | / \ | | / | - // | / \ \ | / | - // | IfFalse IfTrue MergeMem | - // | . . . / \ / | - // | / \ / | - // | IfFalse IfTrue / | - // | . . . | / | - // | If / | - // | / \ / | - // | / \ / | - // | IfFalse IfTrue / | - // | . . . | / | - // | \ / | - // | \ / | - // | MemBarVolatile__(card mark) | - // | || C | M \ M \ | - // | LoadB If | | | - // | / \ | | | - // | . . . | | | - // | \ | | / - // | StoreCM | / - // | . . . | / - // | _________/ / - // | / _____________/ - // | . . . . . . | / / - // | | | / _________/ - // | | Phi[M] / / - // | | | / / - // | | | / / - // | Region . . . Phi[M] _____/ - // | / | / - // | | / - // | . . . . . . | / - // | / | / - // Region | | Phi[M] - // | | | / Bot - // \ MergeMem - // \ / - // MemBarVolatile - // - // As with CMS the initial MergeMem merges the AliasIdxBot Mem slice - // from the leading membar and the oopptr Mem slice from the Store - // into the card mark membar i.e. the memory flow to the card mark - // membar still looks like a normal graph. - // - // The trailing MergeMem merges an AliasIdxBot Mem slice with other - // Mem slices (from the StoreCM and other card mark queue stores). - // However in this case the AliasIdxBot Mem slice does not come - // direct from the card mark membar. It is merged through a series - // of Phi nodes. These are needed to merge the AliasIdxBot Mem flow - // from the leading membar with the Mem feed from the card mark - // membar. Each Phi corresponds to one of the Ifs which may skip - // around the card mark membar. So when the If implementing the NULL - // value check has been elided the total number of Phis is 2 - // otherwise it is 3. - // - // The CAS graph when using G1GC also includes a pre-write subgraph - // and an optional post-write subgraph. Teh sam evarioations are - // introduced as for CMS with conditional card marking i.e. the - // StoreP/N is swapped for a CompareAndSwapP/N, the tariling - // MemBarVolatile for a MemBarCPUOrder + MemBarAcquire pair and the - // Mem feed from the CompareAndSwapP/N includes a precedence - // dependency feed to the StoreCM and a feed via an SCMemProj to the - // trailing membar. So, as before the configuration includes the - // normal CAS graph as a subgraph of the memory flow. - // - // So, the upshot is that in all cases the volatile put graph will - // include a *normal* memory subgraph betwen the leading membar and - // its child membar, either a volatile put graph (including a - // releasing StoreX) or a CAS graph (including a CompareAndSwapX). - // When that child is not a card mark membar then it marks the end - // of the volatile put or CAS subgraph. If the child is a card mark - // membar then the normal subgraph will form part of a volatile put - // subgraph if and only if the child feeds an AliasIdxBot Mem feed - // to a trailing barrier via a MergeMem. That feed is either direct - // (for CMS) or via 2 or 3 Phi nodes merging the leading barrier - // memory flow (for G1). + // C | M | M | M | + // Region Phi[M] StoreN | + // | Raw | oop | Bot | + // / \_______ |\ |\ |\ + // C / C \ . . . | \ | \ | \ + // If CastP2X . . . | \ | \ | \ + // / \ | \ | \ | \ + // / \ | \ | \ | \ + // IfFalse IfTrue | | | \ + // | | \ | / | + // | If \ | \ / \ | + // | / \ \ | / \ | + // | / \ \ | / \ | | + // | IfFalse IfTrue MergeMem \ | | + // | . . . / \ | \ | | + // | / \ | | | | + // | IfFalse IfTrue | | | | + // | . . . | | | | | + // | If / | | | + // | / \ / | | | + // | / \ / | | | + // | IfFalse IfTrue / | | | + // | . . . | / | | | + // | \ / | | | + // | \ / | | | + // | MemBarVolatile__(card mark ) | | | + // | || C | \ | | | + // | LoadB If | / | | + // | / \ Raw | / / / + // | . . . | / / / + // | \ | / / / + // | StoreCM / / / + // | | / / / + // | . . . / / + // | / / + // | . . . / / + // | | | / / / + // | | Phi[M] / / / + // | | | / / / + // | | | / / / + // | Region . . . Phi[M] / / + // | | | / / + // \ | | / / + // \ | . . . | / / + // \ | | / / + // Region Phi[M] / / + // | \ / / + // \ MergeMem + // \ / + // MemBarVolatile + // + // As with CMS + CondCardMark the first MergeMem merges the + // AliasIdxBot Mem slice from the leading membar and the oopptr Mem + // slice from the Store into the card mark membar. However, in this + // case it may also merge an AliasRawIdx mem slice from the pre + // barrier write. + // + // The trailing MergeMem merges an AliasIdxBot Mem slice from the + // leading membar with an oop slice from the StoreN and an + // AliasRawIdx slice from the post barrier writes. In this case the + // AliasIdxRaw Mem slice is merged through a series of Phi nodes + // which combine feeds from the If regions in the post barrier + // subgraph. + // + // So, for G1 the same characteristic subgraph arises as for CMS + + // CondCardMark. There is a normal subgraph feeding the card mark + // membar and a normal subgraph feeding the trailing membar. + // + // The CAS graph when using G1GC also includes an optional + // post-write subgraph. It is very similar to the above graph except + // for a few details. + // + // - The control flow is gated by an additonal If which tests the + // result from the CompareAndSwapX node + // + // - The MergeMem which feeds the card mark membar only merges the + // AliasIdxBot slice from the leading membar and the AliasIdxRaw + // slice from the pre-barrier. It does not merge the SCMemProj + // AliasIdxBot slice. So, this subgraph does not look like the + // normal CAS subgraph. + // + // - The MergeMem which feeds the trailing membar merges the + // AliasIdxBot slice from the leading membar, the AliasIdxRaw slice + // from the post-barrier and the SCMemProj AliasIdxBot slice i.e. it + // has two AliasIdxBot input slices. However, this subgraph does + // still look like the normal CAS subgraph. + // + // So, the upshot is: + // + // In all cases a volatile put graph will include a *normal* + // volatile store subgraph betwen the leading membar and the + // trailing membar. It may also include a normal volatile store + // subgraph betwen the leading membar and the card mark membar. + // + // In all cases a CAS graph will contain a unique normal CAS graph + // feeding the trailing membar. + // + // In all cases where there is a card mark membar (either as part of + // a volatile object put or CAS) it will be fed by a MergeMem whose + // AliasIdxBot slice feed will be a leading membar. // // The predicates controlling generation of instructions for store // and barrier nodes employ a few simple helper functions (described @@ -1878,24 +1944,24 @@ opcode == Op_CompareAndSwapP); } - // leading_to_normal + // leading_to_trailing // //graph traversal helper which detects the normal case Mem feed from // a release membar (or, optionally, its cpuorder child) to a // dependent volatile membar i.e. it ensures that one or other of // the following Mem flow subgraph is present. // - // MemBarRelease - // MemBarCPUOrder {leading} - // | \ . . . - // | StoreN/P[mo_release] . . . - // | / - // MergeMem - // | - // MemBarVolatile {trailing or card mark} - // - // MemBarRelease - // MemBarCPUOrder {leading} + // MemBarRelease {leading} + // {MemBarCPUOrder} {optional} + // Bot | \ . . . + // | StoreN/P[mo_release] . . . + // | / + // MergeMem + // | + // MemBarVolatile {not card mark} + // + // MemBarRelease {leading} + // {MemBarCPUOrder} {optional} // | \ . . . // | CompareAndSwapX . . . // | @@ -1906,6 +1972,23 @@ // MemBarCPUOrder // MemBarAcquire {trailing} // + // the predicate needs to be capable of distinguishing the following + // volatile put graph which may arises when a GC post barrier + // inserts a card mark membar + // + // MemBarRelease {leading} + // {MemBarCPUOrder}__ + // Bot | \ \ + // | StoreN/P \ + // | / \ | + // MergeMem \ | + // | \ | + // MemBarVolatile \ | + // {card mark} \ | + // MergeMem + // | + // {not card mark} MemBarVolatile + // // if the correct configuration is present returns the trailing // membar otherwise NULL. // @@ -1916,7 +1999,7 @@ // the returned value may be a card mark or trailing membar // - MemBarNode *leading_to_normal(MemBarNode *leading) + MemBarNode *leading_to_trailing(MemBarNode *leading) { assert((leading->Opcode() == Op_MemBarRelease || leading->Opcode() == Op_MemBarCPUOrder), @@ -1933,15 +2016,21 @@ StoreNode * st = NULL; LoadStoreNode *cas = NULL; MergeMemNode *mm = NULL; + MergeMemNode *mm2 = NULL; for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { x = mem->fast_out(i); if (x->is_MergeMem()) { if (mm != NULL) { - return NULL; + if (mm2 != NULL) { + // should not see more than 2 merge mems + return NULL; + } else { + mm2 = x->as_MergeMem(); + } + } else { + mm = x->as_MergeMem(); } - // two merge mems is one too many - mm = x->as_MergeMem(); } else if (x->is_Store() && x->as_Store()->is_release() && x->Opcode() != Op_StoreCM) { // two releasing stores/CAS nodes is one too many if (st != NULL || cas != NULL) { @@ -1961,13 +2050,13 @@ return NULL; } - // must have a merge if we also have st + // must have at least one merge if we also have st if (st && !mm) { return NULL; } - Node *y = NULL; if (cas) { + Node *y = NULL; // look for an SCMemProj for (DUIterator_Fast imax, i = cas->fast_outs(imax); i < imax; i++) { x = cas->fast_out(i); @@ -1987,10 +2076,29 @@ break; } } - if (mm == NULL) + if (mm == NULL) { return NULL; + } + MemBarNode *mbar = NULL; + // ensure the merge feeds a trailing membar cpuorder + acquire pair + for (DUIterator_Fast imax, i = mm->fast_outs(imax); i < imax; i++) { + x = mm->fast_out(i); + if (x->is_MemBar()) { + int opcode = x->Opcode(); + if (opcode == Op_MemBarCPUOrder) { + MemBarNode *z = x->as_MemBar(); + z = child_membar(z); + if (z != NULL && z->Opcode() == Op_MemBarAcquire) { + mbar = z; + } + } + break; + } + } + return mbar; } else { - // ensure the store feeds the existing mergemem; + Node *y = NULL; + // ensure the store feeds the first mergemem; for (DUIterator_Fast imax, i = st->fast_outs(imax); i < imax; i++) { if (st->fast_out(i) == mm) { y = st; @@ -2000,55 +2108,89 @@ if (y == NULL) { return NULL; } - } - - MemBarNode *mbar = NULL; - // ensure the merge feeds to the expected type of membar - for (DUIterator_Fast imax, i = mm->fast_outs(imax); i < imax; i++) { - x = mm->fast_out(i); - if (x->is_MemBar()) { - int opcode = x->Opcode(); - if (opcode == Op_MemBarVolatile && st) { - mbar = x->as_MemBar(); - } else if (cas && opcode == Op_MemBarCPUOrder) { - MemBarNode *y = x->as_MemBar(); - y = child_membar(y); - if (y != NULL && y->Opcode() == Op_MemBarAcquire) { - mbar = y; + if (mm2 != NULL) { + // ensure the store feeds the second mergemem; + y = NULL; + for (DUIterator_Fast imax, i = st->fast_outs(imax); i < imax; i++) { + if (st->fast_out(i) == mm2) { + y = st; } } - break; + if (y == NULL) { + return NULL; + } + } + + MemBarNode *mbar = NULL; + // ensure the first mergemem feeds a volatile membar + for (DUIterator_Fast imax, i = mm->fast_outs(imax); i < imax; i++) { + x = mm->fast_out(i); + if (x->is_MemBar()) { + int opcode = x->Opcode(); + if (opcode == Op_MemBarVolatile) { + mbar = x->as_MemBar(); + } + break; + } + } + if (mm2 == NULL) { + // this is our only option for a trailing membar + return mbar; } - } - - return mbar; - } - - // normal_to_leading + // ensure the second mergemem feeds a volatile membar + MemBarNode *mbar2 = NULL; + for (DUIterator_Fast imax, i = mm2->fast_outs(imax); i < imax; i++) { + x = mm2->fast_out(i); + if (x->is_MemBar()) { + int opcode = x->Opcode(); + if (opcode == Op_MemBarVolatile) { + mbar2 = x->as_MemBar(); + } + break; + } + } + // if we have two merge mems we must have two volatile membars + if (mbar == NULL || mbar2 == NULL) { + return NULL; + } + // return the trailing membar + if (is_card_mark_membar(mbar2)) { + return mbar; + } else { + if (is_card_mark_membar(mbar)) { + return mbar2; + } else { + return NULL; + } + } + } + } + + // trailing_to_leading // // graph traversal helper which detects the normal case Mem feed - // from either a card mark or a trailing membar to a preceding - // release membar (optionally its cpuorder child) i.e. it ensures - // that one or other of the following Mem flow subgraphs is present. - // - // MemBarRelease - // MemBarCPUOrder {leading} - // | \ . . . - // | StoreN/P[mo_release] . . . - // | / - // MergeMem - // | - // MemBarVolatile {card mark or trailing} - // - // MemBarRelease - // MemBarCPUOrder {leading} + // from a trailing membar to a preceding release membar (optionally + // its cpuorder child) i.e. it ensures that one or other of the + // following Mem flow subgraphs is present. + // + // MemBarRelease {leading} + // MemBarCPUOrder {optional} + // | Bot | \ . . . + // | | StoreN/P[mo_release] . . . + // | | / + // | MergeMem + // | | + // MemBarVolatile {not card mark} + // + // MemBarRelease {leading} + // MemBarCPUOrder {optional} // | \ . . . // | CompareAndSwapX . . . // | // . . . SCMemProj // \ | // | MergeMem - // | / + // | | // MemBarCPUOrder // MemBarAcquire {trailing} // @@ -2058,15 +2200,20 @@ // if the configuration is present returns the cpuorder member for // preference or when absent the release membar otherwise NULL. // - // n.b. the input membar is expected to be a MemBarVolatile but - // need not be a card mark membar. - - MemBarNode *normal_to_leading(const MemBarNode *barrier) + // n.b. the input membar is expected to be a MemBarVolatile or + // MemBarAcquire. if it is a MemBarVolatile it must *not* be a card + // mark membar. + + MemBarNode *trailing_to_leading(const MemBarNode *barrier) { // input must be a volatile membar assert((barrier->Opcode() == Op_MemBarVolatile || barrier->Opcode() == Op_MemBarAcquire), "expecting a volatile or an acquire membar"); + + assert((barrier->Opcode() != Op_MemBarVolatile) || + !is_card_mark_membar(barrier), + "not expecting a card mark membar"); Node *x; bool is_cas = barrier->Opcode() == Op_MemBarAcquire; @@ -2179,169 +2326,35 @@ return NULL; } - // card_mark_to_trailing - // - // graph traversal helper which detects extra, non-normal Mem feed - // from a card mark volatile membar to a trailing membar i.e. it - // ensures that one of the following three GC post-write Mem flow - // subgraphs is present. - // - // 1) - // . . . - // | - // MemBarVolatile (card mark) - // | | - // | StoreCM - // | | - // | . . . - // Bot | / - // MergeMem - // | - // | - // MemBarVolatile {trailing} - // - // 2) - // MemBarRelease/CPUOrder (leading) - // | - // | - // |\ . . . - // | \ | - // | \ MemBarVolatile (card mark) - // | \ | | - // \ \ | StoreCM . . . - // \ \ | - // \ Phi - // \ / - // Phi . . . + // card_mark_to_leading + // + // graph traversal helper which traverses from a card mark volatile + // membar to a leading membar i.e. it ensures that the following Mem + // flow subgraph is present. + // + // MemBarRelease {leading} + // {MemBarCPUOrder} {optional} + // | . . . // Bot | / - // MergeMem + // MergeMem // | - // MemBarVolatile {trailing} - // - // - // 3) - // MemBarRelease/CPUOrder (leading) - // | - // |\ - // | \ - // | \ . . . - // | \ | - // |\ \ MemBarVolatile (card mark) - // | \ \ | | - // | \ \ | StoreCM . . . - // | \ \ | - // \ \ Phi - // \ \ / - // \ Phi - // \ / - // Phi . . . - // Bot | / - // MergeMem - // | - // | - // MemBarVolatile {trailing} - // - // configuration 1 is only valid if UseConcMarkSweepGC && - // UseCondCardMark - // - // configurations 2 and 3 are only valid if UseG1GC. - // - // if a valid configuration is present returns the trailing membar - // otherwise NULL. - // - // n.b. the supplied membar is expected to be a card mark - // MemBarVolatile i.e. the caller must ensure the input node has the - // correct operand and feeds Mem to a StoreCM node - - MemBarNode *card_mark_to_trailing(const MemBarNode *barrier) + // MemBarVolatile (card mark) + // | \ + // . . . StoreCM + // + // if the configuration is present returns the cpuorder member for + // preference or when absent the release membar otherwise NULL. + // + // n.b. the input membar is expected to be a MemBarVolatile amd must + // be a card mark membar. + + MemBarNode *card_mark_to_leading(const MemBarNode *barrier) { // input must be a card mark volatile membar assert(is_card_mark_membar(barrier), "expecting a card mark membar"); - Node *feed = barrier->proj_out(TypeFunc::Memory); - Node *x; - MergeMemNode *mm = NULL; - - const int MAX_PHIS = 3; // max phis we will search through - int phicount = 0; // current search count - - bool retry_feed = true; - while (retry_feed) { - // see if we have a direct MergeMem feed - for (DUIterator_Fast imax, i = feed->fast_outs(imax); i < imax; i++) { - x = feed->fast_out(i); - // the correct Phi will be merging a Bot memory slice - if (x->is_MergeMem()) { - mm = x->as_MergeMem(); - break; - } - } - if (mm) { - retry_feed = false; - } else if (UseG1GC & phicount++ < MAX_PHIS) { - // the barrier may feed indirectly via one or two Phi nodes - PhiNode *phi = NULL; - for (DUIterator_Fast imax, i = feed->fast_outs(imax); i < imax; i++) { - x = feed->fast_out(i); - // the correct Phi will be merging a Bot memory slice - if (x->is_Phi() && x->adr_type() == TypePtr::BOTTOM) { - phi = x->as_Phi(); - break; - } - } - if (!phi) { - return NULL; - } - // look for another merge below this phi - feed = phi; - } else { - // couldn't find a merge - return NULL; - } - } - - // sanity check this feed turns up as the expected slice - assert(mm->as_MergeMem()->in(Compile::AliasIdxBot) == feed, "expecting membar to feed AliasIdxBot slice to Merge"); - - MemBarNode *trailing = NULL; - // be sure we have a trailing membar the merge - for (DUIterator_Fast imax, i = mm->fast_outs(imax); i < imax; i++) { - x = mm->fast_out(i); - if (x->is_MemBar() && x->Opcode() == Op_MemBarVolatile) { - trailing = x->as_MemBar(); - break; - } - } - - return trailing; - } - - // trailing_to_card_mark - // - // graph traversal helper which detects extra, non-normal Mem feed - // from a trailing volatile membar to a preceding card mark volatile - // membar i.e. it identifies whether one of the three possible extra - // GC post-write Mem flow subgraphs is present - // - // this predicate checks for the same flow as the previous predicate - // but starting from the bottom rather than the top. - // - // if the configuration is present returns the card mark membar - // otherwise NULL - // - // n.b. the supplied membar is expected to be a trailing - // MemBarVolatile i.e. the caller must ensure the input node has the - // correct opcode - - MemBarNode *trailing_to_card_mark(const MemBarNode *trailing) - { - assert(trailing->Opcode() == Op_MemBarVolatile, - "expecting a volatile membar"); - assert(!is_card_mark_membar(trailing), - "not expecting a card mark membar"); - // the Mem feed to the membar should be a merge - Node *x = trailing->in(TypeFunc::Memory); + Node *x = barrier->in(TypeFunc::Memory); if (!x->is_MergeMem()) { return NULL; } @@ -2349,117 +2362,19 @@ MergeMemNode *mm = x->as_MergeMem(); x = mm->in(Compile::AliasIdxBot); - // with G1 we may possibly see a Phi or two before we see a Memory - // Proj from the card mark membar - - const int MAX_PHIS = 3; // max phis we will search through - int phicount = 0; // current search count - - bool retry_feed = !x->is_Proj(); - - while (retry_feed) { - if (UseG1GC && x->is_Phi() && phicount++ < MAX_PHIS) { - PhiNode *phi = x->as_Phi(); - ProjNode *proj = NULL; - PhiNode *nextphi = NULL; - bool found_leading = false; - for (uint i = 1; i < phi->req(); i++) { - x = phi->in(i); - if (x->is_Phi()) { - nextphi = x->as_Phi(); - } else if (x->is_Proj()) { - int opcode = x->in(0)->Opcode(); - if (opcode == Op_MemBarVolatile) { - proj = x->as_Proj(); - } else if (opcode == Op_MemBarRelease || - opcode == Op_MemBarCPUOrder) { - // probably a leading membar - found_leading = true; - } - } - } - // if we found a correct looking proj then retry from there - // otherwise we must see a leading and a phi or this the - // wrong config - if (proj != NULL) { - x = proj; - retry_feed = false; - } else if (found_leading && nextphi != NULL) { - // retry from this phi to check phi2 - x = nextphi; - } else { - // not what we were looking for - return NULL; - } - } else { - return NULL; - } - } - // the proj has to come from the card mark membar - x = x->in(0); + if (!x->is_MemBar()) { return NULL; } - MemBarNode *card_mark_membar = x->as_MemBar(); - - if (!is_card_mark_membar(card_mark_membar)) { - return NULL; - } - - return card_mark_membar; - } - - // trailing_to_leading - // - // graph traversal helper which checks the Mem flow up the graph - // from a (non-card mark) trailing membar attempting to locate and - // return an associated leading membar. it first looks for a - // subgraph in the normal configuration (relying on helper - // normal_to_leading). failing that it then looks for one of the - // possible post-write card mark subgraphs linking the trailing node - // to a the card mark membar (relying on helper - // trailing_to_card_mark), and then checks that the card mark membar - // is fed by a leading membar (once again relying on auxiliary - // predicate normal_to_leading). - // - // if the configuration is valid returns the cpuorder member for - // preference or when absent the release membar otherwise NULL. - // - // n.b. the input membar is expected to be either a volatile or - // acquire membar but in the former case must *not* be a card mark - // membar. - - MemBarNode *trailing_to_leading(const MemBarNode *trailing) - { - assert((trailing->Opcode() == Op_MemBarAcquire || - trailing->Opcode() == Op_MemBarVolatile), - "expecting an acquire or volatile membar"); - assert((trailing->Opcode() != Op_MemBarVolatile || - !is_card_mark_membar(trailing)), - "not expecting a card mark membar"); - - MemBarNode *leading = normal_to_leading(trailing); - - if (leading) { + MemBarNode *leading = x->as_MemBar(); + + if (leading_membar(leading)) { return leading; } - // nothing more to do if this is an acquire - if (trailing->Opcode() == Op_MemBarAcquire) { - return NULL; - } - - MemBarNode *card_mark_membar = trailing_to_card_mark(trailing); - - if (!card_mark_membar) { - return NULL; - } - - return normal_to_leading(card_mark_membar); - } - - // predicates controlling emit of ldr/ldar and associated dmb + return NULL; + } bool unnecessary_acquire(const Node *barrier) { @@ -2675,19 +2590,8 @@ } // must start with a normal feed - MemBarNode *child_barrier = leading_to_normal(barrier); - - if (!child_barrier) { - return false; - } - - if (!is_card_mark_membar(child_barrier)) { - // this is the trailing membar and we are done - return true; - } - - // must be sure this card mark feeds a trailing membar - MemBarNode *trailing = card_mark_to_trailing(child_barrier); + MemBarNode *trailing = leading_to_trailing(barrier); + return (trailing != NULL); } @@ -2709,7 +2613,7 @@ } // ok, if it's not a card mark then we still need to check if it is - // a trailing membar of a volatile put hgraph. + // a trailing membar of a volatile put graph. return (trailing_to_leading(mbvol) != NULL); } @@ -2759,20 +2663,9 @@ } // does this lead a normal subgraph? - MemBarNode *mbvol = leading_to_normal(barrier); - - if (!mbvol) { - return false; - } - - // all done unless this is a card mark - if (!is_card_mark_membar(mbvol)) { - return true; - } - - // we found a card mark -- just make sure we have a trailing barrier - - return (card_mark_to_trailing(mbvol) != NULL); + MemBarNode *trailing = leading_to_trailing(barrier); + + return (trailing != NULL); } // predicate controlling translation of CAS @@ -2814,7 +2707,7 @@ "CAS not fed by cpuorder+release membar pair!"); // does this lead a normal subgraph? - MemBarNode *mbar = leading_to_normal(barrier); + MemBarNode *mbar = leading_to_trailing(barrier); assert(mbar != NULL, "CAS not embedded in normal graph!"); @@ -2835,48 +2728,27 @@ // we only ever need to generate a dmb ishst between an object put // and the associated card mark when we are using CMS without - // conditional card marking + // conditional card marking. Any other occurence will happen when + // performing a card mark using CMS with conditional card marking or + // G1. In those cases the preceding MamBarVolatile will be + // translated to a dmb ish which guarantes visibility of the + // preceding StoreN/P before this StoreCM if (!UseConcMarkSweepGC || UseCondCardMark) { return true; } - // if we are implementing volatile puts using barriers then the - // object put as an str so we must insert the dmb ishst + // if we are implementing volatile puts using barriers then we must + // insert the dmb ishst if (UseBarriersForVolatile) { return false; } - // we can omit the dmb ishst if this StoreCM is part of a volatile - // put because in thta case the put will be implemented by stlr - // - // we need to check for a normal subgraph feeding this StoreCM. - // that means the StoreCM must be fed Memory from a leading membar, - // either a MemBarRelease or its dependent MemBarCPUOrder, and the - // leading membar must be part of a normal subgraph - - Node *x = storecm->in(StoreNode::Memory); - - if (!x->is_Proj()) { - return false; - } - - x = x->in(0); - - if (!x->is_MemBar()) { - return false; - } - - MemBarNode *leading = x->as_MemBar(); - - // reject invalid candidates - if (!leading_membar(leading)) { - return false; - } - - // we can omit the StoreStore if it is the head of a normal subgraph - return (leading_to_normal(leading) != NULL); + // we must be using CMS with conditional card marking so we ahve to + // generate the StoreStore + + return false; } diff -r 9f5f62a43577 -r a49f85edc43f hotspot/src/share/vm/opto/graphKit.cpp --- a/hotspot/src/share/vm/opto/graphKit.cpp Mon Feb 22 08:04:12 2016 +0100 +++ b/hotspot/src/share/vm/opto/graphKit.cpp Mon Feb 15 10:14:33 2016 +0100 @@ -3149,6 +3149,19 @@ return membar; } +void GraphKit::insert_store_load_for_barrier() { + Node* mem = reset_memory(); + MemBarNode* mb = MemBarNode::make(C, Op_MemBarVolatile, Compile::AliasIdxBot); + mb->init_req(TypeFunc::Control, control()); + mb->init_req(TypeFunc::Memory, mem); + Node* membar = _gvn.transform(mb); + set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control))); + Node* newmem = _gvn.transform(new ProjNode(membar, TypeFunc::Memory)); + set_all_memory(mem); + set_memory(newmem, Compile::AliasIdxRaw); +} + + //------------------------------shared_lock------------------------------------ // Emit locking code. FastLockNode* GraphKit::shared_lock(Node* obj) { @@ -3840,7 +3853,7 @@ BasicType bt = T_BYTE; if (UseConcMarkSweepGC && UseCondCardMark) { - insert_mem_bar(Op_MemBarVolatile); // StoreLoad barrier + insert_store_load_for_barrier(); __ sync_kit(this); } @@ -4280,8 +4293,7 @@ __ if_then(card_val, BoolTest::ne, young_card); { sync_kit(ideal); - // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier. - insert_mem_bar(Op_MemBarVolatile, oop_store); + insert_store_load_for_barrier(); __ sync_kit(this); Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw); diff -r 9f5f62a43577 -r a49f85edc43f hotspot/src/share/vm/opto/graphKit.hpp --- a/hotspot/src/share/vm/opto/graphKit.hpp Mon Feb 22 08:04:12 2016 +0100 +++ b/hotspot/src/share/vm/opto/graphKit.hpp Mon Feb 15 10:14:33 2016 +0100 @@ -834,6 +834,7 @@ int next_monitor(); Node* insert_mem_bar(int opcode, Node* precedent = NULL); Node* insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent = NULL); + void insert_store_load_for_barrier(); // Optional 'precedent' is appended as an extra edge, to force ordering. FastLockNode* shared_lock(Node* obj); void shared_unlock(Node* box, Node* obj);