# HG changeset patch # User darcy # Date 1388774303 28800 # Node ID 231247ddf41a95a28dc82b6c64695bf2bc5d39b9 # Parent b5238ea864886ac9ead7d5460ab60e43dbaa94ae 8030212: Several api.java.util.stream tests got "NaN" value instead of "Infinity" or "-Infinity" Reviewed-by: mduigou, psandoz diff -r b5238ea86488 -r 231247ddf41a jdk/src/share/classes/java/util/DoubleSummaryStatistics.java --- a/jdk/src/share/classes/java/util/DoubleSummaryStatistics.java Fri Jan 03 09:49:08 2014 -0800 +++ b/jdk/src/share/classes/java/util/DoubleSummaryStatistics.java Fri Jan 03 10:38:23 2014 -0800 @@ -64,6 +64,7 @@ private long count; private double sum; private double sumCompensation; // Low order bits of sum + private double simpleSum; // Used to compute right sum for non-finite inputs private double min = Double.POSITIVE_INFINITY; private double max = Double.NEGATIVE_INFINITY; @@ -82,6 +83,7 @@ @Override public void accept(double value) { ++count; + simpleSum += value; sumWithCompensation(value); min = Math.min(min, value); max = Math.max(max, value); @@ -96,6 +98,7 @@ */ public void combine(DoubleSummaryStatistics other) { count += other.count; + simpleSum += other.simpleSum; sumWithCompensation(other.sum); sumWithCompensation(other.sumCompensation); min = Math.min(min, other.min); @@ -147,7 +150,15 @@ */ public final double getSum() { // Better error bounds to add both terms as the final sum - return sum + sumCompensation; + double tmp = sum + sumCompensation; + if (Double.isNaN(tmp) && Double.isInfinite(simpleSum)) + // If the compensated sum is spuriously NaN from + // accumulating one or more same-signed infinite values, + // return the correctly-signed infinity stored in + // simpleSum. + return simpleSum; + else + return tmp; } /** diff -r b5238ea86488 -r 231247ddf41a jdk/src/share/classes/java/util/stream/Collectors.java --- a/jdk/src/share/classes/java/util/stream/Collectors.java Fri Jan 03 09:49:08 2014 -0800 +++ b/jdk/src/share/classes/java/util/stream/Collectors.java Fri Jan 03 10:38:23 2014 -0800 @@ -507,16 +507,20 @@ summingDouble(ToDoubleFunction mapper) { /* * In the arrays allocated for the collect operation, index 0 - * holds the high-order bits of the running sum and index 1 - * holds the low-order bits of the sum computed via - * compensated summation. + * holds the high-order bits of the running sum, index 1 holds + * the low-order bits of the sum computed via compensated + * summation, and index 2 holds the simple sum used to compute + * the proper result if the stream contains infinite values of + * the same sign. */ return new CollectorImpl<>( - () -> new double[2], - (a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); }, - (a, b) -> { sumWithCompensation(a, b[0]); return sumWithCompensation(a, b[1]); }, - // Better error bounds to add both terms as the final sum - a -> a[0] + a[1], + () -> new double[3], + (a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); + a[2] += mapper.applyAsDouble(t);}, + (a, b) -> { sumWithCompensation(a, b[0]); + a[2] += b[2]; + return sumWithCompensation(a, b[1]); }, + a -> computeFinalSum(a), CH_NOID); } @@ -540,6 +544,20 @@ return intermediateSum; } + /** + * If the compensated sum is spuriously NaN from accumulating one + * or more same-signed infinite values, return the + * correctly-signed infinity stored in the simple sum. + */ + static double computeFinalSum(double[] summands) { + // Better error bounds to add both terms as the final sum + double tmp = summands[0] + summands[1]; + double simpleSum = summands[summands.length - 1]; + if (Double.isNaN(tmp) && Double.isInfinite(simpleSum)) + return simpleSum; + else + return tmp; + } /** * Returns a {@code Collector} that produces the arithmetic mean of an integer-valued @@ -608,11 +626,10 @@ * summation, and index 2 holds the number of values seen. */ return new CollectorImpl<>( - () -> new double[3], - (a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); a[2]++; }, - (a, b) -> { sumWithCompensation(a, b[0]); sumWithCompensation(a, b[1]); a[2] += b[2]; return a; }, - // Better error bounds to add both terms as the final sum to compute average - a -> (a[2] == 0) ? 0.0d : ((a[0] + a[1]) / a[2]), + () -> new double[4], + (a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); a[2]++; a[3]+= mapper.applyAsDouble(t);}, + (a, b) -> { sumWithCompensation(a, b[0]); sumWithCompensation(a, b[1]); a[2] += b[2]; a[3] += b[3]; return a; }, + a -> (a[2] == 0) ? 0.0d : (computeFinalSum(a) / a[2]), CH_NOID); } diff -r b5238ea86488 -r 231247ddf41a jdk/src/share/classes/java/util/stream/DoublePipeline.java --- a/jdk/src/share/classes/java/util/stream/DoublePipeline.java Fri Jan 03 09:49:08 2014 -0800 +++ b/jdk/src/share/classes/java/util/stream/DoublePipeline.java Fri Jan 03 10:38:23 2014 -0800 @@ -379,21 +379,24 @@ public final double sum() { /* * In the arrays allocated for the collect operation, index 0 - * holds the high-order bits of the running sum and index 1 - * holds the low-order bits of the sum computed via - * compensated summation. + * holds the high-order bits of the running sum, index 1 holds + * the low-order bits of the sum computed via compensated + * summation, and index 2 holds the simple sum used to compute + * the proper result if the stream contains infinite values of + * the same sign. */ - double[] summation = collect(() -> new double[2], + double[] summation = collect(() -> new double[3], (ll, d) -> { Collectors.sumWithCompensation(ll, d); + ll[2] += d; }, (ll, rr) -> { Collectors.sumWithCompensation(ll, rr[0]); Collectors.sumWithCompensation(ll, rr[1]); + ll[2] += rr[2]; }); - // Better error bounds to add both terms as the final sum - return summation[0] + summation[1]; + return Collectors.computeFinalSum(summation); } @Override @@ -421,21 +424,23 @@ * In the arrays allocated for the collect operation, index 0 * holds the high-order bits of the running sum, index 1 holds * the low-order bits of the sum computed via compensated - * summation, and index 2 holds the number of values seen. + * summation, index 2 holds the number of values seen, index 3 + * holds the simple sum. */ - double[] avg = collect(() -> new double[3], + double[] avg = collect(() -> new double[4], (ll, d) -> { ll[2]++; Collectors.sumWithCompensation(ll, d); + ll[3] += d; }, (ll, rr) -> { Collectors.sumWithCompensation(ll, rr[0]); Collectors.sumWithCompensation(ll, rr[1]); ll[2] += rr[2]; + ll[3] += rr[3]; }); return avg[2] > 0 - // Better error bounds to add both terms as the final sum to compute average - ? OptionalDouble.of((avg[0] + avg[1]) / avg[2]) + ? OptionalDouble.of(Collectors.computeFinalSum(avg) / avg[2]) : OptionalDouble.empty(); } diff -r b5238ea86488 -r 231247ddf41a jdk/test/java/util/stream/TestDoubleSumAverage.java --- a/jdk/test/java/util/stream/TestDoubleSumAverage.java Fri Jan 03 09:49:08 2014 -0800 +++ b/jdk/test/java/util/stream/TestDoubleSumAverage.java Fri Jan 03 10:38:23 2014 -0800 @@ -25,17 +25,20 @@ import java.util.function.*; import java.util.stream.*; +import static java.lang.Double.*; + /* * @test - * @bug 8006572 + * @bug 8006572 8030212 * @summary Test for use of non-naive summation in stream-related sum and average operations. */ public class TestDoubleSumAverage { public static void main(String... args) { int failures = 0; + failures += testZeroAverageOfNonEmptyStream(); failures += testForCompenstation(); - failures += testZeroAverageOfNonEmptyStream(); + failures += testNonfiniteSum(); if (failures > 0) { throw new RuntimeException("Found " + failures + " numerical failure(s)."); @@ -43,6 +46,15 @@ } /** + * Test to verify that a non-empty stream with a zero average is non-empty. + */ + private static int testZeroAverageOfNonEmptyStream() { + Supplier ds = () -> DoubleStream.iterate(0.0, e -> 0.0).limit(10); + + return compareUlpDifference(0.0, ds.get().average().getAsDouble(), 0); + } + + /** * Compute the sum and average of a sequence of double values in * various ways and report an error if naive summation is used. */ @@ -83,19 +95,68 @@ return failures; } - /** - * Test to verify that a non-empty stream with a zero average is non-empty. - */ - private static int testZeroAverageOfNonEmptyStream() { - Supplier ds = () -> DoubleStream.iterate(0.0, e -> 0.0).limit(10); + private static int testNonfiniteSum() { + int failures = 0; + + Map, Double> testCases = new LinkedHashMap<>(); + testCases.put(() -> DoubleStream.of(MAX_VALUE, MAX_VALUE), POSITIVE_INFINITY); + testCases.put(() -> DoubleStream.of(-MAX_VALUE, -MAX_VALUE), NEGATIVE_INFINITY); + + testCases.put(() -> DoubleStream.of(1.0d, POSITIVE_INFINITY, 1.0d), POSITIVE_INFINITY); + testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY), POSITIVE_INFINITY); + testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY, POSITIVE_INFINITY), POSITIVE_INFINITY); + testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY, POSITIVE_INFINITY, 0.0), POSITIVE_INFINITY); + + testCases.put(() -> DoubleStream.of(1.0d, NEGATIVE_INFINITY, 1.0d), NEGATIVE_INFINITY); + testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY), NEGATIVE_INFINITY); + testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY, NEGATIVE_INFINITY), NEGATIVE_INFINITY); + testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY, NEGATIVE_INFINITY, 0.0), NEGATIVE_INFINITY); - return compareUlpDifference(0.0, ds.get().average().getAsDouble(), 0); + testCases.put(() -> DoubleStream.of(1.0d, NaN, 1.0d), NaN); + testCases.put(() -> DoubleStream.of(NaN), NaN); + testCases.put(() -> DoubleStream.of(1.0d, NEGATIVE_INFINITY, POSITIVE_INFINITY, 1.0d), NaN); + testCases.put(() -> DoubleStream.of(1.0d, POSITIVE_INFINITY, NEGATIVE_INFINITY, 1.0d), NaN); + testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY, NaN), NaN); + testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY, NaN), NaN); + testCases.put(() -> DoubleStream.of(NaN, POSITIVE_INFINITY), NaN); + testCases.put(() -> DoubleStream.of(NaN, NEGATIVE_INFINITY), NaN); + + for(Map.Entry, Double> testCase : testCases.entrySet()) { + Supplier ds = testCase.getKey(); + double expected = testCase.getValue(); + + DoubleSummaryStatistics stats = ds.get().collect(DoubleSummaryStatistics::new, + DoubleSummaryStatistics::accept, + DoubleSummaryStatistics::combine); + + failures += compareUlpDifference(expected, stats.getSum(), 0); + failures += compareUlpDifference(expected, stats.getAverage(), 0); + + failures += compareUlpDifference(expected, ds.get().sum(), 0); + failures += compareUlpDifference(expected, ds.get().average().getAsDouble(), 0); + + failures += compareUlpDifference(expected, ds.get().boxed().collect(Collectors.summingDouble(d -> d)), 0); + failures += compareUlpDifference(expected, ds.get().boxed().collect(Collectors.averagingDouble(d -> d)), 0); + } + + return failures; } /** * Compute the ulp difference of two double values and compare against an error threshold. */ private static int compareUlpDifference(double expected, double computed, double threshold) { + if (!Double.isFinite(expected)) { + // Handle NaN and infinity cases + if (Double.compare(expected, computed) == 0) + return 0; + else { + System.err.printf("Unexpected sum, %g rather than %g.%n", + computed, expected); + return 1; + } + } + double ulpDifference = Math.abs(expected - computed) / Math.ulp(expected); if (ulpDifference > threshold) {