diff -r fd16c54261b3 -r 489c9b5090e2 hotspot/src/cpu/sparc/vm/stubGenerator_sparc.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hotspot/src/cpu/sparc/vm/stubGenerator_sparc.cpp Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,3002 @@ +/* + * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + */ + +#include "incls/_precompiled.incl" +#include "incls/_stubGenerator_sparc.cpp.incl" + +// Declaration and definition of StubGenerator (no .hpp file). +// For a more detailed description of the stub routine structure +// see the comment in stubRoutines.hpp. + +#define __ _masm-> + +#ifdef PRODUCT +#define BLOCK_COMMENT(str) /* nothing */ +#else +#define BLOCK_COMMENT(str) __ block_comment(str) +#endif + +#define BIND(label) bind(label); BLOCK_COMMENT(#label ":") + +// Note: The register L7 is used as L7_thread_cache, and may not be used +// any other way within this module. + + +static const Register& Lstub_temp = L2; + +// ------------------------------------------------------------------------------------------------------------------------- +// Stub Code definitions + +static address handle_unsafe_access() { + JavaThread* thread = JavaThread::current(); + address pc = thread->saved_exception_pc(); + address npc = thread->saved_exception_npc(); + // pc is the instruction which we must emulate + // doing a no-op is fine: return garbage from the load + + // request an async exception + thread->set_pending_unsafe_access_error(); + + // return address of next instruction to execute + return npc; +} + +class StubGenerator: public StubCodeGenerator { + private: + +#ifdef PRODUCT +#define inc_counter_np(a,b,c) (0) +#else + void inc_counter_np_(int& counter, Register t1, Register t2) { + Address counter_addr(t2, (address) &counter); + __ sethi(counter_addr); + __ ld(counter_addr, t1); + __ inc(t1); + __ st(t1, counter_addr); + } +#define inc_counter_np(counter, t1, t2) \ + BLOCK_COMMENT("inc_counter " #counter); \ + inc_counter_np_(counter, t1, t2); +#endif + + //---------------------------------------------------------------------------------------------------- + // Call stubs are used to call Java from C + + address generate_call_stub(address& return_pc) { + StubCodeMark mark(this, "StubRoutines", "call_stub"); + address start = __ pc(); + + // Incoming arguments: + // + // o0 : call wrapper address + // o1 : result (address) + // o2 : result type + // o3 : method + // o4 : (interpreter) entry point + // o5 : parameters (address) + // [sp + 0x5c]: parameter size (in words) + // [sp + 0x60]: thread + // + // +---------------+ <--- sp + 0 + // | | + // . reg save area . + // | | + // +---------------+ <--- sp + 0x40 + // | | + // . extra 7 slots . + // | | + // +---------------+ <--- sp + 0x5c + // | param. size | + // +---------------+ <--- sp + 0x60 + // | thread | + // +---------------+ + // | | + + // note: if the link argument position changes, adjust + // the code in frame::entry_frame_call_wrapper() + + const Argument link = Argument(0, false); // used only for GC + const Argument result = Argument(1, false); + const Argument result_type = Argument(2, false); + const Argument method = Argument(3, false); + const Argument entry_point = Argument(4, false); + const Argument parameters = Argument(5, false); + const Argument parameter_size = Argument(6, false); + const Argument thread = Argument(7, false); + + // setup thread register + __ ld_ptr(thread.as_address(), G2_thread); + +#ifdef ASSERT + // make sure we have no pending exceptions + { const Register t = G3_scratch; + Label L; + __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t); + __ br_null(t, false, Assembler::pt, L); + __ delayed()->nop(); + __ stop("StubRoutines::call_stub: entered with pending exception"); + __ bind(L); + } +#endif + + // create activation frame & allocate space for parameters + { const Register t = G3_scratch; + __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words) + __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words) + __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words) + __ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes + __ neg(t); // negate so it can be used with save + __ save(SP, t, SP); // setup new frame + } + + // +---------------+ <--- sp + 0 + // | | + // . reg save area . + // | | + // +---------------+ <--- sp + 0x40 + // | | + // . extra 7 slots . + // | | + // +---------------+ <--- sp + 0x5c + // | empty slot | (only if parameter size is even) + // +---------------+ + // | | + // . parameters . + // | | + // +---------------+ <--- fp + 0 + // | | + // . reg save area . + // | | + // +---------------+ <--- fp + 0x40 + // | | + // . extra 7 slots . + // | | + // +---------------+ <--- fp + 0x5c + // | param. size | + // +---------------+ <--- fp + 0x60 + // | thread | + // +---------------+ + // | | + + // pass parameters if any + BLOCK_COMMENT("pass parameters if any"); + { const Register src = parameters.as_in().as_register(); + const Register dst = Lentry_args; + const Register tmp = G3_scratch; + const Register cnt = G4_scratch; + + // test if any parameters & setup of Lentry_args + Label exit; + __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter + __ add( FP, STACK_BIAS, dst ); + __ tst(cnt); + __ br(Assembler::zero, false, Assembler::pn, exit); + __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args + + // copy parameters if any + Label loop; + __ BIND(loop); + // Store tag first. + if (TaggedStackInterpreter) { + __ ld_ptr(src, 0, tmp); + __ add(src, BytesPerWord, src); // get next + __ st_ptr(tmp, dst, Interpreter::tag_offset_in_bytes()); + } + // Store parameter value + __ ld_ptr(src, 0, tmp); + __ add(src, BytesPerWord, src); + __ st_ptr(tmp, dst, Interpreter::value_offset_in_bytes()); + __ deccc(cnt); + __ br(Assembler::greater, false, Assembler::pt, loop); + __ delayed()->sub(dst, Interpreter::stackElementSize(), dst); + + // done + __ BIND(exit); + } + + // setup parameters, method & call Java function +#ifdef ASSERT + // layout_activation_impl checks it's notion of saved SP against + // this register, so if this changes update it as well. + const Register saved_SP = Lscratch; + __ mov(SP, saved_SP); // keep track of SP before call +#endif + + // setup parameters + const Register t = G3_scratch; + __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words) + __ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes + __ sub(FP, t, Gargs); // setup parameter pointer +#ifdef _LP64 + __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias +#endif + __ mov(SP, O5_savedSP); + + + // do the call + // + // the following register must be setup: + // + // G2_thread + // G5_method + // Gargs + BLOCK_COMMENT("call Java function"); + __ jmpl(entry_point.as_in().as_register(), G0, O7); + __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method + + BLOCK_COMMENT("call_stub_return_address:"); + return_pc = __ pc(); + + // The callee, if it wasn't interpreted, can return with SP changed so + // we can no longer assert of change of SP. + + // store result depending on type + // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE + // is treated as T_INT) + { const Register addr = result .as_in().as_register(); + const Register type = result_type.as_in().as_register(); + Label is_long, is_float, is_double, is_object, exit; + __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object); + __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float); + __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double); + __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long); + __ delayed()->nop(); + + // store int result + __ st(O0, addr, G0); + + __ BIND(exit); + __ ret(); + __ delayed()->restore(); + + __ BIND(is_object); + __ ba(false, exit); + __ delayed()->st_ptr(O0, addr, G0); + + __ BIND(is_float); + __ ba(false, exit); + __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0); + + __ BIND(is_double); + __ ba(false, exit); + __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0); + + __ BIND(is_long); +#ifdef _LP64 + __ ba(false, exit); + __ delayed()->st_long(O0, addr, G0); // store entire long +#else +#if defined(COMPILER2) + // All return values are where we want them, except for Longs. C2 returns + // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1. + // Since the interpreter will return longs in G1 and O0/O1 in the 32bit + // build we simply always use G1. + // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to + // do this here. Unfortunately if we did a rethrow we'd see an machepilog node + // first which would move g1 -> O0/O1 and destroy the exception we were throwing. + + __ ba(false, exit); + __ delayed()->stx(G1, addr, G0); // store entire long +#else + __ st(O1, addr, BytesPerInt); + __ ba(false, exit); + __ delayed()->st(O0, addr, G0); +#endif /* COMPILER2 */ +#endif /* _LP64 */ + } + return start; + } + + + //---------------------------------------------------------------------------------------------------- + // Return point for a Java call if there's an exception thrown in Java code. + // The exception is caught and transformed into a pending exception stored in + // JavaThread that can be tested from within the VM. + // + // Oexception: exception oop + + address generate_catch_exception() { + StubCodeMark mark(this, "StubRoutines", "catch_exception"); + + address start = __ pc(); + // verify that thread corresponds + __ verify_thread(); + + const Register& temp_reg = Gtemp; + Address pending_exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset())); + Address exception_file_offset_addr(G2_thread, 0, in_bytes(Thread::exception_file_offset ())); + Address exception_line_offset_addr(G2_thread, 0, in_bytes(Thread::exception_line_offset ())); + + // set pending exception + __ verify_oop(Oexception); + __ st_ptr(Oexception, pending_exception_addr); + __ set((intptr_t)__FILE__, temp_reg); + __ st_ptr(temp_reg, exception_file_offset_addr); + __ set((intptr_t)__LINE__, temp_reg); + __ st(temp_reg, exception_line_offset_addr); + + // complete return to VM + assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before"); + + Address stub_ret(temp_reg, StubRoutines::_call_stub_return_address); + __ jump_to(stub_ret); + __ delayed()->nop(); + + return start; + } + + + //---------------------------------------------------------------------------------------------------- + // Continuation point for runtime calls returning with a pending exception + // The pending exception check happened in the runtime or native call stub + // The pending exception in Thread is converted into a Java-level exception + // + // Contract with Java-level exception handler: O0 = exception + // O1 = throwing pc + + address generate_forward_exception() { + StubCodeMark mark(this, "StubRoutines", "forward_exception"); + address start = __ pc(); + + // Upon entry, O7 has the return address returning into Java + // (interpreted or compiled) code; i.e. the return address + // becomes the throwing pc. + + const Register& handler_reg = Gtemp; + + Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset())); + +#ifdef ASSERT + // make sure that this code is only executed if there is a pending exception + { Label L; + __ ld_ptr(exception_addr, Gtemp); + __ br_notnull(Gtemp, false, Assembler::pt, L); + __ delayed()->nop(); + __ stop("StubRoutines::forward exception: no pending exception (1)"); + __ bind(L); + } +#endif + + // compute exception handler into handler_reg + __ get_thread(); + __ ld_ptr(exception_addr, Oexception); + __ verify_oop(Oexception); + __ save_frame(0); // compensates for compiler weakness + __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC + BLOCK_COMMENT("call exception_handler_for_return_address"); + __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Lscratch); + __ mov(O0, handler_reg); + __ restore(); // compensates for compiler weakness + + __ ld_ptr(exception_addr, Oexception); + __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC + +#ifdef ASSERT + // make sure exception is set + { Label L; + __ br_notnull(Oexception, false, Assembler::pt, L); + __ delayed()->nop(); + __ stop("StubRoutines::forward exception: no pending exception (2)"); + __ bind(L); + } +#endif + // jump to exception handler + __ jmp(handler_reg, 0); + // clear pending exception + __ delayed()->st_ptr(G0, exception_addr); + + return start; + } + + + //------------------------------------------------------------------------------------------------------------------------ + // Continuation point for throwing of implicit exceptions that are not handled in + // the current activation. Fabricates an exception oop and initiates normal + // exception dispatching in this frame. Only callee-saved registers are preserved + // (through the normal register window / RegisterMap handling). + // If the compiler needs all registers to be preserved between the fault + // point and the exception handler then it must assume responsibility for that in + // AbstractCompiler::continuation_for_implicit_null_exception or + // continuation_for_implicit_division_by_zero_exception. All other implicit + // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are + // either at call sites or otherwise assume that stack unwinding will be initiated, + // so caller saved registers were assumed volatile in the compiler. + + // Note that we generate only this stub into a RuntimeStub, because it needs to be + // properly traversed and ignored during GC, so we change the meaning of the "__" + // macro within this method. +#undef __ +#define __ masm-> + + address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) { +#ifdef ASSERT + int insts_size = VerifyThread ? 1 * K : 600; +#else + int insts_size = VerifyThread ? 1 * K : 256; +#endif /* ASSERT */ + int locs_size = 32; + + CodeBuffer code(name, insts_size, locs_size); + MacroAssembler* masm = new MacroAssembler(&code); + + __ verify_thread(); + + // This is an inlined and slightly modified version of call_VM + // which has the ability to fetch the return PC out of thread-local storage + __ assert_not_delayed(); + + // Note that we always push a frame because on the SPARC + // architecture, for all of our implicit exception kinds at call + // sites, the implicit exception is taken before the callee frame + // is pushed. + __ save_frame(0); + + int frame_complete = __ offset(); + + if (restore_saved_exception_pc) { + Address saved_exception_pc(G2_thread, 0, in_bytes(JavaThread::saved_exception_pc_offset())); + __ ld_ptr(saved_exception_pc, I7); + __ sub(I7, frame::pc_return_offset, I7); + } + + // Note that we always have a runtime stub frame on the top of stack by this point + Register last_java_sp = SP; + // 64-bit last_java_sp is biased! + __ set_last_Java_frame(last_java_sp, G0); + if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early + __ save_thread(noreg); + // do the call + BLOCK_COMMENT("call runtime_entry"); + __ call(runtime_entry, relocInfo::runtime_call_type); + if (!VerifyThread) + __ delayed()->mov(G2_thread, O0); // pass thread as first argument + else + __ delayed()->nop(); // (thread already passed) + __ restore_thread(noreg); + __ reset_last_Java_frame(); + + // check for pending exceptions. use Gtemp as scratch register. +#ifdef ASSERT + Label L; + + Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset())); + Register scratch_reg = Gtemp; + __ ld_ptr(exception_addr, scratch_reg); + __ br_notnull(scratch_reg, false, Assembler::pt, L); + __ delayed()->nop(); + __ should_not_reach_here(); + __ bind(L); +#endif // ASSERT + BLOCK_COMMENT("call forward_exception_entry"); + __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); + // we use O7 linkage so that forward_exception_entry has the issuing PC + __ delayed()->restore(); + + RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false); + return stub->entry_point(); + } + +#undef __ +#define __ _masm-> + + + // Generate a routine that sets all the registers so we + // can tell if the stop routine prints them correctly. + address generate_test_stop() { + StubCodeMark mark(this, "StubRoutines", "test_stop"); + address start = __ pc(); + + int i; + + __ save_frame(0); + + static jfloat zero = 0.0, one = 1.0; + + // put addr in L0, then load through L0 to F0 + __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0); + __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1 + + // use add to put 2..18 in F2..F18 + for ( i = 2; i <= 18; ++i ) { + __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i)); + } + + // Now put double 2 in F16, double 18 in F18 + __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 ); + __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 ); + + // use add to put 20..32 in F20..F32 + for (i = 20; i < 32; i += 2) { + __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i)); + } + + // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's + for ( i = 0; i < 8; ++i ) { + if (i < 6) { + __ set( i, as_iRegister(i)); + __ set(16 + i, as_oRegister(i)); + __ set(24 + i, as_gRegister(i)); + } + __ set( 8 + i, as_lRegister(i)); + } + + __ stop("testing stop"); + + + __ ret(); + __ delayed()->restore(); + + return start; + } + + + address generate_stop_subroutine() { + StubCodeMark mark(this, "StubRoutines", "stop_subroutine"); + address start = __ pc(); + + __ stop_subroutine(); + + return start; + } + + address generate_flush_callers_register_windows() { + StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows"); + address start = __ pc(); + + __ flush_windows(); + __ retl(false); + __ delayed()->add( FP, STACK_BIAS, O0 ); + // The returned value must be a stack pointer whose register save area + // is flushed, and will stay flushed while the caller executes. + + return start; + } + + // Helper functions for v8 atomic operations. + // + void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) { + if (mark_oop_reg == noreg) { + address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(); + __ set((intptr_t)lock_ptr, lock_ptr_reg); + } else { + assert(scratch_reg != noreg, "just checking"); + address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache; + __ set((intptr_t)lock_ptr, lock_ptr_reg); + __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg); + __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg); + } + } + + void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) { + + get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg); + __ set(StubRoutines::Sparc::locked, lock_reg); + // Initialize yield counter + __ mov(G0,yield_reg); + + __ BIND(retry); + __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount); + __ br(Assembler::less, false, Assembler::pt, dontyield); + __ delayed()->nop(); + + // This code can only be called from inside the VM, this + // stub is only invoked from Atomic::add(). We do not + // want to use call_VM, because _last_java_sp and such + // must already be set. + // + // Save the regs and make space for a C call + __ save(SP, -96, SP); + __ save_all_globals_into_locals(); + BLOCK_COMMENT("call os::naked_sleep"); + __ call(CAST_FROM_FN_PTR(address, os::naked_sleep)); + __ delayed()->nop(); + __ restore_globals_from_locals(); + __ restore(); + // reset the counter + __ mov(G0,yield_reg); + + __ BIND(dontyield); + + // try to get lock + __ swap(lock_ptr_reg, 0, lock_reg); + + // did we get the lock? + __ cmp(lock_reg, StubRoutines::Sparc::unlocked); + __ br(Assembler::notEqual, true, Assembler::pn, retry); + __ delayed()->add(yield_reg,1,yield_reg); + + // yes, got lock. do the operation here. + } + + void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) { + __ st(lock_reg, lock_ptr_reg, 0); // unlock + } + + // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest). + // + // Arguments : + // + // exchange_value: O0 + // dest: O1 + // + // Results: + // + // O0: the value previously stored in dest + // + address generate_atomic_xchg() { + StubCodeMark mark(this, "StubRoutines", "atomic_xchg"); + address start = __ pc(); + + if (UseCASForSwap) { + // Use CAS instead of swap, just in case the MP hardware + // prefers to work with just one kind of synch. instruction. + Label retry; + __ BIND(retry); + __ mov(O0, O3); // scratch copy of exchange value + __ ld(O1, 0, O2); // observe the previous value + // try to replace O2 with O3 + __ cas_under_lock(O1, O2, O3, + (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false); + __ cmp(O2, O3); + __ br(Assembler::notEqual, false, Assembler::pn, retry); + __ delayed()->nop(); + + __ retl(false); + __ delayed()->mov(O2, O0); // report previous value to caller + + } else { + if (VM_Version::v9_instructions_work()) { + __ retl(false); + __ delayed()->swap(O1, 0, O0); + } else { + const Register& lock_reg = O2; + const Register& lock_ptr_reg = O3; + const Register& yield_reg = O4; + + Label retry; + Label dontyield; + + generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield); + // got the lock, do the swap + __ swap(O1, 0, O0); + + generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield); + __ retl(false); + __ delayed()->nop(); + } + } + + return start; + } + + + // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value) + // + // Arguments : + // + // exchange_value: O0 + // dest: O1 + // compare_value: O2 + // + // Results: + // + // O0: the value previously stored in dest + // + // Overwrites (v8): O3,O4,O5 + // + address generate_atomic_cmpxchg() { + StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg"); + address start = __ pc(); + + // cmpxchg(dest, compare_value, exchange_value) + __ cas_under_lock(O1, O2, O0, + (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false); + __ retl(false); + __ delayed()->nop(); + + return start; + } + + // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value) + // + // Arguments : + // + // exchange_value: O1:O0 + // dest: O2 + // compare_value: O4:O3 + // + // Results: + // + // O1:O0: the value previously stored in dest + // + // This only works on V9, on V8 we don't generate any + // code and just return NULL. + // + // Overwrites: G1,G2,G3 + // + address generate_atomic_cmpxchg_long() { + StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long"); + address start = __ pc(); + + if (!VM_Version::supports_cx8()) + return NULL;; + __ sllx(O0, 32, O0); + __ srl(O1, 0, O1); + __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value + __ sllx(O3, 32, O3); + __ srl(O4, 0, O4); + __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value + __ casx(O2, O3, O0); + __ srl(O0, 0, O1); // unpacked return value in O1:O0 + __ retl(false); + __ delayed()->srlx(O0, 32, O0); + + return start; + } + + + // Support for jint Atomic::add(jint add_value, volatile jint* dest). + // + // Arguments : + // + // add_value: O0 (e.g., +1 or -1) + // dest: O1 + // + // Results: + // + // O0: the new value stored in dest + // + // Overwrites (v9): O3 + // Overwrites (v8): O3,O4,O5 + // + address generate_atomic_add() { + StubCodeMark mark(this, "StubRoutines", "atomic_add"); + address start = __ pc(); + __ BIND(_atomic_add_stub); + + if (VM_Version::v9_instructions_work()) { + Label(retry); + __ BIND(retry); + + __ lduw(O1, 0, O2); + __ add(O0, O2, O3); + __ cas(O1, O2, O3); + __ cmp( O2, O3); + __ br(Assembler::notEqual, false, Assembler::pn, retry); + __ delayed()->nop(); + __ retl(false); + __ delayed()->add(O0, O2, O0); // note that cas made O2==O3 + } else { + const Register& lock_reg = O2; + const Register& lock_ptr_reg = O3; + const Register& value_reg = O4; + const Register& yield_reg = O5; + + Label(retry); + Label(dontyield); + + generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield); + // got lock, do the increment + __ ld(O1, 0, value_reg); + __ add(O0, value_reg, value_reg); + __ st(value_reg, O1, 0); + + // %%% only for RMO and PSO + __ membar(Assembler::StoreStore); + + generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield); + + __ retl(false); + __ delayed()->mov(value_reg, O0); + } + + return start; + } + Label _atomic_add_stub; // called from other stubs + + + // Support for void OrderAccess::fence(). + // + address generate_fence() { + StubCodeMark mark(this, "StubRoutines", "fence"); + address start = __ pc(); + + __ membar(Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore | + Assembler::StoreLoad | Assembler::StoreStore)); + __ retl(false); + __ delayed()->nop(); + + return start; + } + + + //------------------------------------------------------------------------------------------------------------------------ + // The following routine generates a subroutine to throw an asynchronous + // UnknownError when an unsafe access gets a fault that could not be + // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.) + // + // Arguments : + // + // trapping PC: O7 + // + // Results: + // posts an asynchronous exception, skips the trapping instruction + // + + address generate_handler_for_unsafe_access() { + StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access"); + address start = __ pc(); + + const int preserve_register_words = (64 * 2); + Address preserve_addr(FP, 0, (-preserve_register_words * wordSize) + STACK_BIAS); + + Register Lthread = L7_thread_cache; + int i; + + __ save_frame(0); + __ mov(G1, L1); + __ mov(G2, L2); + __ mov(G3, L3); + __ mov(G4, L4); + __ mov(G5, L5); + for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) { + __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize); + } + + address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access); + BLOCK_COMMENT("call handle_unsafe_access"); + __ call(entry_point, relocInfo::runtime_call_type); + __ delayed()->nop(); + + __ mov(L1, G1); + __ mov(L2, G2); + __ mov(L3, G3); + __ mov(L4, G4); + __ mov(L5, G5); + for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) { + __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize); + } + + __ verify_thread(); + + __ jmp(O0, 0); + __ delayed()->restore(); + + return start; + } + + + // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super ); + // Arguments : + // + // ret : O0, returned + // icc/xcc: set as O0 (depending on wordSize) + // sub : O1, argument, not changed + // super: O2, argument, not changed + // raddr: O7, blown by call + address generate_partial_subtype_check() { + StubCodeMark mark(this, "StubRoutines", "partial_subtype_check"); + address start = __ pc(); + Label loop, miss; + + // Compare super with sub directly, since super is not in its own SSA. + // The compiler used to emit this test, but we fold it in here, + // to increase overall code density, with no real loss of speed. + { Label L; + __ cmp(O1, O2); + __ brx(Assembler::notEqual, false, Assembler::pt, L); + __ delayed()->nop(); + __ retl(); + __ delayed()->addcc(G0,0,O0); // set Z flags, zero result + __ bind(L); + } + +#if defined(COMPILER2) && !defined(_LP64) + // Do not use a 'save' because it blows the 64-bit O registers. + __ add(SP,-4*wordSize,SP); // Make space for 4 temps + __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize); + __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize); + __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize); + __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize); + Register Rret = O0; + Register Rsub = O1; + Register Rsuper = O2; +#else + __ save_frame(0); + Register Rret = I0; + Register Rsub = I1; + Register Rsuper = I2; +#endif + + Register L0_ary_len = L0; + Register L1_ary_ptr = L1; + Register L2_super = L2; + Register L3_index = L3; + + inc_counter_np(SharedRuntime::_partial_subtype_ctr, L0, L1); + + __ ld_ptr( Rsub, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), L3 ); + __ lduw(L3,arrayOopDesc::length_offset_in_bytes(),L0_ary_len); + __ add(L3,arrayOopDesc::base_offset_in_bytes(T_OBJECT),L1_ary_ptr); + __ clr(L3_index); // zero index + // Load a little early; will load 1 off the end of the array. + // Ok for now; revisit if we have other uses of this routine. + __ ld_ptr(L1_ary_ptr,0,L2_super);// Will load a little early + __ align(CodeEntryAlignment); + + // The scan loop + __ BIND(loop); + __ add(L1_ary_ptr,wordSize,L1_ary_ptr); // Bump by OOP size + __ cmp(L3_index,L0_ary_len); + __ br(Assembler::equal,false,Assembler::pn,miss); + __ delayed()->inc(L3_index); // Bump index + __ subcc(L2_super,Rsuper,Rret); // Check for match; zero in Rret for a hit + __ brx( Assembler::notEqual, false, Assembler::pt, loop ); + __ delayed()->ld_ptr(L1_ary_ptr,0,L2_super); // Will load a little early + + // Got a hit; report success; set cache. Cache load doesn't + // happen here; for speed it is directly emitted by the compiler. + __ st_ptr( Rsuper, Rsub, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() ); + +#if defined(COMPILER2) && !defined(_LP64) + __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0); + __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1); + __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2); + __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3); + __ retl(); // Result in Rret is zero; flags set to Z + __ delayed()->add(SP,4*wordSize,SP); +#else + __ ret(); // Result in Rret is zero; flags set to Z + __ delayed()->restore(); +#endif + + // Hit or miss falls through here + __ BIND(miss); + __ addcc(G0,1,Rret); // set NZ flags, NZ result + +#if defined(COMPILER2) && !defined(_LP64) + __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0); + __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1); + __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2); + __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3); + __ retl(); // Result in Rret is != 0; flags set to NZ + __ delayed()->add(SP,4*wordSize,SP); +#else + __ ret(); // Result in Rret is != 0; flags set to NZ + __ delayed()->restore(); +#endif + + return start; + } + + + // Called from MacroAssembler::verify_oop + // + address generate_verify_oop_subroutine() { + StubCodeMark mark(this, "StubRoutines", "verify_oop_stub"); + + address start = __ pc(); + + __ verify_oop_subroutine(); + + return start; + } + + static address disjoint_byte_copy_entry; + static address disjoint_short_copy_entry; + static address disjoint_int_copy_entry; + static address disjoint_long_copy_entry; + static address disjoint_oop_copy_entry; + + static address byte_copy_entry; + static address short_copy_entry; + static address int_copy_entry; + static address long_copy_entry; + static address oop_copy_entry; + + static address checkcast_copy_entry; + + // + // Verify that a register contains clean 32-bits positive value + // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax). + // + // Input: + // Rint - 32-bits value + // Rtmp - scratch + // + void assert_clean_int(Register Rint, Register Rtmp) { +#if defined(ASSERT) && defined(_LP64) + __ signx(Rint, Rtmp); + __ cmp(Rint, Rtmp); + __ breakpoint_trap(Assembler::notEqual, Assembler::xcc); +#endif + } + + // + // Generate overlap test for array copy stubs + // + // Input: + // O0 - array1 + // O1 - array2 + // O2 - element count + // + // Kills temps: O3, O4 + // + void array_overlap_test(address no_overlap_target, int log2_elem_size) { + assert(no_overlap_target != NULL, "must be generated"); + array_overlap_test(no_overlap_target, NULL, log2_elem_size); + } + void array_overlap_test(Label& L_no_overlap, int log2_elem_size) { + array_overlap_test(NULL, &L_no_overlap, log2_elem_size); + } + void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) { + const Register from = O0; + const Register to = O1; + const Register count = O2; + const Register to_from = O3; // to - from + const Register byte_count = O4; // count << log2_elem_size + + __ subcc(to, from, to_from); + __ sll_ptr(count, log2_elem_size, byte_count); + if (NOLp == NULL) + __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target); + else + __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp)); + __ delayed()->cmp(to_from, byte_count); + if (NOLp == NULL) + __ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target); + else + __ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp)); + __ delayed()->nop(); + } + + // + // Generate pre-write barrier for array. + // + // Input: + // addr - register containing starting address + // count - register containing element count + // tmp - scratch register + // + // The input registers are overwritten. + // + void gen_write_ref_array_pre_barrier(Register addr, Register count) { +#if 0 // G1 only + BarrierSet* bs = Universe::heap()->barrier_set(); + if (bs->has_write_ref_pre_barrier()) { + assert(bs->has_write_ref_array_pre_opt(), + "Else unsupported barrier set."); + + assert(addr->is_global() && count->is_global(), + "If not, then we have to fix this code to handle more " + "general cases."); + // Get some new fresh output registers. + __ save_frame(0); + // Save the necessary global regs... will be used after. + __ mov(addr, L0); + __ mov(count, L1); + + __ mov(addr, O0); + // Get the count into O1 + __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre)); + __ delayed()->mov(count, O1); + __ mov(L0, addr); + __ mov(L1, count); + __ restore(); + } +#endif // 0 + } + + // + // Generate post-write barrier for array. + // + // Input: + // addr - register containing starting address + // count - register containing element count + // tmp - scratch register + // + // The input registers are overwritten. + // + void gen_write_ref_array_post_barrier(Register addr, Register count, + Register tmp) { + BarrierSet* bs = Universe::heap()->barrier_set(); + + switch (bs->kind()) { +#if 0 // G1 - only + case BarrierSet::G1SATBCT: + case BarrierSet::G1SATBCTLogging: + { + assert(addr->is_global() && count->is_global(), + "If not, then we have to fix this code to handle more " + "general cases."); + // Get some new fresh output registers. + __ save_frame(0); + __ mov(addr, O0); + __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post)); + __ delayed()->mov(count, O1); + __ restore(); + } + break; +#endif // 0 G1 - only + case BarrierSet::CardTableModRef: + case BarrierSet::CardTableExtension: + { + CardTableModRefBS* ct = (CardTableModRefBS*)bs; + assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); + assert_different_registers(addr, count, tmp); + + Label L_loop; + + __ sll_ptr(count, LogBytesPerOop, count); + __ sub(count, BytesPerOop, count); + __ add(count, addr, count); + // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.) + __ srl_ptr(addr, CardTableModRefBS::card_shift, addr); + __ srl_ptr(count, CardTableModRefBS::card_shift, count); + __ sub(count, addr, count); + Address rs(tmp, (address)ct->byte_map_base); + __ load_address(rs); + __ BIND(L_loop); + __ stb(G0, rs.base(), addr); + __ subcc(count, 1, count); + __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop); + __ delayed()->add(addr, 1, addr); + + } + break; + case BarrierSet::ModRef: + break; + default : + ShouldNotReachHere(); + + } + + } + + + // Copy big chunks forward with shift + // + // Inputs: + // from - source arrays + // to - destination array aligned to 8-bytes + // count - elements count to copy >= the count equivalent to 16 bytes + // count_dec - elements count's decrement equivalent to 16 bytes + // L_copy_bytes - copy exit label + // + void copy_16_bytes_forward_with_shift(Register from, Register to, + Register count, int count_dec, Label& L_copy_bytes) { + Label L_loop, L_aligned_copy, L_copy_last_bytes; + + // if both arrays have the same alignment mod 8, do 8 bytes aligned copy + __ andcc(from, 7, G1); // misaligned bytes + __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy); + __ delayed()->nop(); + + const Register left_shift = G1; // left shift bit counter + const Register right_shift = G5; // right shift bit counter + + __ sll(G1, LogBitsPerByte, left_shift); + __ mov(64, right_shift); + __ sub(right_shift, left_shift, right_shift); + + // + // Load 2 aligned 8-bytes chunks and use one from previous iteration + // to form 2 aligned 8-bytes chunks to store. + // + __ deccc(count, count_dec); // Pre-decrement 'count' + __ andn(from, 7, from); // Align address + __ ldx(from, 0, O3); + __ inc(from, 8); + __ align(16); + __ BIND(L_loop); + __ ldx(from, 0, O4); + __ deccc(count, count_dec); // Can we do next iteration after this one? + __ ldx(from, 8, G4); + __ inc(to, 16); + __ inc(from, 16); + __ sllx(O3, left_shift, O3); + __ srlx(O4, right_shift, G3); + __ bset(G3, O3); + __ stx(O3, to, -16); + __ sllx(O4, left_shift, O4); + __ srlx(G4, right_shift, G3); + __ bset(G3, O4); + __ stx(O4, to, -8); + __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop); + __ delayed()->mov(G4, O3); + + __ inccc(count, count_dec>>1 ); // + 8 bytes + __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes); + __ delayed()->inc(count, count_dec>>1); // restore 'count' + + // copy 8 bytes, part of them already loaded in O3 + __ ldx(from, 0, O4); + __ inc(to, 8); + __ inc(from, 8); + __ sllx(O3, left_shift, O3); + __ srlx(O4, right_shift, G3); + __ bset(O3, G3); + __ stx(G3, to, -8); + + __ BIND(L_copy_last_bytes); + __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes + __ br(Assembler::always, false, Assembler::pt, L_copy_bytes); + __ delayed()->sub(from, right_shift, from); // restore address + + __ BIND(L_aligned_copy); + } + + // Copy big chunks backward with shift + // + // Inputs: + // end_from - source arrays end address + // end_to - destination array end address aligned to 8-bytes + // count - elements count to copy >= the count equivalent to 16 bytes + // count_dec - elements count's decrement equivalent to 16 bytes + // L_aligned_copy - aligned copy exit label + // L_copy_bytes - copy exit label + // + void copy_16_bytes_backward_with_shift(Register end_from, Register end_to, + Register count, int count_dec, + Label& L_aligned_copy, Label& L_copy_bytes) { + Label L_loop, L_copy_last_bytes; + + // if both arrays have the same alignment mod 8, do 8 bytes aligned copy + __ andcc(end_from, 7, G1); // misaligned bytes + __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy); + __ delayed()->deccc(count, count_dec); // Pre-decrement 'count' + + const Register left_shift = G1; // left shift bit counter + const Register right_shift = G5; // right shift bit counter + + __ sll(G1, LogBitsPerByte, left_shift); + __ mov(64, right_shift); + __ sub(right_shift, left_shift, right_shift); + + // + // Load 2 aligned 8-bytes chunks and use one from previous iteration + // to form 2 aligned 8-bytes chunks to store. + // + __ andn(end_from, 7, end_from); // Align address + __ ldx(end_from, 0, O3); + __ align(16); + __ BIND(L_loop); + __ ldx(end_from, -8, O4); + __ deccc(count, count_dec); // Can we do next iteration after this one? + __ ldx(end_from, -16, G4); + __ dec(end_to, 16); + __ dec(end_from, 16); + __ srlx(O3, right_shift, O3); + __ sllx(O4, left_shift, G3); + __ bset(G3, O3); + __ stx(O3, end_to, 8); + __ srlx(O4, right_shift, O4); + __ sllx(G4, left_shift, G3); + __ bset(G3, O4); + __ stx(O4, end_to, 0); + __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop); + __ delayed()->mov(G4, O3); + + __ inccc(count, count_dec>>1 ); // + 8 bytes + __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes); + __ delayed()->inc(count, count_dec>>1); // restore 'count' + + // copy 8 bytes, part of them already loaded in O3 + __ ldx(end_from, -8, O4); + __ dec(end_to, 8); + __ dec(end_from, 8); + __ srlx(O3, right_shift, O3); + __ sllx(O4, left_shift, G3); + __ bset(O3, G3); + __ stx(G3, end_to, 0); + + __ BIND(L_copy_last_bytes); + __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes + __ br(Assembler::always, false, Assembler::pt, L_copy_bytes); + __ delayed()->add(end_from, left_shift, end_from); // restore address + } + + // + // Generate stub for disjoint byte copy. If "aligned" is true, the + // "from" and "to" addresses are assumed to be heapword aligned. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + address generate_disjoint_byte_copy(bool aligned, const char * name) { + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + Label L_skip_alignment, L_align; + Label L_copy_byte, L_copy_byte_loop, L_exit; + + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + const Register offset = O5; // offset from start of arrays + // O3, O4, G3, G4 are used as temp registers + + assert_clean_int(count, O3); // Make sure 'count' is clean int. + + if (!aligned) disjoint_byte_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) + if (!aligned) BLOCK_COMMENT("Entry:"); + + // for short arrays, just do single element copy + __ cmp(count, 23); // 16 + 7 + __ brx(Assembler::less, false, Assembler::pn, L_copy_byte); + __ delayed()->mov(G0, offset); + + if (aligned) { + // 'aligned' == true when it is known statically during compilation + // of this arraycopy call site that both 'from' and 'to' addresses + // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()). + // + // Aligned arrays have 4 bytes alignment in 32-bits VM + // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM + // +#ifndef _LP64 + // copy a 4-bytes word if necessary to align 'to' to 8 bytes + __ andcc(to, 7, G0); + __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment); + __ delayed()->ld(from, 0, O3); + __ inc(from, 4); + __ inc(to, 4); + __ dec(count, 4); + __ st(O3, to, -4); + __ BIND(L_skip_alignment); +#endif + } else { + // copy bytes to align 'to' on 8 byte boundary + __ andcc(to, 7, G1); // misaligned bytes + __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); + __ delayed()->neg(G1); + __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment + __ sub(count, G1, count); + __ BIND(L_align); + __ ldub(from, 0, O3); + __ deccc(G1); + __ inc(from); + __ stb(O3, to, 0); + __ br(Assembler::notZero, false, Assembler::pt, L_align); + __ delayed()->inc(to); + __ BIND(L_skip_alignment); + } +#ifdef _LP64 + if (!aligned) +#endif + { + // Copy with shift 16 bytes per iteration if arrays do not have + // the same alignment mod 8, otherwise fall through to the next + // code for aligned copy. + // The compare above (count >= 23) guarantes 'count' >= 16 bytes. + // Also jump over aligned copy after the copy with shift completed. + + copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte); + } + + // Both array are 8 bytes aligned, copy 16 bytes at a time + __ and3(count, 7, G4); // Save count + __ srl(count, 3, count); + generate_disjoint_long_copy_core(aligned); + __ mov(G4, count); // Restore count + + // copy tailing bytes + __ BIND(L_copy_byte); + __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit); + __ delayed()->nop(); + __ align(16); + __ BIND(L_copy_byte_loop); + __ ldub(from, offset, O3); + __ deccc(count); + __ stb(O3, to, offset); + __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop); + __ delayed()->inc(offset); + + __ BIND(L_exit); + // O3, O4 are used as temp registers + inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->mov(G0, O0); // return 0 + return start; + } + + // + // Generate stub for conjoint byte copy. If "aligned" is true, the + // "from" and "to" addresses are assumed to be heapword aligned. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + address generate_conjoint_byte_copy(bool aligned, const char * name) { + // Do reverse copy. + + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + address nooverlap_target = aligned ? + StubRoutines::arrayof_jbyte_disjoint_arraycopy() : + disjoint_byte_copy_entry; + + Label L_skip_alignment, L_align, L_aligned_copy; + Label L_copy_byte, L_copy_byte_loop, L_exit; + + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + const Register end_from = from; // source array end address + const Register end_to = to; // destination array end address + + assert_clean_int(count, O3); // Make sure 'count' is clean int. + + if (!aligned) byte_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) + if (!aligned) BLOCK_COMMENT("Entry:"); + + array_overlap_test(nooverlap_target, 0); + + __ add(to, count, end_to); // offset after last copied element + + // for short arrays, just do single element copy + __ cmp(count, 23); // 16 + 7 + __ brx(Assembler::less, false, Assembler::pn, L_copy_byte); + __ delayed()->add(from, count, end_from); + + { + // Align end of arrays since they could be not aligned even + // when arrays itself are aligned. + + // copy bytes to align 'end_to' on 8 byte boundary + __ andcc(end_to, 7, G1); // misaligned bytes + __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); + __ delayed()->nop(); + __ sub(count, G1, count); + __ BIND(L_align); + __ dec(end_from); + __ dec(end_to); + __ ldub(end_from, 0, O3); + __ deccc(G1); + __ brx(Assembler::notZero, false, Assembler::pt, L_align); + __ delayed()->stb(O3, end_to, 0); + __ BIND(L_skip_alignment); + } +#ifdef _LP64 + if (aligned) { + // Both arrays are aligned to 8-bytes in 64-bits VM. + // The 'count' is decremented in copy_16_bytes_backward_with_shift() + // in unaligned case. + __ dec(count, 16); + } else +#endif + { + // Copy with shift 16 bytes per iteration if arrays do not have + // the same alignment mod 8, otherwise jump to the next + // code for aligned copy (and substracting 16 from 'count' before jump). + // The compare above (count >= 11) guarantes 'count' >= 16 bytes. + // Also jump over aligned copy after the copy with shift completed. + + copy_16_bytes_backward_with_shift(end_from, end_to, count, 16, + L_aligned_copy, L_copy_byte); + } + // copy 4 elements (16 bytes) at a time + __ align(16); + __ BIND(L_aligned_copy); + __ dec(end_from, 16); + __ ldx(end_from, 8, O3); + __ ldx(end_from, 0, O4); + __ dec(end_to, 16); + __ deccc(count, 16); + __ stx(O3, end_to, 8); + __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy); + __ delayed()->stx(O4, end_to, 0); + __ inc(count, 16); + + // copy 1 element (2 bytes) at a time + __ BIND(L_copy_byte); + __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit); + __ delayed()->nop(); + __ align(16); + __ BIND(L_copy_byte_loop); + __ dec(end_from); + __ dec(end_to); + __ ldub(end_from, 0, O4); + __ deccc(count); + __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop); + __ delayed()->stb(O4, end_to, 0); + + __ BIND(L_exit); + // O3, O4 are used as temp registers + inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->mov(G0, O0); // return 0 + return start; + } + + // + // Generate stub for disjoint short copy. If "aligned" is true, the + // "from" and "to" addresses are assumed to be heapword aligned. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + address generate_disjoint_short_copy(bool aligned, const char * name) { + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + Label L_skip_alignment, L_skip_alignment2; + Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit; + + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + const Register offset = O5; // offset from start of arrays + // O3, O4, G3, G4 are used as temp registers + + assert_clean_int(count, O3); // Make sure 'count' is clean int. + + if (!aligned) disjoint_short_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) + if (!aligned) BLOCK_COMMENT("Entry:"); + + // for short arrays, just do single element copy + __ cmp(count, 11); // 8 + 3 (22 bytes) + __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes); + __ delayed()->mov(G0, offset); + + if (aligned) { + // 'aligned' == true when it is known statically during compilation + // of this arraycopy call site that both 'from' and 'to' addresses + // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()). + // + // Aligned arrays have 4 bytes alignment in 32-bits VM + // and 8 bytes - in 64-bits VM. + // +#ifndef _LP64 + // copy a 2-elements word if necessary to align 'to' to 8 bytes + __ andcc(to, 7, G0); + __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); + __ delayed()->ld(from, 0, O3); + __ inc(from, 4); + __ inc(to, 4); + __ dec(count, 2); + __ st(O3, to, -4); + __ BIND(L_skip_alignment); +#endif + } else { + // copy 1 element if necessary to align 'to' on an 4 bytes + __ andcc(to, 3, G0); + __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); + __ delayed()->lduh(from, 0, O3); + __ inc(from, 2); + __ inc(to, 2); + __ dec(count); + __ sth(O3, to, -2); + __ BIND(L_skip_alignment); + + // copy 2 elements to align 'to' on an 8 byte boundary + __ andcc(to, 7, G0); + __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2); + __ delayed()->lduh(from, 0, O3); + __ dec(count, 2); + __ lduh(from, 2, O4); + __ inc(from, 4); + __ inc(to, 4); + __ sth(O3, to, -4); + __ sth(O4, to, -2); + __ BIND(L_skip_alignment2); + } +#ifdef _LP64 + if (!aligned) +#endif + { + // Copy with shift 16 bytes per iteration if arrays do not have + // the same alignment mod 8, otherwise fall through to the next + // code for aligned copy. + // The compare above (count >= 11) guarantes 'count' >= 16 bytes. + // Also jump over aligned copy after the copy with shift completed. + + copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes); + } + + // Both array are 8 bytes aligned, copy 16 bytes at a time + __ and3(count, 3, G4); // Save + __ srl(count, 2, count); + generate_disjoint_long_copy_core(aligned); + __ mov(G4, count); // restore + + // copy 1 element at a time + __ BIND(L_copy_2_bytes); + __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit); + __ delayed()->nop(); + __ align(16); + __ BIND(L_copy_2_bytes_loop); + __ lduh(from, offset, O3); + __ deccc(count); + __ sth(O3, to, offset); + __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop); + __ delayed()->inc(offset, 2); + + __ BIND(L_exit); + // O3, O4 are used as temp registers + inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->mov(G0, O0); // return 0 + return start; + } + + // + // Generate stub for conjoint short copy. If "aligned" is true, the + // "from" and "to" addresses are assumed to be heapword aligned. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + address generate_conjoint_short_copy(bool aligned, const char * name) { + // Do reverse copy. + + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + address nooverlap_target = aligned ? + StubRoutines::arrayof_jshort_disjoint_arraycopy() : + disjoint_short_copy_entry; + + Label L_skip_alignment, L_skip_alignment2, L_aligned_copy; + Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit; + + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + const Register end_from = from; // source array end address + const Register end_to = to; // destination array end address + + const Register byte_count = O3; // bytes count to copy + + assert_clean_int(count, O3); // Make sure 'count' is clean int. + + if (!aligned) short_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) + if (!aligned) BLOCK_COMMENT("Entry:"); + + array_overlap_test(nooverlap_target, 1); + + __ sllx(count, LogBytesPerShort, byte_count); + __ add(to, byte_count, end_to); // offset after last copied element + + // for short arrays, just do single element copy + __ cmp(count, 11); // 8 + 3 (22 bytes) + __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes); + __ delayed()->add(from, byte_count, end_from); + + { + // Align end of arrays since they could be not aligned even + // when arrays itself are aligned. + + // copy 1 element if necessary to align 'end_to' on an 4 bytes + __ andcc(end_to, 3, G0); + __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); + __ delayed()->lduh(end_from, -2, O3); + __ dec(end_from, 2); + __ dec(end_to, 2); + __ dec(count); + __ sth(O3, end_to, 0); + __ BIND(L_skip_alignment); + + // copy 2 elements to align 'end_to' on an 8 byte boundary + __ andcc(end_to, 7, G0); + __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2); + __ delayed()->lduh(end_from, -2, O3); + __ dec(count, 2); + __ lduh(end_from, -4, O4); + __ dec(end_from, 4); + __ dec(end_to, 4); + __ sth(O3, end_to, 2); + __ sth(O4, end_to, 0); + __ BIND(L_skip_alignment2); + } +#ifdef _LP64 + if (aligned) { + // Both arrays are aligned to 8-bytes in 64-bits VM. + // The 'count' is decremented in copy_16_bytes_backward_with_shift() + // in unaligned case. + __ dec(count, 8); + } else +#endif + { + // Copy with shift 16 bytes per iteration if arrays do not have + // the same alignment mod 8, otherwise jump to the next + // code for aligned copy (and substracting 8 from 'count' before jump). + // The compare above (count >= 11) guarantes 'count' >= 16 bytes. + // Also jump over aligned copy after the copy with shift completed. + + copy_16_bytes_backward_with_shift(end_from, end_to, count, 8, + L_aligned_copy, L_copy_2_bytes); + } + // copy 4 elements (16 bytes) at a time + __ align(16); + __ BIND(L_aligned_copy); + __ dec(end_from, 16); + __ ldx(end_from, 8, O3); + __ ldx(end_from, 0, O4); + __ dec(end_to, 16); + __ deccc(count, 8); + __ stx(O3, end_to, 8); + __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy); + __ delayed()->stx(O4, end_to, 0); + __ inc(count, 8); + + // copy 1 element (2 bytes) at a time + __ BIND(L_copy_2_bytes); + __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit); + __ delayed()->nop(); + __ BIND(L_copy_2_bytes_loop); + __ dec(end_from, 2); + __ dec(end_to, 2); + __ lduh(end_from, 0, O4); + __ deccc(count); + __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop); + __ delayed()->sth(O4, end_to, 0); + + __ BIND(L_exit); + // O3, O4 are used as temp registers + inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->mov(G0, O0); // return 0 + return start; + } + + // + // Generate core code for disjoint int copy (and oop copy on 32-bit). + // If "aligned" is true, the "from" and "to" addresses are assumed + // to be heapword aligned. + // + // Arguments: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + void generate_disjoint_int_copy_core(bool aligned) { + + Label L_skip_alignment, L_aligned_copy; + Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit; + + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + const Register offset = O5; // offset from start of arrays + // O3, O4, G3, G4 are used as temp registers + + // 'aligned' == true when it is known statically during compilation + // of this arraycopy call site that both 'from' and 'to' addresses + // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()). + // + // Aligned arrays have 4 bytes alignment in 32-bits VM + // and 8 bytes - in 64-bits VM. + // +#ifdef _LP64 + if (!aligned) +#endif + { + // The next check could be put under 'ifndef' since the code in + // generate_disjoint_long_copy_core() has own checks and set 'offset'. + + // for short arrays, just do single element copy + __ cmp(count, 5); // 4 + 1 (20 bytes) + __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes); + __ delayed()->mov(G0, offset); + + // copy 1 element to align 'to' on an 8 byte boundary + __ andcc(to, 7, G0); + __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); + __ delayed()->ld(from, 0, O3); + __ inc(from, 4); + __ inc(to, 4); + __ dec(count); + __ st(O3, to, -4); + __ BIND(L_skip_alignment); + + // if arrays have same alignment mod 8, do 4 elements copy + __ andcc(from, 7, G0); + __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy); + __ delayed()->ld(from, 0, O3); + + // + // Load 2 aligned 8-bytes chunks and use one from previous iteration + // to form 2 aligned 8-bytes chunks to store. + // + // copy_16_bytes_forward_with_shift() is not used here since this + // code is more optimal. + + // copy with shift 4 elements (16 bytes) at a time + __ dec(count, 4); // The cmp at the beginning guaranty count >= 4 + + __ align(16); + __ BIND(L_copy_16_bytes); + __ ldx(from, 4, O4); + __ deccc(count, 4); // Can we do next iteration after this one? + __ ldx(from, 12, G4); + __ inc(to, 16); + __ inc(from, 16); + __ sllx(O3, 32, O3); + __ srlx(O4, 32, G3); + __ bset(G3, O3); + __ stx(O3, to, -16); + __ sllx(O4, 32, O4); + __ srlx(G4, 32, G3); + __ bset(G3, O4); + __ stx(O4, to, -8); + __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes); + __ delayed()->mov(G4, O3); + + __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes); + __ delayed()->inc(count, 4); // restore 'count' + + __ BIND(L_aligned_copy); + } + // copy 4 elements (16 bytes) at a time + __ and3(count, 1, G4); // Save + __ srl(count, 1, count); + generate_disjoint_long_copy_core(aligned); + __ mov(G4, count); // Restore + + // copy 1 element at a time + __ BIND(L_copy_4_bytes); + __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit); + __ delayed()->nop(); + __ BIND(L_copy_4_bytes_loop); + __ ld(from, offset, O3); + __ deccc(count); + __ st(O3, to, offset); + __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop); + __ delayed()->inc(offset, 4); + __ BIND(L_exit); + } + + // + // Generate stub for disjoint int copy. If "aligned" is true, the + // "from" and "to" addresses are assumed to be heapword aligned. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + address generate_disjoint_int_copy(bool aligned, const char * name) { + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + const Register count = O2; + assert_clean_int(count, O3); // Make sure 'count' is clean int. + + if (!aligned) disjoint_int_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) + if (!aligned) BLOCK_COMMENT("Entry:"); + + generate_disjoint_int_copy_core(aligned); + + // O3, O4 are used as temp registers + inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->mov(G0, O0); // return 0 + return start; + } + + // + // Generate core code for conjoint int copy (and oop copy on 32-bit). + // If "aligned" is true, the "from" and "to" addresses are assumed + // to be heapword aligned. + // + // Arguments: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + void generate_conjoint_int_copy_core(bool aligned) { + // Do reverse copy. + + Label L_skip_alignment, L_aligned_copy; + Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit; + + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + const Register end_from = from; // source array end address + const Register end_to = to; // destination array end address + // O3, O4, O5, G3 are used as temp registers + + const Register byte_count = O3; // bytes count to copy + + __ sllx(count, LogBytesPerInt, byte_count); + __ add(to, byte_count, end_to); // offset after last copied element + + __ cmp(count, 5); // for short arrays, just do single element copy + __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes); + __ delayed()->add(from, byte_count, end_from); + + // copy 1 element to align 'to' on an 8 byte boundary + __ andcc(end_to, 7, G0); + __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment); + __ delayed()->nop(); + __ dec(count); + __ dec(end_from, 4); + __ dec(end_to, 4); + __ ld(end_from, 0, O4); + __ st(O4, end_to, 0); + __ BIND(L_skip_alignment); + + // Check if 'end_from' and 'end_to' has the same alignment. + __ andcc(end_from, 7, G0); + __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy); + __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4 + + // copy with shift 4 elements (16 bytes) at a time + // + // Load 2 aligned 8-bytes chunks and use one from previous iteration + // to form 2 aligned 8-bytes chunks to store. + // + __ ldx(end_from, -4, O3); + __ align(16); + __ BIND(L_copy_16_bytes); + __ ldx(end_from, -12, O4); + __ deccc(count, 4); + __ ldx(end_from, -20, O5); + __ dec(end_to, 16); + __ dec(end_from, 16); + __ srlx(O3, 32, O3); + __ sllx(O4, 32, G3); + __ bset(G3, O3); + __ stx(O3, end_to, 8); + __ srlx(O4, 32, O4); + __ sllx(O5, 32, G3); + __ bset(O4, G3); + __ stx(G3, end_to, 0); + __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes); + __ delayed()->mov(O5, O3); + + __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes); + __ delayed()->inc(count, 4); + + // copy 4 elements (16 bytes) at a time + __ align(16); + __ BIND(L_aligned_copy); + __ dec(end_from, 16); + __ ldx(end_from, 8, O3); + __ ldx(end_from, 0, O4); + __ dec(end_to, 16); + __ deccc(count, 4); + __ stx(O3, end_to, 8); + __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy); + __ delayed()->stx(O4, end_to, 0); + __ inc(count, 4); + + // copy 1 element (4 bytes) at a time + __ BIND(L_copy_4_bytes); + __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit); + __ delayed()->nop(); + __ BIND(L_copy_4_bytes_loop); + __ dec(end_from, 4); + __ dec(end_to, 4); + __ ld(end_from, 0, O4); + __ deccc(count); + __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop); + __ delayed()->st(O4, end_to, 0); + __ BIND(L_exit); + } + + // + // Generate stub for conjoint int copy. If "aligned" is true, the + // "from" and "to" addresses are assumed to be heapword aligned. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + address generate_conjoint_int_copy(bool aligned, const char * name) { + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + address nooverlap_target = aligned ? + StubRoutines::arrayof_jint_disjoint_arraycopy() : + disjoint_int_copy_entry; + + assert_clean_int(O2, O3); // Make sure 'count' is clean int. + + if (!aligned) int_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) + if (!aligned) BLOCK_COMMENT("Entry:"); + + array_overlap_test(nooverlap_target, 2); + + generate_conjoint_int_copy_core(aligned); + + // O3, O4 are used as temp registers + inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->mov(G0, O0); // return 0 + return start; + } + + // + // Generate core code for disjoint long copy (and oop copy on 64-bit). + // "aligned" is ignored, because we must make the stronger + // assumption that both addresses are always 64-bit aligned. + // + // Arguments: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + void generate_disjoint_long_copy_core(bool aligned) { + Label L_copy_8_bytes, L_copy_16_bytes, L_exit; + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + const Register offset0 = O4; // element offset + const Register offset8 = O5; // next element offset + + __ deccc(count, 2); + __ mov(G0, offset0); // offset from start of arrays (0) + __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes ); + __ delayed()->add(offset0, 8, offset8); + __ align(16); + __ BIND(L_copy_16_bytes); + __ ldx(from, offset0, O3); + __ ldx(from, offset8, G3); + __ deccc(count, 2); + __ stx(O3, to, offset0); + __ inc(offset0, 16); + __ stx(G3, to, offset8); + __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes); + __ delayed()->inc(offset8, 16); + + __ BIND(L_copy_8_bytes); + __ inccc(count, 2); + __ brx(Assembler::zero, true, Assembler::pn, L_exit ); + __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs + __ ldx(from, offset0, O3); + __ stx(O3, to, offset0); + __ BIND(L_exit); + } + + // + // Generate stub for disjoint long copy. + // "aligned" is ignored, because we must make the stronger + // assumption that both addresses are always 64-bit aligned. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + address generate_disjoint_long_copy(bool aligned, const char * name) { + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + assert_clean_int(O2, O3); // Make sure 'count' is clean int. + + if (!aligned) disjoint_long_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) + if (!aligned) BLOCK_COMMENT("Entry:"); + + generate_disjoint_long_copy_core(aligned); + + // O3, O4 are used as temp registers + inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->mov(G0, O0); // return 0 + return start; + } + + // + // Generate core code for conjoint long copy (and oop copy on 64-bit). + // "aligned" is ignored, because we must make the stronger + // assumption that both addresses are always 64-bit aligned. + // + // Arguments: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + void generate_conjoint_long_copy_core(bool aligned) { + // Do reverse copy. + Label L_copy_8_bytes, L_copy_16_bytes, L_exit; + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + const Register offset8 = O4; // element offset + const Register offset0 = O5; // previous element offset + + __ subcc(count, 1, count); + __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes ); + __ delayed()->sllx(count, LogBytesPerLong, offset8); + __ sub(offset8, 8, offset0); + __ align(16); + __ BIND(L_copy_16_bytes); + __ ldx(from, offset8, O2); + __ ldx(from, offset0, O3); + __ stx(O2, to, offset8); + __ deccc(offset8, 16); // use offset8 as counter + __ stx(O3, to, offset0); + __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes); + __ delayed()->dec(offset0, 16); + + __ BIND(L_copy_8_bytes); + __ brx(Assembler::negative, false, Assembler::pn, L_exit ); + __ delayed()->nop(); + __ ldx(from, 0, O3); + __ stx(O3, to, 0); + __ BIND(L_exit); + } + + // Generate stub for conjoint long copy. + // "aligned" is ignored, because we must make the stronger + // assumption that both addresses are always 64-bit aligned. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + address generate_conjoint_long_copy(bool aligned, const char * name) { + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + assert(!aligned, "usage"); + address nooverlap_target = disjoint_long_copy_entry; + + assert_clean_int(O2, O3); // Make sure 'count' is clean int. + + if (!aligned) long_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) + if (!aligned) BLOCK_COMMENT("Entry:"); + + array_overlap_test(nooverlap_target, 3); + + generate_conjoint_long_copy_core(aligned); + + // O3, O4 are used as temp registers + inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->mov(G0, O0); // return 0 + return start; + } + + // Generate stub for disjoint oop copy. If "aligned" is true, the + // "from" and "to" addresses are assumed to be heapword aligned. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + address generate_disjoint_oop_copy(bool aligned, const char * name) { + + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + assert_clean_int(count, O3); // Make sure 'count' is clean int. + + if (!aligned) disjoint_oop_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here + if (!aligned) BLOCK_COMMENT("Entry:"); + + // save arguments for barrier generation + __ mov(to, G1); + __ mov(count, G5); + gen_write_ref_array_pre_barrier(G1, G5); + #ifdef _LP64 + generate_disjoint_long_copy_core(aligned); + #else + generate_disjoint_int_copy_core(aligned); + #endif + // O0 is used as temp register + gen_write_ref_array_post_barrier(G1, G5, O0); + + // O3, O4 are used as temp registers + inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->mov(G0, O0); // return 0 + return start; + } + + // Generate stub for conjoint oop copy. If "aligned" is true, the + // "from" and "to" addresses are assumed to be heapword aligned. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // + address generate_conjoint_oop_copy(bool aligned, const char * name) { + + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + assert_clean_int(count, O3); // Make sure 'count' is clean int. + + if (!aligned) oop_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here + if (!aligned) BLOCK_COMMENT("Entry:"); + + // save arguments for barrier generation + __ mov(to, G1); + __ mov(count, G5); + + gen_write_ref_array_pre_barrier(G1, G5); + + address nooverlap_target = aligned ? + StubRoutines::arrayof_oop_disjoint_arraycopy() : + disjoint_oop_copy_entry; + + array_overlap_test(nooverlap_target, LogBytesPerWord); + + #ifdef _LP64 + generate_conjoint_long_copy_core(aligned); + #else + generate_conjoint_int_copy_core(aligned); + #endif + + // O0 is used as temp register + gen_write_ref_array_post_barrier(G1, G5, O0); + + // O3, O4 are used as temp registers + inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->mov(G0, O0); // return 0 + return start; + } + + + // Helper for generating a dynamic type check. + // Smashes only the given temp registers. + void generate_type_check(Register sub_klass, + Register super_check_offset, + Register super_klass, + Register temp, + Label& L_success, + Register deccc_hack = noreg) { + assert_different_registers(sub_klass, super_check_offset, super_klass, temp); + + BLOCK_COMMENT("type_check:"); + + Label L_miss; + + assert_clean_int(super_check_offset, temp); + + // maybe decrement caller's trip count: +#define DELAY_SLOT delayed(); \ + { if (deccc_hack == noreg) __ nop(); else __ deccc(deccc_hack); } + + // if the pointers are equal, we are done (e.g., String[] elements) + __ cmp(sub_klass, super_klass); + __ brx(Assembler::equal, true, Assembler::pt, L_success); + __ DELAY_SLOT; + + // check the supertype display: + __ ld_ptr(sub_klass, super_check_offset, temp); // query the super type + __ cmp(super_klass, temp); // test the super type + __ brx(Assembler::equal, true, Assembler::pt, L_success); + __ DELAY_SLOT; + + int sc_offset = (klassOopDesc::header_size() * HeapWordSize + + Klass::secondary_super_cache_offset_in_bytes()); + __ cmp(super_klass, sc_offset); + __ brx(Assembler::notEqual, true, Assembler::pt, L_miss); + __ delayed()->nop(); + + __ save_frame(0); + __ mov(sub_klass->after_save(), O1); + // mov(super_klass->after_save(), O2); //fill delay slot + assert(StubRoutines::Sparc::_partial_subtype_check != NULL, "order of generation"); + __ call(StubRoutines::Sparc::_partial_subtype_check); + __ delayed()->mov(super_klass->after_save(), O2); + __ restore(); + + // Upon return, the condition codes are already set. + __ brx(Assembler::equal, true, Assembler::pt, L_success); + __ DELAY_SLOT; + +#undef DELAY_SLOT + + // Fall through on failure! + __ BIND(L_miss); + } + + + // Generate stub for checked oop copy. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 treated as signed + // ckoff: O3 (super_check_offset) + // ckval: O4 (super_klass) + // ret: O0 zero for success; (-1^K) where K is partial transfer count + // + address generate_checkcast_copy(const char* name) { + + const Register O0_from = O0; // source array address + const Register O1_to = O1; // destination array address + const Register O2_count = O2; // elements count + const Register O3_ckoff = O3; // super_check_offset + const Register O4_ckval = O4; // super_klass + + const Register O5_offset = O5; // loop var, with stride wordSize + const Register G1_remain = G1; // loop var, with stride -1 + const Register G3_oop = G3; // actual oop copied + const Register G4_klass = G4; // oop._klass + const Register G5_super = G5; // oop._klass._primary_supers[ckval] + + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + int klass_off = oopDesc::klass_offset_in_bytes(); + + gen_write_ref_array_pre_barrier(G1, G5); + + +#ifdef ASSERT + // We sometimes save a frame (see partial_subtype_check below). + // If this will cause trouble, let's fail now instead of later. + __ save_frame(0); + __ restore(); +#endif + +#ifdef ASSERT + // caller guarantees that the arrays really are different + // otherwise, we would have to make conjoint checks + { Label L; + __ mov(O3, G1); // spill: overlap test smashes O3 + __ mov(O4, G4); // spill: overlap test smashes O4 + array_overlap_test(L, LogBytesPerWord); + __ stop("checkcast_copy within a single array"); + __ bind(L); + __ mov(G1, O3); + __ mov(G4, O4); + } +#endif //ASSERT + + assert_clean_int(O2_count, G1); // Make sure 'count' is clean int. + + checkcast_copy_entry = __ pc(); + // caller can pass a 64-bit byte count here (from generic stub) + BLOCK_COMMENT("Entry:"); + + Label load_element, store_element, do_card_marks, fail, done; + __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it + __ brx(Assembler::notZero, false, Assembler::pt, load_element); + __ delayed()->mov(G0, O5_offset); // offset from start of arrays + + // Empty array: Nothing to do. + inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->set(0, O0); // return 0 on (trivial) success + + // ======== begin loop ======== + // (Loop is rotated; its entry is load_element.) + // Loop variables: + // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays + // (O2 = len; O2 != 0; O2--) --- number of oops *remaining* + // G3, G4, G5 --- current oop, oop.klass, oop.klass.super + __ align(16); + + __ bind(store_element); + // deccc(G1_remain); // decrement the count (hoisted) + __ st_ptr(G3_oop, O1_to, O5_offset); // store the oop + __ inc(O5_offset, wordSize); // step to next offset + __ brx(Assembler::zero, true, Assembler::pt, do_card_marks); + __ delayed()->set(0, O0); // return -1 on success + + // ======== loop entry is here ======== + __ bind(load_element); + __ ld_ptr(O0_from, O5_offset, G3_oop); // load the oop + __ br_null(G3_oop, true, Assembler::pt, store_element); + __ delayed()->deccc(G1_remain); // decrement the count + + __ ld_ptr(G3_oop, klass_off, G4_klass); // query the object klass + + generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super, + // branch to this on success: + store_element, + // decrement this on success: + G1_remain); + // ======== end loop ======== + + // It was a real error; we must depend on the caller to finish the job. + // Register G1 has number of *remaining* oops, O2 number of *total* oops. + // Emit GC store barriers for the oops we have copied (O2 minus G1), + // and report their number to the caller. + __ bind(fail); + __ subcc(O2_count, G1_remain, O2_count); + __ brx(Assembler::zero, false, Assembler::pt, done); + __ delayed()->not1(O2_count, O0); // report (-1^K) to caller + + __ bind(do_card_marks); + gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2] + + __ bind(done); + inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4); + __ retl(); + __ delayed()->nop(); // return value in 00 + + return start; + } + + + // Generate 'unsafe' array copy stub + // Though just as safe as the other stubs, it takes an unscaled + // size_t argument instead of an element count. + // + // Arguments for generated stub: + // from: O0 + // to: O1 + // count: O2 byte count, treated as ssize_t, can be zero + // + // Examines the alignment of the operands and dispatches + // to a long, int, short, or byte copy loop. + // + address generate_unsafe_copy(const char* name) { + + const Register O0_from = O0; // source array address + const Register O1_to = O1; // destination array address + const Register O2_count = O2; // elements count + + const Register G1_bits = G1; // test copy of low bits + + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + // bump this on entry, not on exit: + inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3); + + __ or3(O0_from, O1_to, G1_bits); + __ or3(O2_count, G1_bits, G1_bits); + + __ btst(BytesPerLong-1, G1_bits); + __ br(Assembler::zero, true, Assembler::pt, + long_copy_entry, relocInfo::runtime_call_type); + // scale the count on the way out: + __ delayed()->srax(O2_count, LogBytesPerLong, O2_count); + + __ btst(BytesPerInt-1, G1_bits); + __ br(Assembler::zero, true, Assembler::pt, + int_copy_entry, relocInfo::runtime_call_type); + // scale the count on the way out: + __ delayed()->srax(O2_count, LogBytesPerInt, O2_count); + + __ btst(BytesPerShort-1, G1_bits); + __ br(Assembler::zero, true, Assembler::pt, + short_copy_entry, relocInfo::runtime_call_type); + // scale the count on the way out: + __ delayed()->srax(O2_count, LogBytesPerShort, O2_count); + + __ br(Assembler::always, false, Assembler::pt, + byte_copy_entry, relocInfo::runtime_call_type); + __ delayed()->nop(); + + return start; + } + + + // Perform range checks on the proposed arraycopy. + // Kills the two temps, but nothing else. + // Also, clean the sign bits of src_pos and dst_pos. + void arraycopy_range_checks(Register src, // source array oop (O0) + Register src_pos, // source position (O1) + Register dst, // destination array oo (O2) + Register dst_pos, // destination position (O3) + Register length, // length of copy (O4) + Register temp1, Register temp2, + Label& L_failed) { + BLOCK_COMMENT("arraycopy_range_checks:"); + + // if (src_pos + length > arrayOop(src)->length() ) FAIL; + + const Register array_length = temp1; // scratch + const Register end_pos = temp2; // scratch + + // Note: This next instruction may be in the delay slot of a branch: + __ add(length, src_pos, end_pos); // src_pos + length + __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length); + __ cmp(end_pos, array_length); + __ br(Assembler::greater, false, Assembler::pn, L_failed); + + // if (dst_pos + length > arrayOop(dst)->length() ) FAIL; + __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length + __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length); + __ cmp(end_pos, array_length); + __ br(Assembler::greater, false, Assembler::pn, L_failed); + + // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'. + // Move with sign extension can be used since they are positive. + __ delayed()->signx(src_pos, src_pos); + __ signx(dst_pos, dst_pos); + + BLOCK_COMMENT("arraycopy_range_checks done"); + } + + + // + // Generate generic array copy stubs + // + // Input: + // O0 - src oop + // O1 - src_pos + // O2 - dst oop + // O3 - dst_pos + // O4 - element count + // + // Output: + // O0 == 0 - success + // O0 == -1 - need to call System.arraycopy + // + address generate_generic_copy(const char *name) { + + Label L_failed, L_objArray; + + // Input registers + const Register src = O0; // source array oop + const Register src_pos = O1; // source position + const Register dst = O2; // destination array oop + const Register dst_pos = O3; // destination position + const Register length = O4; // elements count + + // registers used as temp + const Register G3_src_klass = G3; // source array klass + const Register G4_dst_klass = G4; // destination array klass + const Register G5_lh = G5; // layout handler + const Register O5_temp = O5; + + __ align(CodeEntryAlignment); + StubCodeMark mark(this, "StubRoutines", name); + address start = __ pc(); + + // bump this on entry, not on exit: + inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3); + + // In principle, the int arguments could be dirty. + //assert_clean_int(src_pos, G1); + //assert_clean_int(dst_pos, G1); + //assert_clean_int(length, G1); + + //----------------------------------------------------------------------- + // Assembler stubs will be used for this call to arraycopy + // if the following conditions are met: + // + // (1) src and dst must not be null. + // (2) src_pos must not be negative. + // (3) dst_pos must not be negative. + // (4) length must not be negative. + // (5) src klass and dst klass should be the same and not NULL. + // (6) src and dst should be arrays. + // (7) src_pos + length must not exceed length of src. + // (8) dst_pos + length must not exceed length of dst. + BLOCK_COMMENT("arraycopy initial argument checks"); + + // if (src == NULL) return -1; + __ br_null(src, false, Assembler::pn, L_failed); + + // if (src_pos < 0) return -1; + __ delayed()->tst(src_pos); + __ br(Assembler::negative, false, Assembler::pn, L_failed); + __ delayed()->nop(); + + // if (dst == NULL) return -1; + __ br_null(dst, false, Assembler::pn, L_failed); + + // if (dst_pos < 0) return -1; + __ delayed()->tst(dst_pos); + __ br(Assembler::negative, false, Assembler::pn, L_failed); + + // if (length < 0) return -1; + __ delayed()->tst(length); + __ br(Assembler::negative, false, Assembler::pn, L_failed); + + BLOCK_COMMENT("arraycopy argument klass checks"); + // get src->klass() + __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass); + +#ifdef ASSERT + // assert(src->klass() != NULL); + BLOCK_COMMENT("assert klasses not null"); + { Label L_a, L_b; + __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL + __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass); + __ bind(L_a); + __ stop("broken null klass"); + __ bind(L_b); + __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also + __ delayed()->mov(G0, G4_dst_klass); // scribble the temp + BLOCK_COMMENT("assert done"); + } +#endif + + // Load layout helper + // + // |array_tag| | header_size | element_type | |log2_element_size| + // 32 30 24 16 8 2 0 + // + // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 + // + + int lh_offset = klassOopDesc::header_size() * HeapWordSize + + Klass::layout_helper_offset_in_bytes(); + + // Load 32-bits signed value. Use br() instruction with it to check icc. + __ lduw(G3_src_klass, lh_offset, G5_lh); + + // Handle objArrays completely differently... + juint objArray_lh = Klass::array_layout_helper(T_OBJECT); + __ set(objArray_lh, O5_temp); + __ cmp(G5_lh, O5_temp); + __ br(Assembler::equal, false, Assembler::pt, L_objArray); + __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass); + + // if (src->klass() != dst->klass()) return -1; + __ cmp(G3_src_klass, G4_dst_klass); + __ brx(Assembler::notEqual, false, Assembler::pn, L_failed); + __ delayed()->nop(); + + // if (!src->is_Array()) return -1; + __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0 + __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed); + + // At this point, it is known to be a typeArray (array_tag 0x3). +#ifdef ASSERT + __ delayed()->nop(); + { Label L; + jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift); + __ set(lh_prim_tag_in_place, O5_temp); + __ cmp(G5_lh, O5_temp); + __ br(Assembler::greaterEqual, false, Assembler::pt, L); + __ delayed()->nop(); + __ stop("must be a primitive array"); + __ bind(L); + } +#else + __ delayed(); // match next insn to prev branch +#endif + + arraycopy_range_checks(src, src_pos, dst, dst_pos, length, + O5_temp, G4_dst_klass, L_failed); + + // typeArrayKlass + // + // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); + // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); + // + + const Register G4_offset = G4_dst_klass; // array offset + const Register G3_elsize = G3_src_klass; // log2 element size + + __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset); + __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset + __ add(src, G4_offset, src); // src array offset + __ add(dst, G4_offset, dst); // dst array offset + __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size + + // next registers should be set before the jump to corresponding stub + const Register from = O0; // source array address + const Register to = O1; // destination array address + const Register count = O2; // elements count + + // 'from', 'to', 'count' registers should be set in this order + // since they are the same as 'src', 'src_pos', 'dst'. + + BLOCK_COMMENT("scale indexes to element size"); + __ sll_ptr(src_pos, G3_elsize, src_pos); + __ sll_ptr(dst_pos, G3_elsize, dst_pos); + __ add(src, src_pos, from); // src_addr + __ add(dst, dst_pos, to); // dst_addr + + BLOCK_COMMENT("choose copy loop based on element size"); + __ cmp(G3_elsize, 0); + __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy); + __ delayed()->signx(length, count); // length + + __ cmp(G3_elsize, LogBytesPerShort); + __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy); + __ delayed()->signx(length, count); // length + + __ cmp(G3_elsize, LogBytesPerInt); + __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy); + __ delayed()->signx(length, count); // length +#ifdef ASSERT + { Label L; + __ cmp(G3_elsize, LogBytesPerLong); + __ br(Assembler::equal, false, Assembler::pt, L); + __ delayed()->nop(); + __ stop("must be long copy, but elsize is wrong"); + __ bind(L); + } +#endif + __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy); + __ delayed()->signx(length, count); // length + + // objArrayKlass + __ BIND(L_objArray); + // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length + + Label L_plain_copy, L_checkcast_copy; + // test array classes for subtyping + __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality + __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy); + __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below + + // Identically typed arrays can be copied without element-wise checks. + arraycopy_range_checks(src, src_pos, dst, dst_pos, length, + O5_temp, G5_lh, L_failed); + + __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset + __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset + __ sll_ptr(src_pos, LogBytesPerOop, src_pos); + __ sll_ptr(dst_pos, LogBytesPerOop, dst_pos); + __ add(src, src_pos, from); // src_addr + __ add(dst, dst_pos, to); // dst_addr + __ BIND(L_plain_copy); + __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy); + __ delayed()->signx(length, count); // length + + __ BIND(L_checkcast_copy); + // live at this point: G3_src_klass, G4_dst_klass + { + // Before looking at dst.length, make sure dst is also an objArray. + // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot + __ cmp(G5_lh, O5_temp); + __ br(Assembler::notEqual, false, Assembler::pn, L_failed); + + // It is safe to examine both src.length and dst.length. + __ delayed(); // match next insn to prev branch + arraycopy_range_checks(src, src_pos, dst, dst_pos, length, + O5_temp, G5_lh, L_failed); + + // Marshal the base address arguments now, freeing registers. + __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset + __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset + __ sll_ptr(src_pos, LogBytesPerOop, src_pos); + __ sll_ptr(dst_pos, LogBytesPerOop, dst_pos); + __ add(src, src_pos, from); // src_addr + __ add(dst, dst_pos, to); // dst_addr + __ signx(length, count); // length (reloaded) + + Register sco_temp = O3; // this register is free now + assert_different_registers(from, to, count, sco_temp, + G4_dst_klass, G3_src_klass); + + // Generate the type check. + int sco_offset = (klassOopDesc::header_size() * HeapWordSize + + Klass::super_check_offset_offset_in_bytes()); + __ lduw(G4_dst_klass, sco_offset, sco_temp); + generate_type_check(G3_src_klass, sco_temp, G4_dst_klass, + O5_temp, L_plain_copy); + + // Fetch destination element klass from the objArrayKlass header. + int ek_offset = (klassOopDesc::header_size() * HeapWordSize + + objArrayKlass::element_klass_offset_in_bytes()); + + // the checkcast_copy loop needs two extra arguments: + __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass + // lduw(O4, sco_offset, O3); // sco of elem klass + + __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry); + __ delayed()->lduw(O4, sco_offset, O3); + } + + __ BIND(L_failed); + __ retl(); + __ delayed()->sub(G0, 1, O0); // return -1 + return start; + } + + void generate_arraycopy_stubs() { + + // Note: the disjoint stubs must be generated first, some of + // the conjoint stubs use them. + StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy"); + StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy"); + StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy"); + StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy"); + StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy"); + StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy"); + StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy"); + StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy"); + StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy"); + StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy"); + + StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy"); + StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy"); + StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy"); + StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy"); + StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy"); + StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy"); + StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy"); +#ifdef _LP64 + // since sizeof(jint) < sizeof(HeapWord), there's a different flavor: + StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy"); + #else + StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy; +#endif + StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy; + StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy; + + StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy"); + StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy"); + StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy"); + } + + void generate_initial() { + // Generates all stubs and initializes the entry points + + //------------------------------------------------------------------------------------------------------------------------ + // entry points that exist in all platforms + // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than + // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp. + StubRoutines::_forward_exception_entry = generate_forward_exception(); + + StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address); + StubRoutines::_catch_exception_entry = generate_catch_exception(); + + //------------------------------------------------------------------------------------------------------------------------ + // entry points that are platform specific + StubRoutines::Sparc::_test_stop_entry = generate_test_stop(); + + StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine(); + StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows(); + +#if !defined(COMPILER2) && !defined(_LP64) + StubRoutines::_atomic_xchg_entry = generate_atomic_xchg(); + StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg(); + StubRoutines::_atomic_add_entry = generate_atomic_add(); + StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry; + StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry; + StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long(); + StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry; + StubRoutines::_fence_entry = generate_fence(); +#endif // COMPILER2 !=> _LP64 + + StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check(); + } + + + void generate_all() { + // Generates all stubs and initializes the entry points + + // These entry points require SharedInfo::stack0 to be set up in non-core builds + StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false); + StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true); + StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true); + StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false); + StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false); + + StubRoutines::_handler_for_unsafe_access_entry = + generate_handler_for_unsafe_access(); + + // support for verify_oop (must happen after universe_init) + StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine(); + + // arraycopy stubs used by compilers + generate_arraycopy_stubs(); + } + + + public: + StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { + // replace the standard masm with a special one: + _masm = new MacroAssembler(code); + + _stub_count = !all ? 0x100 : 0x200; + if (all) { + generate_all(); + } else { + generate_initial(); + } + + // make sure this stub is available for all local calls + if (_atomic_add_stub.is_unbound()) { + // generate a second time, if necessary + (void) generate_atomic_add(); + } + } + + + private: + int _stub_count; + void stub_prolog(StubCodeDesc* cdesc) { + # ifdef ASSERT + // put extra information in the stub code, to make it more readable +#ifdef _LP64 +// Write the high part of the address +// [RGV] Check if there is a dependency on the size of this prolog + __ emit_data((intptr_t)cdesc >> 32, relocInfo::none); +#endif + __ emit_data((intptr_t)cdesc, relocInfo::none); + __ emit_data(++_stub_count, relocInfo::none); + # endif + align(true); + } + + void align(bool at_header = false) { + // %%%%% move this constant somewhere else + // UltraSPARC cache line size is 8 instructions: + const unsigned int icache_line_size = 32; + const unsigned int icache_half_line_size = 16; + + if (at_header) { + while ((intptr_t)(__ pc()) % icache_line_size != 0) { + __ emit_data(0, relocInfo::none); + } + } else { + while ((intptr_t)(__ pc()) % icache_half_line_size != 0) { + __ nop(); + } + } + } + +}; // end class declaration + + +address StubGenerator::disjoint_byte_copy_entry = NULL; +address StubGenerator::disjoint_short_copy_entry = NULL; +address StubGenerator::disjoint_int_copy_entry = NULL; +address StubGenerator::disjoint_long_copy_entry = NULL; +address StubGenerator::disjoint_oop_copy_entry = NULL; + +address StubGenerator::byte_copy_entry = NULL; +address StubGenerator::short_copy_entry = NULL; +address StubGenerator::int_copy_entry = NULL; +address StubGenerator::long_copy_entry = NULL; +address StubGenerator::oop_copy_entry = NULL; + +address StubGenerator::checkcast_copy_entry = NULL; + +void StubGenerator_generate(CodeBuffer* code, bool all) { + StubGenerator g(code, all); +}