8023381: VM fails to initialize in runtime/CDSCompressedKPtrs/XShareAuto.java runtime/SharedArchiveFile/CdsSameObjectAlignment.java
Summary: Improve handling when CDS archive cannot be mapped
Reviewed-by: kvn, dholmes, mseledtsov
/*
* Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/classLoader.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/altHashing.hpp"
#include "memory/filemap.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/os.hpp"
#include "services/memTracker.hpp"
#include "utilities/defaultStream.hpp"
# include <sys/stat.h>
# include <errno.h>
#ifndef O_BINARY // if defined (Win32) use binary files.
#define O_BINARY 0 // otherwise do nothing.
#endif
extern address JVM_FunctionAtStart();
extern address JVM_FunctionAtEnd();
// Complain and stop. All error conditions occurring during the writing of
// an archive file should stop the process. Unrecoverable errors during
// the reading of the archive file should stop the process.
static void fail(const char *msg, va_list ap) {
// This occurs very early during initialization: tty is not initialized.
jio_fprintf(defaultStream::error_stream(),
"An error has occurred while processing the"
" shared archive file.\n");
jio_vfprintf(defaultStream::error_stream(), msg, ap);
jio_fprintf(defaultStream::error_stream(), "\n");
// Do not change the text of the below message because some tests check for it.
vm_exit_during_initialization("Unable to use shared archive.", NULL);
}
void FileMapInfo::fail_stop(const char *msg, ...) {
va_list ap;
va_start(ap, msg);
fail(msg, ap); // Never returns.
va_end(ap); // for completeness.
}
// Complain and continue. Recoverable errors during the reading of the
// archive file may continue (with sharing disabled).
//
// If we continue, then disable shared spaces and close the file.
void FileMapInfo::fail_continue(const char *msg, ...) {
va_list ap;
va_start(ap, msg);
if (RequireSharedSpaces) {
fail(msg, ap);
}
va_end(ap);
UseSharedSpaces = false;
close();
}
// Fill in the fileMapInfo structure with data about this VM instance.
// This method copies the vm version info into header_version. If the version is too
// long then a truncated version, which has a hash code appended to it, is copied.
//
// Using a template enables this method to verify that header_version is an array of
// length JVM_IDENT_MAX. This ensures that the code that writes to the CDS file and
// the code that reads the CDS file will both use the same size buffer. Hence, will
// use identical truncation. This is necessary for matching of truncated versions.
template <int N> static void get_header_version(char (&header_version) [N]) {
assert(N == JVM_IDENT_MAX, "Bad header_version size");
const char *vm_version = VM_Version::internal_vm_info_string();
const int version_len = (int)strlen(vm_version);
if (version_len < (JVM_IDENT_MAX-1)) {
strcpy(header_version, vm_version);
} else {
// Get the hash value. Use a static seed because the hash needs to return the same
// value over multiple jvm invocations.
unsigned int hash = AltHashing::murmur3_32(8191, (const jbyte*)vm_version, version_len);
// Truncate the ident, saving room for the 8 hex character hash value.
strncpy(header_version, vm_version, JVM_IDENT_MAX-9);
// Append the hash code as eight hex digits.
sprintf(&header_version[JVM_IDENT_MAX-9], "%08x", hash);
header_version[JVM_IDENT_MAX-1] = 0; // Null terminate.
}
}
void FileMapInfo::populate_header(size_t alignment) {
_header._magic = 0xf00baba2;
_header._version = _current_version;
_header._alignment = alignment;
_header._obj_alignment = ObjectAlignmentInBytes;
// The following fields are for sanity checks for whether this archive
// will function correctly with this JVM and the bootclasspath it's
// invoked with.
// JVM version string ... changes on each build.
get_header_version(_header._jvm_ident);
// Build checks on classpath and jar files
_header._num_jars = 0;
ClassPathEntry *cpe = ClassLoader::classpath_entry(0);
for ( ; cpe != NULL; cpe = cpe->next()) {
if (cpe->is_jar_file()) {
if (_header._num_jars >= JVM_SHARED_JARS_MAX) {
fail_stop("Too many jar files to share.", NULL);
}
// Jar file - record timestamp and file size.
struct stat st;
const char *path = cpe->name();
if (os::stat(path, &st) != 0) {
// If we can't access a jar file in the boot path, then we can't
// make assumptions about where classes get loaded from.
fail_stop("Unable to open jar file %s.", path);
}
_header._jar[_header._num_jars]._timestamp = st.st_mtime;
_header._jar[_header._num_jars]._filesize = st.st_size;
_header._num_jars++;
} else {
// If directories appear in boot classpath, they must be empty to
// avoid having to verify each individual class file.
const char* name = ((ClassPathDirEntry*)cpe)->name();
if (!os::dir_is_empty(name)) {
fail_stop("Boot classpath directory %s is not empty.", name);
}
}
}
}
// Read the FileMapInfo information from the file.
bool FileMapInfo::init_from_file(int fd) {
size_t n = read(fd, &_header, sizeof(struct FileMapHeader));
if (n != sizeof(struct FileMapHeader)) {
fail_continue("Unable to read the file header.");
return false;
}
if (_header._version != current_version()) {
fail_continue("The shared archive file has the wrong version.");
return false;
}
_file_offset = (long)n;
return true;
}
// Read the FileMapInfo information from the file.
bool FileMapInfo::open_for_read() {
_full_path = Arguments::GetSharedArchivePath();
int fd = open(_full_path, O_RDONLY | O_BINARY, 0);
if (fd < 0) {
if (errno == ENOENT) {
// Not locating the shared archive is ok.
fail_continue("Specified shared archive not found.");
} else {
fail_continue("Failed to open shared archive file (%s).",
strerror(errno));
}
return false;
}
_fd = fd;
_file_open = true;
return true;
}
// Write the FileMapInfo information to the file.
void FileMapInfo::open_for_write() {
_full_path = Arguments::GetSharedArchivePath();
if (PrintSharedSpaces) {
tty->print_cr("Dumping shared data to file: ");
tty->print_cr(" %s", _full_path);
}
#ifdef _WINDOWS // On Windows, need WRITE permission to remove the file.
chmod(_full_path, _S_IREAD | _S_IWRITE);
#endif
// Use remove() to delete the existing file because, on Unix, this will
// allow processes that have it open continued access to the file.
remove(_full_path);
int fd = open(_full_path, O_RDWR | O_CREAT | O_TRUNC | O_BINARY, 0444);
if (fd < 0) {
fail_stop("Unable to create shared archive file %s.", _full_path);
}
_fd = fd;
_file_offset = 0;
_file_open = true;
}
// Write the header to the file, seek to the next allocation boundary.
void FileMapInfo::write_header() {
write_bytes_aligned(&_header, sizeof(FileMapHeader));
}
// Dump shared spaces to file.
void FileMapInfo::write_space(int i, Metaspace* space, bool read_only) {
align_file_position();
size_t used = space->used_bytes_slow(Metaspace::NonClassType);
size_t capacity = space->capacity_bytes_slow(Metaspace::NonClassType);
struct FileMapInfo::FileMapHeader::space_info* si = &_header._space[i];
write_region(i, (char*)space->bottom(), used, capacity, read_only, false);
}
// Dump region to file.
void FileMapInfo::write_region(int region, char* base, size_t size,
size_t capacity, bool read_only,
bool allow_exec) {
struct FileMapInfo::FileMapHeader::space_info* si = &_header._space[region];
if (_file_open) {
guarantee(si->_file_offset == _file_offset, "file offset mismatch.");
if (PrintSharedSpaces) {
tty->print_cr("Shared file region %d: 0x%6x bytes, addr " INTPTR_FORMAT
" file offset 0x%6x", region, size, base, _file_offset);
}
} else {
si->_file_offset = _file_offset;
}
si->_base = base;
si->_used = size;
si->_capacity = capacity;
si->_read_only = read_only;
si->_allow_exec = allow_exec;
write_bytes_aligned(base, (int)size);
}
// Dump bytes to file -- at the current file position.
void FileMapInfo::write_bytes(const void* buffer, int nbytes) {
if (_file_open) {
int n = ::write(_fd, buffer, nbytes);
if (n != nbytes) {
// It is dangerous to leave the corrupted shared archive file around,
// close and remove the file. See bug 6372906.
close();
remove(_full_path);
fail_stop("Unable to write to shared archive file.", NULL);
}
}
_file_offset += nbytes;
}
// Align file position to an allocation unit boundary.
void FileMapInfo::align_file_position() {
long new_file_offset = align_size_up(_file_offset, os::vm_allocation_granularity());
if (new_file_offset != _file_offset) {
_file_offset = new_file_offset;
if (_file_open) {
// Seek one byte back from the target and write a byte to insure
// that the written file is the correct length.
_file_offset -= 1;
if (lseek(_fd, _file_offset, SEEK_SET) < 0) {
fail_stop("Unable to seek.", NULL);
}
char zero = 0;
write_bytes(&zero, 1);
}
}
}
// Dump bytes to file -- at the current file position.
void FileMapInfo::write_bytes_aligned(const void* buffer, int nbytes) {
align_file_position();
write_bytes(buffer, nbytes);
align_file_position();
}
// Close the shared archive file. This does NOT unmap mapped regions.
void FileMapInfo::close() {
if (_file_open) {
if (::close(_fd) < 0) {
fail_stop("Unable to close the shared archive file.");
}
_file_open = false;
_fd = -1;
}
}
// JVM/TI RedefineClasses() support:
// Remap the shared readonly space to shared readwrite, private.
bool FileMapInfo::remap_shared_readonly_as_readwrite() {
struct FileMapInfo::FileMapHeader::space_info* si = &_header._space[0];
if (!si->_read_only) {
// the space is already readwrite so we are done
return true;
}
size_t used = si->_used;
size_t size = align_size_up(used, os::vm_allocation_granularity());
if (!open_for_read()) {
return false;
}
char *base = os::remap_memory(_fd, _full_path, si->_file_offset,
si->_base, size, false /* !read_only */,
si->_allow_exec);
close();
if (base == NULL) {
fail_continue("Unable to remap shared readonly space (errno=%d).", errno);
return false;
}
if (base != si->_base) {
fail_continue("Unable to remap shared readonly space at required address.");
return false;
}
si->_read_only = false;
return true;
}
// Map the whole region at once, assumed to be allocated contiguously.
ReservedSpace FileMapInfo::reserve_shared_memory() {
struct FileMapInfo::FileMapHeader::space_info* si = &_header._space[0];
char* requested_addr = si->_base;
size_t size = FileMapInfo::shared_spaces_size();
// Reserve the space first, then map otherwise map will go right over some
// other reserved memory (like the code cache).
ReservedSpace rs(size, os::vm_allocation_granularity(), false, requested_addr);
if (!rs.is_reserved()) {
fail_continue(err_msg("Unable to reserve shared space at required address " INTPTR_FORMAT, requested_addr));
return rs;
}
// the reserved virtual memory is for mapping class data sharing archive
MemTracker::record_virtual_memory_type((address)rs.base(), mtClassShared);
return rs;
}
// Memory map a region in the address space.
static const char* shared_region_name[] = { "ReadOnly", "ReadWrite", "MiscData", "MiscCode"};
char* FileMapInfo::map_region(int i) {
struct FileMapInfo::FileMapHeader::space_info* si = &_header._space[i];
size_t used = si->_used;
size_t alignment = os::vm_allocation_granularity();
size_t size = align_size_up(used, alignment);
char *requested_addr = si->_base;
// map the contents of the CDS archive in this memory
char *base = os::map_memory(_fd, _full_path, si->_file_offset,
requested_addr, size, si->_read_only,
si->_allow_exec);
if (base == NULL || base != si->_base) {
fail_continue(err_msg("Unable to map %s shared space at required address.", shared_region_name[i]));
return NULL;
}
#ifdef _WINDOWS
// This call is Windows-only because the memory_type gets recorded for the other platforms
// in method FileMapInfo::reserve_shared_memory(), which is not called on Windows.
MemTracker::record_virtual_memory_type((address)base, mtClassShared);
#endif
return base;
}
// Unmap a memory region in the address space.
void FileMapInfo::unmap_region(int i) {
struct FileMapInfo::FileMapHeader::space_info* si = &_header._space[i];
size_t used = si->_used;
size_t size = align_size_up(used, os::vm_allocation_granularity());
if (!os::unmap_memory(si->_base, size)) {
fail_stop("Unable to unmap shared space.");
}
}
void FileMapInfo::assert_mark(bool check) {
if (!check) {
fail_stop("Mark mismatch while restoring from shared file.", NULL);
}
}
FileMapInfo* FileMapInfo::_current_info = NULL;
// Open the shared archive file, read and validate the header
// information (version, boot classpath, etc.). If initialization
// fails, shared spaces are disabled and the file is closed. [See
// fail_continue.]
bool FileMapInfo::initialize() {
assert(UseSharedSpaces, "UseSharedSpaces expected.");
if (JvmtiExport::can_modify_any_class() || JvmtiExport::can_walk_any_space()) {
fail_continue("Tool agent requires sharing to be disabled.");
return false;
}
if (!open_for_read()) {
return false;
}
init_from_file(_fd);
if (!validate()) {
return false;
}
SharedReadOnlySize = _header._space[0]._capacity;
SharedReadWriteSize = _header._space[1]._capacity;
SharedMiscDataSize = _header._space[2]._capacity;
SharedMiscCodeSize = _header._space[3]._capacity;
return true;
}
bool FileMapInfo::validate() {
if (_header._version != current_version()) {
fail_continue("The shared archive file is the wrong version.");
return false;
}
if (_header._magic != (int)0xf00baba2) {
fail_continue("The shared archive file has a bad magic number.");
return false;
}
char header_version[JVM_IDENT_MAX];
get_header_version(header_version);
if (strncmp(_header._jvm_ident, header_version, JVM_IDENT_MAX-1) != 0) {
fail_continue("The shared archive file was created by a different"
" version or build of HotSpot.");
return false;
}
if (_header._obj_alignment != ObjectAlignmentInBytes) {
fail_continue("The shared archive file's ObjectAlignmentInBytes of %d"
" does not equal the current ObjectAlignmentInBytes of %d.",
_header._obj_alignment, ObjectAlignmentInBytes);
return false;
}
// Cannot verify interpreter yet, as it can only be created after the GC
// heap has been initialized.
if (_header._num_jars >= JVM_SHARED_JARS_MAX) {
fail_continue("Too many jar files to share.");
return false;
}
// Build checks on classpath and jar files
int num_jars_now = 0;
ClassPathEntry *cpe = ClassLoader::classpath_entry(0);
for ( ; cpe != NULL; cpe = cpe->next()) {
if (cpe->is_jar_file()) {
if (num_jars_now < _header._num_jars) {
// Jar file - verify timestamp and file size.
struct stat st;
const char *path = cpe->name();
if (os::stat(path, &st) != 0) {
fail_continue("Unable to open jar file %s.", path);
return false;
}
if (_header._jar[num_jars_now]._timestamp != st.st_mtime ||
_header._jar[num_jars_now]._filesize != st.st_size) {
fail_continue("A jar file is not the one used while building"
" the shared archive file.");
return false;
}
}
++num_jars_now;
} else {
// If directories appear in boot classpath, they must be empty to
// avoid having to verify each individual class file.
const char* name = ((ClassPathDirEntry*)cpe)->name();
if (!os::dir_is_empty(name)) {
fail_continue("Boot classpath directory %s is not empty.", name);
return false;
}
}
}
if (num_jars_now < _header._num_jars) {
fail_continue("The number of jar files in the boot classpath is"
" less than the number the shared archive was created with.");
return false;
}
return true;
}
// The following method is provided to see whether a given pointer
// falls in the mapped shared space.
// Param:
// p, The given pointer
// Return:
// True if the p is within the mapped shared space, otherwise, false.
bool FileMapInfo::is_in_shared_space(const void* p) {
for (int i = 0; i < MetaspaceShared::n_regions; i++) {
if (p >= _header._space[i]._base &&
p < _header._space[i]._base + _header._space[i]._used) {
return true;
}
}
return false;
}
void FileMapInfo::print_shared_spaces() {
gclog_or_tty->print_cr("Shared Spaces:");
for (int i = 0; i < MetaspaceShared::n_regions; i++) {
struct FileMapInfo::FileMapHeader::space_info* si = &_header._space[i];
gclog_or_tty->print(" %s " INTPTR_FORMAT "-" INTPTR_FORMAT,
shared_region_name[i],
si->_base, si->_base + si->_used);
}
}
// Unmap mapped regions of shared space.
void FileMapInfo::stop_sharing_and_unmap(const char* msg) {
FileMapInfo *map_info = FileMapInfo::current_info();
if (map_info) {
map_info->fail_continue(msg);
for (int i = 0; i < MetaspaceShared::n_regions; i++) {
if (map_info->_header._space[i]._base != NULL) {
map_info->unmap_region(i);
map_info->_header._space[i]._base = NULL;
}
}
} else if (DumpSharedSpaces) {
fail_stop(msg, NULL);
}
}