hotspot/src/share/vm/services/memoryManager.cpp
author dcubed
Sun, 17 Mar 2013 08:57:56 -0700
changeset 16355 f4d5aba63f4e
parent 13728 882756847a04
child 16451 2f68393e1bef
permissions -rw-r--r--
Merge

/*
 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "services/lowMemoryDetector.hpp"
#include "services/management.hpp"
#include "services/memoryManager.hpp"
#include "services/memoryPool.hpp"
#include "services/memoryService.hpp"
#include "services/gcNotifier.hpp"
#include "utilities/dtrace.hpp"

#ifndef USDT2
HS_DTRACE_PROBE_DECL8(hotspot, mem__pool__gc__begin, char*, int, char*, int,
  size_t, size_t, size_t, size_t);
HS_DTRACE_PROBE_DECL8(hotspot, mem__pool__gc__end, char*, int, char*, int,
  size_t, size_t, size_t, size_t);
#endif /* !USDT2 */

MemoryManager::MemoryManager() {
  _num_pools = 0;
  _memory_mgr_obj = NULL;
}

void MemoryManager::add_pool(MemoryPool* pool) {
  assert(_num_pools < MemoryManager::max_num_pools, "_num_pools exceeds the max");
  if (_num_pools < MemoryManager::max_num_pools) {
    _pools[_num_pools] = pool;
    _num_pools++;
  }
  pool->add_manager(this);
}

MemoryManager* MemoryManager::get_code_cache_memory_manager() {
  return (MemoryManager*) new CodeCacheMemoryManager();
}

GCMemoryManager* MemoryManager::get_copy_memory_manager() {
  return (GCMemoryManager*) new CopyMemoryManager();
}

GCMemoryManager* MemoryManager::get_msc_memory_manager() {
  return (GCMemoryManager*) new MSCMemoryManager();
}

GCMemoryManager* MemoryManager::get_parnew_memory_manager() {
  return (GCMemoryManager*) new ParNewMemoryManager();
}

GCMemoryManager* MemoryManager::get_cms_memory_manager() {
  return (GCMemoryManager*) new CMSMemoryManager();
}

GCMemoryManager* MemoryManager::get_psScavenge_memory_manager() {
  return (GCMemoryManager*) new PSScavengeMemoryManager();
}

GCMemoryManager* MemoryManager::get_psMarkSweep_memory_manager() {
  return (GCMemoryManager*) new PSMarkSweepMemoryManager();
}

GCMemoryManager* MemoryManager::get_g1YoungGen_memory_manager() {
  return (GCMemoryManager*) new G1YoungGenMemoryManager();
}

GCMemoryManager* MemoryManager::get_g1OldGen_memory_manager() {
  return (GCMemoryManager*) new G1OldGenMemoryManager();
}

instanceOop MemoryManager::get_memory_manager_instance(TRAPS) {
  // Must do an acquire so as to force ordering of subsequent
  // loads from anything _memory_mgr_obj points to or implies.
  instanceOop mgr_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_mgr_obj);
  if (mgr_obj == NULL) {
    // It's ok for more than one thread to execute the code up to the locked region.
    // Extra manager instances will just be gc'ed.
    Klass* k = Management::sun_management_ManagementFactory_klass(CHECK_0);
    instanceKlassHandle ik(THREAD, k);

    Handle mgr_name = java_lang_String::create_from_str(name(), CHECK_0);

    JavaValue result(T_OBJECT);
    JavaCallArguments args;
    args.push_oop(mgr_name);    // Argument 1

    Symbol* method_name = NULL;
    Symbol* signature = NULL;
    if (is_gc_memory_manager()) {
      method_name = vmSymbols::createGarbageCollector_name();
      signature = vmSymbols::createGarbageCollector_signature();
      args.push_oop(Handle());      // Argument 2 (for future extension)
    } else {
      method_name = vmSymbols::createMemoryManager_name();
      signature = vmSymbols::createMemoryManager_signature();
    }

    JavaCalls::call_static(&result,
                           ik,
                           method_name,
                           signature,
                           &args,
                           CHECK_0);

    instanceOop m = (instanceOop) result.get_jobject();
    instanceHandle mgr(THREAD, m);

    {
      // Get lock before setting _memory_mgr_obj
      // since another thread may have created the instance
      MutexLocker ml(Management_lock);

      // Check if another thread has created the management object.  We reload
      // _memory_mgr_obj here because some other thread may have initialized
      // it while we were executing the code before the lock.
      //
      // The lock has done an acquire, so the load can't float above it, but
      // we need to do a load_acquire as above.
      mgr_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_mgr_obj);
      if (mgr_obj != NULL) {
         return mgr_obj;
      }

      // Get the address of the object we created via call_special.
      mgr_obj = mgr();

      // Use store barrier to make sure the memory accesses associated
      // with creating the management object are visible before publishing
      // its address.  The unlock will publish the store to _memory_mgr_obj
      // because it does a release first.
      OrderAccess::release_store_ptr(&_memory_mgr_obj, mgr_obj);
    }
  }

  return mgr_obj;
}

void MemoryManager::oops_do(OopClosure* f) {
  f->do_oop((oop*) &_memory_mgr_obj);
}

GCStatInfo::GCStatInfo(int num_pools) {
  // initialize the arrays for memory usage
  _before_gc_usage_array = (MemoryUsage*) NEW_C_HEAP_ARRAY(MemoryUsage, num_pools, mtInternal);
  _after_gc_usage_array  = (MemoryUsage*) NEW_C_HEAP_ARRAY(MemoryUsage, num_pools, mtInternal);
  _usage_array_size = num_pools;
  clear();
}

GCStatInfo::~GCStatInfo() {
  FREE_C_HEAP_ARRAY(MemoryUsage*, _before_gc_usage_array, mtInternal);
  FREE_C_HEAP_ARRAY(MemoryUsage*, _after_gc_usage_array, mtInternal);
}

void GCStatInfo::set_gc_usage(int pool_index, MemoryUsage usage, bool before_gc) {
  MemoryUsage* gc_usage_array;
  if (before_gc) {
    gc_usage_array = _before_gc_usage_array;
  } else {
    gc_usage_array = _after_gc_usage_array;
  }
  gc_usage_array[pool_index] = usage;
}

void GCStatInfo::clear() {
  _index = 0;
  _start_time = 0L;
  _end_time = 0L;
  size_t len = _usage_array_size * sizeof(MemoryUsage);
  memset(_before_gc_usage_array, 0, len);
  memset(_after_gc_usage_array, 0, len);
}


GCMemoryManager::GCMemoryManager() : MemoryManager() {
  _num_collections = 0;
  _last_gc_stat = NULL;
  _last_gc_lock = new Mutex(Mutex::leaf, "_last_gc_lock", true);
  _current_gc_stat = NULL;
  _num_gc_threads = 1;
  _notification_enabled = false;
}

GCMemoryManager::~GCMemoryManager() {
  delete _last_gc_stat;
  delete _last_gc_lock;
  delete _current_gc_stat;
}

void GCMemoryManager::initialize_gc_stat_info() {
  assert(MemoryService::num_memory_pools() > 0, "should have one or more memory pools");
  _last_gc_stat = new(ResourceObj::C_HEAP, mtGC) GCStatInfo(MemoryService::num_memory_pools());
  _current_gc_stat = new(ResourceObj::C_HEAP, mtGC) GCStatInfo(MemoryService::num_memory_pools());
  // tracking concurrent collections we need two objects: one to update, and one to
  // hold the publicly available "last (completed) gc" information.
}

void GCMemoryManager::gc_begin(bool recordGCBeginTime, bool recordPreGCUsage,
                               bool recordAccumulatedGCTime) {
  assert(_last_gc_stat != NULL && _current_gc_stat != NULL, "Just checking");
  if (recordAccumulatedGCTime) {
    _accumulated_timer.start();
  }
  // _num_collections now increases in gc_end, to count completed collections
  if (recordGCBeginTime) {
    _current_gc_stat->set_index(_num_collections+1);
    _current_gc_stat->set_start_time(Management::timestamp());
  }

  if (recordPreGCUsage) {
    // Keep memory usage of all memory pools
    for (int i = 0; i < MemoryService::num_memory_pools(); i++) {
      MemoryPool* pool = MemoryService::get_memory_pool(i);
      MemoryUsage usage = pool->get_memory_usage();
      _current_gc_stat->set_before_gc_usage(i, usage);
#ifndef USDT2
      HS_DTRACE_PROBE8(hotspot, mem__pool__gc__begin,
        name(), strlen(name()),
        pool->name(), strlen(pool->name()),
        usage.init_size(), usage.used(),
        usage.committed(), usage.max_size());
#else /* USDT2 */
      HOTSPOT_MEM_POOL_GC_BEGIN(
        (char *) name(), strlen(name()),
        (char *) pool->name(), strlen(pool->name()),
        usage.init_size(), usage.used(),
        usage.committed(), usage.max_size());
#endif /* USDT2 */
    }
  }
}

// A collector MUST, even if it does not complete for some reason,
// make a TraceMemoryManagerStats object where countCollection is true,
// to ensure the current gc stat is placed in _last_gc_stat.
void GCMemoryManager::gc_end(bool recordPostGCUsage,
                             bool recordAccumulatedGCTime,
                             bool recordGCEndTime, bool countCollection,
                             GCCause::Cause cause) {
  if (recordAccumulatedGCTime) {
    _accumulated_timer.stop();
  }
  if (recordGCEndTime) {
    _current_gc_stat->set_end_time(Management::timestamp());
  }

  if (recordPostGCUsage) {
    int i;
    // keep the last gc statistics for all memory pools
    for (i = 0; i < MemoryService::num_memory_pools(); i++) {
      MemoryPool* pool = MemoryService::get_memory_pool(i);
      MemoryUsage usage = pool->get_memory_usage();

#ifndef USDT2
      HS_DTRACE_PROBE8(hotspot, mem__pool__gc__end,
        name(), strlen(name()),
        pool->name(), strlen(pool->name()),
        usage.init_size(), usage.used(),
        usage.committed(), usage.max_size());
#else /* USDT2 */
      HOTSPOT_MEM_POOL_GC_END(
        (char *) name(), strlen(name()),
        (char *) pool->name(), strlen(pool->name()),
        usage.init_size(), usage.used(),
        usage.committed(), usage.max_size());
#endif /* USDT2 */

      _current_gc_stat->set_after_gc_usage(i, usage);
    }

    // Set last collection usage of the memory pools managed by this collector
    for (i = 0; i < num_memory_pools(); i++) {
      MemoryPool* pool = get_memory_pool(i);
      MemoryUsage usage = pool->get_memory_usage();

      // Compare with GC usage threshold
      pool->set_last_collection_usage(usage);
      LowMemoryDetector::detect_after_gc_memory(pool);
    }
  }

  if (countCollection) {
    _num_collections++;
    // alternately update two objects making one public when complete
    {
      MutexLockerEx ml(_last_gc_lock, Mutex::_no_safepoint_check_flag);
      GCStatInfo *tmp = _last_gc_stat;
      _last_gc_stat = _current_gc_stat;
      _current_gc_stat = tmp;
      // reset the current stat for diagnosability purposes
      _current_gc_stat->clear();
    }

    if (is_notification_enabled()) {
      bool isMajorGC = this == MemoryService::get_major_gc_manager();
      GCNotifier::pushNotification(this, isMajorGC ? "end of major GC" : "end of minor GC",
                                   GCCause::to_string(cause));
    }
  }
}

size_t GCMemoryManager::get_last_gc_stat(GCStatInfo* dest) {
  MutexLockerEx ml(_last_gc_lock, Mutex::_no_safepoint_check_flag);
  if (_last_gc_stat->gc_index() != 0) {
    dest->set_index(_last_gc_stat->gc_index());
    dest->set_start_time(_last_gc_stat->start_time());
    dest->set_end_time(_last_gc_stat->end_time());
    assert(dest->usage_array_size() == _last_gc_stat->usage_array_size(),
           "Must have same array size");
    size_t len = dest->usage_array_size() * sizeof(MemoryUsage);
    memcpy(dest->before_gc_usage_array(), _last_gc_stat->before_gc_usage_array(), len);
    memcpy(dest->after_gc_usage_array(), _last_gc_stat->after_gc_usage_array(), len);
  }
  return _last_gc_stat->gc_index();
}