/*
* Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutex.hpp"
#include "runtime/mutexLocker.hpp"
#include "services/lowMemoryDetector.hpp"
#include "services/management.hpp"
volatile bool LowMemoryDetector::_enabled_for_collected_pools = false;
volatile jint LowMemoryDetector::_disabled_count = 0;
bool LowMemoryDetector::has_pending_requests() {
assert(Service_lock->owned_by_self(), "Must own Service_lock");
bool has_requests = false;
int num_memory_pools = MemoryService::num_memory_pools();
for (int i = 0; i < num_memory_pools; i++) {
MemoryPool* pool = MemoryService::get_memory_pool(i);
SensorInfo* sensor = pool->usage_sensor();
if (sensor != NULL) {
has_requests = has_requests || sensor->has_pending_requests();
}
SensorInfo* gc_sensor = pool->gc_usage_sensor();
if (gc_sensor != NULL) {
has_requests = has_requests || gc_sensor->has_pending_requests();
}
}
return has_requests;
}
void LowMemoryDetector::process_sensor_changes(TRAPS) {
ResourceMark rm(THREAD);
HandleMark hm(THREAD);
// No need to hold Service_lock to call out to Java
int num_memory_pools = MemoryService::num_memory_pools();
for (int i = 0; i < num_memory_pools; i++) {
MemoryPool* pool = MemoryService::get_memory_pool(i);
SensorInfo* sensor = pool->usage_sensor();
SensorInfo* gc_sensor = pool->gc_usage_sensor();
if (sensor != NULL && sensor->has_pending_requests()) {
sensor->process_pending_requests(CHECK);
}
if (gc_sensor != NULL && gc_sensor->has_pending_requests()) {
gc_sensor->process_pending_requests(CHECK);
}
}
}
// This method could be called from any Java threads
// and also VMThread.
void LowMemoryDetector::detect_low_memory() {
MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
bool has_pending_requests = false;
int num_memory_pools = MemoryService::num_memory_pools();
for (int i = 0; i < num_memory_pools; i++) {
MemoryPool* pool = MemoryService::get_memory_pool(i);
SensorInfo* sensor = pool->usage_sensor();
if (sensor != NULL &&
pool->usage_threshold()->is_high_threshold_supported() &&
pool->usage_threshold()->high_threshold() != 0) {
MemoryUsage usage = pool->get_memory_usage();
sensor->set_gauge_sensor_level(usage,
pool->usage_threshold());
has_pending_requests = has_pending_requests || sensor->has_pending_requests();
}
}
if (has_pending_requests) {
Service_lock->notify_all();
}
}
// This method could be called from any Java threads
// and also VMThread.
void LowMemoryDetector::detect_low_memory(MemoryPool* pool) {
SensorInfo* sensor = pool->usage_sensor();
if (sensor == NULL ||
!pool->usage_threshold()->is_high_threshold_supported() ||
pool->usage_threshold()->high_threshold() == 0) {
return;
}
{
MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
MemoryUsage usage = pool->get_memory_usage();
sensor->set_gauge_sensor_level(usage,
pool->usage_threshold());
if (sensor->has_pending_requests()) {
// notify sensor state update
Service_lock->notify_all();
}
}
}
// Only called by VMThread at GC time
void LowMemoryDetector::detect_after_gc_memory(MemoryPool* pool) {
SensorInfo* sensor = pool->gc_usage_sensor();
if (sensor == NULL ||
!pool->gc_usage_threshold()->is_high_threshold_supported() ||
pool->gc_usage_threshold()->high_threshold() == 0) {
return;
}
{
MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
MemoryUsage usage = pool->get_last_collection_usage();
sensor->set_counter_sensor_level(usage, pool->gc_usage_threshold());
if (sensor->has_pending_requests()) {
// notify sensor state update
Service_lock->notify_all();
}
}
}
// recompute enabled flag
void LowMemoryDetector::recompute_enabled_for_collected_pools() {
bool enabled = false;
int num_memory_pools = MemoryService::num_memory_pools();
for (int i=0; i<num_memory_pools; i++) {
MemoryPool* pool = MemoryService::get_memory_pool(i);
if (pool->is_collected_pool() && is_enabled(pool)) {
enabled = true;
break;
}
}
_enabled_for_collected_pools = enabled;
}
SensorInfo::SensorInfo() {
_sensor_obj = NULL;
_sensor_on = false;
_sensor_count = 0;
_pending_trigger_count = 0;
_pending_clear_count = 0;
}
// When this method is used, the memory usage is monitored
// as a gauge attribute. Sensor notifications (trigger or
// clear) is only emitted at the first time it crosses
// a threshold.
//
// High and low thresholds are designed to provide a
// hysteresis mechanism to avoid repeated triggering
// of notifications when the attribute value makes small oscillations
// around the high or low threshold value.
//
// The sensor will be triggered if:
// (1) the usage is crossing above the high threshold and
// the sensor is currently off and no pending
// trigger requests; or
// (2) the usage is crossing above the high threshold and
// the sensor will be off (i.e. sensor is currently on
// and has pending clear requests).
//
// Subsequent crossings of the high threshold value do not cause
// any triggers unless the usage becomes less than the low threshold.
//
// The sensor will be cleared if:
// (1) the usage is crossing below the low threshold and
// the sensor is currently on and no pending
// clear requests; or
// (2) the usage is crossing below the low threshold and
// the sensor will be on (i.e. sensor is currently off
// and has pending trigger requests).
//
// Subsequent crossings of the low threshold value do not cause
// any clears unless the usage becomes greater than or equal
// to the high threshold.
//
// If the current level is between high and low threhsold, no change.
//
void SensorInfo::set_gauge_sensor_level(MemoryUsage usage, ThresholdSupport* high_low_threshold) {
assert(high_low_threshold->is_high_threshold_supported(), "just checking");
bool is_over_high = high_low_threshold->is_high_threshold_crossed(usage);
bool is_below_low = high_low_threshold->is_low_threshold_crossed(usage);
assert(!(is_over_high && is_below_low), "Can't be both true");
if (is_over_high &&
((!_sensor_on && _pending_trigger_count == 0) ||
_pending_clear_count > 0)) {
// low memory detected and need to increment the trigger pending count
// if the sensor is off or will be off due to _pending_clear_ > 0
// Request to trigger the sensor
_pending_trigger_count++;
_usage = usage;
if (_pending_clear_count > 0) {
// non-zero pending clear requests indicates that there are
// pending requests to clear this sensor.
// This trigger request needs to clear this clear count
// since the resulting sensor flag should be on.
_pending_clear_count = 0;
}
} else if (is_below_low &&
((_sensor_on && _pending_clear_count == 0) ||
(_pending_trigger_count > 0 && _pending_clear_count == 0))) {
// memory usage returns below the threshold
// Request to clear the sensor if the sensor is on or will be on due to
// _pending_trigger_count > 0 and also no clear request
_pending_clear_count++;
}
}
// When this method is used, the memory usage is monitored as a
// simple counter attribute. The sensor will be triggered
// whenever the usage is crossing the threshold to keep track
// of the number of times the VM detects such a condition occurs.
//
// High and low thresholds are designed to provide a
// hysteresis mechanism to avoid repeated triggering
// of notifications when the attribute value makes small oscillations
// around the high or low threshold value.
//
// The sensor will be triggered if:
// - the usage is crossing above the high threshold regardless
// of the current sensor state.
//
// The sensor will be cleared if:
// (1) the usage is crossing below the low threshold and
// the sensor is currently on; or
// (2) the usage is crossing below the low threshold and
// the sensor will be on (i.e. sensor is currently off
// and has pending trigger requests).
void SensorInfo::set_counter_sensor_level(MemoryUsage usage, ThresholdSupport* counter_threshold) {
assert(counter_threshold->is_high_threshold_supported(), "just checking");
bool is_over_high = counter_threshold->is_high_threshold_crossed(usage);
bool is_below_low = counter_threshold->is_low_threshold_crossed(usage);
assert(!(is_over_high && is_below_low), "Can't be both true");
if (is_over_high) {
_pending_trigger_count++;
_usage = usage;
_pending_clear_count = 0;
} else if (is_below_low && (_sensor_on || _pending_trigger_count > 0)) {
_pending_clear_count++;
}
}
void SensorInfo::oops_do(OopClosure* f) {
f->do_oop((oop*) &_sensor_obj);
}
void SensorInfo::process_pending_requests(TRAPS) {
if (!has_pending_requests()) {
return;
}
int pending_count = pending_trigger_count();
if (pending_clear_count() > 0) {
clear(pending_count, CHECK);
} else {
trigger(pending_count, CHECK);
}
}
void SensorInfo::trigger(int count, TRAPS) {
assert(count <= _pending_trigger_count, "just checking");
if (_sensor_obj != NULL) {
Klass* k = Management::sun_management_Sensor_klass(CHECK);
instanceKlassHandle sensorKlass (THREAD, k);
Handle sensor_h(THREAD, _sensor_obj);
Handle usage_h = MemoryService::create_MemoryUsage_obj(_usage, CHECK);
JavaValue result(T_VOID);
JavaCallArguments args(sensor_h);
args.push_int((int) count);
args.push_oop(usage_h);
JavaCalls::call_virtual(&result,
sensorKlass,
vmSymbols::trigger_name(),
vmSymbols::trigger_method_signature(),
&args,
CHECK);
}
{
// Holds Service_lock and update the sensor state
MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
_sensor_on = true;
_sensor_count += count;
_pending_trigger_count = _pending_trigger_count - count;
}
}
void SensorInfo::clear(int count, TRAPS) {
if (_sensor_obj != NULL) {
Klass* k = Management::sun_management_Sensor_klass(CHECK);
instanceKlassHandle sensorKlass (THREAD, k);
Handle sensor(THREAD, _sensor_obj);
JavaValue result(T_VOID);
JavaCallArguments args(sensor);
args.push_int((int) count);
JavaCalls::call_virtual(&result,
sensorKlass,
vmSymbols::clear_name(),
vmSymbols::int_void_signature(),
&args,
CHECK);
}
{
// Holds Service_lock and update the sensor state
MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
_sensor_on = false;
_pending_clear_count = 0;
_pending_trigger_count = _pending_trigger_count - count;
}
}
//--------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
void SensorInfo::print() {
tty->print_cr("%s count = " SIZE_FORMAT " pending_triggers = %ld pending_clears = %ld",
(_sensor_on ? "on" : "off"),
_sensor_count, _pending_trigger_count, _pending_clear_count);
}
#endif // PRODUCT