6655646: dynamic languages need dynamically linked call sites
Summary: invokedynamic instruction (JSR 292 RI)
Reviewed-by: twisti, never
/*
* Copyright 2000-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_c1_LIRAssembler.cpp.incl"
void LIR_Assembler::patching_epilog(PatchingStub* patch, LIR_PatchCode patch_code, Register obj, CodeEmitInfo* info) {
// we must have enough patching space so that call can be inserted
while ((intx) _masm->pc() - (intx) patch->pc_start() < NativeCall::instruction_size) {
_masm->nop();
}
patch->install(_masm, patch_code, obj, info);
append_patching_stub(patch);
#ifdef ASSERT
Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
if (patch->id() == PatchingStub::access_field_id) {
switch (code) {
case Bytecodes::_putstatic:
case Bytecodes::_getstatic:
case Bytecodes::_putfield:
case Bytecodes::_getfield:
break;
default:
ShouldNotReachHere();
}
} else if (patch->id() == PatchingStub::load_klass_id) {
switch (code) {
case Bytecodes::_putstatic:
case Bytecodes::_getstatic:
case Bytecodes::_new:
case Bytecodes::_anewarray:
case Bytecodes::_multianewarray:
case Bytecodes::_instanceof:
case Bytecodes::_checkcast:
case Bytecodes::_ldc:
case Bytecodes::_ldc_w:
break;
default:
ShouldNotReachHere();
}
} else {
ShouldNotReachHere();
}
#endif
}
//---------------------------------------------------------------
LIR_Assembler::LIR_Assembler(Compilation* c):
_compilation(c)
, _masm(c->masm())
, _bs(Universe::heap()->barrier_set())
, _frame_map(c->frame_map())
, _current_block(NULL)
, _pending_non_safepoint(NULL)
, _pending_non_safepoint_offset(0)
{
_slow_case_stubs = new CodeStubList();
}
LIR_Assembler::~LIR_Assembler() {
}
void LIR_Assembler::append_patching_stub(PatchingStub* stub) {
_slow_case_stubs->append(stub);
}
void LIR_Assembler::check_codespace() {
CodeSection* cs = _masm->code_section();
if (cs->remaining() < (int)(1*K)) {
BAILOUT("CodeBuffer overflow");
}
}
void LIR_Assembler::emit_code_stub(CodeStub* stub) {
_slow_case_stubs->append(stub);
}
void LIR_Assembler::emit_stubs(CodeStubList* stub_list) {
for (int m = 0; m < stub_list->length(); m++) {
CodeStub* s = (*stub_list)[m];
check_codespace();
CHECK_BAILOUT();
#ifndef PRODUCT
if (CommentedAssembly) {
stringStream st;
s->print_name(&st);
st.print(" slow case");
_masm->block_comment(st.as_string());
}
#endif
s->emit_code(this);
#ifdef ASSERT
s->assert_no_unbound_labels();
#endif
}
}
void LIR_Assembler::emit_slow_case_stubs() {
emit_stubs(_slow_case_stubs);
}
bool LIR_Assembler::needs_icache(ciMethod* method) const {
return !method->is_static();
}
int LIR_Assembler::code_offset() const {
return _masm->offset();
}
address LIR_Assembler::pc() const {
return _masm->pc();
}
void LIR_Assembler::emit_exception_entries(ExceptionInfoList* info_list) {
for (int i = 0; i < info_list->length(); i++) {
XHandlers* handlers = info_list->at(i)->exception_handlers();
for (int j = 0; j < handlers->length(); j++) {
XHandler* handler = handlers->handler_at(j);
assert(handler->lir_op_id() != -1, "handler not processed by LinearScan");
assert(handler->entry_code() == NULL ||
handler->entry_code()->instructions_list()->last()->code() == lir_branch ||
handler->entry_code()->instructions_list()->last()->code() == lir_delay_slot, "last operation must be branch");
if (handler->entry_pco() == -1) {
// entry code not emitted yet
if (handler->entry_code() != NULL && handler->entry_code()->instructions_list()->length() > 1) {
handler->set_entry_pco(code_offset());
if (CommentedAssembly) {
_masm->block_comment("Exception adapter block");
}
emit_lir_list(handler->entry_code());
} else {
handler->set_entry_pco(handler->entry_block()->exception_handler_pco());
}
assert(handler->entry_pco() != -1, "must be set now");
}
}
}
}
void LIR_Assembler::emit_code(BlockList* hir) {
if (PrintLIR) {
print_LIR(hir);
}
int n = hir->length();
for (int i = 0; i < n; i++) {
emit_block(hir->at(i));
CHECK_BAILOUT();
}
flush_debug_info(code_offset());
DEBUG_ONLY(check_no_unbound_labels());
}
void LIR_Assembler::emit_block(BlockBegin* block) {
if (block->is_set(BlockBegin::backward_branch_target_flag)) {
align_backward_branch_target();
}
// if this block is the start of an exception handler, record the
// PC offset of the first instruction for later construction of
// the ExceptionHandlerTable
if (block->is_set(BlockBegin::exception_entry_flag)) {
block->set_exception_handler_pco(code_offset());
}
#ifndef PRODUCT
if (PrintLIRWithAssembly) {
// don't print Phi's
InstructionPrinter ip(false);
block->print(ip);
}
#endif /* PRODUCT */
assert(block->lir() != NULL, "must have LIR");
X86_ONLY(assert(_masm->rsp_offset() == 0, "frame size should be fixed"));
#ifndef PRODUCT
if (CommentedAssembly) {
stringStream st;
st.print_cr(" block B%d [%d, %d]", block->block_id(), block->bci(), block->end()->bci());
_masm->block_comment(st.as_string());
}
#endif
emit_lir_list(block->lir());
X86_ONLY(assert(_masm->rsp_offset() == 0, "frame size should be fixed"));
}
void LIR_Assembler::emit_lir_list(LIR_List* list) {
peephole(list);
int n = list->length();
for (int i = 0; i < n; i++) {
LIR_Op* op = list->at(i);
check_codespace();
CHECK_BAILOUT();
#ifndef PRODUCT
if (CommentedAssembly) {
// Don't record out every op since that's too verbose. Print
// branches since they include block and stub names. Also print
// patching moves since they generate funny looking code.
if (op->code() == lir_branch ||
(op->code() == lir_move && op->as_Op1()->patch_code() != lir_patch_none)) {
stringStream st;
op->print_on(&st);
_masm->block_comment(st.as_string());
}
}
if (PrintLIRWithAssembly) {
// print out the LIR operation followed by the resulting assembly
list->at(i)->print(); tty->cr();
}
#endif /* PRODUCT */
op->emit_code(this);
if (compilation()->debug_info_recorder()->recording_non_safepoints()) {
process_debug_info(op);
}
#ifndef PRODUCT
if (PrintLIRWithAssembly) {
_masm->code()->decode();
}
#endif /* PRODUCT */
}
}
#ifdef ASSERT
void LIR_Assembler::check_no_unbound_labels() {
CHECK_BAILOUT();
for (int i = 0; i < _branch_target_blocks.length() - 1; i++) {
if (!_branch_target_blocks.at(i)->label()->is_bound()) {
tty->print_cr("label of block B%d is not bound", _branch_target_blocks.at(i)->block_id());
assert(false, "unbound label");
}
}
}
#endif
//----------------------------------debug info--------------------------------
void LIR_Assembler::add_debug_info_for_branch(CodeEmitInfo* info) {
_masm->code_section()->relocate(pc(), relocInfo::poll_type);
int pc_offset = code_offset();
flush_debug_info(pc_offset);
info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
if (info->exception_handlers() != NULL) {
compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
}
}
void LIR_Assembler::add_call_info(int pc_offset, CodeEmitInfo* cinfo) {
flush_debug_info(pc_offset);
cinfo->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
if (cinfo->exception_handlers() != NULL) {
compilation()->add_exception_handlers_for_pco(pc_offset, cinfo->exception_handlers());
}
}
static ValueStack* debug_info(Instruction* ins) {
StateSplit* ss = ins->as_StateSplit();
if (ss != NULL) return ss->state();
return ins->lock_stack();
}
void LIR_Assembler::process_debug_info(LIR_Op* op) {
Instruction* src = op->source();
if (src == NULL) return;
int pc_offset = code_offset();
if (_pending_non_safepoint == src) {
_pending_non_safepoint_offset = pc_offset;
return;
}
ValueStack* vstack = debug_info(src);
if (vstack == NULL) return;
if (_pending_non_safepoint != NULL) {
// Got some old debug info. Get rid of it.
if (_pending_non_safepoint->bci() == src->bci() &&
debug_info(_pending_non_safepoint) == vstack) {
_pending_non_safepoint_offset = pc_offset;
return;
}
if (_pending_non_safepoint_offset < pc_offset) {
record_non_safepoint_debug_info();
}
_pending_non_safepoint = NULL;
}
// Remember the debug info.
if (pc_offset > compilation()->debug_info_recorder()->last_pc_offset()) {
_pending_non_safepoint = src;
_pending_non_safepoint_offset = pc_offset;
}
}
// Index caller states in s, where 0 is the oldest, 1 its callee, etc.
// Return NULL if n is too large.
// Returns the caller_bci for the next-younger state, also.
static ValueStack* nth_oldest(ValueStack* s, int n, int& bci_result) {
ValueStack* t = s;
for (int i = 0; i < n; i++) {
if (t == NULL) break;
t = t->caller_state();
}
if (t == NULL) return NULL;
for (;;) {
ValueStack* tc = t->caller_state();
if (tc == NULL) return s;
t = tc;
bci_result = s->scope()->caller_bci();
s = s->caller_state();
}
}
void LIR_Assembler::record_non_safepoint_debug_info() {
int pc_offset = _pending_non_safepoint_offset;
ValueStack* vstack = debug_info(_pending_non_safepoint);
int bci = _pending_non_safepoint->bci();
DebugInformationRecorder* debug_info = compilation()->debug_info_recorder();
assert(debug_info->recording_non_safepoints(), "sanity");
debug_info->add_non_safepoint(pc_offset);
// Visit scopes from oldest to youngest.
for (int n = 0; ; n++) {
int s_bci = bci;
ValueStack* s = nth_oldest(vstack, n, s_bci);
if (s == NULL) break;
IRScope* scope = s->scope();
debug_info->describe_scope(pc_offset, scope->method(), s_bci);
}
debug_info->end_non_safepoint(pc_offset);
}
void LIR_Assembler::add_debug_info_for_null_check_here(CodeEmitInfo* cinfo) {
add_debug_info_for_null_check(code_offset(), cinfo);
}
void LIR_Assembler::add_debug_info_for_null_check(int pc_offset, CodeEmitInfo* cinfo) {
ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(pc_offset, cinfo);
emit_code_stub(stub);
}
void LIR_Assembler::add_debug_info_for_div0_here(CodeEmitInfo* info) {
add_debug_info_for_div0(code_offset(), info);
}
void LIR_Assembler::add_debug_info_for_div0(int pc_offset, CodeEmitInfo* cinfo) {
DivByZeroStub* stub = new DivByZeroStub(pc_offset, cinfo);
emit_code_stub(stub);
}
void LIR_Assembler::emit_rtcall(LIR_OpRTCall* op) {
rt_call(op->result_opr(), op->addr(), op->arguments(), op->tmp(), op->info());
}
void LIR_Assembler::emit_call(LIR_OpJavaCall* op) {
verify_oop_map(op->info());
if (os::is_MP()) {
// must align calls sites, otherwise they can't be updated atomically on MP hardware
align_call(op->code());
}
// emit the static call stub stuff out of line
emit_static_call_stub();
switch (op->code()) {
case lir_static_call:
call(op->addr(), relocInfo::static_call_type, op->info());
break;
case lir_optvirtual_call:
call(op->addr(), relocInfo::opt_virtual_call_type, op->info());
break;
case lir_icvirtual_call:
ic_call(op->addr(), op->info());
break;
case lir_virtual_call:
vtable_call(op->vtable_offset(), op->info());
break;
default: ShouldNotReachHere();
}
#if defined(X86) && defined(TIERED)
// C2 leave fpu stack dirty clean it
if (UseSSE < 2) {
int i;
for ( i = 1; i <= 7 ; i++ ) {
ffree(i);
}
if (!op->result_opr()->is_float_kind()) {
ffree(0);
}
}
#endif // X86 && TIERED
}
void LIR_Assembler::emit_opLabel(LIR_OpLabel* op) {
_masm->bind (*(op->label()));
}
void LIR_Assembler::emit_op1(LIR_Op1* op) {
switch (op->code()) {
case lir_move:
if (op->move_kind() == lir_move_volatile) {
assert(op->patch_code() == lir_patch_none, "can't patch volatiles");
volatile_move_op(op->in_opr(), op->result_opr(), op->type(), op->info());
} else {
move_op(op->in_opr(), op->result_opr(), op->type(),
op->patch_code(), op->info(), op->pop_fpu_stack(), op->move_kind() == lir_move_unaligned);
}
break;
case lir_prefetchr:
prefetchr(op->in_opr());
break;
case lir_prefetchw:
prefetchw(op->in_opr());
break;
case lir_roundfp: {
LIR_OpRoundFP* round_op = op->as_OpRoundFP();
roundfp_op(round_op->in_opr(), round_op->tmp(), round_op->result_opr(), round_op->pop_fpu_stack());
break;
}
case lir_return:
return_op(op->in_opr());
break;
case lir_safepoint:
if (compilation()->debug_info_recorder()->last_pc_offset() == code_offset()) {
_masm->nop();
}
safepoint_poll(op->in_opr(), op->info());
break;
case lir_fxch:
fxch(op->in_opr()->as_jint());
break;
case lir_fld:
fld(op->in_opr()->as_jint());
break;
case lir_ffree:
ffree(op->in_opr()->as_jint());
break;
case lir_branch:
break;
case lir_push:
push(op->in_opr());
break;
case lir_pop:
pop(op->in_opr());
break;
case lir_neg:
negate(op->in_opr(), op->result_opr());
break;
case lir_leal:
leal(op->in_opr(), op->result_opr());
break;
case lir_null_check:
if (GenerateCompilerNullChecks) {
add_debug_info_for_null_check_here(op->info());
if (op->in_opr()->is_single_cpu()) {
_masm->null_check(op->in_opr()->as_register());
} else {
Unimplemented();
}
}
break;
case lir_monaddr:
monitor_address(op->in_opr()->as_constant_ptr()->as_jint(), op->result_opr());
break;
default:
Unimplemented();
break;
}
}
void LIR_Assembler::emit_op0(LIR_Op0* op) {
switch (op->code()) {
case lir_word_align: {
while (code_offset() % BytesPerWord != 0) {
_masm->nop();
}
break;
}
case lir_nop:
assert(op->info() == NULL, "not supported");
_masm->nop();
break;
case lir_label:
Unimplemented();
break;
case lir_build_frame:
build_frame();
break;
case lir_std_entry:
// init offsets
offsets()->set_value(CodeOffsets::OSR_Entry, _masm->offset());
_masm->align(CodeEntryAlignment);
if (needs_icache(compilation()->method())) {
check_icache();
}
offsets()->set_value(CodeOffsets::Verified_Entry, _masm->offset());
_masm->verified_entry();
build_frame();
offsets()->set_value(CodeOffsets::Frame_Complete, _masm->offset());
break;
case lir_osr_entry:
offsets()->set_value(CodeOffsets::OSR_Entry, _masm->offset());
osr_entry();
break;
case lir_24bit_FPU:
set_24bit_FPU();
break;
case lir_reset_FPU:
reset_FPU();
break;
case lir_breakpoint:
breakpoint();
break;
case lir_fpop_raw:
fpop();
break;
case lir_membar:
membar();
break;
case lir_membar_acquire:
membar_acquire();
break;
case lir_membar_release:
membar_release();
break;
case lir_get_thread:
get_thread(op->result_opr());
break;
default:
ShouldNotReachHere();
break;
}
}
void LIR_Assembler::emit_op2(LIR_Op2* op) {
switch (op->code()) {
case lir_cmp:
if (op->info() != NULL) {
assert(op->in_opr1()->is_address() || op->in_opr2()->is_address(),
"shouldn't be codeemitinfo for non-address operands");
add_debug_info_for_null_check_here(op->info()); // exception possible
}
comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
break;
case lir_cmp_l2i:
case lir_cmp_fd2i:
case lir_ucmp_fd2i:
comp_fl2i(op->code(), op->in_opr1(), op->in_opr2(), op->result_opr(), op);
break;
case lir_cmove:
cmove(op->condition(), op->in_opr1(), op->in_opr2(), op->result_opr());
break;
case lir_shl:
case lir_shr:
case lir_ushr:
if (op->in_opr2()->is_constant()) {
shift_op(op->code(), op->in_opr1(), op->in_opr2()->as_constant_ptr()->as_jint(), op->result_opr());
} else {
shift_op(op->code(), op->in_opr1(), op->in_opr2(), op->result_opr(), op->tmp_opr());
}
break;
case lir_add:
case lir_sub:
case lir_mul:
case lir_mul_strictfp:
case lir_div:
case lir_div_strictfp:
case lir_rem:
assert(op->fpu_pop_count() < 2, "");
arith_op(
op->code(),
op->in_opr1(),
op->in_opr2(),
op->result_opr(),
op->info(),
op->fpu_pop_count() == 1);
break;
case lir_abs:
case lir_sqrt:
case lir_sin:
case lir_tan:
case lir_cos:
case lir_log:
case lir_log10:
intrinsic_op(op->code(), op->in_opr1(), op->in_opr2(), op->result_opr(), op);
break;
case lir_logic_and:
case lir_logic_or:
case lir_logic_xor:
logic_op(
op->code(),
op->in_opr1(),
op->in_opr2(),
op->result_opr());
break;
case lir_throw:
case lir_unwind:
throw_op(op->in_opr1(), op->in_opr2(), op->info(), op->code() == lir_unwind);
break;
default:
Unimplemented();
break;
}
}
void LIR_Assembler::build_frame() {
_masm->build_frame(initial_frame_size_in_bytes());
}
void LIR_Assembler::roundfp_op(LIR_Opr src, LIR_Opr tmp, LIR_Opr dest, bool pop_fpu_stack) {
assert((src->is_single_fpu() && dest->is_single_stack()) ||
(src->is_double_fpu() && dest->is_double_stack()),
"round_fp: rounds register -> stack location");
reg2stack (src, dest, src->type(), pop_fpu_stack);
}
void LIR_Assembler::move_op(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool unaligned) {
if (src->is_register()) {
if (dest->is_register()) {
assert(patch_code == lir_patch_none && info == NULL, "no patching and info allowed here");
reg2reg(src, dest);
} else if (dest->is_stack()) {
assert(patch_code == lir_patch_none && info == NULL, "no patching and info allowed here");
reg2stack(src, dest, type, pop_fpu_stack);
} else if (dest->is_address()) {
reg2mem(src, dest, type, patch_code, info, pop_fpu_stack, unaligned);
} else {
ShouldNotReachHere();
}
} else if (src->is_stack()) {
assert(patch_code == lir_patch_none && info == NULL, "no patching and info allowed here");
if (dest->is_register()) {
stack2reg(src, dest, type);
} else if (dest->is_stack()) {
stack2stack(src, dest, type);
} else {
ShouldNotReachHere();
}
} else if (src->is_constant()) {
if (dest->is_register()) {
const2reg(src, dest, patch_code, info); // patching is possible
} else if (dest->is_stack()) {
assert(patch_code == lir_patch_none && info == NULL, "no patching and info allowed here");
const2stack(src, dest);
} else if (dest->is_address()) {
assert(patch_code == lir_patch_none, "no patching allowed here");
const2mem(src, dest, type, info);
} else {
ShouldNotReachHere();
}
} else if (src->is_address()) {
mem2reg(src, dest, type, patch_code, info, unaligned);
} else {
ShouldNotReachHere();
}
}
void LIR_Assembler::verify_oop_map(CodeEmitInfo* info) {
#ifndef PRODUCT
if (VerifyOopMaps || VerifyOops) {
bool v = VerifyOops;
VerifyOops = true;
OopMapStream s(info->oop_map());
while (!s.is_done()) {
OopMapValue v = s.current();
if (v.is_oop()) {
VMReg r = v.reg();
if (!r->is_stack()) {
stringStream st;
st.print("bad oop %s at %d", r->as_Register()->name(), _masm->offset());
#ifdef SPARC
_masm->_verify_oop(r->as_Register(), strdup(st.as_string()), __FILE__, __LINE__);
#else
_masm->verify_oop(r->as_Register());
#endif
} else {
_masm->verify_stack_oop(r->reg2stack() * VMRegImpl::stack_slot_size);
}
}
s.next();
}
VerifyOops = v;
}
#endif
}