8024468: PPC64 (part 201): cppInterpreter: implement bytecode profiling
Summary: Implement profiling for c2 jit compilation. Also enable new cppInterpreter features.
Reviewed-by: kvn
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "memory/gcLocker.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.inline.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klassVtable.hpp"
#include "oops/method.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiRedefineClassesTrace.hpp"
#include "runtime/arguments.hpp"
#include "runtime/handles.inline.hpp"
#include "utilities/copy.hpp"
inline InstanceKlass* klassVtable::ik() const {
Klass* k = _klass();
assert(k->oop_is_instance(), "not an InstanceKlass");
return (InstanceKlass*)k;
}
// this function computes the vtable size (including the size needed for miranda
// methods) and the number of miranda methods in this class
// Note on Miranda methods: Let's say there is a class C that implements
// interface I. Let's say there is a method m in I that neither C nor any
// of its super classes implement (i.e there is no method of any access, with
// the same name and signature as m), then m is a Miranda method which is
// entered as a public abstract method in C's vtable. From then on it should
// treated as any other public method in C for method over-ride purposes.
void klassVtable::compute_vtable_size_and_num_mirandas(
int* vtable_length_ret, int* num_new_mirandas,
GrowableArray<Method*>* all_mirandas, Klass* super,
Array<Method*>* methods, AccessFlags class_flags,
Handle classloader, Symbol* classname, Array<Klass*>* local_interfaces,
TRAPS) {
No_Safepoint_Verifier nsv;
// set up default result values
int vtable_length = 0;
// start off with super's vtable length
InstanceKlass* sk = (InstanceKlass*)super;
vtable_length = super == NULL ? 0 : sk->vtable_length();
// go thru each method in the methods table to see if it needs a new entry
int len = methods->length();
for (int i = 0; i < len; i++) {
assert(methods->at(i)->is_method(), "must be a Method*");
methodHandle mh(THREAD, methods->at(i));
if (needs_new_vtable_entry(mh, super, classloader, classname, class_flags, THREAD)) {
vtable_length += vtableEntry::size(); // we need a new entry
}
}
GrowableArray<Method*> new_mirandas(20);
// compute the number of mirandas methods that must be added to the end
get_mirandas(&new_mirandas, all_mirandas, super, methods, local_interfaces);
*num_new_mirandas = new_mirandas.length();
vtable_length += *num_new_mirandas * vtableEntry::size();
if (Universe::is_bootstrapping() && vtable_length == 0) {
// array classes don't have their superclass set correctly during
// bootstrapping
vtable_length = Universe::base_vtable_size();
}
if (super == NULL && !Universe::is_bootstrapping() &&
vtable_length != Universe::base_vtable_size()) {
// Someone is attempting to redefine java.lang.Object incorrectly. The
// only way this should happen is from
// SystemDictionary::resolve_from_stream(), which will detect this later
// and throw a security exception. So don't assert here to let
// the exception occur.
vtable_length = Universe::base_vtable_size();
}
assert(super != NULL || vtable_length == Universe::base_vtable_size(),
"bad vtable size for class Object");
assert(vtable_length % vtableEntry::size() == 0, "bad vtable length");
assert(vtable_length >= Universe::base_vtable_size(), "vtable too small");
*vtable_length_ret = vtable_length;
}
int klassVtable::index_of(Method* m, int len) const {
assert(m->vtable_index() >= 0, "do not ask this of non-vtable methods");
return m->vtable_index();
}
int klassVtable::initialize_from_super(KlassHandle super) {
if (super.is_null()) {
return 0;
} else {
// copy methods from superKlass
// can't inherit from array class, so must be InstanceKlass
assert(super->oop_is_instance(), "must be instance klass");
InstanceKlass* sk = (InstanceKlass*)super();
klassVtable* superVtable = sk->vtable();
assert(superVtable->length() <= _length, "vtable too short");
#ifdef ASSERT
superVtable->verify(tty, true);
#endif
superVtable->copy_vtable_to(table());
#ifndef PRODUCT
if (PrintVtables && Verbose) {
ResourceMark rm;
tty->print_cr("copy vtable from %s to %s size %d", sk->internal_name(), klass()->internal_name(), _length);
}
#endif
return superVtable->length();
}
}
// Revised lookup semantics introduced 1.3 (Kestral beta)
void klassVtable::initialize_vtable(bool checkconstraints, TRAPS) {
// Note: Arrays can have intermediate array supers. Use java_super to skip them.
KlassHandle super (THREAD, klass()->java_super());
int nofNewEntries = 0;
if (PrintVtables && !klass()->oop_is_array()) {
ResourceMark rm(THREAD);
tty->print_cr("Initializing: %s", _klass->name()->as_C_string());
}
#ifdef ASSERT
oop* end_of_obj = (oop*)_klass() + _klass()->size();
oop* end_of_vtable = (oop*)&table()[_length];
assert(end_of_vtable <= end_of_obj, "vtable extends beyond end");
#endif
if (Universe::is_bootstrapping()) {
// just clear everything
for (int i = 0; i < _length; i++) table()[i].clear();
return;
}
int super_vtable_len = initialize_from_super(super);
if (klass()->oop_is_array()) {
assert(super_vtable_len == _length, "arrays shouldn't introduce new methods");
} else {
assert(_klass->oop_is_instance(), "must be InstanceKlass");
Array<Method*>* methods = ik()->methods();
int len = methods->length();
int initialized = super_vtable_len;
// update_inherited_vtable can stop for gc - ensure using handles
for (int i = 0; i < len; i++) {
HandleMark hm(THREAD);
assert(methods->at(i)->is_method(), "must be a Method*");
methodHandle mh(THREAD, methods->at(i));
bool needs_new_entry = update_inherited_vtable(ik(), mh, super_vtable_len, checkconstraints, CHECK);
if (needs_new_entry) {
put_method_at(mh(), initialized);
mh()->set_vtable_index(initialized); // set primary vtable index
initialized++;
}
}
// add miranda methods; it will also update the value of initialized
fill_in_mirandas(&initialized);
// In class hierarchies where the accessibility is not increasing (i.e., going from private ->
// package_private -> publicprotected), the vtable might actually be smaller than our initial
// calculation.
assert(initialized <= _length, "vtable initialization failed");
for(;initialized < _length; initialized++) {
put_method_at(NULL, initialized);
}
NOT_PRODUCT(verify(tty, true));
}
}
// Called for cases where a method does not override its superclass' vtable entry
// For bytecodes not produced by javac together it is possible that a method does not override
// the superclass's method, but might indirectly override a super-super class's vtable entry
// If none found, return a null superk, else return the superk of the method this does override
InstanceKlass* klassVtable::find_transitive_override(InstanceKlass* initialsuper, methodHandle target_method,
int vtable_index, Handle target_loader, Symbol* target_classname, Thread * THREAD) {
InstanceKlass* superk = initialsuper;
while (superk != NULL && superk->super() != NULL) {
InstanceKlass* supersuperklass = InstanceKlass::cast(superk->super());
klassVtable* ssVtable = supersuperklass->vtable();
if (vtable_index < ssVtable->length()) {
Method* super_method = ssVtable->method_at(vtable_index);
#ifndef PRODUCT
Symbol* name= target_method()->name();
Symbol* signature = target_method()->signature();
assert(super_method->name() == name && super_method->signature() == signature, "vtable entry name/sig mismatch");
#endif
if (supersuperklass->is_override(super_method, target_loader, target_classname, THREAD)) {
#ifndef PRODUCT
if (PrintVtables && Verbose) {
ResourceMark rm(THREAD);
tty->print("transitive overriding superclass %s with %s::%s index %d, original flags: ",
supersuperklass->internal_name(),
_klass->internal_name(), (target_method() != NULL) ?
target_method()->name()->as_C_string() : "<NULL>", vtable_index);
super_method->access_flags().print_on(tty);
tty->print("overriders flags: ");
target_method->access_flags().print_on(tty);
tty->cr();
}
#endif /*PRODUCT*/
break; // return found superk
}
} else {
// super class has no vtable entry here, stop transitive search
superk = (InstanceKlass*)NULL;
break;
}
// if no override found yet, continue to search up
superk = InstanceKlass::cast(superk->super());
}
return superk;
}
// Methods that are "effectively" final don't need vtable entries.
bool method_is_effectively_final(
AccessFlags klass_flags, methodHandle target) {
return target->is_final() || klass_flags.is_final() && !target->is_overpass();
}
// Update child's copy of super vtable for overrides
// OR return true if a new vtable entry is required
// Only called for InstanceKlass's, i.e. not for arrays
// If that changed, could not use _klass as handle for klass
bool klassVtable::update_inherited_vtable(InstanceKlass* klass, methodHandle target_method, int super_vtable_len,
bool checkconstraints, TRAPS) {
ResourceMark rm;
bool allocate_new = true;
assert(klass->oop_is_instance(), "must be InstanceKlass");
// Initialize the method's vtable index to "nonvirtual".
// If we allocate a vtable entry, we will update it to a non-negative number.
target_method()->set_vtable_index(Method::nonvirtual_vtable_index);
// Static and <init> methods are never in
if (target_method()->is_static() || target_method()->name() == vmSymbols::object_initializer_name()) {
return false;
}
if (method_is_effectively_final(klass->access_flags(), target_method)) {
// a final method never needs a new entry; final methods can be statically
// resolved and they have to be present in the vtable only if they override
// a super's method, in which case they re-use its entry
allocate_new = false;
}
// we need a new entry if there is no superclass
if (klass->super() == NULL) {
return allocate_new;
}
// private methods always have a new entry in the vtable
// specification interpretation since classic has
// private methods not overriding
if (target_method()->is_private()) {
return allocate_new;
}
// search through the vtable and update overridden entries
// Since check_signature_loaders acquires SystemDictionary_lock
// which can block for gc, once we are in this loop, use handles
// For classfiles built with >= jdk7, we now look for transitive overrides
Symbol* name = target_method()->name();
Symbol* signature = target_method()->signature();
Handle target_loader(THREAD, _klass()->class_loader());
Symbol* target_classname = _klass->name();
for(int i = 0; i < super_vtable_len; i++) {
Method* super_method = method_at(i);
// Check if method name matches
if (super_method->name() == name && super_method->signature() == signature) {
// get super_klass for method_holder for the found method
InstanceKlass* super_klass = super_method->method_holder();
if ((super_klass->is_override(super_method, target_loader, target_classname, THREAD)) ||
((klass->major_version() >= VTABLE_TRANSITIVE_OVERRIDE_VERSION)
&& ((super_klass = find_transitive_override(super_klass, target_method, i, target_loader,
target_classname, THREAD)) != (InstanceKlass*)NULL))) {
// overriding, so no new entry
allocate_new = false;
if (checkconstraints) {
// Override vtable entry if passes loader constraint check
// if loader constraint checking requested
// No need to visit his super, since he and his super
// have already made any needed loader constraints.
// Since loader constraints are transitive, it is enough
// to link to the first super, and we get all the others.
Handle super_loader(THREAD, super_klass->class_loader());
if (target_loader() != super_loader()) {
ResourceMark rm(THREAD);
Symbol* failed_type_symbol =
SystemDictionary::check_signature_loaders(signature, target_loader,
super_loader, true,
CHECK_(false));
if (failed_type_symbol != NULL) {
const char* msg = "loader constraint violation: when resolving "
"overridden method \"%s\" the class loader (instance"
" of %s) of the current class, %s, and its superclass loader "
"(instance of %s), have different Class objects for the type "
"%s used in the signature";
char* sig = target_method()->name_and_sig_as_C_string();
const char* loader1 = SystemDictionary::loader_name(target_loader());
char* current = _klass->name()->as_C_string();
const char* loader2 = SystemDictionary::loader_name(super_loader());
char* failed_type_name = failed_type_symbol->as_C_string();
size_t buflen = strlen(msg) + strlen(sig) + strlen(loader1) +
strlen(current) + strlen(loader2) + strlen(failed_type_name);
char* buf = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, buflen);
jio_snprintf(buf, buflen, msg, sig, loader1, current, loader2,
failed_type_name);
THROW_MSG_(vmSymbols::java_lang_LinkageError(), buf, false);
}
}
}
put_method_at(target_method(), i);
target_method()->set_vtable_index(i);
#ifndef PRODUCT
if (PrintVtables && Verbose) {
tty->print("overriding with %s::%s index %d, original flags: ",
_klass->internal_name(), (target_method() != NULL) ?
target_method()->name()->as_C_string() : "<NULL>", i);
super_method->access_flags().print_on(tty);
tty->print("overriders flags: ");
target_method->access_flags().print_on(tty);
tty->cr();
}
#endif /*PRODUCT*/
} else {
// allocate_new = true; default. We might override one entry,
// but not override another. Once we override one, not need new
#ifndef PRODUCT
if (PrintVtables && Verbose) {
tty->print("NOT overriding with %s::%s index %d, original flags: ",
_klass->internal_name(), (target_method() != NULL) ?
target_method()->name()->as_C_string() : "<NULL>", i);
super_method->access_flags().print_on(tty);
tty->print("overriders flags: ");
target_method->access_flags().print_on(tty);
tty->cr();
}
#endif /*PRODUCT*/
}
}
}
return allocate_new;
}
void klassVtable::put_method_at(Method* m, int index) {
#ifndef PRODUCT
if (PrintVtables && Verbose) {
ResourceMark rm;
tty->print_cr("adding %s::%s at index %d", _klass->internal_name(),
(m != NULL) ? m->name()->as_C_string() : "<NULL>", index);
}
#endif
table()[index].set(m);
}
// Find out if a method "m" with superclass "super", loader "classloader" and
// name "classname" needs a new vtable entry. Let P be a class package defined
// by "classloader" and "classname".
// NOTE: The logic used here is very similar to the one used for computing
// the vtables indices for a method. We cannot directly use that function because,
// we allocate the InstanceKlass at load time, and that requires that the
// superclass has been loaded.
// However, the vtable entries are filled in at link time, and therefore
// the superclass' vtable may not yet have been filled in.
bool klassVtable::needs_new_vtable_entry(methodHandle target_method,
Klass* super,
Handle classloader,
Symbol* classname,
AccessFlags class_flags,
TRAPS) {
if (method_is_effectively_final(class_flags, target_method) ||
// a final method never needs a new entry; final methods can be statically
// resolved and they have to be present in the vtable only if they override
// a super's method, in which case they re-use its entry
(target_method()->is_static()) ||
// static methods don't need to be in vtable
(target_method()->name() == vmSymbols::object_initializer_name())
// <init> is never called dynamically-bound
) {
return false;
}
// we need a new entry if there is no superclass
if (super == NULL) {
return true;
}
// private methods always have a new entry in the vtable
// specification interpretation since classic has
// private methods not overriding
if (target_method()->is_private()) {
return true;
}
// search through the super class hierarchy to see if we need
// a new entry
ResourceMark rm;
Symbol* name = target_method()->name();
Symbol* signature = target_method()->signature();
Klass* k = super;
Method* super_method = NULL;
InstanceKlass *holder = NULL;
Method* recheck_method = NULL;
while (k != NULL) {
// lookup through the hierarchy for a method with matching name and sign.
super_method = InstanceKlass::cast(k)->lookup_method(name, signature);
if (super_method == NULL) {
break; // we still have to search for a matching miranda method
}
// get the class holding the matching method
// make sure you use that class for is_override
InstanceKlass* superk = super_method->method_holder();
// we want only instance method matches
// pretend private methods are not in the super vtable
// since we do override around them: e.g. a.m pub/b.m private/c.m pub,
// ignore private, c.m pub does override a.m pub
// For classes that were not javac'd together, we also do transitive overriding around
// methods that have less accessibility
if ((!super_method->is_static()) &&
(!super_method->is_private())) {
if (superk->is_override(super_method, classloader, classname, THREAD)) {
return false;
// else keep looking for transitive overrides
}
}
// Start with lookup result and continue to search up
k = superk->super(); // haven't found an override match yet; continue to look
}
// if the target method is public or protected it may have a matching
// miranda method in the super, whose entry it should re-use.
// Actually, to handle cases that javac would not generate, we need
// this check for all access permissions.
InstanceKlass *sk = InstanceKlass::cast(super);
if (sk->has_miranda_methods()) {
if (sk->lookup_method_in_all_interfaces(name, signature) != NULL) {
return false; // found a matching miranda; we do not need a new entry
}
}
return true; // found no match; we need a new entry
}
// Support for miranda methods
// get the vtable index of a miranda method with matching "name" and "signature"
int klassVtable::index_of_miranda(Symbol* name, Symbol* signature) {
// search from the bottom, might be faster
for (int i = (length() - 1); i >= 0; i--) {
Method* m = table()[i].method();
if (is_miranda_entry_at(i) &&
m->name() == name && m->signature() == signature) {
return i;
}
}
return Method::invalid_vtable_index;
}
// check if an entry is miranda
bool klassVtable::is_miranda_entry_at(int i) {
Method* m = method_at(i);
Klass* method_holder = m->method_holder();
InstanceKlass *mhk = InstanceKlass::cast(method_holder);
// miranda methods are interface methods in a class's vtable
if (mhk->is_interface()) {
assert(m->is_public(), "should be public");
assert(ik()->implements_interface(method_holder) , "this class should implement the interface");
assert(is_miranda(m, ik()->methods(), ik()->super()), "should be a miranda_method");
return true;
}
return false;
}
// check if a method is a miranda method, given a class's methods table and it's super
// the caller must make sure that the method belongs to an interface implemented by the class
bool klassVtable::is_miranda(Method* m, Array<Method*>* class_methods, Klass* super) {
if (m->is_static()) {
return false;
}
Symbol* name = m->name();
Symbol* signature = m->signature();
if (InstanceKlass::find_method(class_methods, name, signature) == NULL) {
// did not find it in the method table of the current class
if (super == NULL) {
// super doesn't exist
return true;
}
Method* mo = InstanceKlass::cast(super)->lookup_method(name, signature);
if (mo == NULL || mo->access_flags().is_private() ) {
// super class hierarchy does not implement it or protection is different
return true;
}
}
return false;
}
void klassVtable::add_new_mirandas_to_lists(
GrowableArray<Method*>* new_mirandas, GrowableArray<Method*>* all_mirandas,
Array<Method*>* current_interface_methods, Array<Method*>* class_methods,
Klass* super) {
// iterate thru the current interface's method to see if it a miranda
int num_methods = current_interface_methods->length();
for (int i = 0; i < num_methods; i++) {
Method* im = current_interface_methods->at(i);
bool is_duplicate = false;
int num_of_current_mirandas = new_mirandas->length();
// check for duplicate mirandas in different interfaces we implement
for (int j = 0; j < num_of_current_mirandas; j++) {
Method* miranda = new_mirandas->at(j);
if ((im->name() == miranda->name()) &&
(im->signature() == miranda->signature())) {
is_duplicate = true;
break;
}
}
if (!is_duplicate) { // we don't want duplicate miranda entries in the vtable
if (is_miranda(im, class_methods, super)) { // is it a miranda at all?
InstanceKlass *sk = InstanceKlass::cast(super);
// check if it is a duplicate of a super's miranda
if (sk->lookup_method_in_all_interfaces(im->name(), im->signature()) == NULL) {
new_mirandas->append(im);
}
if (all_mirandas != NULL) {
all_mirandas->append(im);
}
}
}
}
}
void klassVtable::get_mirandas(GrowableArray<Method*>* new_mirandas,
GrowableArray<Method*>* all_mirandas,
Klass* super, Array<Method*>* class_methods,
Array<Klass*>* local_interfaces) {
assert((new_mirandas->length() == 0) , "current mirandas must be 0");
// iterate thru the local interfaces looking for a miranda
int num_local_ifs = local_interfaces->length();
for (int i = 0; i < num_local_ifs; i++) {
InstanceKlass *ik = InstanceKlass::cast(local_interfaces->at(i));
add_new_mirandas_to_lists(new_mirandas, all_mirandas,
ik->methods(), class_methods, super);
// iterate thru each local's super interfaces
Array<Klass*>* super_ifs = ik->transitive_interfaces();
int num_super_ifs = super_ifs->length();
for (int j = 0; j < num_super_ifs; j++) {
InstanceKlass *sik = InstanceKlass::cast(super_ifs->at(j));
add_new_mirandas_to_lists(new_mirandas, all_mirandas,
sik->methods(), class_methods, super);
}
}
}
// fill in mirandas
void klassVtable::fill_in_mirandas(int* initialized) {
GrowableArray<Method*> mirandas(20);
get_mirandas(&mirandas, NULL, ik()->super(), ik()->methods(),
ik()->local_interfaces());
for (int i = 0; i < mirandas.length(); i++) {
put_method_at(mirandas.at(i), *initialized);
++(*initialized);
}
}
void klassVtable::copy_vtable_to(vtableEntry* start) {
Copy::disjoint_words((HeapWord*)table(), (HeapWord*)start, _length * vtableEntry::size());
}
#if INCLUDE_JVMTI
void klassVtable::adjust_method_entries(Method** old_methods, Method** new_methods,
int methods_length, bool * trace_name_printed) {
// search the vtable for uses of either obsolete or EMCP methods
for (int j = 0; j < methods_length; j++) {
Method* old_method = old_methods[j];
Method* new_method = new_methods[j];
// In the vast majority of cases we could get the vtable index
// by using: old_method->vtable_index()
// However, there are rare cases, eg. sun.awt.X11.XDecoratedPeer.getX()
// in sun.awt.X11.XFramePeer where methods occur more than once in the
// vtable, so, alas, we must do an exhaustive search.
for (int index = 0; index < length(); index++) {
if (unchecked_method_at(index) == old_method) {
put_method_at(new_method, index);
if (RC_TRACE_IN_RANGE(0x00100000, 0x00400000)) {
if (!(*trace_name_printed)) {
// RC_TRACE_MESG macro has an embedded ResourceMark
RC_TRACE_MESG(("adjust: name=%s",
old_method->method_holder()->external_name()));
*trace_name_printed = true;
}
// RC_TRACE macro has an embedded ResourceMark
RC_TRACE(0x00100000, ("vtable method update: %s(%s)",
new_method->name()->as_C_string(),
new_method->signature()->as_C_string()));
}
// cannot 'break' here; see for-loop comment above.
}
}
}
}
// a vtable should never contain old or obsolete methods
bool klassVtable::check_no_old_or_obsolete_entries() {
for (int i = 0; i < length(); i++) {
Method* m = unchecked_method_at(i);
if (m != NULL &&
(NOT_PRODUCT(!m->is_valid() ||) m->is_old() || m->is_obsolete())) {
return false;
}
}
return true;
}
void klassVtable::dump_vtable() {
tty->print_cr("vtable dump --");
for (int i = 0; i < length(); i++) {
Method* m = unchecked_method_at(i);
if (m != NULL) {
tty->print(" (%5d) ", i);
m->access_flags().print_on(tty);
tty->print(" -- ");
m->print_name(tty);
tty->cr();
}
}
}
#endif // INCLUDE_JVMTI
// CDS/RedefineClasses support - clear vtables so they can be reinitialized
void klassVtable::clear_vtable() {
for (int i = 0; i < _length; i++) table()[i].clear();
}
bool klassVtable::is_initialized() {
return _length == 0 || table()[0].method() != NULL;
}
//-----------------------------------------------------------------------------------------
// Itable code
// Initialize a itableMethodEntry
void itableMethodEntry::initialize(Method* m) {
if (m == NULL) return;
_method = m;
}
klassItable::klassItable(instanceKlassHandle klass) {
_klass = klass;
if (klass->itable_length() > 0) {
itableOffsetEntry* offset_entry = (itableOffsetEntry*)klass->start_of_itable();
if (offset_entry != NULL && offset_entry->interface_klass() != NULL) { // Check that itable is initialized
// First offset entry points to the first method_entry
intptr_t* method_entry = (intptr_t *)(((address)klass()) + offset_entry->offset());
intptr_t* end = klass->end_of_itable();
_table_offset = (intptr_t*)offset_entry - (intptr_t*)klass();
_size_offset_table = (method_entry - ((intptr_t*)offset_entry)) / itableOffsetEntry::size();
_size_method_table = (end - method_entry) / itableMethodEntry::size();
assert(_table_offset >= 0 && _size_offset_table >= 0 && _size_method_table >= 0, "wrong computation");
return;
}
}
// The length of the itable was either zero, or it has not yet been initialized.
_table_offset = 0;
_size_offset_table = 0;
_size_method_table = 0;
}
static int initialize_count = 0;
// Initialization
void klassItable::initialize_itable(bool checkconstraints, TRAPS) {
// Cannot be setup doing bootstrapping, interfaces don't have
// itables, and klass with only ones entry have empty itables
if (Universe::is_bootstrapping() ||
_klass->is_interface() ||
_klass->itable_length() == itableOffsetEntry::size()) return;
// There's alway an extra itable entry so we can null-terminate it.
guarantee(size_offset_table() >= 1, "too small");
int num_interfaces = size_offset_table() - 1;
if (num_interfaces > 0) {
if (TraceItables) tty->print_cr("%3d: Initializing itables for %s", ++initialize_count,
_klass->name()->as_C_string());
// Iterate through all interfaces
int i;
for(i = 0; i < num_interfaces; i++) {
itableOffsetEntry* ioe = offset_entry(i);
HandleMark hm(THREAD);
KlassHandle interf_h (THREAD, ioe->interface_klass());
assert(interf_h() != NULL && ioe->offset() != 0, "bad offset entry in itable");
initialize_itable_for_interface(ioe->offset(), interf_h, checkconstraints, CHECK);
}
}
// Check that the last entry is empty
itableOffsetEntry* ioe = offset_entry(size_offset_table() - 1);
guarantee(ioe->interface_klass() == NULL && ioe->offset() == 0, "terminator entry missing");
}
void klassItable::initialize_itable_for_interface(int method_table_offset, KlassHandle interf_h, bool checkconstraints, TRAPS) {
Array<Method*>* methods = InstanceKlass::cast(interf_h())->methods();
int nof_methods = methods->length();
HandleMark hm;
KlassHandle klass = _klass;
assert(nof_methods > 0, "at least one method must exist for interface to be in vtable");
Handle interface_loader (THREAD, InstanceKlass::cast(interf_h())->class_loader());
int ime_num = 0;
// Skip first Method* if it is a class initializer
int i = methods->at(0)->is_static_initializer() ? 1 : 0;
// m, method_name, method_signature, klass reset each loop so they
// don't need preserving across check_signature_loaders call
// methods needs a handle in case of gc from check_signature_loaders
for(; i < nof_methods; i++) {
Method* m = methods->at(i);
Symbol* method_name = m->name();
Symbol* method_signature = m->signature();
// This is same code as in Linkresolver::lookup_instance_method_in_klasses
Method* target = klass->uncached_lookup_method(method_name, method_signature);
while (target != NULL && target->is_static()) {
// continue with recursive lookup through the superclass
Klass* super = target->method_holder()->super();
target = (super == NULL) ? (Method*)NULL : super->uncached_lookup_method(method_name, method_signature);
}
if (target == NULL || !target->is_public() || target->is_abstract()) {
// Entry do not resolve. Leave it empty
} else {
// Entry did resolve, check loader constraints before initializing
// if checkconstraints requested
methodHandle target_h (THREAD, target); // preserve across gc
if (checkconstraints) {
Handle method_holder_loader (THREAD, target->method_holder()->class_loader());
if (method_holder_loader() != interface_loader()) {
ResourceMark rm(THREAD);
Symbol* failed_type_symbol =
SystemDictionary::check_signature_loaders(method_signature,
method_holder_loader,
interface_loader,
true, CHECK);
if (failed_type_symbol != NULL) {
const char* msg = "loader constraint violation in interface "
"itable initialization: when resolving method \"%s\" the class"
" loader (instance of %s) of the current class, %s, "
"and the class loader (instance of %s) for interface "
"%s have different Class objects for the type %s "
"used in the signature";
char* sig = target_h()->name_and_sig_as_C_string();
const char* loader1 = SystemDictionary::loader_name(method_holder_loader());
char* current = klass->name()->as_C_string();
const char* loader2 = SystemDictionary::loader_name(interface_loader());
char* iface = InstanceKlass::cast(interf_h())->name()->as_C_string();
char* failed_type_name = failed_type_symbol->as_C_string();
size_t buflen = strlen(msg) + strlen(sig) + strlen(loader1) +
strlen(current) + strlen(loader2) + strlen(iface) +
strlen(failed_type_name);
char* buf = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, buflen);
jio_snprintf(buf, buflen, msg, sig, loader1, current, loader2,
iface, failed_type_name);
THROW_MSG(vmSymbols::java_lang_LinkageError(), buf);
}
}
}
// ime may have moved during GC so recalculate address
itableOffsetEntry::method_entry(_klass(), method_table_offset)[ime_num].initialize(target_h());
}
// Progress to next entry
ime_num++;
}
}
// Update entry for specific Method*
void klassItable::initialize_with_method(Method* m) {
itableMethodEntry* ime = method_entry(0);
for(int i = 0; i < _size_method_table; i++) {
if (ime->method() == m) {
ime->initialize(m);
}
ime++;
}
}
#if INCLUDE_JVMTI
void klassItable::adjust_method_entries(Method** old_methods, Method** new_methods,
int methods_length, bool * trace_name_printed) {
// search the itable for uses of either obsolete or EMCP methods
for (int j = 0; j < methods_length; j++) {
Method* old_method = old_methods[j];
Method* new_method = new_methods[j];
itableMethodEntry* ime = method_entry(0);
// The itable can describe more than one interface and the same
// method signature can be specified by more than one interface.
// This means we have to do an exhaustive search to find all the
// old_method references.
for (int i = 0; i < _size_method_table; i++) {
if (ime->method() == old_method) {
ime->initialize(new_method);
if (RC_TRACE_IN_RANGE(0x00100000, 0x00400000)) {
if (!(*trace_name_printed)) {
// RC_TRACE_MESG macro has an embedded ResourceMark
RC_TRACE_MESG(("adjust: name=%s",
old_method->method_holder()->external_name()));
*trace_name_printed = true;
}
// RC_TRACE macro has an embedded ResourceMark
RC_TRACE(0x00200000, ("itable method update: %s(%s)",
new_method->name()->as_C_string(),
new_method->signature()->as_C_string()));
}
// cannot 'break' here; see for-loop comment above.
}
ime++;
}
}
}
// an itable should never contain old or obsolete methods
bool klassItable::check_no_old_or_obsolete_entries() {
itableMethodEntry* ime = method_entry(0);
for (int i = 0; i < _size_method_table; i++) {
Method* m = ime->method();
if (m != NULL &&
(NOT_PRODUCT(!m->is_valid() ||) m->is_old() || m->is_obsolete())) {
return false;
}
ime++;
}
return true;
}
void klassItable::dump_itable() {
itableMethodEntry* ime = method_entry(0);
tty->print_cr("itable dump --");
for (int i = 0; i < _size_method_table; i++) {
Method* m = ime->method();
if (m != NULL) {
tty->print(" (%5d) ", i);
m->access_flags().print_on(tty);
tty->print(" -- ");
m->print_name(tty);
tty->cr();
}
ime++;
}
}
#endif // INCLUDE_JVMTI
// Setup
class InterfaceVisiterClosure : public StackObj {
public:
virtual void doit(Klass* intf, int method_count) = 0;
};
// Visit all interfaces with at-least one method (excluding <clinit>)
void visit_all_interfaces(Array<Klass*>* transitive_intf, InterfaceVisiterClosure *blk) {
// Handle array argument
for(int i = 0; i < transitive_intf->length(); i++) {
Klass* intf = transitive_intf->at(i);
assert(intf->is_interface(), "sanity check");
// Find no. of methods excluding a <clinit>
int method_count = InstanceKlass::cast(intf)->methods()->length();
if (method_count > 0) {
Method* m = InstanceKlass::cast(intf)->methods()->at(0);
assert(m != NULL && m->is_method(), "sanity check");
if (m->name() == vmSymbols::object_initializer_name()) {
method_count--;
}
}
// Only count interfaces with at least one method
if (method_count > 0) {
blk->doit(intf, method_count);
}
}
}
class CountInterfacesClosure : public InterfaceVisiterClosure {
private:
int _nof_methods;
int _nof_interfaces;
public:
CountInterfacesClosure() { _nof_methods = 0; _nof_interfaces = 0; }
int nof_methods() const { return _nof_methods; }
int nof_interfaces() const { return _nof_interfaces; }
void doit(Klass* intf, int method_count) { _nof_methods += method_count; _nof_interfaces++; }
};
class SetupItableClosure : public InterfaceVisiterClosure {
private:
itableOffsetEntry* _offset_entry;
itableMethodEntry* _method_entry;
address _klass_begin;
public:
SetupItableClosure(address klass_begin, itableOffsetEntry* offset_entry, itableMethodEntry* method_entry) {
_klass_begin = klass_begin;
_offset_entry = offset_entry;
_method_entry = method_entry;
}
itableMethodEntry* method_entry() const { return _method_entry; }
void doit(Klass* intf, int method_count) {
int offset = ((address)_method_entry) - _klass_begin;
_offset_entry->initialize(intf, offset);
_offset_entry++;
_method_entry += method_count;
}
};
int klassItable::compute_itable_size(Array<Klass*>* transitive_interfaces) {
// Count no of interfaces and total number of interface methods
CountInterfacesClosure cic;
visit_all_interfaces(transitive_interfaces, &cic);
// There's alway an extra itable entry so we can null-terminate it.
int itable_size = calc_itable_size(cic.nof_interfaces() + 1, cic.nof_methods());
// Statistics
update_stats(itable_size * HeapWordSize);
return itable_size;
}
// Fill out offset table and interface klasses into the itable space
void klassItable::setup_itable_offset_table(instanceKlassHandle klass) {
if (klass->itable_length() == 0) return;
assert(!klass->is_interface(), "Should have zero length itable");
// Count no of interfaces and total number of interface methods
CountInterfacesClosure cic;
visit_all_interfaces(klass->transitive_interfaces(), &cic);
int nof_methods = cic.nof_methods();
int nof_interfaces = cic.nof_interfaces();
// Add one extra entry so we can null-terminate the table
nof_interfaces++;
assert(compute_itable_size(klass->transitive_interfaces()) ==
calc_itable_size(nof_interfaces, nof_methods),
"mismatch calculation of itable size");
// Fill-out offset table
itableOffsetEntry* ioe = (itableOffsetEntry*)klass->start_of_itable();
itableMethodEntry* ime = (itableMethodEntry*)(ioe + nof_interfaces);
intptr_t* end = klass->end_of_itable();
assert((oop*)(ime + nof_methods) <= (oop*)klass->start_of_nonstatic_oop_maps(), "wrong offset calculation (1)");
assert((oop*)(end) == (oop*)(ime + nof_methods), "wrong offset calculation (2)");
// Visit all interfaces and initialize itable offset table
SetupItableClosure sic((address)klass(), ioe, ime);
visit_all_interfaces(klass->transitive_interfaces(), &sic);
#ifdef ASSERT
ime = sic.method_entry();
oop* v = (oop*) klass->end_of_itable();
assert( (oop*)(ime) == v, "wrong offset calculation (2)");
#endif
}
// m must be a method in an interface
int klassItable::compute_itable_index(Method* m) {
InstanceKlass* intf = m->method_holder();
assert(intf->is_interface(), "sanity check");
Array<Method*>* methods = intf->methods();
int index = 0;
while(methods->at(index) != m) {
index++;
assert(index < methods->length(), "should find index for resolve_invoke");
}
// Adjust for <clinit>, which is left out of table if first method
if (methods->length() > 0 && methods->at(0)->is_static_initializer()) {
index--;
}
return index;
}
// inverse to compute_itable_index
Method* klassItable::method_for_itable_index(Klass* intf, int itable_index) {
assert(InstanceKlass::cast(intf)->is_interface(), "sanity check");
Array<Method*>* methods = InstanceKlass::cast(intf)->methods();
int index = itable_index;
// Adjust for <clinit>, which is left out of table if first method
if (methods->length() > 0 && methods->at(0)->is_static_initializer()) {
index++;
}
if (itable_index < 0 || index >= methods->length())
return NULL; // help caller defend against bad indexes
Method* m = methods->at(index);
assert(compute_itable_index(m) == itable_index, "correct inverse");
return m;
}
void klassVtable::verify(outputStream* st, bool forced) {
// make sure table is initialized
if (!Universe::is_fully_initialized()) return;
#ifndef PRODUCT
// avoid redundant verifies
if (!forced && _verify_count == Universe::verify_count()) return;
_verify_count = Universe::verify_count();
#endif
oop* end_of_obj = (oop*)_klass() + _klass()->size();
oop* end_of_vtable = (oop *)&table()[_length];
if (end_of_vtable > end_of_obj) {
fatal(err_msg("klass %s: klass object too short (vtable extends beyond "
"end)", _klass->internal_name()));
}
for (int i = 0; i < _length; i++) table()[i].verify(this, st);
// verify consistency with superKlass vtable
Klass* super = _klass->super();
if (super != NULL) {
InstanceKlass* sk = InstanceKlass::cast(super);
klassVtable* vt = sk->vtable();
for (int i = 0; i < vt->length(); i++) {
verify_against(st, vt, i);
}
}
}
void klassVtable::verify_against(outputStream* st, klassVtable* vt, int index) {
vtableEntry* vte = &vt->table()[index];
if (vte->method()->name() != table()[index].method()->name() ||
vte->method()->signature() != table()[index].method()->signature()) {
fatal("mismatched name/signature of vtable entries");
}
}
#ifndef PRODUCT
void klassVtable::print() {
ResourceMark rm;
tty->print("klassVtable for klass %s (length %d):\n", _klass->internal_name(), length());
for (int i = 0; i < length(); i++) {
table()[i].print();
tty->cr();
}
}
#endif
void vtableEntry::verify(klassVtable* vt, outputStream* st) {
NOT_PRODUCT(FlagSetting fs(IgnoreLockingAssertions, true));
assert(method() != NULL, "must have set method");
method()->verify();
// we sub_type, because it could be a miranda method
if (!vt->klass()->is_subtype_of(method()->method_holder())) {
#ifndef PRODUCT
print();
#endif
fatal(err_msg("vtableEntry " PTR_FORMAT ": method is from subclass", this));
}
}
#ifndef PRODUCT
void vtableEntry::print() {
ResourceMark rm;
tty->print("vtableEntry %s: ", method()->name()->as_C_string());
if (Verbose) {
tty->print("m %#lx ", (address)method());
}
}
class VtableStats : AllStatic {
public:
static int no_klasses; // # classes with vtables
static int no_array_klasses; // # array classes
static int no_instance_klasses; // # instanceKlasses
static int sum_of_vtable_len; // total # of vtable entries
static int sum_of_array_vtable_len; // total # of vtable entries in array klasses only
static int fixed; // total fixed overhead in bytes
static int filler; // overhead caused by filler bytes
static int entries; // total bytes consumed by vtable entries
static int array_entries; // total bytes consumed by array vtable entries
static void do_class(Klass* k) {
Klass* kl = k;
klassVtable* vt = kl->vtable();
if (vt == NULL) return;
no_klasses++;
if (kl->oop_is_instance()) {
no_instance_klasses++;
kl->array_klasses_do(do_class);
}
if (kl->oop_is_array()) {
no_array_klasses++;
sum_of_array_vtable_len += vt->length();
}
sum_of_vtable_len += vt->length();
}
static void compute() {
SystemDictionary::classes_do(do_class);
fixed = no_klasses * oopSize; // vtable length
// filler size is a conservative approximation
filler = oopSize * (no_klasses - no_instance_klasses) * (sizeof(InstanceKlass) - sizeof(ArrayKlass) - 1);
entries = sizeof(vtableEntry) * sum_of_vtable_len;
array_entries = sizeof(vtableEntry) * sum_of_array_vtable_len;
}
};
int VtableStats::no_klasses = 0;
int VtableStats::no_array_klasses = 0;
int VtableStats::no_instance_klasses = 0;
int VtableStats::sum_of_vtable_len = 0;
int VtableStats::sum_of_array_vtable_len = 0;
int VtableStats::fixed = 0;
int VtableStats::filler = 0;
int VtableStats::entries = 0;
int VtableStats::array_entries = 0;
void klassVtable::print_statistics() {
ResourceMark rm;
HandleMark hm;
VtableStats::compute();
tty->print_cr("vtable statistics:");
tty->print_cr("%6d classes (%d instance, %d array)", VtableStats::no_klasses, VtableStats::no_instance_klasses, VtableStats::no_array_klasses);
int total = VtableStats::fixed + VtableStats::filler + VtableStats::entries;
tty->print_cr("%6d bytes fixed overhead (refs + vtable object header)", VtableStats::fixed);
tty->print_cr("%6d bytes filler overhead", VtableStats::filler);
tty->print_cr("%6d bytes for vtable entries (%d for arrays)", VtableStats::entries, VtableStats::array_entries);
tty->print_cr("%6d bytes total", total);
}
int klassItable::_total_classes; // Total no. of classes with itables
long klassItable::_total_size; // Total no. of bytes used for itables
void klassItable::print_statistics() {
tty->print_cr("itable statistics:");
tty->print_cr("%6d classes with itables", _total_classes);
tty->print_cr("%6d K uses for itables (average by class: %d bytes)", _total_size / K, _total_size / _total_classes);
}
#endif // PRODUCT