//// Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.//// This code is free software; you can redistribute it and/or modify it// under the terms of the GNU General Public License version 2 only, as// published by the Free Software Foundation.//// This code is distributed in the hope that it will be useful, but WITHOUT// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License// version 2 for more details (a copy is included in the LICENSE file that// accompanied this code).//// You should have received a copy of the GNU General Public License version// 2 along with this work; if not, write to the Free Software Foundation,// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.//// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA// or visit www.oracle.com if you need additional information or have any// questions.//// ARM Architecture Description File//----------REGISTER DEFINITION BLOCK------------------------------------------// This information is used by the matcher and the register allocator to// describe individual registers and classes of registers within the target// archtecture.register %{//----------Architecture Description Register Definitions----------------------// General Registers// "reg_def" name ( register save type, C convention save type,// ideal register type, encoding, vm name );// Register Save Types://// NS = No-Save: The register allocator assumes that these registers// can be used without saving upon entry to the method, &// that they do not need to be saved at call sites.//// SOC = Save-On-Call: The register allocator assumes that these registers// can be used without saving upon entry to the method,// but that they must be saved at call sites.//// SOE = Save-On-Entry: The register allocator assumes that these registers// must be saved before using them upon entry to the// method, but they do not need to be saved at call// sites.//// AS = Always-Save: The register allocator assumes that these registers// must be saved before using them upon entry to the// method, & that they must be saved at call sites.//// Ideal Register Type is used to determine how to save & restore a// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.//// The encoding number is the actual bit-pattern placed into the opcodes.// ----------------------------// Integer/Long Registers// ----------------------------reg_def R_R0 (SOC, SOC, Op_RegI, 0, R(0)->as_VMReg());reg_def R_R1 (SOC, SOC, Op_RegI, 1, R(1)->as_VMReg());reg_def R_R2 (SOC, SOC, Op_RegI, 2, R(2)->as_VMReg());reg_def R_R3 (SOC, SOC, Op_RegI, 3, R(3)->as_VMReg());reg_def R_R4 (SOC, SOE, Op_RegI, 4, R(4)->as_VMReg());reg_def R_R5 (SOC, SOE, Op_RegI, 5, R(5)->as_VMReg());reg_def R_R6 (SOC, SOE, Op_RegI, 6, R(6)->as_VMReg());reg_def R_R7 (SOC, SOE, Op_RegI, 7, R(7)->as_VMReg());reg_def R_R8 (SOC, SOE, Op_RegI, 8, R(8)->as_VMReg());reg_def R_R9 (SOC, SOE, Op_RegI, 9, R(9)->as_VMReg());reg_def R_R10(NS, SOE, Op_RegI, 10, R(10)->as_VMReg());reg_def R_R11(NS, SOE, Op_RegI, 11, R(11)->as_VMReg());reg_def R_R12(SOC, SOC, Op_RegI, 12, R(12)->as_VMReg());reg_def R_R13(NS, NS, Op_RegI, 13, R(13)->as_VMReg());reg_def R_R14(SOC, SOC, Op_RegI, 14, R(14)->as_VMReg());reg_def R_R15(NS, NS, Op_RegI, 15, R(15)->as_VMReg());// ----------------------------// Float/Double Registers// ----------------------------// Float Registersreg_def R_S0 ( SOC, SOC, Op_RegF, 0, S0->as_VMReg());reg_def R_S1 ( SOC, SOC, Op_RegF, 1, S1_reg->as_VMReg());reg_def R_S2 ( SOC, SOC, Op_RegF, 2, S2_reg->as_VMReg());reg_def R_S3 ( SOC, SOC, Op_RegF, 3, S3_reg->as_VMReg());reg_def R_S4 ( SOC, SOC, Op_RegF, 4, S4_reg->as_VMReg());reg_def R_S5 ( SOC, SOC, Op_RegF, 5, S5_reg->as_VMReg());reg_def R_S6 ( SOC, SOC, Op_RegF, 6, S6_reg->as_VMReg());reg_def R_S7 ( SOC, SOC, Op_RegF, 7, S7->as_VMReg());reg_def R_S8 ( SOC, SOC, Op_RegF, 8, S8->as_VMReg());reg_def R_S9 ( SOC, SOC, Op_RegF, 9, S9->as_VMReg());reg_def R_S10( SOC, SOC, Op_RegF, 10,S10->as_VMReg());reg_def R_S11( SOC, SOC, Op_RegF, 11,S11->as_VMReg());reg_def R_S12( SOC, SOC, Op_RegF, 12,S12->as_VMReg());reg_def R_S13( SOC, SOC, Op_RegF, 13,S13->as_VMReg());reg_def R_S14( SOC, SOC, Op_RegF, 14,S14->as_VMReg());reg_def R_S15( SOC, SOC, Op_RegF, 15,S15->as_VMReg());reg_def R_S16( SOC, SOE, Op_RegF, 16,S16->as_VMReg());reg_def R_S17( SOC, SOE, Op_RegF, 17,S17->as_VMReg());reg_def R_S18( SOC, SOE, Op_RegF, 18,S18->as_VMReg());reg_def R_S19( SOC, SOE, Op_RegF, 19,S19->as_VMReg());reg_def R_S20( SOC, SOE, Op_RegF, 20,S20->as_VMReg());reg_def R_S21( SOC, SOE, Op_RegF, 21,S21->as_VMReg());reg_def R_S22( SOC, SOE, Op_RegF, 22,S22->as_VMReg());reg_def R_S23( SOC, SOE, Op_RegF, 23,S23->as_VMReg());reg_def R_S24( SOC, SOE, Op_RegF, 24,S24->as_VMReg());reg_def R_S25( SOC, SOE, Op_RegF, 25,S25->as_VMReg());reg_def R_S26( SOC, SOE, Op_RegF, 26,S26->as_VMReg());reg_def R_S27( SOC, SOE, Op_RegF, 27,S27->as_VMReg());reg_def R_S28( SOC, SOE, Op_RegF, 28,S28->as_VMReg());reg_def R_S29( SOC, SOE, Op_RegF, 29,S29->as_VMReg());reg_def R_S30( SOC, SOE, Op_RegF, 30,S30->as_VMReg());reg_def R_S31( SOC, SOE, Op_RegF, 31,S31->as_VMReg());// Double Registers// The rules of ADL require that double registers be defined in pairs.// Each pair must be two 32-bit values, but not necessarily a pair of// single float registers. In each pair, ADLC-assigned register numbers// must be adjacent, with the lower number even. Finally, when the// CPU stores such a register pair to memory, the word associated with// the lower ADLC-assigned number must be stored to the lower address.reg_def R_D16 (SOC, SOC, Op_RegD, 32, D16->as_VMReg());reg_def R_D16x(SOC, SOC, Op_RegD,255, D16->as_VMReg()->next());reg_def R_D17 (SOC, SOC, Op_RegD, 34, D17->as_VMReg());reg_def R_D17x(SOC, SOC, Op_RegD,255, D17->as_VMReg()->next());reg_def R_D18 (SOC, SOC, Op_RegD, 36, D18->as_VMReg());reg_def R_D18x(SOC, SOC, Op_RegD,255, D18->as_VMReg()->next());reg_def R_D19 (SOC, SOC, Op_RegD, 38, D19->as_VMReg());reg_def R_D19x(SOC, SOC, Op_RegD,255, D19->as_VMReg()->next());reg_def R_D20 (SOC, SOC, Op_RegD, 40, D20->as_VMReg());reg_def R_D20x(SOC, SOC, Op_RegD,255, D20->as_VMReg()->next());reg_def R_D21 (SOC, SOC, Op_RegD, 42, D21->as_VMReg());reg_def R_D21x(SOC, SOC, Op_RegD,255, D21->as_VMReg()->next());reg_def R_D22 (SOC, SOC, Op_RegD, 44, D22->as_VMReg());reg_def R_D22x(SOC, SOC, Op_RegD,255, D22->as_VMReg()->next());reg_def R_D23 (SOC, SOC, Op_RegD, 46, D23->as_VMReg());reg_def R_D23x(SOC, SOC, Op_RegD,255, D23->as_VMReg()->next());reg_def R_D24 (SOC, SOC, Op_RegD, 48, D24->as_VMReg());reg_def R_D24x(SOC, SOC, Op_RegD,255, D24->as_VMReg()->next());reg_def R_D25 (SOC, SOC, Op_RegD, 50, D25->as_VMReg());reg_def R_D25x(SOC, SOC, Op_RegD,255, D25->as_VMReg()->next());reg_def R_D26 (SOC, SOC, Op_RegD, 52, D26->as_VMReg());reg_def R_D26x(SOC, SOC, Op_RegD,255, D26->as_VMReg()->next());reg_def R_D27 (SOC, SOC, Op_RegD, 54, D27->as_VMReg());reg_def R_D27x(SOC, SOC, Op_RegD,255, D27->as_VMReg()->next());reg_def R_D28 (SOC, SOC, Op_RegD, 56, D28->as_VMReg());reg_def R_D28x(SOC, SOC, Op_RegD,255, D28->as_VMReg()->next());reg_def R_D29 (SOC, SOC, Op_RegD, 58, D29->as_VMReg());reg_def R_D29x(SOC, SOC, Op_RegD,255, D29->as_VMReg()->next());reg_def R_D30 (SOC, SOC, Op_RegD, 60, D30->as_VMReg());reg_def R_D30x(SOC, SOC, Op_RegD,255, D30->as_VMReg()->next());reg_def R_D31 (SOC, SOC, Op_RegD, 62, D31->as_VMReg());reg_def R_D31x(SOC, SOC, Op_RegD,255, D31->as_VMReg()->next());// ----------------------------// Special Registers// Condition Codes Flag Registersreg_def APSR (SOC, SOC, Op_RegFlags, 0, VMRegImpl::Bad());reg_def FPSCR(SOC, SOC, Op_RegFlags, 0, VMRegImpl::Bad());// ----------------------------// Specify the enum values for the registers. These enums are only used by the// OptoReg "class". We can convert these enum values at will to VMReg when needed// for visibility to the rest of the vm. The order of this enum influences the// register allocator so having the freedom to set this order and not be stuck// with the order that is natural for the rest of the vm is worth it.// registers in that order so that R11/R12 is an aligned pair that can be used for longsalloc_class chunk0( R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R10, R_R13, R_R14, R_R15, R_R0, R_R1, R_R2, R_R3);// Note that a register is not allocatable unless it is also mentioned// in a widely-used reg_class below.alloc_class chunk1( R_S16, R_S17, R_S18, R_S19, R_S20, R_S21, R_S22, R_S23, R_S24, R_S25, R_S26, R_S27, R_S28, R_S29, R_S30, R_S31, R_S0, R_S1, R_S2, R_S3, R_S4, R_S5, R_S6, R_S7, R_S8, R_S9, R_S10, R_S11, R_S12, R_S13, R_S14, R_S15, R_D16, R_D16x,R_D17, R_D17x,R_D18, R_D18x,R_D19, R_D19x, R_D20, R_D20x,R_D21, R_D21x,R_D22, R_D22x,R_D23, R_D23x, R_D24, R_D24x,R_D25, R_D25x,R_D26, R_D26x,R_D27, R_D27x, R_D28, R_D28x,R_D29, R_D29x,R_D30, R_D30x,R_D31, R_D31x);alloc_class chunk2(APSR, FPSCR);//----------Architecture Description Register Classes--------------------------// Several register classes are automatically defined based upon information in// this architecture description.// 1) reg_class inline_cache_reg ( as defined in frame section )// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )//// ----------------------------// Integer Register Classes// ----------------------------// Exclusions from i_reg:// SP (R13), PC (R15)// R10: reserved by HotSpot to the TLS register (invariant within Java)reg_class int_reg(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R14);reg_class R0_regI(R_R0);reg_class R1_regI(R_R1);reg_class R2_regI(R_R2);reg_class R3_regI(R_R3);reg_class R12_regI(R_R12);// ----------------------------// Pointer Register Classes// ----------------------------reg_class ptr_reg(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R14);// Special class for storeP instructions, which can store SP or RPC to TLS.// It is also used for memory addressing, allowing direct TLS addressing.reg_class sp_ptr_reg(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R14, R_R10 /* TLS*/, R_R13 /* SP*/);#define R_Ricklass R_R8#define R_Rmethod R_R9#define R_Rthread R_R10#define R_Rexception_obj R_R4// Other special pointer regsreg_class R0_regP(R_R0);reg_class R1_regP(R_R1);reg_class R2_regP(R_R2);reg_class R4_regP(R_R4);reg_class Rexception_regP(R_Rexception_obj);reg_class Ricklass_regP(R_Ricklass);reg_class Rmethod_regP(R_Rmethod);reg_class Rthread_regP(R_Rthread);reg_class IP_regP(R_R12);reg_class LR_regP(R_R14);reg_class FP_regP(R_R11);// ----------------------------// Long Register Classes// ----------------------------reg_class long_reg ( R_R0,R_R1, R_R2,R_R3, R_R4,R_R5, R_R6,R_R7, R_R8,R_R9, R_R11,R_R12);// for ldrexd, strexd: first reg of pair must be evenreg_class long_reg_align ( R_R0,R_R1, R_R2,R_R3, R_R4,R_R5, R_R6,R_R7, R_R8,R_R9);reg_class R0R1_regL(R_R0,R_R1);reg_class R2R3_regL(R_R2,R_R3);// ----------------------------// Special Class for Condition Code Flags Registerreg_class int_flags(APSR);reg_class float_flags(FPSCR);// ----------------------------// Float Point Register Classes// ----------------------------// Skip S14/S15, they are reserved for mem-mem copiesreg_class sflt_reg(R_S0, R_S1, R_S2, R_S3, R_S4, R_S5, R_S6, R_S7, R_S8, R_S9, R_S10, R_S11, R_S12, R_S13, R_S16, R_S17, R_S18, R_S19, R_S20, R_S21, R_S22, R_S23, R_S24, R_S25, R_S26, R_S27, R_S28, R_S29, R_S30, R_S31);// Paired floating point registers--they show up in the same order as the floats,// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.reg_class dflt_reg(R_S0,R_S1, R_S2,R_S3, R_S4,R_S5, R_S6,R_S7, R_S8,R_S9, R_S10,R_S11, R_S12,R_S13, R_S16,R_S17, R_S18,R_S19, R_S20,R_S21, R_S22,R_S23, R_S24,R_S25, R_S26,R_S27, R_S28,R_S29, R_S30,R_S31, R_D16,R_D16x, R_D17,R_D17x, R_D18,R_D18x, R_D19,R_D19x, R_D20,R_D20x, R_D21,R_D21x, R_D22,R_D22x, R_D23,R_D23x, R_D24,R_D24x, R_D25,R_D25x, R_D26,R_D26x, R_D27,R_D27x, R_D28,R_D28x, R_D29,R_D29x, R_D30,R_D30x, R_D31,R_D31x);reg_class dflt_low_reg(R_S0,R_S1, R_S2,R_S3, R_S4,R_S5, R_S6,R_S7, R_S8,R_S9, R_S10,R_S11, R_S12,R_S13, R_S16,R_S17, R_S18,R_S19, R_S20,R_S21, R_S22,R_S23, R_S24,R_S25, R_S26,R_S27, R_S28,R_S29, R_S30,R_S31);reg_class actual_dflt_reg %{ if (VM_Version::has_vfp3_32()) { return DFLT_REG_mask(); } else { return DFLT_LOW_REG_mask(); }%}reg_class S0_regF(R_S0);reg_class D0_regD(R_S0,R_S1);reg_class D1_regD(R_S2,R_S3);reg_class D2_regD(R_S4,R_S5);reg_class D3_regD(R_S6,R_S7);reg_class D4_regD(R_S8,R_S9);reg_class D5_regD(R_S10,R_S11);reg_class D6_regD(R_S12,R_S13);reg_class D7_regD(R_S14,R_S15);reg_class D16_regD(R_D16,R_D16x);reg_class D17_regD(R_D17,R_D17x);reg_class D18_regD(R_D18,R_D18x);reg_class D19_regD(R_D19,R_D19x);reg_class D20_regD(R_D20,R_D20x);reg_class D21_regD(R_D21,R_D21x);reg_class D22_regD(R_D22,R_D22x);reg_class D23_regD(R_D23,R_D23x);reg_class D24_regD(R_D24,R_D24x);reg_class D25_regD(R_D25,R_D25x);reg_class D26_regD(R_D26,R_D26x);reg_class D27_regD(R_D27,R_D27x);reg_class D28_regD(R_D28,R_D28x);reg_class D29_regD(R_D29,R_D29x);reg_class D30_regD(R_D30,R_D30x);reg_class D31_regD(R_D31,R_D31x);reg_class vectorx_reg(R_S0,R_S1,R_S2,R_S3, R_S4,R_S5,R_S6,R_S7, R_S8,R_S9,R_S10,R_S11, /* skip S14/S15 */ R_S16,R_S17,R_S18,R_S19, R_S20,R_S21,R_S22,R_S23, R_S24,R_S25,R_S26,R_S27, R_S28,R_S29,R_S30,R_S31, R_D16,R_D16x,R_D17,R_D17x, R_D18,R_D18x,R_D19,R_D19x, R_D20,R_D20x,R_D21,R_D21x, R_D22,R_D22x,R_D23,R_D23x, R_D24,R_D24x,R_D25,R_D25x, R_D26,R_D26x,R_D27,R_D27x, R_D28,R_D28x,R_D29,R_D29x, R_D30,R_D30x,R_D31,R_D31x);%}source_hpp %{// FIXMEconst MachRegisterNumbers R_mem_copy_lo_num = R_S14_num;const MachRegisterNumbers R_mem_copy_hi_num = R_S15_num;const FloatRegister Rmemcopy = S14;const MachRegisterNumbers R_hf_ret_lo_num = R_S0_num;const MachRegisterNumbers R_hf_ret_hi_num = R_S1_num;const MachRegisterNumbers R_Ricklass_num = R_R8_num;const MachRegisterNumbers R_Rmethod_num = R_R9_num;#define LDR_DOUBLE "FLDD"#define LDR_FLOAT "FLDS"#define STR_DOUBLE "FSTD"#define STR_FLOAT "FSTS"#define LDR_64 "LDRD"#define STR_64 "STRD"#define LDR_32 "LDR"#define STR_32 "STR"#define MOV_DOUBLE "FCPYD"#define MOV_FLOAT "FCPYS"#define FMSR "FMSR"#define FMRS "FMRS"#define LDREX "ldrex "#define STREX "strex "#define str_64 strd#define ldr_64 ldrd#define ldr_32 ldr#define ldrex ldrex#define strex strexstatic inline bool is_memoryD(int offset) { return offset < 1024 && offset > -1024;}static inline bool is_memoryfp(int offset) { return offset < 1024 && offset > -1024;}static inline bool is_memoryI(int offset) { return offset < 4096 && offset > -4096;}static inline bool is_memoryP(int offset) { return offset < 4096 && offset > -4096;}static inline bool is_memoryHD(int offset) { return offset < 256 && offset > -256;}static inline bool is_aimm(int imm) { return AsmOperand::is_rotated_imm(imm);}static inline bool is_limmI(jint imm) { return AsmOperand::is_rotated_imm(imm);}static inline bool is_limmI_low(jint imm, int n) { int imml = imm & right_n_bits(n); return is_limmI(imml) || is_limmI(imm);}static inline int limmI_low(jint imm, int n) { int imml = imm & right_n_bits(n); return is_limmI(imml) ? imml : imm;}%}source %{// Given a register encoding, produce a Integer Register objectstatic Register reg_to_register_object(int register_encoding) { assert(R0->encoding() == R_R0_enc && R15->encoding() == R_R15_enc, "right coding"); return as_Register(register_encoding);}// Given a register encoding, produce a single-precision Float Register objectstatic FloatRegister reg_to_FloatRegister_object(int register_encoding) { assert(S0->encoding() == R_S0_enc && S31->encoding() == R_S31_enc, "right coding"); return as_FloatRegister(register_encoding);}void Compile::pd_compiler2_init() { // Umimplemented}// Location of compiled Java return values. Same as COptoRegPair c2::return_value(int ideal_reg) { assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );#ifndef __ABI_HARD__ static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, R_R0_num, R_R0_num, R_R0_num, R_R0_num, R_R0_num }; static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_R1_num, R_R1_num };#else static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, R_R0_num, R_R0_num, R_hf_ret_lo_num, R_hf_ret_lo_num, R_R0_num }; static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_hf_ret_hi_num, R_R1_num };#endif return OptoRegPair( hi[ideal_reg], lo[ideal_reg]);}// !!!!! Special hack to get all type of calls to specify the byte offset// from the start of the call to the point where the return address// will point.int MachCallStaticJavaNode::ret_addr_offset() { bool far = (_method == NULL) ? maybe_far_call(this) : !cache_reachable(); return ((far ? 3 : 1) + (_method_handle_invoke ? 1 : 0)) * NativeInstruction::instruction_size;}int MachCallDynamicJavaNode::ret_addr_offset() { bool far = !cache_reachable(); // mov_oop is always 2 words return (2 + (far ? 3 : 1)) * NativeInstruction::instruction_size; }int MachCallRuntimeNode::ret_addr_offset() { // bl or movw; movt; blx bool far = maybe_far_call(this); return (far ? 3 : 1) * NativeInstruction::instruction_size;}%}// The intptr_t operand types, defined by textual substitution.// (Cf. opto/type.hpp. This lets us avoid many, many other ifdefs.)#define immX immI#define immXRot immIRot#define iRegX iRegI#define aimmX aimmI#define limmX limmI#define immX10x2 immI10x2#define LShiftX LShiftI#define shimmX immU5// Compatibility interface#define aimmP immPRot#define immIMov immIRot#define store_RegL iRegL#define store_RegLd iRegLd#define store_RegI iRegI#define store_ptr_RegP iRegP//----------ATTRIBUTES---------------------------------------------------------//----------Operand Attributes-------------------------------------------------op_attrib op_cost(1); // Required cost attribute//----------OPERANDS-----------------------------------------------------------// Operand definitions must precede instruction definitions for correct parsing// in the ADLC because operands constitute user defined types which are used in// instruction definitions.//----------Simple Operands----------------------------------------------------// Immediate Operandsoperand immIRot() %{ predicate(AsmOperand::is_rotated_imm(n->get_int())); match(ConI); op_cost(0); // formats are generated automatically for constants and base registers format %{ %} interface(CONST_INTER);%}operand immIRotn() %{ predicate(n->get_int() != 0 && AsmOperand::is_rotated_imm(~n->get_int())); match(ConI); op_cost(0); // formats are generated automatically for constants and base registers format %{ %} interface(CONST_INTER);%}operand immIRotneg() %{ // if AsmOperand::is_rotated_imm() is true for this constant, it is // a immIRot and an optimal instruction combination exists to handle the // constant as an immIRot predicate(!AsmOperand::is_rotated_imm(n->get_int()) && AsmOperand::is_rotated_imm(-n->get_int())); match(ConI); op_cost(0); // formats are generated automatically for constants and base registers format %{ %} interface(CONST_INTER);%}// Non-negative integer immediate that is encodable using the rotation scheme,// and that when expanded fits in 31 bits.operand immU31Rot() %{ predicate((0 <= n->get_int()) && AsmOperand::is_rotated_imm(n->get_int())); match(ConI); op_cost(0); // formats are generated automatically for constants and base registers format %{ %} interface(CONST_INTER);%}operand immPRot() %{ predicate(n->get_ptr() == 0 || (AsmOperand::is_rotated_imm(n->get_ptr()) && ((ConPNode*)n)->type()->reloc() == relocInfo::none)); match(ConP); op_cost(0); // formats are generated automatically for constants and base registers format %{ %} interface(CONST_INTER);%}operand immLlowRot() %{ predicate(n->get_long() >> 32 == 0 && AsmOperand::is_rotated_imm((int)n->get_long())); match(ConL); op_cost(0); format %{ %} interface(CONST_INTER);%}operand immLRot2() %{ predicate(AsmOperand::is_rotated_imm((int)(n->get_long() >> 32)) && AsmOperand::is_rotated_imm((int)(n->get_long()))); match(ConL); op_cost(0); format %{ %} interface(CONST_INTER);%}// Integer Immediate: 12-bit - for addressing modeoperand immI12() %{ predicate((-4096 < n->get_int()) && (n->get_int() < 4096)); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER);%}// Integer Immediate: 10-bit disp and disp+4 - for addressing float pairoperand immI10x2() %{ predicate((-1024 < n->get_int()) && (n->get_int() < 1024 - 4)); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER);%}// Integer Immediate: 12-bit disp and disp+4 - for addressing word pairoperand immI12x2() %{ predicate((-4096 < n->get_int()) && (n->get_int() < 4096 - 4)); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER);%}