6667610: (Escape Analysis) retry compilation without EA if it fails
Summary: During split unique types EA could exceed nodes limit and fail the method compilation.
Reviewed-by: rasbold
/*
* Copyright 2001-2005 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
class AllocationStats VALUE_OBJ_CLASS_SPEC {
// A duration threshold (in ms) used to filter
// possibly unreliable samples.
static float _threshold;
// We measure the demand between the end of the previous sweep and
// beginning of this sweep:
// Count(end_last_sweep) - Count(start_this_sweep)
// + splitBirths(between) - splitDeaths(between)
// The above number divided by the time since the start [END???] of the
// previous sweep gives us a time rate of demand for blocks
// of this size. We compute a padded average of this rate as
// our current estimate for the time rate of demand for blocks
// of this size. Similarly, we keep a padded average for the time
// between sweeps. Our current estimate for demand for blocks of
// this size is then simply computed as the product of these two
// estimates.
AdaptivePaddedAverage _demand_rate_estimate;
ssize_t _desired; // Estimate computed as described above
ssize_t _coalDesired; // desired +/- small-percent for tuning coalescing
ssize_t _surplus; // count - (desired +/- small-percent),
// used to tune splitting in best fit
ssize_t _bfrSurp; // surplus at start of current sweep
ssize_t _prevSweep; // count from end of previous sweep
ssize_t _beforeSweep; // count from before current sweep
ssize_t _coalBirths; // additional chunks from coalescing
ssize_t _coalDeaths; // loss from coalescing
ssize_t _splitBirths; // additional chunks from splitting
ssize_t _splitDeaths; // loss from splitting
size_t _returnedBytes; // number of bytes returned to list.
public:
void initialize() {
AdaptivePaddedAverage* dummy =
new (&_demand_rate_estimate) AdaptivePaddedAverage(CMS_FLSWeight,
CMS_FLSPadding);
_desired = 0;
_coalDesired = 0;
_surplus = 0;
_bfrSurp = 0;
_prevSweep = 0;
_beforeSweep = 0;
_coalBirths = 0;
_coalDeaths = 0;
_splitBirths = 0;
_splitDeaths = 0;
_returnedBytes = 0;
}
AllocationStats() {
initialize();
}
// The rate estimate is in blocks per second.
void compute_desired(size_t count,
float inter_sweep_current,
float inter_sweep_estimate) {
// If the latest inter-sweep time is below our granularity
// of measurement, we may call in here with
// inter_sweep_current == 0. However, even for suitably small
// but non-zero inter-sweep durations, we may not trust the accuracy
// of accumulated data, since it has not been "integrated"
// (read "low-pass-filtered") long enough, and would be
// vulnerable to noisy glitches. In such cases, we
// ignore the current sample and use currently available
// historical estimates.
if (inter_sweep_current > _threshold) {
ssize_t demand = prevSweep() - count + splitBirths() - splitDeaths();
float rate = ((float)demand)/inter_sweep_current;
_demand_rate_estimate.sample(rate);
_desired = (ssize_t)(_demand_rate_estimate.padded_average()
*inter_sweep_estimate);
}
}
ssize_t desired() const { return _desired; }
ssize_t coalDesired() const { return _coalDesired; }
void set_coalDesired(ssize_t v) { _coalDesired = v; }
ssize_t surplus() const { return _surplus; }
void set_surplus(ssize_t v) { _surplus = v; }
void increment_surplus() { _surplus++; }
void decrement_surplus() { _surplus--; }
ssize_t bfrSurp() const { return _bfrSurp; }
void set_bfrSurp(ssize_t v) { _bfrSurp = v; }
ssize_t prevSweep() const { return _prevSweep; }
void set_prevSweep(ssize_t v) { _prevSweep = v; }
ssize_t beforeSweep() const { return _beforeSweep; }
void set_beforeSweep(ssize_t v) { _beforeSweep = v; }
ssize_t coalBirths() const { return _coalBirths; }
void set_coalBirths(ssize_t v) { _coalBirths = v; }
void increment_coalBirths() { _coalBirths++; }
ssize_t coalDeaths() const { return _coalDeaths; }
void set_coalDeaths(ssize_t v) { _coalDeaths = v; }
void increment_coalDeaths() { _coalDeaths++; }
ssize_t splitBirths() const { return _splitBirths; }
void set_splitBirths(ssize_t v) { _splitBirths = v; }
void increment_splitBirths() { _splitBirths++; }
ssize_t splitDeaths() const { return _splitDeaths; }
void set_splitDeaths(ssize_t v) { _splitDeaths = v; }
void increment_splitDeaths() { _splitDeaths++; }
NOT_PRODUCT(
size_t returnedBytes() const { return _returnedBytes; }
void set_returnedBytes(size_t v) { _returnedBytes = v; }
)
};