7127706: G1: re-enable survivors during the initial-mark pause
Summary: Re-enable survivors during the initial-mark pause. Afterwards, the concurrent marking threads have to scan them and mark everything reachable from them. The next GC will have to wait for the survivors to be scanned.
Reviewed-by: brutisso, johnc
/*
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/heapRegionSets.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "memory/allocation.hpp"
// Private
size_t HeapRegionSeq::find_contiguous_from(size_t from, size_t num) {
size_t len = length();
assert(num > 1, "use this only for sequences of length 2 or greater");
assert(from <= len,
err_msg("from: "SIZE_FORMAT" should be valid and <= than "SIZE_FORMAT,
from, len));
size_t curr = from;
size_t first = G1_NULL_HRS_INDEX;
size_t num_so_far = 0;
while (curr < len && num_so_far < num) {
if (at(curr)->is_empty()) {
if (first == G1_NULL_HRS_INDEX) {
first = curr;
num_so_far = 1;
} else {
num_so_far += 1;
}
} else {
first = G1_NULL_HRS_INDEX;
num_so_far = 0;
}
curr += 1;
}
assert(num_so_far <= num, "post-condition");
if (num_so_far == num) {
// we found enough space for the humongous object
assert(from <= first && first < len, "post-condition");
assert(first < curr && (curr - first) == num, "post-condition");
for (size_t i = first; i < first + num; ++i) {
assert(at(i)->is_empty(), "post-condition");
}
return first;
} else {
// we failed to find enough space for the humongous object
return G1_NULL_HRS_INDEX;
}
}
// Public
void HeapRegionSeq::initialize(HeapWord* bottom, HeapWord* end,
size_t max_length) {
assert((size_t) bottom % HeapRegion::GrainBytes == 0,
"bottom should be heap region aligned");
assert((size_t) end % HeapRegion::GrainBytes == 0,
"end should be heap region aligned");
_length = 0;
_heap_bottom = bottom;
_heap_end = end;
_region_shift = HeapRegion::LogOfHRGrainBytes;
_next_search_index = 0;
_allocated_length = 0;
_max_length = max_length;
_regions = NEW_C_HEAP_ARRAY(HeapRegion*, max_length);
memset(_regions, 0, max_length * sizeof(HeapRegion*));
_regions_biased = _regions - ((size_t) bottom >> _region_shift);
assert(&_regions[0] == &_regions_biased[addr_to_index_biased(bottom)],
"bottom should be included in the region with index 0");
}
MemRegion HeapRegionSeq::expand_by(HeapWord* old_end,
HeapWord* new_end,
FreeRegionList* list) {
assert(old_end < new_end, "don't call it otherwise");
G1CollectedHeap* g1h = G1CollectedHeap::heap();
HeapWord* next_bottom = old_end;
assert(_heap_bottom <= next_bottom, "invariant");
while (next_bottom < new_end) {
assert(next_bottom < _heap_end, "invariant");
size_t index = length();
assert(index < _max_length, "otherwise we cannot expand further");
if (index == 0) {
// We have not allocated any regions so far
assert(next_bottom == _heap_bottom, "invariant");
} else {
// next_bottom should match the end of the last/previous region
assert(next_bottom == at(index - 1)->end(), "invariant");
}
if (index == _allocated_length) {
// We have to allocate a new HeapRegion.
HeapRegion* new_hr = g1h->new_heap_region(index, next_bottom);
if (new_hr == NULL) {
// allocation failed, we bail out and return what we have done so far
return MemRegion(old_end, next_bottom);
}
assert(_regions[index] == NULL, "invariant");
_regions[index] = new_hr;
increment_length(&_allocated_length);
}
// Have to increment the length first, otherwise we will get an
// assert failure at(index) below.
increment_length(&_length);
HeapRegion* hr = at(index);
list->add_as_tail(hr);
next_bottom = hr->end();
}
assert(next_bottom == new_end, "post-condition");
return MemRegion(old_end, next_bottom);
}
size_t HeapRegionSeq::free_suffix() {
size_t res = 0;
size_t index = length();
while (index > 0) {
index -= 1;
if (!at(index)->is_empty()) {
break;
}
res += 1;
}
return res;
}
size_t HeapRegionSeq::find_contiguous(size_t num) {
assert(num > 1, "use this only for sequences of length 2 or greater");
assert(_next_search_index <= length(),
err_msg("_next_search_indeex: "SIZE_FORMAT" "
"should be valid and <= than "SIZE_FORMAT,
_next_search_index, length()));
size_t start = _next_search_index;
size_t res = find_contiguous_from(start, num);
if (res == G1_NULL_HRS_INDEX && start > 0) {
// Try starting from the beginning. If _next_search_index was 0,
// no point in doing this again.
res = find_contiguous_from(0, num);
}
if (res != G1_NULL_HRS_INDEX) {
assert(res < length(),
err_msg("res: "SIZE_FORMAT" should be valid", res));
_next_search_index = res + num;
assert(_next_search_index <= length(),
err_msg("_next_search_indeex: "SIZE_FORMAT" "
"should be valid and <= than "SIZE_FORMAT,
_next_search_index, length()));
}
return res;
}
void HeapRegionSeq::iterate(HeapRegionClosure* blk) const {
iterate_from((HeapRegion*) NULL, blk);
}
void HeapRegionSeq::iterate_from(HeapRegion* hr, HeapRegionClosure* blk) const {
size_t hr_index = 0;
if (hr != NULL) {
hr_index = (size_t) hr->hrs_index();
}
size_t len = length();
for (size_t i = hr_index; i < len; i += 1) {
bool res = blk->doHeapRegion(at(i));
if (res) {
blk->incomplete();
return;
}
}
for (size_t i = 0; i < hr_index; i += 1) {
bool res = blk->doHeapRegion(at(i));
if (res) {
blk->incomplete();
return;
}
}
}
MemRegion HeapRegionSeq::shrink_by(size_t shrink_bytes,
size_t* num_regions_deleted) {
// Reset this in case it's currently pointing into the regions that
// we just removed.
_next_search_index = 0;
assert(shrink_bytes % os::vm_page_size() == 0, "unaligned");
assert(shrink_bytes % HeapRegion::GrainBytes == 0, "unaligned");
assert(length() > 0, "the region sequence should not be empty");
assert(length() <= _allocated_length, "invariant");
assert(_allocated_length > 0, "we should have at least one region committed");
// around the loop, i will be the next region to be removed
size_t i = length() - 1;
assert(i > 0, "we should never remove all regions");
// [last_start, end) is the MemRegion that covers the regions we will remove.
HeapWord* end = at(i)->end();
HeapWord* last_start = end;
*num_regions_deleted = 0;
while (shrink_bytes > 0) {
HeapRegion* cur = at(i);
// We should leave the humongous regions where they are.
if (cur->isHumongous()) break;
// We should stop shrinking if we come across a non-empty region.
if (!cur->is_empty()) break;
i -= 1;
*num_regions_deleted += 1;
shrink_bytes -= cur->capacity();
last_start = cur->bottom();
decrement_length(&_length);
// We will reclaim the HeapRegion. _allocated_length should be
// covering this index. So, even though we removed the region from
// the active set by decreasing _length, we still have it
// available in the future if we need to re-use it.
assert(i > 0, "we should never remove all regions");
assert(length() > 0, "we should never remove all regions");
}
return MemRegion(last_start, end);
}
#ifndef PRODUCT
void HeapRegionSeq::verify_optional() {
guarantee(_length <= _allocated_length,
err_msg("invariant: _length: "SIZE_FORMAT" "
"_allocated_length: "SIZE_FORMAT,
_length, _allocated_length));
guarantee(_allocated_length <= _max_length,
err_msg("invariant: _allocated_length: "SIZE_FORMAT" "
"_max_length: "SIZE_FORMAT,
_allocated_length, _max_length));
guarantee(_next_search_index <= _length,
err_msg("invariant: _next_search_index: "SIZE_FORMAT" "
"_length: "SIZE_FORMAT,
_next_search_index, _length));
HeapWord* prev_end = _heap_bottom;
for (size_t i = 0; i < _allocated_length; i += 1) {
HeapRegion* hr = _regions[i];
guarantee(hr != NULL, err_msg("invariant: i: "SIZE_FORMAT, i));
guarantee(hr->bottom() == prev_end,
err_msg("invariant i: "SIZE_FORMAT" "HR_FORMAT" "
"prev_end: "PTR_FORMAT,
i, HR_FORMAT_PARAMS(hr), prev_end));
guarantee(hr->hrs_index() == i,
err_msg("invariant: i: "SIZE_FORMAT" hrs_index(): "SIZE_FORMAT,
i, hr->hrs_index()));
if (i < _length) {
// Asserts will fire if i is >= _length
HeapWord* addr = hr->bottom();
guarantee(addr_to_region(addr) == hr, "sanity");
guarantee(addr_to_region_unsafe(addr) == hr, "sanity");
} else {
guarantee(hr->is_empty(), "sanity");
guarantee(!hr->isHumongous(), "sanity");
// using assert instead of guarantee here since containing_set()
// is only available in non-product builds.
assert(hr->containing_set() == NULL, "sanity");
}
if (hr->startsHumongous()) {
prev_end = hr->orig_end();
} else {
prev_end = hr->end();
}
}
for (size_t i = _allocated_length; i < _max_length; i += 1) {
guarantee(_regions[i] == NULL, err_msg("invariant i: "SIZE_FORMAT, i));
}
}
#endif // PRODUCT