6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell
/*
* Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_interp_masm_x86_64.cpp.incl"
// Implementation of InterpreterMacroAssembler
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
int number_of_arguments) {
// interpreter specific
//
// Note: No need to save/restore bcp & locals (r13 & r14) pointer
// since these are callee saved registers and no blocking/
// GC can happen in leaf calls.
#ifdef ASSERT
save_bcp();
{
Label L;
cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD);
jcc(Assembler::equal, L);
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
" last_sp != NULL");
bind(L);
}
#endif
// super call
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
// interpreter specific
#ifdef ASSERT
{
Label L;
cmpq(r13, Address(rbp, frame::interpreter_frame_bcx_offset * wordSize));
jcc(Assembler::equal, L);
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
" r13 not callee saved?");
bind(L);
}
{
Label L;
cmpq(r14, Address(rbp, frame::interpreter_frame_locals_offset * wordSize));
jcc(Assembler::equal, L);
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
" r14 not callee saved?");
bind(L);
}
#endif
}
void InterpreterMacroAssembler::call_VM_base(Register oop_result,
Register java_thread,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions) {
// interpreter specific
//
// Note: Could avoid restoring locals ptr (callee saved) - however doesn't
// really make a difference for these runtime calls, since they are
// slow anyway. Btw., bcp must be saved/restored since it may change
// due to GC.
// assert(java_thread == noreg , "not expecting a precomputed java thread");
save_bcp();
#ifdef ASSERT
{
Label L;
cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD);
jcc(Assembler::equal, L);
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
" last_sp != NULL");
bind(L);
}
#endif /* ASSERT */
// super call
MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
entry_point, number_of_arguments,
check_exceptions);
// interpreter specific
restore_bcp();
restore_locals();
}
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
if (JvmtiExport::can_pop_frame()) {
Label L;
// Initiate popframe handling only if it is not already being
// processed. If the flag has the popframe_processing bit set, it
// means that this code is called *during* popframe handling - we
// don't want to reenter.
// This method is only called just after the call into the vm in
// call_VM_base, so the arg registers are available.
movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
testl(c_rarg0, JavaThread::popframe_pending_bit);
jcc(Assembler::zero, L);
testl(c_rarg0, JavaThread::popframe_processing_bit);
jcc(Assembler::notZero, L);
// Call Interpreter::remove_activation_preserving_args_entry() to get the
// address of the same-named entrypoint in the generated interpreter code.
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
jmp(rax);
bind(L);
}
}
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
movq(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
switch (state) {
case atos: movq(rax, oop_addr);
movptr(oop_addr, NULL_WORD);
verify_oop(rax, state); break;
case ltos: movq(rax, val_addr); break;
case btos: // fall through
case ctos: // fall through
case stos: // fall through
case itos: movl(rax, val_addr); break;
case ftos: movflt(xmm0, val_addr); break;
case dtos: movdbl(xmm0, val_addr); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
// Clean up tos value in the thread object
movl(tos_addr, (int) ilgl);
movl(val_addr, (int) NULL_WORD);
}
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
if (JvmtiExport::can_force_early_return()) {
Label L;
movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
testq(c_rarg0, c_rarg0);
jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
// Initiate earlyret handling only if it is not already being processed.
// If the flag has the earlyret_processing bit set, it means that this code
// is called *during* earlyret handling - we don't want to reenter.
movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
jcc(Assembler::notEqual, L);
// Call Interpreter::remove_activation_early_entry() to get the address of the
// same-named entrypoint in the generated interpreter code.
movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
jmp(rax);
bind(L);
}
}
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
Register reg,
int bcp_offset) {
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
movl(reg, Address(r13, bcp_offset));
bswapl(reg);
shrl(reg, 16);
}
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
Register index,
int bcp_offset) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
assert(cache != index, "must use different registers");
load_unsigned_word(index, Address(r13, bcp_offset));
movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
// convert from field index to ConstantPoolCacheEntry index
shll(index, 2);
}
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
Register tmp,
int bcp_offset) {
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
assert(cache != tmp, "must use different register");
load_unsigned_word(tmp, Address(r13, bcp_offset));
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
// convert from field index to ConstantPoolCacheEntry index
// and from word offset to byte offset
shll(tmp, 2 + LogBytesPerWord);
movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
// skip past the header
addq(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
addq(cache, tmp); // construct pointer to cache entry
}
// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
// subtype of super_klass.
//
// Args:
// rax: superklass
// Rsub_klass: subklass
//
// Kills:
// rcx, rdi
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
Label& ok_is_subtype) {
assert(Rsub_klass != rax, "rax holds superklass");
assert(Rsub_klass != r14, "r14 holds locals");
assert(Rsub_klass != r13, "r13 holds bcp");
assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
Label not_subtype, not_subtype_pop, loop;
// Profile the not-null value's klass.
profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
// Load the super-klass's check offset into rcx
movl(rcx, Address(rax, sizeof(oopDesc) +
Klass::super_check_offset_offset_in_bytes()));
// Load from the sub-klass's super-class display list, or a 1-word
// cache of the secondary superclass list, or a failing value with a
// sentinel offset if the super-klass is an interface or
// exceptionally deep in the Java hierarchy and we have to scan the
// secondary superclass list the hard way. See if we get an
// immediate positive hit
cmpq(rax, Address(Rsub_klass, rcx, Address::times_1));
jcc(Assembler::equal,ok_is_subtype);
// Check for immediate negative hit
cmpl(rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
jcc( Assembler::notEqual, not_subtype );
// Check for self
cmpq(Rsub_klass, rax);
jcc(Assembler::equal, ok_is_subtype);
// Now do a linear scan of the secondary super-klass chain.
movq(rdi, Address(Rsub_klass, sizeof(oopDesc) +
Klass::secondary_supers_offset_in_bytes()));
// rdi holds the objArrayOop of secondary supers.
// Load the array length
movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
// Skip to start of data; also clear Z flag incase rcx is zero
addq(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
// Scan rcx words at [rdi] for occurance of rax
// Set NZ/Z based on last compare
// this part is kind tricky, as values in supers array could be 32 or 64 bit wide
// and we store values in objArrays always encoded, thus we need to encode value
// before repne
if (UseCompressedOops) {
pushq(rax);
encode_heap_oop(rax);
repne_scanl();
// Not equal?
jcc(Assembler::notEqual, not_subtype_pop);
// restore heap oop here for movq
popq(rax);
} else {
repne_scanq();
jcc(Assembler::notEqual, not_subtype);
}
// Must be equal but missed in cache. Update cache.
movq(Address(Rsub_klass, sizeof(oopDesc) +
Klass::secondary_super_cache_offset_in_bytes()), rax);
jmp(ok_is_subtype);
bind(not_subtype_pop);
// restore heap oop here for miss
if (UseCompressedOops) popq(rax);
bind(not_subtype);
profile_typecheck_failed(rcx); // blows rcx
}
// Java Expression Stack
#ifdef ASSERT
// Verifies that the stack tag matches. Must be called before the stack
// value is popped off the stack.
void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
if (TaggedStackInterpreter) {
frame::Tag tag = t;
if (t == frame::TagCategory2) {
tag = frame::TagValue;
Label hokay;
cmpq(Address(rsp, 3*wordSize), (int)tag);
jcc(Assembler::equal, hokay);
stop("Java Expression stack tag high value is bad");
bind(hokay);
}
Label okay;
cmpq(Address(rsp, wordSize), (int)tag);
jcc(Assembler::equal, okay);
// Also compare if the stack value is zero, then the tag might
// not have been set coming from deopt.
cmpq(Address(rsp, 0), 0);
jcc(Assembler::equal, okay);
stop("Java Expression stack tag value is bad");
bind(okay);
}
}
#endif // ASSERT
void InterpreterMacroAssembler::pop_ptr(Register r) {
debug_only(verify_stack_tag(frame::TagReference));
popq(r);
if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
}
void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
popq(r);
if (TaggedStackInterpreter) popq(tag);
}
void InterpreterMacroAssembler::pop_i(Register r) {
// XXX can't use popq currently, upper half non clean
debug_only(verify_stack_tag(frame::TagValue));
movl(r, Address(rsp, 0));
addq(rsp, wordSize);
if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
}
void InterpreterMacroAssembler::pop_l(Register r) {
debug_only(verify_stack_tag(frame::TagCategory2));
movq(r, Address(rsp, 0));
addq(rsp, 2 * Interpreter::stackElementSize());
}
void InterpreterMacroAssembler::pop_f(XMMRegister r) {
debug_only(verify_stack_tag(frame::TagValue));
movflt(r, Address(rsp, 0));
addq(rsp, wordSize);
if (TaggedStackInterpreter) addq(rsp, 1 * wordSize);
}
void InterpreterMacroAssembler::pop_d(XMMRegister r) {
debug_only(verify_stack_tag(frame::TagCategory2));
movdbl(r, Address(rsp, 0));
addq(rsp, 2 * Interpreter::stackElementSize());
}
void InterpreterMacroAssembler::push_ptr(Register r) {
if (TaggedStackInterpreter) pushq(frame::TagReference);
pushq(r);
}
void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
if (TaggedStackInterpreter) pushq(tag);
pushq(r);
}
void InterpreterMacroAssembler::push_i(Register r) {
if (TaggedStackInterpreter) pushq(frame::TagValue);
pushq(r);
}
void InterpreterMacroAssembler::push_l(Register r) {
if (TaggedStackInterpreter) {
pushq(frame::TagValue);
subq(rsp, 1 * wordSize);
pushq(frame::TagValue);
subq(rsp, 1 * wordSize);
} else {
subq(rsp, 2 * wordSize);
}
movq(Address(rsp, 0), r);
}
void InterpreterMacroAssembler::push_f(XMMRegister r) {
if (TaggedStackInterpreter) pushq(frame::TagValue);
subq(rsp, wordSize);
movflt(Address(rsp, 0), r);
}
void InterpreterMacroAssembler::push_d(XMMRegister r) {
if (TaggedStackInterpreter) {
pushq(frame::TagValue);
subq(rsp, 1 * wordSize);
pushq(frame::TagValue);
subq(rsp, 1 * wordSize);
} else {
subq(rsp, 2 * wordSize);
}
movdbl(Address(rsp, 0), r);
}
void InterpreterMacroAssembler::pop(TosState state) {
switch (state) {
case atos: pop_ptr(); break;
case btos:
case ctos:
case stos:
case itos: pop_i(); break;
case ltos: pop_l(); break;
case ftos: pop_f(); break;
case dtos: pop_d(); break;
case vtos: /* nothing to do */ break;
default: ShouldNotReachHere();
}
verify_oop(rax, state);
}
void InterpreterMacroAssembler::push(TosState state) {
verify_oop(rax, state);
switch (state) {
case atos: push_ptr(); break;
case btos:
case ctos:
case stos:
case itos: push_i(); break;
case ltos: push_l(); break;
case ftos: push_f(); break;
case dtos: push_d(); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
}
// Tagged stack helpers for swap and dup
void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
Register tag) {
movq(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
if (TaggedStackInterpreter) {
movq(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
}
}
void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
Register tag) {
movq(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
if (TaggedStackInterpreter) {
movq(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
}
}
// Tagged local support
void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
if (TaggedStackInterpreter) {
if (tag == frame::TagCategory2) {
mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
(intptr_t)frame::TagValue);
mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
(intptr_t)frame::TagValue);
} else {
mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (intptr_t)tag);
}
}
}
void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
if (TaggedStackInterpreter) {
if (tag == frame::TagCategory2) {
mov64(Address(r14, idx, Address::times_8,
Interpreter::local_tag_offset_in_bytes(1)), (intptr_t)frame::TagValue);
mov64(Address(r14, idx, Address::times_8,
Interpreter::local_tag_offset_in_bytes(0)), (intptr_t)frame::TagValue);
} else {
mov64(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
(intptr_t)tag);
}
}
}
void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
if (TaggedStackInterpreter) {
// can only be TagValue or TagReference
movq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
}
}
void InterpreterMacroAssembler::tag_local(Register tag, int n) {
if (TaggedStackInterpreter) {
// can only be TagValue or TagReference
movq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
}
}
#ifdef ASSERT
void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
if (TaggedStackInterpreter) {
frame::Tag t = tag;
if (tag == frame::TagCategory2) {
Label nbl;
t = frame::TagValue; // change to what is stored in locals
cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int)t);
jcc(Assembler::equal, nbl);
stop("Local tag is bad for long/double");
bind(nbl);
}
Label notBad;
cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int)t);
jcc(Assembler::equal, notBad);
// Also compare if the local value is zero, then the tag might
// not have been set coming from deopt.
cmpq(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
jcc(Assembler::equal, notBad);
stop("Local tag is bad");
bind(notBad);
}
}
void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
if (TaggedStackInterpreter) {
frame::Tag t = tag;
if (tag == frame::TagCategory2) {
Label nbl;
t = frame::TagValue; // change to what is stored in locals
cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int)t);
jcc(Assembler::equal, nbl);
stop("Local tag is bad for long/double");
bind(nbl);
}
Label notBad;
cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int)t);
jcc(Assembler::equal, notBad);
// Also compare if the local value is zero, then the tag might
// not have been set coming from deopt.
cmpq(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
jcc(Assembler::equal, notBad);
stop("Local tag is bad");
bind(notBad);
}
}
#endif // ASSERT
void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
MacroAssembler::call_VM_leaf_base(entry_point, 0);
}
void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
Register arg_1) {
if (c_rarg0 != arg_1) {
movq(c_rarg0, arg_1);
}
MacroAssembler::call_VM_leaf_base(entry_point, 1);
}
void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
Register arg_1,
Register arg_2) {
assert(c_rarg0 != arg_2, "smashed argument");
assert(c_rarg1 != arg_1, "smashed argument");
if (c_rarg0 != arg_1) {
movq(c_rarg0, arg_1);
}
if (c_rarg1 != arg_2) {
movq(c_rarg1, arg_2);
}
MacroAssembler::call_VM_leaf_base(entry_point, 2);
}
void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
Register arg_1,
Register arg_2,
Register arg_3) {
assert(c_rarg0 != arg_2, "smashed argument");
assert(c_rarg0 != arg_3, "smashed argument");
assert(c_rarg1 != arg_1, "smashed argument");
assert(c_rarg1 != arg_3, "smashed argument");
assert(c_rarg2 != arg_1, "smashed argument");
assert(c_rarg2 != arg_2, "smashed argument");
if (c_rarg0 != arg_1) {
movq(c_rarg0, arg_1);
}
if (c_rarg1 != arg_2) {
movq(c_rarg1, arg_2);
}
if (c_rarg2 != arg_3) {
movq(c_rarg2, arg_3);
}
MacroAssembler::call_VM_leaf_base(entry_point, 3);
}
// Jump to from_interpreted entry of a call unless single stepping is possible
// in this thread in which case we must call the i2i entry
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
// set sender sp
leaq(r13, Address(rsp, wordSize));
// record last_sp
movq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
if (JvmtiExport::can_post_interpreter_events()) {
Label run_compiled_code;
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
get_thread(temp);
// interp_only is an int, on little endian it is sufficient to test the byte only
// Is a cmpl faster (ce
cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
jcc(Assembler::zero, run_compiled_code);
jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
bind(run_compiled_code);
}
jmp(Address(method, methodOopDesc::from_interpreted_offset()));
}
// The following two routines provide a hook so that an implementation
// can schedule the dispatch in two parts. amd64 does not do this.
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
// Nothing amd64 specific to be done here
}
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
dispatch_next(state, step);
}
void InterpreterMacroAssembler::dispatch_base(TosState state,
address* table,
bool verifyoop) {
verify_FPU(1, state);
if (VerifyActivationFrameSize) {
Label L;
movq(rcx, rbp);
subq(rcx, rsp);
int min_frame_size =
(frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
wordSize;
cmpq(rcx, min_frame_size);
jcc(Assembler::greaterEqual, L);
stop("broken stack frame");
bind(L);
}
if (verifyoop) {
verify_oop(rax, state);
}
lea(rscratch1, ExternalAddress((address)table));
jmp(Address(rscratch1, rbx, Address::times_8));
}
void InterpreterMacroAssembler::dispatch_only(TosState state) {
dispatch_base(state, Interpreter::dispatch_table(state));
}
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
dispatch_base(state, Interpreter::normal_table(state));
}
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
dispatch_base(state, Interpreter::normal_table(state), false);
}
void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
// load next bytecode (load before advancing r13 to prevent AGI)
load_unsigned_byte(rbx, Address(r13, step));
// advance r13
incrementq(r13, step);
dispatch_base(state, Interpreter::dispatch_table(state));
}
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
// load current bytecode
load_unsigned_byte(rbx, Address(r13, 0));
dispatch_base(state, table);
}
// remove activation
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from syncronized blocks.
// Remove the activation from the stack.
//
// If there are locked Java monitors
// If throw_monitor_exception
// throws IllegalMonitorStateException
// Else if install_monitor_exception
// installs IllegalMonitorStateException
// Else
// no error processing
void InterpreterMacroAssembler::remove_activation(
TosState state,
Register ret_addr,
bool throw_monitor_exception,
bool install_monitor_exception,
bool notify_jvmdi) {
// Note: Registers rdx xmm0 may be in use for the
// result check if synchronized method
Label unlocked, unlock, no_unlock;
// get the value of _do_not_unlock_if_synchronized into rdx
const Address do_not_unlock_if_synchronized(r15_thread,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
movbool(rdx, do_not_unlock_if_synchronized);
movbool(do_not_unlock_if_synchronized, false); // reset the flag
// get method access flags
movq(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
testl(rcx, JVM_ACC_SYNCHRONIZED);
jcc(Assembler::zero, unlocked);
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
// is set.
testbool(rdx);
jcc(Assembler::notZero, no_unlock);
// unlock monitor
push(state); // save result
// BasicObjectLock will be first in list, since this is a
// synchronized method. However, need to check that the object has
// not been unlocked by an explicit monitorexit bytecode.
const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
wordSize - (int) sizeof(BasicObjectLock));
// We use c_rarg1 so that if we go slow path it will be the correct
// register for unlock_object to pass to VM directly
leaq(c_rarg1, monitor); // address of first monitor
movq(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
testq(rax, rax);
jcc(Assembler::notZero, unlock);
pop(state);
if (throw_monitor_exception) {
// Entry already unlocked, need to throw exception
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Monitor already unlocked during a stack unroll. If requested,
// install an illegal_monitor_state_exception. Continue with
// stack unrolling.
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::new_illegal_monitor_state_exception));
}
jmp(unlocked);
}
bind(unlock);
unlock_object(c_rarg1);
pop(state);
// Check that for block-structured locking (i.e., that all locked
// objects has been unlocked)
bind(unlocked);
// rax: Might contain return value
// Check that all monitors are unlocked
{
Label loop, exception, entry, restart;
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
const Address monitor_block_top(
rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
const Address monitor_block_bot(
rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
bind(restart);
// We use c_rarg1 so that if we go slow path it will be the correct
// register for unlock_object to pass to VM directly
movq(c_rarg1, monitor_block_top); // points to current entry, starting
// with top-most entry
leaq(rbx, monitor_block_bot); // points to word before bottom of
// monitor block
jmp(entry);
// Entry already locked, need to throw exception
bind(exception);
if (throw_monitor_exception) {
// Throw exception
MacroAssembler::call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::
throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Stack unrolling. Unlock object and install illegal_monitor_exception.
// Unlock does not block, so don't have to worry about the frame.
// We don't have to preserve c_rarg1 since we are going to throw an exception.
push(state);
unlock_object(c_rarg1);
pop(state);
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::
new_illegal_monitor_state_exception));
}
jmp(restart);
}
bind(loop);
// check if current entry is used
cmpq(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int) NULL);
jcc(Assembler::notEqual, exception);
addq(c_rarg1, entry_size); // otherwise advance to next entry
bind(entry);
cmpq(c_rarg1, rbx); // check if bottom reached
jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
}
bind(no_unlock);
// jvmti support
if (notify_jvmdi) {
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
} else {
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
}
// remove activation
// get sender sp
movq(rbx,
Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
leave(); // remove frame anchor
popq(ret_addr); // get return address
movq(rsp, rbx); // set sp to sender sp
}
// Lock object
//
// Args:
// c_rarg1: BasicObjectLock to be used for locking
//
// Kills:
// rax
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
// rscratch1, rscratch2 (scratch regs)
void InterpreterMacroAssembler::lock_object(Register lock_reg) {
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
if (UseHeavyMonitors) {
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
lock_reg);
} else {
Label done;
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
const Register obj_reg = c_rarg3; // Will contain the oop
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
const int mark_offset = lock_offset +
BasicLock::displaced_header_offset_in_bytes();
Label slow_case;
// Load object pointer into obj_reg %c_rarg3
movq(obj_reg, Address(lock_reg, obj_offset));
if (UseBiasedLocking) {
biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
}
// Load immediate 1 into swap_reg %rax
movl(swap_reg, 1);
// Load (object->mark() | 1) into swap_reg %rax
orq(swap_reg, Address(obj_reg, 0));
// Save (object->mark() | 1) into BasicLock's displaced header
movq(Address(lock_reg, mark_offset), swap_reg);
assert(lock_offset == 0,
"displached header must be first word in BasicObjectLock");
if (os::is_MP()) lock();
cmpxchgq(lock_reg, Address(obj_reg, 0));
if (PrintBiasedLockingStatistics) {
cond_inc32(Assembler::zero,
ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
}
jcc(Assembler::zero, done);
// Test if the oopMark is an obvious stack pointer, i.e.,
// 1) (mark & 7) == 0, and
// 2) rsp <= mark < mark + os::pagesize()
//
// These 3 tests can be done by evaluating the following
// expression: ((mark - rsp) & (7 - os::vm_page_size())),
// assuming both stack pointer and pagesize have their
// least significant 3 bits clear.
// NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
subq(swap_reg, rsp);
andq(swap_reg, 7 - os::vm_page_size());
// Save the test result, for recursive case, the result is zero
movq(Address(lock_reg, mark_offset), swap_reg);
if (PrintBiasedLockingStatistics) {
cond_inc32(Assembler::zero,
ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
}
jcc(Assembler::zero, done);
bind(slow_case);
// Call the runtime routine for slow case
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
lock_reg);
bind(done);
}
}
// Unlocks an object. Used in monitorexit bytecode and
// remove_activation. Throws an IllegalMonitorException if object is
// not locked by current thread.
//
// Args:
// c_rarg1: BasicObjectLock for lock
//
// Kills:
// rax
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
// rscratch1, rscratch2 (scratch regs)
void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
if (UseHeavyMonitors) {
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
lock_reg);
} else {
Label done;
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
const Register header_reg = c_rarg2; // Will contain the old oopMark
const Register obj_reg = c_rarg3; // Will contain the oop
save_bcp(); // Save in case of exception
// Convert from BasicObjectLock structure to object and BasicLock
// structure Store the BasicLock address into %rax
leaq(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
// Load oop into obj_reg(%c_rarg3)
movq(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
// Free entry
movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
if (UseBiasedLocking) {
biased_locking_exit(obj_reg, header_reg, done);
}
// Load the old header from BasicLock structure
movq(header_reg, Address(swap_reg,
BasicLock::displaced_header_offset_in_bytes()));
// Test for recursion
testq(header_reg, header_reg);
// zero for recursive case
jcc(Assembler::zero, done);
// Atomic swap back the old header
if (os::is_MP()) lock();
cmpxchgq(header_reg, Address(obj_reg, 0));
// zero for recursive case
jcc(Assembler::zero, done);
// Call the runtime routine for slow case.
movq(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
obj_reg); // restore obj
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
lock_reg);
bind(done);
restore_bcp();
}
}
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
Label& zero_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
movq(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
testq(mdp, mdp);
jcc(Assembler::zero, zero_continue);
}
// Set the method data pointer for the current bcp.
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
assert(ProfileInterpreter, "must be profiling interpreter");
Label zero_continue;
pushq(rax);
pushq(rbx);
get_method(rbx);
// Test MDO to avoid the call if it is NULL.
movq(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
testq(rax, rax);
jcc(Assembler::zero, zero_continue);
// rbx: method
// r13: bcp
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
// rax: mdi
movq(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
testq(rbx, rbx);
jcc(Assembler::zero, zero_continue);
addq(rbx, in_bytes(methodDataOopDesc::data_offset()));
addq(rbx, rax);
movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
bind(zero_continue);
popq(rbx);
popq(rax);
}
void InterpreterMacroAssembler::verify_method_data_pointer() {
assert(ProfileInterpreter, "must be profiling interpreter");
#ifdef ASSERT
Label verify_continue;
pushq(rax);
pushq(rbx);
pushq(c_rarg3);
pushq(c_rarg2);
test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
get_method(rbx);
// If the mdp is valid, it will point to a DataLayout header which is
// consistent with the bcp. The converse is highly probable also.
load_unsigned_word(c_rarg2,
Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
addq(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
leaq(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
cmpq(c_rarg2, r13);
jcc(Assembler::equal, verify_continue);
// rbx: method
// r13: bcp
// c_rarg3: mdp
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
rbx, r13, c_rarg3);
bind(verify_continue);
popq(c_rarg2);
popq(c_rarg3);
popq(rbx);
popq(rax);
#endif // ASSERT
}
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
int constant,
Register value) {
assert(ProfileInterpreter, "must be profiling interpreter");
Address data(mdp_in, constant);
movq(data, value);
}
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
int constant,
bool decrement) {
// Counter address
Address data(mdp_in, constant);
increment_mdp_data_at(data, decrement);
}
void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
bool decrement) {
assert(ProfileInterpreter, "must be profiling interpreter");
if (decrement) {
// Decrement the register. Set condition codes.
addq(data, -DataLayout::counter_increment);
// If the decrement causes the counter to overflow, stay negative
Label L;
jcc(Assembler::negative, L);
addq(data, DataLayout::counter_increment);
bind(L);
} else {
assert(DataLayout::counter_increment == 1,
"flow-free idiom only works with 1");
// Increment the register. Set carry flag.
addq(data, DataLayout::counter_increment);
// If the increment causes the counter to overflow, pull back by 1.
sbbq(data, 0);
}
}
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
Register reg,
int constant,
bool decrement) {
Address data(mdp_in, reg, Address::times_1, constant);
increment_mdp_data_at(data, decrement);
}
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
int flag_byte_constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
int header_offset = in_bytes(DataLayout::header_offset());
int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
// Set the flag
orl(Address(mdp_in, header_offset), header_bits);
}
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
int offset,
Register value,
Register test_value_out,
Label& not_equal_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
if (test_value_out == noreg) {
cmpq(value, Address(mdp_in, offset));
} else {
// Put the test value into a register, so caller can use it:
movq(test_value_out, Address(mdp_in, offset));
cmpq(test_value_out, value);
}
jcc(Assembler::notEqual, not_equal_continue);
}
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
int offset_of_disp) {
assert(ProfileInterpreter, "must be profiling interpreter");
Address disp_address(mdp_in, offset_of_disp);
addq(mdp_in, disp_address);
movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
}
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
Register reg,
int offset_of_disp) {
assert(ProfileInterpreter, "must be profiling interpreter");
Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
addq(mdp_in, disp_address);
movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
}
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
int constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
addq(mdp_in, constant);
movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
}
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
assert(ProfileInterpreter, "must be profiling interpreter");
pushq(return_bci); // save/restore across call_VM
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
return_bci);
popq(return_bci);
}
void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
Register bumped_count) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
// Otherwise, assign to mdp
test_method_data_pointer(mdp, profile_continue);
// We are taking a branch. Increment the taken count.
// We inline increment_mdp_data_at to return bumped_count in a register
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
Address data(mdp, in_bytes(JumpData::taken_offset()));
movq(bumped_count, data);
assert(DataLayout::counter_increment == 1,
"flow-free idiom only works with 1");
addq(bumped_count, DataLayout::counter_increment);
sbbq(bumped_count, 0);
movq(data, bumped_count); // Store back out
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are taking a branch. Increment the not taken count.
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
// The method data pointer needs to be updated to correspond to
// the next bytecode
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_call(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp,
in_bytes(VirtualCallData::
virtual_call_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
Register mdp,
Register reg2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
// Record the receiver type.
record_klass_in_profile(receiver, mdp, reg2);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp,
in_bytes(VirtualCallData::
virtual_call_data_size()));
bind(profile_continue);
}
}
// This routine creates a state machine for updating the multi-row
// type profile at a virtual call site (or other type-sensitive bytecode).
// The machine visits each row (of receiver/count) until the receiver type
// is found, or until it runs out of rows. At the same time, it remembers
// the location of the first empty row. (An empty row records null for its
// receiver, and can be allocated for a newly-observed receiver type.)
// Because there are two degrees of freedom in the state, a simple linear
// search will not work; it must be a decision tree. Hence this helper
// function is recursive, to generate the required tree structured code.
// It's the interpreter, so we are trading off code space for speed.
// See below for example code.
void InterpreterMacroAssembler::record_klass_in_profile_helper(
Register receiver, Register mdp,
Register reg2,
int start_row, Label& done) {
int last_row = VirtualCallData::row_limit() - 1;
assert(start_row <= last_row, "must be work left to do");
// Test this row for both the receiver and for null.
// Take any of three different outcomes:
// 1. found receiver => increment count and goto done
// 2. found null => keep looking for case 1, maybe allocate this cell
// 3. found something else => keep looking for cases 1 and 2
// Case 3 is handled by a recursive call.
for (int row = start_row; row <= last_row; row++) {
Label next_test;
bool test_for_null_also = (row == start_row);
// See if the receiver is receiver[n].
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
test_mdp_data_at(mdp, recvr_offset, receiver,
(test_for_null_also ? reg2 : noreg),
next_test);
// (Reg2 now contains the receiver from the CallData.)
// The receiver is receiver[n]. Increment count[n].
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
increment_mdp_data_at(mdp, count_offset);
jmp(done);
bind(next_test);
if (test_for_null_also) {
// Failed the equality check on receiver[n]... Test for null.
testq(reg2, reg2);
if (start_row == last_row) {
// The only thing left to do is handle the null case.
jcc(Assembler::notZero, done);
break;
}
// Since null is rare, make it be the branch-taken case.
Label found_null;
jcc(Assembler::zero, found_null);
// Put all the "Case 3" tests here.
record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
// Found a null. Keep searching for a matching receiver,
// but remember that this is an empty (unused) slot.
bind(found_null);
}
}
// In the fall-through case, we found no matching receiver, but we
// observed the receiver[start_row] is NULL.
// Fill in the receiver field and increment the count.
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
set_mdp_data_at(mdp, recvr_offset, receiver);
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
movl(reg2, DataLayout::counter_increment);
set_mdp_data_at(mdp, count_offset, reg2);
jmp(done);
}
// Example state machine code for three profile rows:
// // main copy of decision tree, rooted at row[1]
// if (row[0].rec == rec) { row[0].incr(); goto done; }
// if (row[0].rec != NULL) {
// // inner copy of decision tree, rooted at row[1]
// if (row[1].rec == rec) { row[1].incr(); goto done; }
// if (row[1].rec != NULL) {
// // degenerate decision tree, rooted at row[2]
// if (row[2].rec == rec) { row[2].incr(); goto done; }
// if (row[2].rec != NULL) { goto done; } // overflow
// row[2].init(rec); goto done;
// } else {
// // remember row[1] is empty
// if (row[2].rec == rec) { row[2].incr(); goto done; }
// row[1].init(rec); goto done;
// }
// } else {
// // remember row[0] is empty
// if (row[1].rec == rec) { row[1].incr(); goto done; }
// if (row[2].rec == rec) { row[2].incr(); goto done; }
// row[0].init(rec); goto done;
// }
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
Register mdp,
Register reg2) {
assert(ProfileInterpreter, "must be profiling");
Label done;
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
bind (done);
}
void InterpreterMacroAssembler::profile_ret(Register return_bci,
Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
uint row;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Update the total ret count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
for (row = 0; row < RetData::row_limit(); row++) {
Label next_test;
// See if return_bci is equal to bci[n]:
test_mdp_data_at(mdp,
in_bytes(RetData::bci_offset(row)),
return_bci, noreg,
next_test);
// return_bci is equal to bci[n]. Increment the count.
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(mdp,
in_bytes(RetData::bci_displacement_offset(row)));
jmp(profile_continue);
bind(next_test);
}
update_mdp_for_ret(return_bci);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
}
update_mdp_by_constant(mdp, mdp_delta);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
if (ProfileInterpreter && TypeProfileCasts) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
int count_offset = in_bytes(CounterData::count_offset());
// Back up the address, since we have already bumped the mdp.
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
// *Decrement* the counter. We expect to see zero or small negatives.
increment_mdp_data_at(mdp, count_offset, true);
bind (profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
// Record the object type.
record_klass_in_profile(klass, mdp, reg2);
}
update_mdp_by_constant(mdp, mdp_delta);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Update the default case count
increment_mdp_data_at(mdp,
in_bytes(MultiBranchData::default_count_offset()));
// The method data pointer needs to be updated.
update_mdp_by_offset(mdp,
in_bytes(MultiBranchData::
default_displacement_offset()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_switch_case(Register index,
Register mdp,
Register reg2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Build the base (index * per_case_size_in_bytes()) +
// case_array_offset_in_bytes()
movl(reg2, in_bytes(MultiBranchData::per_case_size()));
imulq(index, reg2); // XXX l ?
addq(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
// Update the case count
increment_mdp_data_at(mdp,
index,
in_bytes(MultiBranchData::relative_count_offset()));
// The method data pointer needs to be updated.
update_mdp_by_offset(mdp,
index,
in_bytes(MultiBranchData::
relative_displacement_offset()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
if (state == atos) {
MacroAssembler::verify_oop(reg);
}
}
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
}
void InterpreterMacroAssembler::notify_method_entry() {
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
// track stack depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (JvmtiExport::can_post_interpreter_events()) {
Label L;
movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
testl(rdx, rdx);
jcc(Assembler::zero, L);
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::post_method_entry));
bind(L);
}
{
SkipIfEqual skip(this, &DTraceMethodProbes, false);
get_method(c_rarg1);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
r15_thread, c_rarg1);
}
}
void InterpreterMacroAssembler::notify_method_exit(
TosState state, NotifyMethodExitMode mode) {
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
// track stack depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
Label L;
// Note: frame::interpreter_frame_result has a dependency on how the
// method result is saved across the call to post_method_exit. If this
// is changed then the interpreter_frame_result implementation will
// need to be updated too.
push(state);
movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
testl(rdx, rdx);
jcc(Assembler::zero, L);
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
bind(L);
pop(state);
}
{
SkipIfEqual skip(this, &DTraceMethodProbes, false);
push(state);
get_method(c_rarg1);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
r15_thread, c_rarg1);
pop(state);
}
}