6633953: type2aelembytes{T_ADDRESS} should be 8 bytes in 64 bit VM
Summary: T_ADDRESS size is defined as 'int' size (4 bytes) but C2 use it for raw pointers and as memory type for StoreP and LoadP nodes.
Reviewed-by: jrose
/*
* Copyright 2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
#include "incls/_precompiled.incl"
#include "incls/_vectornode.cpp.incl"
//------------------------------VectorNode--------------------------------------
// Return vector type for an element type and vector length.
const Type* VectorNode::vect_type(BasicType elt_bt, uint len) {
assert(len <= VectorNode::max_vlen(elt_bt), "len in range");
switch(elt_bt) {
case T_BOOLEAN:
case T_BYTE:
switch(len) {
case 2: return TypeInt::CHAR;
case 4: return TypeInt::INT;
case 8: return TypeLong::LONG;
}
break;
case T_CHAR:
case T_SHORT:
switch(len) {
case 2: return TypeInt::INT;
case 4: return TypeLong::LONG;
}
break;
case T_INT:
switch(len) {
case 2: return TypeLong::LONG;
}
break;
case T_LONG:
break;
case T_FLOAT:
switch(len) {
case 2: return Type::DOUBLE;
}
break;
case T_DOUBLE:
break;
}
ShouldNotReachHere();
return NULL;
}
// Scalar promotion
VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
BasicType bt = opd_t->array_element_basic_type();
assert(vlen <= VectorNode::max_vlen(bt), "vlen in range");
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
if (vlen == 16) return new (C, 2) Replicate16BNode(s);
if (vlen == 8) return new (C, 2) Replicate8BNode(s);
if (vlen == 4) return new (C, 2) Replicate4BNode(s);
break;
case T_CHAR:
if (vlen == 8) return new (C, 2) Replicate8CNode(s);
if (vlen == 4) return new (C, 2) Replicate4CNode(s);
if (vlen == 2) return new (C, 2) Replicate2CNode(s);
break;
case T_SHORT:
if (vlen == 8) return new (C, 2) Replicate8SNode(s);
if (vlen == 4) return new (C, 2) Replicate4SNode(s);
if (vlen == 2) return new (C, 2) Replicate2SNode(s);
break;
case T_INT:
if (vlen == 4) return new (C, 2) Replicate4INode(s);
if (vlen == 2) return new (C, 2) Replicate2INode(s);
break;
case T_LONG:
if (vlen == 2) return new (C, 2) Replicate2LNode(s);
break;
case T_FLOAT:
if (vlen == 4) return new (C, 2) Replicate4FNode(s);
if (vlen == 2) return new (C, 2) Replicate2FNode(s);
break;
case T_DOUBLE:
if (vlen == 2) return new (C, 2) Replicate2DNode(s);
break;
}
ShouldNotReachHere();
return NULL;
}
// Return initial Pack node. Additional operands added with add_opd() calls.
PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) {
BasicType bt = opd_t->array_element_basic_type();
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new (C, 2) PackBNode(s);
case T_CHAR:
return new (C, 2) PackCNode(s);
case T_SHORT:
return new (C, 2) PackSNode(s);
case T_INT:
return new (C, 2) PackINode(s);
case T_LONG:
return new (C, 2) PackLNode(s);
case T_FLOAT:
return new (C, 2) PackFNode(s);
case T_DOUBLE:
return new (C, 2) PackDNode(s);
}
ShouldNotReachHere();
return NULL;
}
// Create a binary tree form for Packs. [lo, hi) (half-open) range
Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
int ct = hi - lo;
assert(is_power_of_2(ct), "power of 2");
int mid = lo + ct/2;
Node* n1 = ct == 2 ? in(lo) : binaryTreePack(C, lo, mid);
Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi );
int rslt_bsize = ct * type2aelembytes(elt_basic_type());
if (bottom_type()->is_floatingpoint()) {
switch (rslt_bsize) {
case 8: return new (C, 3) PackFNode(n1, n2);
case 16: return new (C, 3) PackDNode(n1, n2);
}
} else {
assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long");
switch (rslt_bsize) {
case 2: return new (C, 3) Pack2x1BNode(n1, n2);
case 4: return new (C, 3) Pack2x2BNode(n1, n2);
case 8: return new (C, 3) PackINode(n1, n2);
case 16: return new (C, 3) PackLNode(n1, n2);
}
}
ShouldNotReachHere();
return NULL;
}
// Return the vector operator for the specified scalar operation
// and vector length. One use is to check if the code generator
// supports the vector operation.
int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) {
BasicType bt = opd_t->array_element_basic_type();
if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt)))
return 0; // unimplemented
switch (sopc) {
case Op_AddI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_AddVB;
case T_CHAR: return Op_AddVC;
case T_SHORT: return Op_AddVS;
case T_INT: return Op_AddVI;
}
ShouldNotReachHere();
case Op_AddL:
assert(bt == T_LONG, "must be");
return Op_AddVL;
case Op_AddF:
assert(bt == T_FLOAT, "must be");
return Op_AddVF;
case Op_AddD:
assert(bt == T_DOUBLE, "must be");
return Op_AddVD;
case Op_SubI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_SubVB;
case T_CHAR: return Op_SubVC;
case T_SHORT: return Op_SubVS;
case T_INT: return Op_SubVI;
}
ShouldNotReachHere();
case Op_SubL:
assert(bt == T_LONG, "must be");
return Op_SubVL;
case Op_SubF:
assert(bt == T_FLOAT, "must be");
return Op_SubVF;
case Op_SubD:
assert(bt == T_DOUBLE, "must be");
return Op_SubVD;
case Op_MulF:
assert(bt == T_FLOAT, "must be");
return Op_MulVF;
case Op_MulD:
assert(bt == T_DOUBLE, "must be");
return Op_MulVD;
case Op_DivF:
assert(bt == T_FLOAT, "must be");
return Op_DivVF;
case Op_DivD:
assert(bt == T_DOUBLE, "must be");
return Op_DivVD;
case Op_LShiftI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_LShiftVB;
case T_CHAR: return Op_LShiftVC;
case T_SHORT: return Op_LShiftVS;
case T_INT: return Op_LShiftVI;
}
ShouldNotReachHere();
case Op_URShiftI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_URShiftVB;
case T_CHAR: return Op_URShiftVC;
case T_SHORT: return Op_URShiftVS;
case T_INT: return Op_URShiftVI;
}
ShouldNotReachHere();
case Op_AndI:
case Op_AndL:
return Op_AndV;
case Op_OrI:
case Op_OrL:
return Op_OrV;
case Op_XorI:
case Op_XorL:
return Op_XorV;
case Op_LoadB:
case Op_LoadC:
case Op_LoadS:
case Op_LoadI:
case Op_LoadL:
case Op_LoadF:
case Op_LoadD:
return VectorLoadNode::opcode(sopc, vlen);
case Op_StoreB:
case Op_StoreC:
case Op_StoreI:
case Op_StoreL:
case Op_StoreF:
case Op_StoreD:
return VectorStoreNode::opcode(sopc, vlen);
}
return 0; // Unimplemented
}
// Helper for above.
int VectorLoadNode::opcode(int sopc, uint vlen) {
switch (sopc) {
case Op_LoadB:
switch (vlen) {
case 2: return 0; // Unimplemented
case 4: return Op_Load4B;
case 8: return Op_Load8B;
case 16: return Op_Load16B;
}
break;
case Op_LoadC:
switch (vlen) {
case 2: return Op_Load2C;
case 4: return Op_Load4C;
case 8: return Op_Load8C;
}
break;
case Op_LoadS:
switch (vlen) {
case 2: return Op_Load2S;
case 4: return Op_Load4S;
case 8: return Op_Load8S;
}
break;
case Op_LoadI:
switch (vlen) {
case 2: return Op_Load2I;
case 4: return Op_Load4I;
}
break;
case Op_LoadL:
if (vlen == 2) return Op_Load2L;
break;
case Op_LoadF:
switch (vlen) {
case 2: return Op_Load2F;
case 4: return Op_Load4F;
}
break;
case Op_LoadD:
if (vlen == 2) return Op_Load2D;
break;
}
return 0; // Unimplemented
}
// Helper for above
int VectorStoreNode::opcode(int sopc, uint vlen) {
switch (sopc) {
case Op_StoreB:
switch (vlen) {
case 2: return 0; // Unimplemented
case 4: return Op_Store4B;
case 8: return Op_Store8B;
case 16: return Op_Store16B;
}
break;
case Op_StoreC:
switch (vlen) {
case 2: return Op_Store2C;
case 4: return Op_Store4C;
case 8: return Op_Store8C;
}
break;
case Op_StoreI:
switch (vlen) {
case 2: return Op_Store2I;
case 4: return Op_Store4I;
}
break;
case Op_StoreL:
if (vlen == 2) return Op_Store2L;
break;
case Op_StoreF:
switch (vlen) {
case 2: return Op_Store2F;
case 4: return Op_Store4F;
}
break;
case Op_StoreD:
if (vlen == 2) return Op_Store2D;
break;
}
return 0; // Unimplemented
}
// Return the vector version of a scalar operation node.
VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) {
int vopc = opcode(sopc, vlen, opd_t);
switch (vopc) {
case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen);
case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen);
case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen);
case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen);
case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen);
case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen);
case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen);
case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen);
case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen);
case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen);
case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen);
case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen);
case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen);
case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen);
case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen);
case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen);
case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen);
case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen);
case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen);
case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen);
case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen);
case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen);
case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen);
case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen);
case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen);
case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen);
case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type());
case Op_OrV: return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type());
case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type());
}
ShouldNotReachHere();
return NULL;
}
// Return the vector version of a scalar load node.
VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem,
Node* adr, const TypePtr* atyp, uint vlen) {
int vopc = opcode(opc, vlen);
switch(vopc) {
case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp);
case Op_Load8B: return new (C, 3) Load8BNode(ctl, mem, adr, atyp);
case Op_Load4B: return new (C, 3) Load4BNode(ctl, mem, adr, atyp);
case Op_Load8C: return new (C, 3) Load8CNode(ctl, mem, adr, atyp);
case Op_Load4C: return new (C, 3) Load4CNode(ctl, mem, adr, atyp);
case Op_Load2C: return new (C, 3) Load2CNode(ctl, mem, adr, atyp);
case Op_Load8S: return new (C, 3) Load8SNode(ctl, mem, adr, atyp);
case Op_Load4S: return new (C, 3) Load4SNode(ctl, mem, adr, atyp);
case Op_Load2S: return new (C, 3) Load2SNode(ctl, mem, adr, atyp);
case Op_Load4I: return new (C, 3) Load4INode(ctl, mem, adr, atyp);
case Op_Load2I: return new (C, 3) Load2INode(ctl, mem, adr, atyp);
case Op_Load2L: return new (C, 3) Load2LNode(ctl, mem, adr, atyp);
case Op_Load4F: return new (C, 3) Load4FNode(ctl, mem, adr, atyp);
case Op_Load2F: return new (C, 3) Load2FNode(ctl, mem, adr, atyp);
case Op_Load2D: return new (C, 3) Load2DNode(ctl, mem, adr, atyp);
}
ShouldNotReachHere();
return NULL;
}
// Return the vector version of a scalar store node.
VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem,
Node* adr, const TypePtr* atyp, VectorNode* val,
uint vlen) {
int vopc = opcode(opc, vlen);
switch(vopc) {
case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val);
case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val);
case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val);
case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val);
case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val);
case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val);
case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val);
case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val);
case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val);
case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val);
case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val);
case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val);
}
ShouldNotReachHere();
return NULL;
}
// Extract a scalar element of vector.
Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) {
BasicType bt = opd_t->array_element_basic_type();
assert(position < VectorNode::max_vlen(bt), "pos in range");
ConINode* pos = ConINode::make(C, (int)position);
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new (C, 3) ExtractBNode(v, pos);
case T_CHAR:
return new (C, 3) ExtractCNode(v, pos);
case T_SHORT:
return new (C, 3) ExtractSNode(v, pos);
case T_INT:
return new (C, 3) ExtractINode(v, pos);
case T_LONG:
return new (C, 3) ExtractLNode(v, pos);
case T_FLOAT:
return new (C, 3) ExtractFNode(v, pos);
case T_DOUBLE:
return new (C, 3) ExtractDNode(v, pos);
}
ShouldNotReachHere();
return NULL;
}