/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h> /* Defines TCP_NODELAY, needed for 2.6 */
#include <netinet/in.h>
#include <net/if.h>
#include <netdb.h>
#include <stdlib.h>
#include <dlfcn.h>
#ifdef __solaris__
#include <sys/sockio.h>
#include <stropts.h>
#include <inet/nd.h>
#endif
#ifdef __linux__
#include <arpa/inet.h>
#include <net/route.h>
#include <sys/utsname.h>
#ifndef IPV6_FLOWINFO_SEND
#define IPV6_FLOWINFO_SEND 33
#endif
#endif
#include "jni_util.h"
#include "jvm.h"
#include "net_util.h"
#include "java_net_SocketOptions.h"
/* needed from libsocket on Solaris 8 */
getaddrinfo_f getaddrinfo_ptr = NULL;
freeaddrinfo_f freeaddrinfo_ptr = NULL;
getnameinfo_f getnameinfo_ptr = NULL;
/*
* EXCLBIND socket options only on Solaris 8 & 9.
*/
#if defined(__solaris__) && !defined(TCP_EXCLBIND)
#define TCP_EXCLBIND 0x21
#endif
#if defined(__solaris__) && !defined(UDP_EXCLBIND)
#define UDP_EXCLBIND 0x0101
#endif
#ifdef __solaris__
static int init_max_buf;
static int tcp_max_buf;
static int udp_max_buf;
/*
* Get the specified parameter from the specified driver. The value
* of the parameter is assumed to be an 'int'. If the parameter
* cannot be obtained return the specified default value.
*/
static int
getParam(char *driver, char *param, int dflt)
{
struct strioctl stri;
char buf [64];
int s;
int value;
s = open (driver, O_RDWR);
if (s < 0) {
return dflt;
}
strncpy (buf, param, sizeof(buf));
stri.ic_cmd = ND_GET;
stri.ic_timout = 0;
stri.ic_dp = buf;
stri.ic_len = sizeof(buf);
if (ioctl (s, I_STR, &stri) < 0) {
value = dflt;
} else {
value = atoi(buf);
}
close (s);
return value;
}
#endif
#ifdef __linux__
static int kernelV22 = 0;
static int vinit = 0;
int kernelIsV22 () {
if (!vinit) {
struct utsname sysinfo;
if (uname(&sysinfo) == 0) {
sysinfo.release[3] = '\0';
if (strcmp(sysinfo.release, "2.2") == 0) {
kernelV22 = JNI_TRUE;
}
}
vinit = 1;
}
return kernelV22;
}
static int kernelV24 = 0;
static int vinit24 = 0;
int kernelIsV24 () {
if (!vinit24) {
struct utsname sysinfo;
if (uname(&sysinfo) == 0) {
sysinfo.release[3] = '\0';
if (strcmp(sysinfo.release, "2.4") == 0) {
kernelV24 = JNI_TRUE;
}
}
vinit24 = 1;
}
return kernelV24;
}
int getScopeID (struct sockaddr *him) {
struct sockaddr_in6 *hext = (struct sockaddr_in6 *)him;
if (kernelIsV22()) {
return 0;
}
return hext->sin6_scope_id;
}
int cmpScopeID (unsigned int scope, struct sockaddr *him) {
struct sockaddr_in6 *hext = (struct sockaddr_in6 *)him;
if (kernelIsV22()) {
return 1; /* scope is ignored for comparison in 2.2 kernel */
}
return hext->sin6_scope_id == scope;
}
#else
int getScopeID (struct sockaddr *him) {
struct sockaddr_in6 *him6 = (struct sockaddr_in6 *)him;
return him6->sin6_scope_id;
}
int cmpScopeID (unsigned int scope, struct sockaddr *him) {
struct sockaddr_in6 *him6 = (struct sockaddr_in6 *)him;
return him6->sin6_scope_id == scope;
}
#endif
void
NET_ThrowByNameWithLastError(JNIEnv *env, const char *name,
const char *defaultDetail) {
char errmsg[255];
sprintf(errmsg, "errno: %d, error: %s\n", errno, defaultDetail);
JNU_ThrowByNameWithLastError(env, name, errmsg);
}
void
NET_ThrowCurrent(JNIEnv *env, char *msg) {
NET_ThrowNew(env, errno, msg);
}
void
NET_ThrowNew(JNIEnv *env, int errorNumber, char *msg) {
char fullMsg[512];
if (!msg) {
msg = "no further information";
}
switch(errorNumber) {
case EBADF:
jio_snprintf(fullMsg, sizeof(fullMsg), "socket closed: %s", msg);
JNU_ThrowByName(env, JNU_JAVANETPKG "SocketException", fullMsg);
break;
case EINTR:
JNU_ThrowByName(env, JNU_JAVAIOPKG "InterruptedIOException", msg);
break;
default:
errno = errorNumber;
JNU_ThrowByNameWithLastError(env, JNU_JAVANETPKG "SocketException", msg);
break;
}
}
jfieldID
NET_GetFileDescriptorID(JNIEnv *env)
{
jclass cls = (*env)->FindClass(env, "java/io/FileDescriptor");
CHECK_NULL_RETURN(cls, NULL);
return (*env)->GetFieldID(env, cls, "fd", "I");
}
jint IPv6_supported()
{
#ifndef AF_INET6
return JNI_FALSE;
#endif
#ifdef AF_INET6
int fd;
void *ipv6_fn;
SOCKADDR sa;
socklen_t sa_len = sizeof(sa);
fd = JVM_Socket(AF_INET6, SOCK_STREAM, 0) ;
if (fd < 0) {
/*
* TODO: We really cant tell since it may be an unrelated error
* for now we will assume that AF_INET6 is not available
*/
return JNI_FALSE;
}
/*
* If fd 0 is a socket it means we've been launched from inetd or
* xinetd. If it's a socket then check the family - if it's an
* IPv4 socket then we need to disable IPv6.
*/
if (getsockname(0, (struct sockaddr *)&sa, &sa_len) == 0) {
struct sockaddr *saP = (struct sockaddr *)&sa;
if (saP->sa_family != AF_INET6) {
return JNI_FALSE;
}
}
/**
* Linux - check if any interface has an IPv6 address.
* Don't need to parse the line - we just need an indication.
*/
#ifdef __linux__
{
FILE *fP = fopen("/proc/net/if_inet6", "r");
char buf[255];
char *bufP;
if (fP == NULL) {
close(fd);
return JNI_FALSE;
}
bufP = fgets(buf, sizeof(buf), fP);
fclose(fP);
if (bufP == NULL) {
close(fd);
return JNI_FALSE;
}
}
#endif
/**
* On Solaris 8 it's possible to create INET6 sockets even
* though IPv6 is not enabled on all interfaces. Thus we
* query the number of IPv6 addresses to verify that IPv6
* has been configured on at least one interface.
*
* On Linux it doesn't matter - if IPv6 is built-in the
* kernel then IPv6 addresses will be bound automatically
* to all interfaces.
*/
#ifdef __solaris__
#ifdef SIOCGLIFNUM
{
struct lifnum numifs;
numifs.lifn_family = AF_INET6;
numifs.lifn_flags = 0;
if (ioctl(fd, SIOCGLIFNUM, (char *)&numifs) < 0) {
/**
* SIOCGLIFNUM failed - assume IPv6 not configured
*/
close(fd);
return JNI_FALSE;
}
/**
* If no IPv6 addresses then return false. If count > 0
* it's possible that all IPv6 addresses are "down" but
* that's okay as they may be brought "up" while the
* VM is running.
*/
if (numifs.lifn_count == 0) {
close(fd);
return JNI_FALSE;
}
}
#else
/* SIOCGLIFNUM not defined in build environment ??? */
close(fd);
return JNI_FALSE;
#endif
#endif /* __solaris */
/*
* OK we may have the stack available in the kernel,
* we should also check if the APIs are available.
*/
ipv6_fn = JVM_FindLibraryEntry(RTLD_DEFAULT, "inet_pton");
if (ipv6_fn == NULL ) {
close(fd);
return JNI_FALSE;
}
/*
* We've got the library, let's get the pointers to some
* IPV6 specific functions. We have to do that because, at least
* on Solaris we may build on a system without IPV6 networking
* libraries, therefore we can't have a hard link to these
* functions.
*/
getaddrinfo_ptr = (getaddrinfo_f)
JVM_FindLibraryEntry(RTLD_DEFAULT, "getaddrinfo");
freeaddrinfo_ptr = (freeaddrinfo_f)
JVM_FindLibraryEntry(RTLD_DEFAULT, "freeaddrinfo");
getnameinfo_ptr = (getnameinfo_f)
JVM_FindLibraryEntry(RTLD_DEFAULT, "getnameinfo");
if (freeaddrinfo_ptr == NULL || getnameinfo_ptr == NULL) {
/* Wee need all 3 of them */
getaddrinfo_ptr = NULL;
}
close(fd);
return JNI_TRUE;
#endif /* AF_INET6 */
}
void
NET_AllocSockaddr(struct sockaddr **him, int *len) {
#ifdef AF_INET6
if (ipv6_available()) {
struct sockaddr_in6 *him6 = (struct sockaddr_in6*)malloc(sizeof(struct sockaddr_in6));
*him = (struct sockaddr*)him6;
*len = sizeof(struct sockaddr_in6);
} else
#endif /* AF_INET6 */
{
struct sockaddr_in *him4 = (struct sockaddr_in*)malloc(sizeof(struct sockaddr_in));
*him = (struct sockaddr*)him4;
*len = sizeof(struct sockaddr_in);
}
}
#if defined(__linux__) && defined(AF_INET6)
/* following code creates a list of addresses from the kernel
* routing table that are routed via the loopback address.
* We check all destination addresses against this table
* and override the scope_id field to use the relevant value for "lo"
* in order to work-around the Linux bug that prevents packets destined
* for certain local addresses from being sent via a physical interface.
*/
struct loopback_route {
struct in6_addr addr; /* destination address */
int plen; /* prefix length */
};
static struct loopback_route *loRoutes = 0;
static int nRoutes = 0; /* number of routes */
static int loRoutes_size = 16; /* initial size */
static int lo_scope_id = 0;
static void initLoopbackRoutes();
void printAddr (struct in6_addr *addr) {
int i;
for (i=0; i<16; i++) {
printf ("%02x", addr->s6_addr[i]);
}
printf ("\n");
}
static jboolean needsLoopbackRoute (struct in6_addr* dest_addr) {
int byte_count;
int extra_bits, i;
struct loopback_route *ptr;
if (loRoutes == 0) {
initLoopbackRoutes();
}
for (ptr = loRoutes, i=0; i<nRoutes; i++, ptr++) {
struct in6_addr *target_addr=&ptr->addr;
int dest_plen = ptr->plen;
byte_count = dest_plen >> 3;
extra_bits = dest_plen & 0x3;
if (byte_count > 0) {
if (memcmp(target_addr, dest_addr, byte_count)) {
continue; /* no match */
}
}
if (extra_bits > 0) {
unsigned char c1 = ((unsigned char *)target_addr)[byte_count];
unsigned char c2 = ((unsigned char *)&dest_addr)[byte_count];
unsigned char mask = 0xff << (8 - extra_bits);
if ((c1 & mask) != (c2 & mask)) {
continue;
}
}
return JNI_TRUE;
}
return JNI_FALSE;
}
static void initLoopbackRoutes() {
FILE *f;
char srcp[8][5];
char hopp[8][5];
int dest_plen, src_plen, use, refcnt, metric;
unsigned long flags;
char dest_str[40];
struct in6_addr dest_addr;
char device[16];
if (loRoutes != 0) {
free (loRoutes);
}
loRoutes = calloc (loRoutes_size, sizeof(struct loopback_route));
if (loRoutes == 0) {
return;
}
/*
* Scan /proc/net/ipv6_route looking for a matching
* route.
*/
if ((f = fopen("/proc/net/ipv6_route", "r")) == NULL) {
return ;
}
while (fscanf(f, "%4s%4s%4s%4s%4s%4s%4s%4s %02x "
"%4s%4s%4s%4s%4s%4s%4s%4s %02x "
"%4s%4s%4s%4s%4s%4s%4s%4s "
"%08x %08x %08x %08lx %8s",
dest_str, &dest_str[5], &dest_str[10], &dest_str[15],
&dest_str[20], &dest_str[25], &dest_str[30], &dest_str[35],
&dest_plen,
srcp[0], srcp[1], srcp[2], srcp[3],
srcp[4], srcp[5], srcp[6], srcp[7],
&src_plen,
hopp[0], hopp[1], hopp[2], hopp[3],
hopp[4], hopp[5], hopp[6], hopp[7],
&metric, &use, &refcnt, &flags, device) == 31) {
/*
* Some routes should be ignored
*/
if ( (dest_plen < 0 || dest_plen > 128) ||
(src_plen != 0) ||
(flags & (RTF_POLICY | RTF_FLOW)) ||
((flags & RTF_REJECT) && dest_plen == 0) ) {
continue;
}
/*
* Convert the destination address
*/
dest_str[4] = ':';
dest_str[9] = ':';
dest_str[14] = ':';
dest_str[19] = ':';
dest_str[24] = ':';
dest_str[29] = ':';
dest_str[34] = ':';
dest_str[39] = '\0';
if (inet_pton(AF_INET6, dest_str, &dest_addr) < 0) {
/* not an Ipv6 address */
continue;
}
if (strcmp(device, "lo") != 0) {
/* Not a loopback route */
continue;
} else {
if (nRoutes == loRoutes_size) {
loRoutes = realloc (loRoutes, loRoutes_size *
sizeof (struct loopback_route) * 2);
if (loRoutes == 0) {
return ;
}
loRoutes_size *= 2;
}
memcpy (&loRoutes[nRoutes].addr,&dest_addr,sizeof(struct in6_addr));
loRoutes[nRoutes].plen = dest_plen;
nRoutes ++;
}
}
fclose (f);
{
/* now find the scope_id for "lo" */
char devname[20];
char addr6p[8][5];
int plen, scope, dad_status, if_idx;
if ((f = fopen("/proc/net/if_inet6", "r")) != NULL) {
while (fscanf(f, "%4s%4s%4s%4s%4s%4s%4s%4s %02x %02x %02x %02x %20s\n",
addr6p[0], addr6p[1], addr6p[2], addr6p[3],
addr6p[4], addr6p[5], addr6p[6], addr6p[7],
&if_idx, &plen, &scope, &dad_status, devname) == 13) {
if (strcmp(devname, "lo") == 0) {
/*
* Found - so just return the index
*/
fclose(f);
lo_scope_id = if_idx;
return;
}
}
fclose(f);
}
}
}
/*
* Following is used for binding to local addresses. Equivalent
* to code above, for bind().
*/
struct localinterface {
int index;
char localaddr [16];
};
static struct localinterface *localifs = 0;
static int localifsSize = 0; /* size of array */
static int nifs = 0; /* number of entries used in array */
/* not thread safe: make sure called once from one thread */
static void initLocalIfs () {
FILE *f;
unsigned char staddr [16];
char ifname [32];
struct localinterface *lif=0;
int index, x1, x2, x3;
unsigned int u0,u1,u2,u3,u4,u5,u6,u7,u8,u9,ua,ub,uc,ud,ue,uf;
if ((f = fopen("/proc/net/if_inet6", "r")) == NULL) {
return ;
}
while (fscanf (f, "%2x%2x%2x%2x%2x%2x%2x%2x%2x%2x%2x%2x%2x%2x%2x%2x "
"%d %x %x %x %s",&u0,&u1,&u2,&u3,&u4,&u5,&u6,&u7,
&u8,&u9,&ua,&ub,&uc,&ud,&ue,&uf,
&index, &x1, &x2, &x3, ifname) == 21) {
staddr[0] = (unsigned char)u0;
staddr[1] = (unsigned char)u1;
staddr[2] = (unsigned char)u2;
staddr[3] = (unsigned char)u3;
staddr[4] = (unsigned char)u4;
staddr[5] = (unsigned char)u5;
staddr[6] = (unsigned char)u6;
staddr[7] = (unsigned char)u7;
staddr[8] = (unsigned char)u8;
staddr[9] = (unsigned char)u9;
staddr[10] = (unsigned char)ua;
staddr[11] = (unsigned char)ub;
staddr[12] = (unsigned char)uc;
staddr[13] = (unsigned char)ud;
staddr[14] = (unsigned char)ue;
staddr[15] = (unsigned char)uf;
nifs ++;
if (nifs > localifsSize) {
localifs = (struct localinterface *) realloc (
localifs, sizeof (struct localinterface)* (localifsSize+5));
if (localifs == 0) {
nifs = 0;
fclose (f);
return;
}
lif = localifs + localifsSize;
localifsSize += 5;
} else {
lif ++;
}
memcpy (lif->localaddr, staddr, 16);
lif->index = index;
}
fclose (f);
}
/* return the scope_id (interface index) of the
* interface corresponding to the given address
* returns 0 if no match found
*/
static int getLocalScopeID (char *addr) {
struct localinterface *lif;
int i;
if (localifs == 0) {
initLocalIfs();
}
for (i=0, lif=localifs; i<nifs; i++, lif++) {
if (memcmp (addr, lif->localaddr, 16) == 0) {
return lif->index;
}
}
return 0;
}
void initLocalAddrTable () {
initLoopbackRoutes();
initLocalIfs();
}
#else
void initLocalAddrTable () {}
#endif
/* In the case of an IPv4 Inetaddress this method will return an
* IPv4 mapped address where IPv6 is available and v4MappedAddress is TRUE.
* Otherwise it will return a sockaddr_in structure for an IPv4 InetAddress.
*/
JNIEXPORT int JNICALL
NET_InetAddressToSockaddr(JNIEnv *env, jobject iaObj, int port, struct sockaddr *him,
int *len, jboolean v4MappedAddress) {
jint family;
family = (*env)->GetIntField(env, iaObj, ia_familyID);
#ifdef AF_INET6
/* needs work. 1. family 2. clean up him6 etc deallocate memory */
if (ipv6_available() && !(family == IPv4 && v4MappedAddress == JNI_FALSE)) {
struct sockaddr_in6 *him6 = (struct sockaddr_in6 *)him;
jbyteArray ipaddress;
jbyte caddr[16];
jint address;
if (family == IPv4) { /* will convert to IPv4-mapped address */
memset((char *) caddr, 0, 16);
address = (*env)->GetIntField(env, iaObj, ia_addressID);
if (address == INADDR_ANY) {
/* we would always prefer IPv6 wildcard address
caddr[10] = 0xff;
caddr[11] = 0xff; */
} else {
caddr[10] = 0xff;
caddr[11] = 0xff;
caddr[12] = ((address >> 24) & 0xff);
caddr[13] = ((address >> 16) & 0xff);
caddr[14] = ((address >> 8) & 0xff);
caddr[15] = (address & 0xff);
}
} else {
ipaddress = (*env)->GetObjectField(env, iaObj, ia6_ipaddressID);
(*env)->GetByteArrayRegion(env, ipaddress, 0, 16, caddr);
}
memset((char *)him6, 0, sizeof(struct sockaddr_in6));
him6->sin6_port = htons(port);
memcpy((void *)&(him6->sin6_addr), caddr, sizeof(struct in6_addr) );
him6->sin6_family = AF_INET6;
*len = sizeof(struct sockaddr_in6) ;
/*
* On Linux if we are connecting to a link-local address
* we need to specify the interface in the scope_id (2.4 kernel only)
*
* If the scope was cached the we use the cached value. If not cached but
* specified in the Inet6Address we use that, but we first check if the
* address needs to be routed via the loopback interface. In this case,
* we override the specified value with that of the loopback interface.
* If no cached value exists and no value was specified by user, then
* we try to determine a value ffrom the routing table. In all these
* cases the used value is cached for further use.
*/
#ifdef __linux__
if (IN6_IS_ADDR_LINKLOCAL(&(him6->sin6_addr))) {
int cached_scope_id = 0, scope_id = 0;
int old_kernel = kernelIsV22();
if (ia6_cachedscopeidID && !old_kernel) {
cached_scope_id = (int)(*env)->GetIntField(env, iaObj, ia6_cachedscopeidID);
/* if cached value exists then use it. Otherwise, check
* if scope is set in the address.
*/
if (!cached_scope_id) {
if (ia6_scopeidID) {
scope_id = (int)(*env)->GetIntField(env,iaObj,ia6_scopeidID);
}
if (scope_id != 0) {
/* check user-specified value for loopback case
* that needs to be overridden
*/
if (kernelIsV24() && needsLoopbackRoute (&him6->sin6_addr)) {
cached_scope_id = lo_scope_id;
(*env)->SetIntField(env, iaObj, ia6_cachedscopeidID, cached_scope_id);
}
} else {
/*
* Otherwise consult the IPv6 routing tables to
* try determine the appropriate interface.
*/
if (kernelIsV24()) {
cached_scope_id = getDefaultIPv6Interface( &(him6->sin6_addr) );
} else {
cached_scope_id = getLocalScopeID( (char *)&(him6->sin6_addr) );
if (cached_scope_id == 0) {
cached_scope_id = getDefaultIPv6Interface( &(him6->sin6_addr) );
}
}
(*env)->SetIntField(env, iaObj, ia6_cachedscopeidID, cached_scope_id);
}
}
}
/*
* If we have a scope_id use the extended form
* of sockaddr_in6.
*/
if (!old_kernel) {
struct sockaddr_in6 *him6 =
(struct sockaddr_in6 *)him;
him6->sin6_scope_id = cached_scope_id != 0 ?
cached_scope_id : scope_id;
*len = sizeof(struct sockaddr_in6);
}
}
#else
/* handle scope_id for solaris */
if (family != IPv4) {
if (ia6_scopeidID) {
him6->sin6_scope_id = (int)(*env)->GetIntField(env, iaObj, ia6_scopeidID);
}
}
#endif
} else
#endif /* AF_INET6 */
{
struct sockaddr_in *him4 = (struct sockaddr_in*)him;
jint address;
if (family == IPv6) {
JNU_ThrowByName(env, JNU_JAVANETPKG "SocketException", "Protocol family unavailable");
return -1;
}
memset((char *) him4, 0, sizeof(struct sockaddr_in));
address = (*env)->GetIntField(env, iaObj, ia_addressID);
him4->sin_port = htons((short) port);
him4->sin_addr.s_addr = (uint32_t) htonl(address);
him4->sin_family = AF_INET;
*len = sizeof(struct sockaddr_in);
}
return 0;
}
void
NET_SetTrafficClass(struct sockaddr *him, int trafficClass) {
#ifdef AF_INET6
if (him->sa_family == AF_INET6) {
struct sockaddr_in6 *him6 = (struct sockaddr_in6 *)him;
him6->sin6_flowinfo = htonl((trafficClass & 0xff) << 20);
}
#endif /* AF_INET6 */
}
JNIEXPORT jint JNICALL
NET_GetPortFromSockaddr(struct sockaddr *him) {
#ifdef AF_INET6
if (him->sa_family == AF_INET6) {
return ntohs(((struct sockaddr_in6*)him)->sin6_port);
} else
#endif /* AF_INET6 */
{
return ntohs(((struct sockaddr_in*)him)->sin_port);
}
}
int
NET_IsIPv4Mapped(jbyte* caddr) {
int i;
for (i = 0; i < 10; i++) {
if (caddr[i] != 0x00) {
return 0; /* false */
}
}
if (((caddr[10] & 0xff) == 0xff) && ((caddr[11] & 0xff) == 0xff)) {
return 1; /* true */
}
return 0; /* false */
}
int
NET_IPv4MappedToIPv4(jbyte* caddr) {
return ((caddr[12] & 0xff) << 24) | ((caddr[13] & 0xff) << 16) | ((caddr[14] & 0xff) << 8)
| (caddr[15] & 0xff);
}
int
NET_IsEqual(jbyte* caddr1, jbyte* caddr2) {
int i;
for (i = 0; i < 16; i++) {
if (caddr1[i] != caddr2[i]) {
return 0; /* false */
}
}
return 1;
}
jboolean NET_addrtransAvailable() {
return (jboolean)(getaddrinfo_ptr != NULL);
}
/*
* Map the Java level socket option to the platform specific
* level and option name.
*/
int
NET_MapSocketOption(jint cmd, int *level, int *optname) {
static struct {
jint cmd;
int level;
int optname;
} const opts[] = {
{ java_net_SocketOptions_TCP_NODELAY, IPPROTO_TCP, TCP_NODELAY },
{ java_net_SocketOptions_SO_OOBINLINE, SOL_SOCKET, SO_OOBINLINE },
{ java_net_SocketOptions_SO_LINGER, SOL_SOCKET, SO_LINGER },
{ java_net_SocketOptions_SO_SNDBUF, SOL_SOCKET, SO_SNDBUF },
{ java_net_SocketOptions_SO_RCVBUF, SOL_SOCKET, SO_RCVBUF },
{ java_net_SocketOptions_SO_KEEPALIVE, SOL_SOCKET, SO_KEEPALIVE },
{ java_net_SocketOptions_SO_REUSEADDR, SOL_SOCKET, SO_REUSEADDR },
{ java_net_SocketOptions_SO_BROADCAST, SOL_SOCKET, SO_BROADCAST },
{ java_net_SocketOptions_IP_TOS, IPPROTO_IP, IP_TOS },
{ java_net_SocketOptions_IP_MULTICAST_IF, IPPROTO_IP, IP_MULTICAST_IF },
{ java_net_SocketOptions_IP_MULTICAST_IF2, IPPROTO_IP, IP_MULTICAST_IF },
{ java_net_SocketOptions_IP_MULTICAST_LOOP, IPPROTO_IP, IP_MULTICAST_LOOP },
};
int i;
/*
* Different multicast options if IPv6 is enabled
*/
#ifdef AF_INET6
if (ipv6_available()) {
switch (cmd) {
case java_net_SocketOptions_IP_MULTICAST_IF:
case java_net_SocketOptions_IP_MULTICAST_IF2:
*level = IPPROTO_IPV6;
*optname = IPV6_MULTICAST_IF;
return 0;
case java_net_SocketOptions_IP_MULTICAST_LOOP:
*level = IPPROTO_IPV6;
*optname = IPV6_MULTICAST_LOOP;
return 0;
}
}
#endif
/*
* Map the Java level option to the native level
*/
for (i=0; i<(int)(sizeof(opts) / sizeof(opts[0])); i++) {
if (cmd == opts[i].cmd) {
*level = opts[i].level;
*optname = opts[i].optname;
return 0;
}
}
/* not found */
return -1;
}
/*
* Determine the default interface for an IPv6 address.
*
* 1. Scans /proc/net/ipv6_route for a matching route
* (eg: fe80::/10 or a route for the specific address).
* This will tell us the interface to use (eg: "eth0").
*
* 2. Lookup /proc/net/if_inet6 to map the interface
* name to an interface index.
*
* Returns :-
* -1 if error
* 0 if no matching interface
* >1 interface index to use for the link-local address.
*/
#if defined(__linux__) && defined(AF_INET6)
int getDefaultIPv6Interface(struct in6_addr *target_addr) {
FILE *f;
char srcp[8][5];
char hopp[8][5];
int dest_plen, src_plen, use, refcnt, metric;
unsigned long flags;
char dest_str[40];
struct in6_addr dest_addr;
char device[16];
jboolean match = JNI_FALSE;
/*
* Scan /proc/net/ipv6_route looking for a matching
* route.
*/
if ((f = fopen("/proc/net/ipv6_route", "r")) == NULL) {
return -1;
}
while (fscanf(f, "%4s%4s%4s%4s%4s%4s%4s%4s %02x "
"%4s%4s%4s%4s%4s%4s%4s%4s %02x "
"%4s%4s%4s%4s%4s%4s%4s%4s "
"%08x %08x %08x %08lx %8s",
dest_str, &dest_str[5], &dest_str[10], &dest_str[15],
&dest_str[20], &dest_str[25], &dest_str[30], &dest_str[35],
&dest_plen,
srcp[0], srcp[1], srcp[2], srcp[3],
srcp[4], srcp[5], srcp[6], srcp[7],
&src_plen,
hopp[0], hopp[1], hopp[2], hopp[3],
hopp[4], hopp[5], hopp[6], hopp[7],
&metric, &use, &refcnt, &flags, device) == 31) {
/*
* Some routes should be ignored
*/
if ( (dest_plen < 0 || dest_plen > 128) ||
(src_plen != 0) ||
(flags & (RTF_POLICY | RTF_FLOW)) ||
((flags & RTF_REJECT) && dest_plen == 0) ) {
continue;
}
/*
* Convert the destination address
*/
dest_str[4] = ':';
dest_str[9] = ':';
dest_str[14] = ':';
dest_str[19] = ':';
dest_str[24] = ':';
dest_str[29] = ':';
dest_str[34] = ':';
dest_str[39] = '\0';
if (inet_pton(AF_INET6, dest_str, &dest_addr) < 0) {
/* not an Ipv6 address */
continue;
} else {
/*
* The prefix len (dest_plen) indicates the number of bits we
* need to match on.
*
* dest_plen / 8 => number of bytes to match
* dest_plen % 8 => number of additional bits to match
*
* eg: fe80::/10 => match 1 byte + 2 additional bits in the
* the next byte.
*/
int byte_count = dest_plen >> 3;
int extra_bits = dest_plen & 0x3;
if (byte_count > 0) {
if (memcmp(target_addr, &dest_addr, byte_count)) {
continue; /* no match */
}
}
if (extra_bits > 0) {
unsigned char c1 = ((unsigned char *)target_addr)[byte_count];
unsigned char c2 = ((unsigned char *)&dest_addr)[byte_count];
unsigned char mask = 0xff << (8 - extra_bits);
if ((c1 & mask) != (c2 & mask)) {
continue;
}
}
/*
* We have a match
*/
match = JNI_TRUE;
break;
}
}
fclose(f);
/*
* If there's a match then we lookup the interface
* index.
*/
if (match) {
char devname[20];
char addr6p[8][5];
int plen, scope, dad_status, if_idx;
if ((f = fopen("/proc/net/if_inet6", "r")) != NULL) {
while (fscanf(f, "%4s%4s%4s%4s%4s%4s%4s%4s %02x %02x %02x %02x %20s\n",
addr6p[0], addr6p[1], addr6p[2], addr6p[3],
addr6p[4], addr6p[5], addr6p[6], addr6p[7],
&if_idx, &plen, &scope, &dad_status, devname) == 13) {
if (strcmp(devname, device) == 0) {
/*
* Found - so just return the index
*/
fclose(f);
return if_idx;
}
}
fclose(f);
} else {
/*
* Couldn't open /proc/net/if_inet6
*/
return -1;
}
}
/*
* If we get here it means we didn't there wasn't any
* route or we couldn't get the index of the interface.
*/
return 0;
}
#endif
/*
* Wrapper for getsockopt system routine - does any necessary
* pre/post processing to deal with OS specific oddies :-
*
* IP_TOS is a no-op with IPv6 sockets as it's setup when
* the connection is established.
*
* On Linux the SO_SNDBUF/SO_RCVBUF values must be post-processed
* to compensate for an incorrect value returned by the kernel.
*/
int
NET_GetSockOpt(int fd, int level, int opt, void *result,
int *len)
{
int rv;
#ifdef AF_INET6
if ((level == IPPROTO_IP) && (opt == IP_TOS)) {
if (ipv6_available()) {
/*
* For IPv6 socket option implemented at Java-level
* so return -1.
*/
int *tc = (int *)result;
*tc = -1;
return 0;
}
}
#endif
#ifdef __solaris__
rv = getsockopt(fd, level, opt, result, len);
#else
{
socklen_t socklen = *len;
rv = getsockopt(fd, level, opt, result, &socklen);
*len = socklen;
}
#endif
if (rv < 0) {
return rv;
}
#ifdef __linux__
/*
* On Linux SO_SNDBUF/SO_RCVBUF aren't symmetric. This
* stems from additional socket structures in the send
* and receive buffers.
*/
if ((level == SOL_SOCKET) && ((opt == SO_SNDBUF)
|| (opt == SO_RCVBUF))) {
int n = *((int *)result);
n /= 2;
*((int *)result) = n;
}
#endif
return rv;
}
/*
* Wrapper for setsockopt system routine - performs any
* necessary pre/post processing to deal with OS specific
* issue :-
*
* On Solaris need to limit the suggested value for SO_SNDBUF
* and SO_RCVBUF to the kernel configured limit
*
* For IP_TOS socket option need to mask off bits as this
* aren't automatically masked by the kernel and results in
* an error. In addition IP_TOS is a noop with IPv6 as it
* should be setup as connection time.
*/
int
NET_SetSockOpt(int fd, int level, int opt, const void *arg,
int len)
{
#ifndef IPTOS_TOS_MASK
#define IPTOS_TOS_MASK 0x1e
#endif
#ifndef IPTOS_PREC_MASK
#define IPTOS_PREC_MASK 0xe0
#endif
/*
* IPPROTO/IP_TOS :-
* 1. IPv6 on Solaris: no-op and will be set in flowinfo
* field when connecting TCP socket, or sending
* UDP packet.
* 2. IPv6 on Linux: By default Linux ignores flowinfo
* field so enable IPV6_FLOWINFO_SEND so that flowinfo
* will be examined.
* 3. IPv4: set socket option based on ToS and Precedence
* fields (otherwise get invalid argument)
*/
if (level == IPPROTO_IP && opt == IP_TOS) {
int *iptos;
#if defined(AF_INET6) && defined(__solaris__)
if (ipv6_available()) {
return 0;
}
#endif
#if defined(AF_INET6) && defined(__linux__)
if (ipv6_available()) {
int optval = 1;
return setsockopt(fd, IPPROTO_IPV6, IPV6_FLOWINFO_SEND,
(void *)&optval, sizeof(optval));
}
#endif
iptos = (int *)arg;
*iptos &= (IPTOS_TOS_MASK | IPTOS_PREC_MASK);
}
/*
* SOL_SOCKET/{SO_SNDBUF,SO_RCVBUF} - On Solaris need to
* ensure that value is <= max_buf as otherwise we get
* an invalid argument.
*/
#ifdef __solaris__
if (level == SOL_SOCKET) {
if (opt == SO_SNDBUF || opt == SO_RCVBUF) {
int sotype, arglen;
int *bufsize, maxbuf;
if (!init_max_buf) {
tcp_max_buf = getParam("/dev/tcp", "tcp_max_buf", 64*1024);
udp_max_buf = getParam("/dev/udp", "udp_max_buf", 64*1024);
init_max_buf = 1;
}
arglen = sizeof(sotype);
if (getsockopt(fd, SOL_SOCKET, SO_TYPE, (void *)&sotype,
&arglen) < 0) {
return -1;
}
maxbuf = (sotype == SOCK_STREAM) ? tcp_max_buf : udp_max_buf;
bufsize = (int *)arg;
if (*bufsize > maxbuf) {
*bufsize = maxbuf;
}
}
}
#endif
/*
* On Linux the receive buffer is used for both socket
* structures and the the packet payload. The implication
* is that if SO_RCVBUF is too small then small packets
* must be discard.
*/
#ifdef __linux__
if (level == SOL_SOCKET && opt == SO_RCVBUF) {
int *bufsize = (int *)arg;
if (*bufsize < 1024) {
*bufsize = 1024;
}
}
#endif
return setsockopt(fd, level, opt, arg, len);
}
/*
* Wrapper for bind system call - performs any necessary pre/post
* processing to deal with OS specific issues :-
*
* Linux allows a socket to bind to 127.0.0.255 which must be
* caught.
*
* On Solaris 8/9 with IPv6 enabled we must use an exclusive
* bind to guaranteed a unique port number across the IPv4 and
* IPv6 port spaces.
*
*/
int
NET_Bind(int fd, struct sockaddr *him, int len)
{
#if defined(__solaris__) && defined(AF_INET6)
int level = -1;
int exclbind = -1;
#endif
int rv;
#ifdef __linux__
/*
* ## get bugId for this issue - goes back to 1.2.2 port ##
* ## When IPv6 is enabled this will be an IPv4-mapped
* ## with family set to AF_INET6
*/
if (him->sa_family == AF_INET) {
struct sockaddr_in *sa = (struct sockaddr_in *)him;
if ((ntohl(sa->sin_addr.s_addr) & 0x7f0000ff) == 0x7f0000ff) {
errno = EADDRNOTAVAIL;
return -1;
}
}
#endif
#if defined(__solaris__) && defined(AF_INET6)
/*
* Solaris 8/9 have seperate IPv4 and IPv6 port spaces so we
* use an exclusive bind when SO_REUSEADDR is not used to
* give the illusion of a unified port space.
* This also avoid problems with IPv6 sockets connecting
* to IPv4 mapped addresses whereby the socket conversion
* results in a late bind that fails because the
* corresponding IPv4 port is in use.
*/
if (ipv6_available()) {
int arg, len;
len = sizeof(arg);
if (getsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&arg,
&len) == 0) {
if (arg == 0) {
/*
* SO_REUSEADDR is disabled so enable TCP_EXCLBIND or
* UDP_EXCLBIND
*/
len = sizeof(arg);
if (getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&arg,
&len) == 0) {
if (arg == SOCK_STREAM) {
level = IPPROTO_TCP;
exclbind = TCP_EXCLBIND;
} else {
level = IPPROTO_UDP;
exclbind = UDP_EXCLBIND;
}
}
arg = 1;
setsockopt(fd, level, exclbind, (char *)&arg,
sizeof(arg));
}
}
}
#endif
rv = bind(fd, him, len);
#if defined(__solaris__) && defined(AF_INET6)
if (rv < 0) {
int en = errno;
/* Restore *_EXCLBIND if the bind fails */
if (exclbind != -1) {
int arg = 0;
setsockopt(fd, level, exclbind, (char *)&arg,
sizeof(arg));
}
errno = en;
}
#endif
return rv;
}
/**
* Wrapper for select/poll with timeout on a single file descriptor.
*
* flags (defined in net_util_md.h can be any combination of
* NET_WAIT_READ, NET_WAIT_WRITE & NET_WAIT_CONNECT.
*
* The function will return when either the socket is ready for one
* of the specified operation or the timeout expired.
*
* It returns the time left from the timeout (possibly 0), or -1 if it expired.
*/
jint
NET_Wait(JNIEnv *env, jint fd, jint flags, jint timeout)
{
jlong prevTime = JVM_CurrentTimeMillis(env, 0);
jint read_rv;
while (1) {
jlong newTime;
#ifndef USE_SELECT
{
struct pollfd pfd;
pfd.fd = fd;
pfd.events = 0;
if (flags & NET_WAIT_READ)
pfd.events |= POLLIN;
if (flags & NET_WAIT_WRITE)
pfd.events |= POLLOUT;
if (flags & NET_WAIT_CONNECT)
pfd.events |= POLLOUT;
errno = 0;
read_rv = NET_Poll(&pfd, 1, timeout);
}
#else
{
fd_set rd, wr, ex;
struct timeval t;
t.tv_sec = timeout / 1000;
t.tv_usec = (timeout % 1000) * 1000;
FD_ZERO(&rd);
FD_ZERO(&wr);
FD_ZERO(&ex);
if (flags & NET_WAIT_READ) {
FD_SET(fd, &rd);
}
if (flags & NET_WAIT_WRITE) {
FD_SET(fd, &wr);
}
if (flags & NET_WAIT_CONNECT) {
FD_SET(fd, &wr);
FD_SET(fd, &ex);
}
errno = 0;
read_rv = NET_Select(fd+1, &rd, &wr, &ex, &t);
}
#endif
newTime = JVM_CurrentTimeMillis(env, 0);
timeout -= (newTime - prevTime);
if (timeout <= 0) {
return read_rv > 0 ? 0 : -1;
}
newTime = prevTime;
if (read_rv > 0) {
break;
}
} /* while */
return timeout;
}