8205946: JVM crash after call to ClassLoader::setup_bootstrap_search_path()
Summary: exit vm if setting of boot class path fails.
Reviewed-by: lfoltan, jiangli, dholmes
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
#define _WIN32_WINNT 0x0600
// no precompiled headers
#include "jvm.h"
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/disassembler.hpp"
#include "interpreter/interpreter.hpp"
#include "logging/log.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/filemap.hpp"
#include "oops/oop.inline.hpp"
#include "os_share_windows.hpp"
#include "os_windows.inline.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/globals.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/osThread.hpp"
#include "runtime/perfMemory.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/statSampler.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/threadCritical.hpp"
#include "runtime/timer.hpp"
#include "runtime/vm_version.hpp"
#include "services/attachListener.hpp"
#include "services/memTracker.hpp"
#include "services/runtimeService.hpp"
#include "utilities/align.hpp"
#include "utilities/decoder.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/events.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/macros.hpp"
#include "utilities/vmError.hpp"
#include "symbolengine.hpp"
#include "windbghelp.hpp"
#ifdef _DEBUG
#include <crtdbg.h>
#endif
#include <windows.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/timeb.h>
#include <objidl.h>
#include <shlobj.h>
#include <malloc.h>
#include <signal.h>
#include <direct.h>
#include <errno.h>
#include <fcntl.h>
#include <io.h>
#include <process.h> // For _beginthreadex(), _endthreadex()
#include <imagehlp.h> // For os::dll_address_to_function_name
// for enumerating dll libraries
#include <vdmdbg.h>
#include <psapi.h>
#include <mmsystem.h>
#include <winsock2.h>
// for timer info max values which include all bits
#define ALL_64_BITS CONST64(-1)
// For DLL loading/load error detection
// Values of PE COFF
#define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
#define IMAGE_FILE_SIGNATURE_LENGTH 4
static HANDLE main_process;
static HANDLE main_thread;
static int main_thread_id;
static FILETIME process_creation_time;
static FILETIME process_exit_time;
static FILETIME process_user_time;
static FILETIME process_kernel_time;
#ifdef _M_AMD64
#define __CPU__ amd64
#else
#define __CPU__ i486
#endif
// save DLL module handle, used by GetModuleFileName
HINSTANCE vm_lib_handle;
BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
switch (reason) {
case DLL_PROCESS_ATTACH:
vm_lib_handle = hinst;
if (ForceTimeHighResolution) {
timeBeginPeriod(1L);
}
WindowsDbgHelp::pre_initialize();
SymbolEngine::pre_initialize();
break;
case DLL_PROCESS_DETACH:
if (ForceTimeHighResolution) {
timeEndPeriod(1L);
}
break;
default:
break;
}
return true;
}
static inline double fileTimeAsDouble(FILETIME* time) {
const double high = (double) ((unsigned int) ~0);
const double split = 10000000.0;
double result = (time->dwLowDateTime / split) +
time->dwHighDateTime * (high/split);
return result;
}
// Implementation of os
bool os::unsetenv(const char* name) {
assert(name != NULL, "Null pointer");
return (SetEnvironmentVariable(name, NULL) == TRUE);
}
// No setuid programs under Windows.
bool os::have_special_privileges() {
return false;
}
// This method is a periodic task to check for misbehaving JNI applications
// under CheckJNI, we can add any periodic checks here.
// For Windows at the moment does nothing
void os::run_periodic_checks() {
return;
}
// previous UnhandledExceptionFilter, if there is one
static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
void os::init_system_properties_values() {
// sysclasspath, java_home, dll_dir
{
char *home_path;
char *dll_path;
char *pslash;
char *bin = "\\bin";
char home_dir[MAX_PATH + 1];
char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
if (alt_home_dir != NULL) {
strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
home_dir[MAX_PATH] = '\0';
} else {
os::jvm_path(home_dir, sizeof(home_dir));
// Found the full path to jvm.dll.
// Now cut the path to <java_home>/jre if we can.
*(strrchr(home_dir, '\\')) = '\0'; // get rid of \jvm.dll
pslash = strrchr(home_dir, '\\');
if (pslash != NULL) {
*pslash = '\0'; // get rid of \{client|server}
pslash = strrchr(home_dir, '\\');
if (pslash != NULL) {
*pslash = '\0'; // get rid of \bin
}
}
}
home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
if (home_path == NULL) {
return;
}
strcpy(home_path, home_dir);
Arguments::set_java_home(home_path);
FREE_C_HEAP_ARRAY(char, home_path);
dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
mtInternal);
if (dll_path == NULL) {
return;
}
strcpy(dll_path, home_dir);
strcat(dll_path, bin);
Arguments::set_dll_dir(dll_path);
FREE_C_HEAP_ARRAY(char, dll_path);
if (!set_boot_path('\\', ';')) {
vm_exit_during_initialization("Failed setting boot class path.", NULL);
}
}
// library_path
#define EXT_DIR "\\lib\\ext"
#define BIN_DIR "\\bin"
#define PACKAGE_DIR "\\Sun\\Java"
{
// Win32 library search order (See the documentation for LoadLibrary):
//
// 1. The directory from which application is loaded.
// 2. The system wide Java Extensions directory (Java only)
// 3. System directory (GetSystemDirectory)
// 4. Windows directory (GetWindowsDirectory)
// 5. The PATH environment variable
// 6. The current directory
char *library_path;
char tmp[MAX_PATH];
char *path_str = ::getenv("PATH");
library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
library_path[0] = '\0';
GetModuleFileName(NULL, tmp, sizeof(tmp));
*(strrchr(tmp, '\\')) = '\0';
strcat(library_path, tmp);
GetWindowsDirectory(tmp, sizeof(tmp));
strcat(library_path, ";");
strcat(library_path, tmp);
strcat(library_path, PACKAGE_DIR BIN_DIR);
GetSystemDirectory(tmp, sizeof(tmp));
strcat(library_path, ";");
strcat(library_path, tmp);
GetWindowsDirectory(tmp, sizeof(tmp));
strcat(library_path, ";");
strcat(library_path, tmp);
if (path_str) {
strcat(library_path, ";");
strcat(library_path, path_str);
}
strcat(library_path, ";.");
Arguments::set_library_path(library_path);
FREE_C_HEAP_ARRAY(char, library_path);
}
// Default extensions directory
{
char path[MAX_PATH];
char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
GetWindowsDirectory(path, MAX_PATH);
sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
path, PACKAGE_DIR, EXT_DIR);
Arguments::set_ext_dirs(buf);
}
#undef EXT_DIR
#undef BIN_DIR
#undef PACKAGE_DIR
#ifndef _WIN64
// set our UnhandledExceptionFilter and save any previous one
prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
#endif
// Done
return;
}
void os::breakpoint() {
DebugBreak();
}
// Invoked from the BREAKPOINT Macro
extern "C" void breakpoint() {
os::breakpoint();
}
// RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
// So far, this method is only used by Native Memory Tracking, which is
// only supported on Windows XP or later.
//
int os::get_native_stack(address* stack, int frames, int toSkip) {
int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
for (int index = captured; index < frames; index ++) {
stack[index] = NULL;
}
return captured;
}
// os::current_stack_base()
//
// Returns the base of the stack, which is the stack's
// starting address. This function must be called
// while running on the stack of the thread being queried.
address os::current_stack_base() {
MEMORY_BASIC_INFORMATION minfo;
address stack_bottom;
size_t stack_size;
VirtualQuery(&minfo, &minfo, sizeof(minfo));
stack_bottom = (address)minfo.AllocationBase;
stack_size = minfo.RegionSize;
// Add up the sizes of all the regions with the same
// AllocationBase.
while (1) {
VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
if (stack_bottom == (address)minfo.AllocationBase) {
stack_size += minfo.RegionSize;
} else {
break;
}
}
return stack_bottom + stack_size;
}
size_t os::current_stack_size() {
size_t sz;
MEMORY_BASIC_INFORMATION minfo;
VirtualQuery(&minfo, &minfo, sizeof(minfo));
sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
return sz;
}
bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
MEMORY_BASIC_INFORMATION minfo;
committed_start = NULL;
committed_size = 0;
address top = start + size;
const address start_addr = start;
while (start < top) {
VirtualQuery(start, &minfo, sizeof(minfo));
if ((minfo.State & MEM_COMMIT) == 0) { // not committed
if (committed_start != NULL) {
break;
}
} else { // committed
if (committed_start == NULL) {
committed_start = start;
}
size_t offset = start - (address)minfo.BaseAddress;
committed_size += minfo.RegionSize - offset;
}
start = (address)minfo.BaseAddress + minfo.RegionSize;
}
if (committed_start == NULL) {
assert(committed_size == 0, "Sanity");
return false;
} else {
assert(committed_start >= start_addr && committed_start < top, "Out of range");
// current region may go beyond the limit, trim to the limit
committed_size = MIN2(committed_size, size_t(top - committed_start));
return true;
}
}
struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
const struct tm* time_struct_ptr = localtime(clock);
if (time_struct_ptr != NULL) {
*res = *time_struct_ptr;
return res;
}
return NULL;
}
struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) {
const struct tm* time_struct_ptr = gmtime(clock);
if (time_struct_ptr != NULL) {
*res = *time_struct_ptr;
return res;
}
return NULL;
}
LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
// Thread start routine for all newly created threads
static unsigned __stdcall thread_native_entry(Thread* thread) {
// Try to randomize the cache line index of hot stack frames.
// This helps when threads of the same stack traces evict each other's
// cache lines. The threads can be either from the same JVM instance, or
// from different JVM instances. The benefit is especially true for
// processors with hyperthreading technology.
static int counter = 0;
int pid = os::current_process_id();
_alloca(((pid ^ counter++) & 7) * 128);
thread->initialize_thread_current();
OSThread* osthr = thread->osthread();
assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
if (UseNUMA) {
int lgrp_id = os::numa_get_group_id();
if (lgrp_id != -1) {
thread->set_lgrp_id(lgrp_id);
}
}
// Diagnostic code to investigate JDK-6573254
int res = 30115; // non-java thread
if (thread->is_Java_thread()) {
res = 20115; // java thread
}
log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
// Install a win32 structured exception handler around every thread created
// by VM, so VM can generate error dump when an exception occurred in non-
// Java thread (e.g. VM thread).
__try {
thread->run();
} __except(topLevelExceptionFilter(
(_EXCEPTION_POINTERS*)_exception_info())) {
// Nothing to do.
}
log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
// One less thread is executing
// When the VMThread gets here, the main thread may have already exited
// which frees the CodeHeap containing the Atomic::add code
if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
Atomic::dec(&os::win32::_os_thread_count);
}
// If a thread has not deleted itself ("delete this") as part of its
// termination sequence, we have to ensure thread-local-storage is
// cleared before we actually terminate. No threads should ever be
// deleted asynchronously with respect to their termination.
if (Thread::current_or_null_safe() != NULL) {
assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
thread->clear_thread_current();
}
// Thread must not return from exit_process_or_thread(), but if it does,
// let it proceed to exit normally
return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
}
static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
int thread_id) {
// Allocate the OSThread object
OSThread* osthread = new OSThread(NULL, NULL);
if (osthread == NULL) return NULL;
// Initialize support for Java interrupts
HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
if (interrupt_event == NULL) {
delete osthread;
return NULL;
}
osthread->set_interrupt_event(interrupt_event);
// Store info on the Win32 thread into the OSThread
osthread->set_thread_handle(thread_handle);
osthread->set_thread_id(thread_id);
if (UseNUMA) {
int lgrp_id = os::numa_get_group_id();
if (lgrp_id != -1) {
thread->set_lgrp_id(lgrp_id);
}
}
// Initial thread state is INITIALIZED, not SUSPENDED
osthread->set_state(INITIALIZED);
return osthread;
}
bool os::create_attached_thread(JavaThread* thread) {
#ifdef ASSERT
thread->verify_not_published();
#endif
HANDLE thread_h;
if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
&thread_h, THREAD_ALL_ACCESS, false, 0)) {
fatal("DuplicateHandle failed\n");
}
OSThread* osthread = create_os_thread(thread, thread_h,
(int)current_thread_id());
if (osthread == NULL) {
return false;
}
// Initial thread state is RUNNABLE
osthread->set_state(RUNNABLE);
thread->set_osthread(osthread);
log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
os::current_thread_id());
return true;
}
bool os::create_main_thread(JavaThread* thread) {
#ifdef ASSERT
thread->verify_not_published();
#endif
if (_starting_thread == NULL) {
_starting_thread = create_os_thread(thread, main_thread, main_thread_id);
if (_starting_thread == NULL) {
return false;
}
}
// The primordial thread is runnable from the start)
_starting_thread->set_state(RUNNABLE);
thread->set_osthread(_starting_thread);
return true;
}
// Helper function to trace _beginthreadex attributes,
// similar to os::Posix::describe_pthread_attr()
static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
size_t stacksize, unsigned initflag) {
stringStream ss(buf, buflen);
if (stacksize == 0) {
ss.print("stacksize: default, ");
} else {
ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
}
ss.print("flags: ");
#define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
#define ALL(X) \
X(CREATE_SUSPENDED) \
X(STACK_SIZE_PARAM_IS_A_RESERVATION)
ALL(PRINT_FLAG)
#undef ALL
#undef PRINT_FLAG
return buf;
}
// Allocate and initialize a new OSThread
bool os::create_thread(Thread* thread, ThreadType thr_type,
size_t stack_size) {
unsigned thread_id;
// Allocate the OSThread object
OSThread* osthread = new OSThread(NULL, NULL);
if (osthread == NULL) {
return false;
}
// Initialize support for Java interrupts
HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
if (interrupt_event == NULL) {
delete osthread;
return NULL;
}
osthread->set_interrupt_event(interrupt_event);
osthread->set_interrupted(false);
thread->set_osthread(osthread);
if (stack_size == 0) {
switch (thr_type) {
case os::java_thread:
// Java threads use ThreadStackSize which default value can be changed with the flag -Xss
if (JavaThread::stack_size_at_create() > 0) {
stack_size = JavaThread::stack_size_at_create();
}
break;
case os::compiler_thread:
if (CompilerThreadStackSize > 0) {
stack_size = (size_t)(CompilerThreadStackSize * K);
break;
} // else fall through:
// use VMThreadStackSize if CompilerThreadStackSize is not defined
case os::vm_thread:
case os::pgc_thread:
case os::cgc_thread:
case os::watcher_thread:
if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
break;
}
}
// Create the Win32 thread
//
// Contrary to what MSDN document says, "stack_size" in _beginthreadex()
// does not specify stack size. Instead, it specifies the size of
// initially committed space. The stack size is determined by
// PE header in the executable. If the committed "stack_size" is larger
// than default value in the PE header, the stack is rounded up to the
// nearest multiple of 1MB. For example if the launcher has default
// stack size of 320k, specifying any size less than 320k does not
// affect the actual stack size at all, it only affects the initial
// commitment. On the other hand, specifying 'stack_size' larger than
// default value may cause significant increase in memory usage, because
// not only the stack space will be rounded up to MB, but also the
// entire space is committed upfront.
//
// Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
// for CreateThread() that can treat 'stack_size' as stack size. However we
// are not supposed to call CreateThread() directly according to MSDN
// document because JVM uses C runtime library. The good news is that the
// flag appears to work with _beginthredex() as well.
const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
HANDLE thread_handle =
(HANDLE)_beginthreadex(NULL,
(unsigned)stack_size,
(unsigned (__stdcall *)(void*)) thread_native_entry,
thread,
initflag,
&thread_id);
char buf[64];
if (thread_handle != NULL) {
log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
} else {
log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
}
if (thread_handle == NULL) {
// Need to clean up stuff we've allocated so far
CloseHandle(osthread->interrupt_event());
thread->set_osthread(NULL);
delete osthread;
return NULL;
}
Atomic::inc(&os::win32::_os_thread_count);
// Store info on the Win32 thread into the OSThread
osthread->set_thread_handle(thread_handle);
osthread->set_thread_id(thread_id);
// Initial thread state is INITIALIZED, not SUSPENDED
osthread->set_state(INITIALIZED);
// The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
return true;
}
// Free Win32 resources related to the OSThread
void os::free_thread(OSThread* osthread) {
assert(osthread != NULL, "osthread not set");
// We are told to free resources of the argument thread,
// but we can only really operate on the current thread.
assert(Thread::current()->osthread() == osthread,
"os::free_thread but not current thread");
CloseHandle(osthread->thread_handle());
CloseHandle(osthread->interrupt_event());
delete osthread;
}
static jlong first_filetime;
static jlong initial_performance_count;
static jlong performance_frequency;
jlong as_long(LARGE_INTEGER x) {
jlong result = 0; // initialization to avoid warning
set_high(&result, x.HighPart);
set_low(&result, x.LowPart);
return result;
}
jlong os::elapsed_counter() {
LARGE_INTEGER count;
QueryPerformanceCounter(&count);
return as_long(count) - initial_performance_count;
}
jlong os::elapsed_frequency() {
return performance_frequency;
}
julong os::available_memory() {
return win32::available_memory();
}
julong os::win32::available_memory() {
// Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
// value if total memory is larger than 4GB
MEMORYSTATUSEX ms;
ms.dwLength = sizeof(ms);
GlobalMemoryStatusEx(&ms);
return (julong)ms.ullAvailPhys;
}
julong os::physical_memory() {
return win32::physical_memory();
}
bool os::has_allocatable_memory_limit(julong* limit) {
MEMORYSTATUSEX ms;
ms.dwLength = sizeof(ms);
GlobalMemoryStatusEx(&ms);
#ifdef _LP64
*limit = (julong)ms.ullAvailVirtual;
return true;
#else
// Limit to 1400m because of the 2gb address space wall
*limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
return true;
#endif
}
int os::active_processor_count() {
// User has overridden the number of active processors
if (ActiveProcessorCount > 0) {
log_trace(os)("active_processor_count: "
"active processor count set by user : %d",
ActiveProcessorCount);
return ActiveProcessorCount;
}
DWORD_PTR lpProcessAffinityMask = 0;
DWORD_PTR lpSystemAffinityMask = 0;
int proc_count = processor_count();
if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
// Nof active processors is number of bits in process affinity mask
int bitcount = 0;
while (lpProcessAffinityMask != 0) {
lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
bitcount++;
}
return bitcount;
} else {
return proc_count;
}
}
void os::set_native_thread_name(const char *name) {
// See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
//
// Note that unfortunately this only works if the process
// is already attached to a debugger; debugger must observe
// the exception below to show the correct name.
// If there is no debugger attached skip raising the exception
if (!IsDebuggerPresent()) {
return;
}
const DWORD MS_VC_EXCEPTION = 0x406D1388;
struct {
DWORD dwType; // must be 0x1000
LPCSTR szName; // pointer to name (in user addr space)
DWORD dwThreadID; // thread ID (-1=caller thread)
DWORD dwFlags; // reserved for future use, must be zero
} info;
info.dwType = 0x1000;
info.szName = name;
info.dwThreadID = -1;
info.dwFlags = 0;
__try {
RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
} __except(EXCEPTION_EXECUTE_HANDLER) {}
}
bool os::distribute_processes(uint length, uint* distribution) {
// Not yet implemented.
return false;
}
bool os::bind_to_processor(uint processor_id) {
// Not yet implemented.
return false;
}
void os::win32::initialize_performance_counter() {
LARGE_INTEGER count;
QueryPerformanceFrequency(&count);
performance_frequency = as_long(count);
QueryPerformanceCounter(&count);
initial_performance_count = as_long(count);
}
double os::elapsedTime() {
return (double) elapsed_counter() / (double) elapsed_frequency();
}
// Windows format:
// The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
// Java format:
// Java standards require the number of milliseconds since 1/1/1970
// Constant offset - calculated using offset()
static jlong _offset = 116444736000000000;
// Fake time counter for reproducible results when debugging
static jlong fake_time = 0;
#ifdef ASSERT
// Just to be safe, recalculate the offset in debug mode
static jlong _calculated_offset = 0;
static int _has_calculated_offset = 0;
jlong offset() {
if (_has_calculated_offset) return _calculated_offset;
SYSTEMTIME java_origin;
java_origin.wYear = 1970;
java_origin.wMonth = 1;
java_origin.wDayOfWeek = 0; // ignored
java_origin.wDay = 1;
java_origin.wHour = 0;
java_origin.wMinute = 0;
java_origin.wSecond = 0;
java_origin.wMilliseconds = 0;
FILETIME jot;
if (!SystemTimeToFileTime(&java_origin, &jot)) {
fatal("Error = %d\nWindows error", GetLastError());
}
_calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
_has_calculated_offset = 1;
assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
return _calculated_offset;
}
#else
jlong offset() {
return _offset;
}
#endif
jlong windows_to_java_time(FILETIME wt) {
jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
return (a - offset()) / 10000;
}
// Returns time ticks in (10th of micro seconds)
jlong windows_to_time_ticks(FILETIME wt) {
jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
return (a - offset());
}
FILETIME java_to_windows_time(jlong l) {
jlong a = (l * 10000) + offset();
FILETIME result;
result.dwHighDateTime = high(a);
result.dwLowDateTime = low(a);
return result;
}
bool os::supports_vtime() { return true; }
bool os::enable_vtime() { return false; }
bool os::vtime_enabled() { return false; }
double os::elapsedVTime() {
FILETIME created;
FILETIME exited;
FILETIME kernel;
FILETIME user;
if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
// the resolution of windows_to_java_time() should be sufficient (ms)
return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
} else {
return elapsedTime();
}
}
jlong os::javaTimeMillis() {
if (UseFakeTimers) {
return fake_time++;
} else {
FILETIME wt;
GetSystemTimeAsFileTime(&wt);
return windows_to_java_time(wt);
}
}
void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
FILETIME wt;
GetSystemTimeAsFileTime(&wt);
jlong ticks = windows_to_time_ticks(wt); // 10th of micros
jlong secs = jlong(ticks / 10000000); // 10000 * 1000
seconds = secs;
nanos = jlong(ticks - (secs*10000000)) * 100;
}
jlong os::javaTimeNanos() {
LARGE_INTEGER current_count;
QueryPerformanceCounter(¤t_count);
double current = as_long(current_count);
double freq = performance_frequency;
jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
return time;
}
void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
jlong freq = performance_frequency;
if (freq < NANOSECS_PER_SEC) {
// the performance counter is 64 bits and we will
// be multiplying it -- so no wrap in 64 bits
info_ptr->max_value = ALL_64_BITS;
} else if (freq > NANOSECS_PER_SEC) {
// use the max value the counter can reach to
// determine the max value which could be returned
julong max_counter = (julong)ALL_64_BITS;
info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
} else {
// the performance counter is 64 bits and we will
// be using it directly -- so no wrap in 64 bits
info_ptr->max_value = ALL_64_BITS;
}
// using a counter, so no skipping
info_ptr->may_skip_backward = false;
info_ptr->may_skip_forward = false;
info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
}
char* os::local_time_string(char *buf, size_t buflen) {
SYSTEMTIME st;
GetLocalTime(&st);
jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
return buf;
}
bool os::getTimesSecs(double* process_real_time,
double* process_user_time,
double* process_system_time) {
HANDLE h_process = GetCurrentProcess();
FILETIME create_time, exit_time, kernel_time, user_time;
BOOL result = GetProcessTimes(h_process,
&create_time,
&exit_time,
&kernel_time,
&user_time);
if (result != 0) {
FILETIME wt;
GetSystemTimeAsFileTime(&wt);
jlong rtc_millis = windows_to_java_time(wt);
*process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
*process_user_time =
(double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
*process_system_time =
(double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
return true;
} else {
return false;
}
}
void os::shutdown() {
// allow PerfMemory to attempt cleanup of any persistent resources
perfMemory_exit();
// flush buffered output, finish log files
ostream_abort();
// Check for abort hook
abort_hook_t abort_hook = Arguments::abort_hook();
if (abort_hook != NULL) {
abort_hook();
}
}
static HANDLE dumpFile = NULL;
// Check if dump file can be created.
void os::check_dump_limit(char* buffer, size_t buffsz) {
bool status = true;
if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
status = false;
}
#ifndef ASSERT
if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
status = false;
}
#endif
if (status) {
const char* cwd = get_current_directory(NULL, 0);
int pid = current_process_id();
if (cwd != NULL) {
jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
} else {
jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
}
if (dumpFile == NULL &&
(dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
== INVALID_HANDLE_VALUE) {
jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
status = false;
}
}
VMError::record_coredump_status(buffer, status);
}
void os::abort(bool dump_core, void* siginfo, const void* context) {
EXCEPTION_POINTERS ep;
MINIDUMP_EXCEPTION_INFORMATION mei;
MINIDUMP_EXCEPTION_INFORMATION* pmei;
HANDLE hProcess = GetCurrentProcess();
DWORD processId = GetCurrentProcessId();
MINIDUMP_TYPE dumpType;
shutdown();
if (!dump_core || dumpFile == NULL) {
if (dumpFile != NULL) {
CloseHandle(dumpFile);
}
win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
}
dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
if (siginfo != NULL && context != NULL) {
ep.ContextRecord = (PCONTEXT) context;
ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
mei.ThreadId = GetCurrentThreadId();
mei.ExceptionPointers = &ep;
pmei = &mei;
} else {
pmei = NULL;
}
// Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
// the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
if (!WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) &&
!WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL)) {
jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
}
CloseHandle(dumpFile);
win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
}
// Die immediately, no exit hook, no abort hook, no cleanup.
void os::die() {
win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
}
// Directory routines copied from src/win32/native/java/io/dirent_md.c
// * dirent_md.c 1.15 00/02/02
//
// The declarations for DIR and struct dirent are in jvm_win32.h.
// Caller must have already run dirname through JVM_NativePath, which removes
// duplicate slashes and converts all instances of '/' into '\\'.
DIR * os::opendir(const char *dirname) {
assert(dirname != NULL, "just checking"); // hotspot change
DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
DWORD fattr; // hotspot change
char alt_dirname[4] = { 0, 0, 0, 0 };
if (dirp == 0) {
errno = ENOMEM;
return 0;
}
// Win32 accepts "\" in its POSIX stat(), but refuses to treat it
// as a directory in FindFirstFile(). We detect this case here and
// prepend the current drive name.
//
if (dirname[1] == '\0' && dirname[0] == '\\') {
alt_dirname[0] = _getdrive() + 'A' - 1;
alt_dirname[1] = ':';
alt_dirname[2] = '\\';
alt_dirname[3] = '\0';
dirname = alt_dirname;
}
dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
if (dirp->path == 0) {
free(dirp);
errno = ENOMEM;
return 0;
}
strcpy(dirp->path, dirname);
fattr = GetFileAttributes(dirp->path);
if (fattr == 0xffffffff) {
free(dirp->path);
free(dirp);
errno = ENOENT;
return 0;
} else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
free(dirp->path);
free(dirp);
errno = ENOTDIR;
return 0;
}
// Append "*.*", or possibly "\\*.*", to path
if (dirp->path[1] == ':' &&
(dirp->path[2] == '\0' ||
(dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
// No '\\' needed for cases like "Z:" or "Z:\"
strcat(dirp->path, "*.*");
} else {
strcat(dirp->path, "\\*.*");
}
dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
if (dirp->handle == INVALID_HANDLE_VALUE) {
if (GetLastError() != ERROR_FILE_NOT_FOUND) {
free(dirp->path);
free(dirp);
errno = EACCES;
return 0;
}
}
return dirp;
}
// parameter dbuf unused on Windows
struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
assert(dirp != NULL, "just checking"); // hotspot change
if (dirp->handle == INVALID_HANDLE_VALUE) {
return 0;
}
strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
if (!FindNextFile(dirp->handle, &dirp->find_data)) {
if (GetLastError() == ERROR_INVALID_HANDLE) {
errno = EBADF;
return 0;
}
FindClose(dirp->handle);
dirp->handle = INVALID_HANDLE_VALUE;
}
return &dirp->dirent;
}
int os::closedir(DIR *dirp) {
assert(dirp != NULL, "just checking"); // hotspot change
if (dirp->handle != INVALID_HANDLE_VALUE) {
if (!FindClose(dirp->handle)) {
errno = EBADF;
return -1;
}
dirp->handle = INVALID_HANDLE_VALUE;
}
free(dirp->path);
free(dirp);
return 0;
}
// This must be hard coded because it's the system's temporary
// directory not the java application's temp directory, ala java.io.tmpdir.
const char* os::get_temp_directory() {
static char path_buf[MAX_PATH];
if (GetTempPath(MAX_PATH, path_buf) > 0) {
return path_buf;
} else {
path_buf[0] = '\0';
return path_buf;
}
}
// Needs to be in os specific directory because windows requires another
// header file <direct.h>
const char* os::get_current_directory(char *buf, size_t buflen) {
int n = static_cast<int>(buflen);
if (buflen > INT_MAX) n = INT_MAX;
return _getcwd(buf, n);
}
//-----------------------------------------------------------
// Helper functions for fatal error handler
#ifdef _WIN64
// Helper routine which returns true if address in
// within the NTDLL address space.
//
static bool _addr_in_ntdll(address addr) {
HMODULE hmod;
MODULEINFO minfo;
hmod = GetModuleHandle("NTDLL.DLL");
if (hmod == NULL) return false;
if (!GetModuleInformation(GetCurrentProcess(), hmod,
&minfo, sizeof(MODULEINFO))) {
return false;
}
if ((addr >= minfo.lpBaseOfDll) &&
(addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
return true;
} else {
return false;
}
}
#endif
struct _modinfo {
address addr;
char* full_path; // point to a char buffer
int buflen; // size of the buffer
address base_addr;
};
static int _locate_module_by_addr(const char * mod_fname, address base_addr,
address top_address, void * param) {
struct _modinfo *pmod = (struct _modinfo *)param;
if (!pmod) return -1;
if (base_addr <= pmod->addr &&
top_address > pmod->addr) {
// if a buffer is provided, copy path name to the buffer
if (pmod->full_path) {
jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
}
pmod->base_addr = base_addr;
return 1;
}
return 0;
}
bool os::dll_address_to_library_name(address addr, char* buf,
int buflen, int* offset) {
// buf is not optional, but offset is optional
assert(buf != NULL, "sanity check");
// NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
// return the full path to the DLL file, sometimes it returns path
// to the corresponding PDB file (debug info); sometimes it only
// returns partial path, which makes life painful.
struct _modinfo mi;
mi.addr = addr;
mi.full_path = buf;
mi.buflen = buflen;
if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
// buf already contains path name
if (offset) *offset = addr - mi.base_addr;
return true;
}
buf[0] = '\0';
if (offset) *offset = -1;
return false;
}
bool os::dll_address_to_function_name(address addr, char *buf,
int buflen, int *offset,
bool demangle) {
// buf is not optional, but offset is optional
assert(buf != NULL, "sanity check");
if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
return true;
}
if (offset != NULL) *offset = -1;
buf[0] = '\0';
return false;
}
// save the start and end address of jvm.dll into param[0] and param[1]
static int _locate_jvm_dll(const char* mod_fname, address base_addr,
address top_address, void * param) {
if (!param) return -1;
if (base_addr <= (address)_locate_jvm_dll &&
top_address > (address)_locate_jvm_dll) {
((address*)param)[0] = base_addr;
((address*)param)[1] = top_address;
return 1;
}
return 0;
}
address vm_lib_location[2]; // start and end address of jvm.dll
// check if addr is inside jvm.dll
bool os::address_is_in_vm(address addr) {
if (!vm_lib_location[0] || !vm_lib_location[1]) {
if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
assert(false, "Can't find jvm module.");
return false;
}
}
return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
}
// print module info; param is outputStream*
static int _print_module(const char* fname, address base_address,
address top_address, void* param) {
if (!param) return -1;
outputStream* st = (outputStream*)param;
st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
return 0;
}
// Loads .dll/.so and
// in case of error it checks if .dll/.so was built for the
// same architecture as Hotspot is running on
void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
void * result = LoadLibrary(name);
if (result != NULL) {
// Recalculate pdb search path if a DLL was loaded successfully.
SymbolEngine::recalc_search_path();
return result;
}
DWORD errcode = GetLastError();
if (errcode == ERROR_MOD_NOT_FOUND) {
strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
ebuf[ebuflen - 1] = '\0';
return NULL;
}
// Parsing dll below
// If we can read dll-info and find that dll was built
// for an architecture other than Hotspot is running in
// - then print to buffer "DLL was built for a different architecture"
// else call os::lasterror to obtain system error message
// Read system error message into ebuf
// It may or may not be overwritten below (in the for loop and just above)
lasterror(ebuf, (size_t) ebuflen);
ebuf[ebuflen - 1] = '\0';
int fd = ::open(name, O_RDONLY | O_BINARY, 0);
if (fd < 0) {
return NULL;
}
uint32_t signature_offset;
uint16_t lib_arch = 0;
bool failed_to_get_lib_arch =
( // Go to position 3c in the dll
(os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
||
// Read location of signature
(sizeof(signature_offset) !=
(os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
||
// Go to COFF File Header in dll
// that is located after "signature" (4 bytes long)
(os::seek_to_file_offset(fd,
signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
||
// Read field that contains code of architecture
// that dll was built for
(sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
);
::close(fd);
if (failed_to_get_lib_arch) {
// file i/o error - report os::lasterror(...) msg
return NULL;
}
typedef struct {
uint16_t arch_code;
char* arch_name;
} arch_t;
static const arch_t arch_array[] = {
{IMAGE_FILE_MACHINE_I386, (char*)"IA 32"},
{IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"}
};
#if (defined _M_AMD64)
static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
#elif (defined _M_IX86)
static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
#else
#error Method os::dll_load requires that one of following \
is defined :_M_AMD64 or _M_IX86
#endif
// Obtain a string for printf operation
// lib_arch_str shall contain string what platform this .dll was built for
// running_arch_str shall string contain what platform Hotspot was built for
char *running_arch_str = NULL, *lib_arch_str = NULL;
for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
if (lib_arch == arch_array[i].arch_code) {
lib_arch_str = arch_array[i].arch_name;
}
if (running_arch == arch_array[i].arch_code) {
running_arch_str = arch_array[i].arch_name;
}
}
assert(running_arch_str,
"Didn't find running architecture code in arch_array");
// If the architecture is right
// but some other error took place - report os::lasterror(...) msg
if (lib_arch == running_arch) {
return NULL;
}
if (lib_arch_str != NULL) {
::_snprintf(ebuf, ebuflen - 1,
"Can't load %s-bit .dll on a %s-bit platform",
lib_arch_str, running_arch_str);
} else {
// don't know what architecture this dll was build for
::_snprintf(ebuf, ebuflen - 1,
"Can't load this .dll (machine code=0x%x) on a %s-bit platform",
lib_arch, running_arch_str);
}
return NULL;
}
void os::print_dll_info(outputStream *st) {
st->print_cr("Dynamic libraries:");
get_loaded_modules_info(_print_module, (void *)st);
}
int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
HANDLE hProcess;
# define MAX_NUM_MODULES 128
HMODULE modules[MAX_NUM_MODULES];
static char filename[MAX_PATH];
int result = 0;
int pid = os::current_process_id();
hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
FALSE, pid);
if (hProcess == NULL) return 0;
DWORD size_needed;
if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
CloseHandle(hProcess);
return 0;
}
// number of modules that are currently loaded
int num_modules = size_needed / sizeof(HMODULE);
for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
// Get Full pathname:
if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
filename[0] = '\0';
}
MODULEINFO modinfo;
if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
modinfo.lpBaseOfDll = NULL;
modinfo.SizeOfImage = 0;
}
// Invoke callback function
result = callback(filename, (address)modinfo.lpBaseOfDll,
(address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
if (result) break;
}
CloseHandle(hProcess);
return result;
}
bool os::get_host_name(char* buf, size_t buflen) {
DWORD size = (DWORD)buflen;
return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
}
void os::get_summary_os_info(char* buf, size_t buflen) {
stringStream sst(buf, buflen);
os::win32::print_windows_version(&sst);
// chop off newline character
char* nl = strchr(buf, '\n');
if (nl != NULL) *nl = '\0';
}
int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
#if _MSC_VER >= 1900
// Starting with Visual Studio 2015, vsnprint is C99 compliant.
int result = ::vsnprintf(buf, len, fmt, args);
// If an encoding error occurred (result < 0) then it's not clear
// whether the buffer is NUL terminated, so ensure it is.
if ((result < 0) && (len > 0)) {
buf[len - 1] = '\0';
}
return result;
#else
// Before Visual Studio 2015, vsnprintf is not C99 compliant, so use
// _vsnprintf, whose behavior seems to be *mostly* consistent across
// versions. However, when len == 0, avoid _vsnprintf too, and just
// go straight to _vscprintf. The output is going to be truncated in
// that case, except in the unusual case of empty output. More
// importantly, the documentation for various versions of Visual Studio
// are inconsistent about the behavior of _vsnprintf when len == 0,
// including it possibly being an error.
int result = -1;
if (len > 0) {
result = _vsnprintf(buf, len, fmt, args);
// If output (including NUL terminator) is truncated, the buffer
// won't be NUL terminated. Add the trailing NUL specified by C99.
if ((result < 0) || ((size_t)result >= len)) {
buf[len - 1] = '\0';
}
}
if (result < 0) {
result = _vscprintf(fmt, args);
}
return result;
#endif // _MSC_VER dispatch
}
static inline time_t get_mtime(const char* filename) {
struct stat st;
int ret = os::stat(filename, &st);
assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
return st.st_mtime;
}
int os::compare_file_modified_times(const char* file1, const char* file2) {
time_t t1 = get_mtime(file1);
time_t t2 = get_mtime(file2);
return t1 - t2;
}
void os::print_os_info_brief(outputStream* st) {
os::print_os_info(st);
}
void os::print_os_info(outputStream* st) {
#ifdef ASSERT
char buffer[1024];
st->print("HostName: ");
if (get_host_name(buffer, sizeof(buffer))) {
st->print("%s ", buffer);
} else {
st->print("N/A ");
}
#endif
st->print("OS:");
os::win32::print_windows_version(st);
}
void os::win32::print_windows_version(outputStream* st) {
OSVERSIONINFOEX osvi;
VS_FIXEDFILEINFO *file_info;
TCHAR kernel32_path[MAX_PATH];
UINT len, ret;
// Use the GetVersionEx information to see if we're on a server or
// workstation edition of Windows. Starting with Windows 8.1 we can't
// trust the OS version information returned by this API.
ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
st->print_cr("Call to GetVersionEx failed");
return;
}
bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
// Get the full path to \Windows\System32\kernel32.dll and use that for
// determining what version of Windows we're running on.
len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
ret = GetSystemDirectory(kernel32_path, len);
if (ret == 0 || ret > len) {
st->print_cr("Call to GetSystemDirectory failed");
return;
}
strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
if (version_size == 0) {
st->print_cr("Call to GetFileVersionInfoSize failed");
return;
}
LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
if (version_info == NULL) {
st->print_cr("Failed to allocate version_info");
return;
}
if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
os::free(version_info);
st->print_cr("Call to GetFileVersionInfo failed");
return;
}
if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
os::free(version_info);
st->print_cr("Call to VerQueryValue failed");
return;
}
int major_version = HIWORD(file_info->dwProductVersionMS);
int minor_version = LOWORD(file_info->dwProductVersionMS);
int build_number = HIWORD(file_info->dwProductVersionLS);
int build_minor = LOWORD(file_info->dwProductVersionLS);
int os_vers = major_version * 1000 + minor_version;
os::free(version_info);
st->print(" Windows ");
switch (os_vers) {
case 6000:
if (is_workstation) {
st->print("Vista");
} else {
st->print("Server 2008");
}
break;
case 6001:
if (is_workstation) {
st->print("7");
} else {
st->print("Server 2008 R2");
}
break;
case 6002:
if (is_workstation) {
st->print("8");
} else {
st->print("Server 2012");
}
break;
case 6003:
if (is_workstation) {
st->print("8.1");
} else {
st->print("Server 2012 R2");
}
break;
case 10000:
if (is_workstation) {
st->print("10");
} else {
st->print("Server 2016");
}
break;
default:
// Unrecognized windows, print out its major and minor versions
st->print("%d.%d", major_version, minor_version);
break;
}
// Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
// find out whether we are running on 64 bit processor or not
SYSTEM_INFO si;
ZeroMemory(&si, sizeof(SYSTEM_INFO));
GetNativeSystemInfo(&si);
if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
st->print(" , 64 bit");
}
st->print(" Build %d", build_number);
st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
st->cr();
}
void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
// Nothing to do for now.
}
void os::get_summary_cpu_info(char* buf, size_t buflen) {
HKEY key;
DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
if (status == ERROR_SUCCESS) {
DWORD size = (DWORD)buflen;
status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
if (status != ERROR_SUCCESS) {
strncpy(buf, "## __CPU__", buflen);
}
RegCloseKey(key);
} else {
// Put generic cpu info to return
strncpy(buf, "## __CPU__", buflen);
}
}
void os::print_memory_info(outputStream* st) {
st->print("Memory:");
st->print(" %dk page", os::vm_page_size()>>10);
// Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
// value if total memory is larger than 4GB
MEMORYSTATUSEX ms;
ms.dwLength = sizeof(ms);
int r1 = GlobalMemoryStatusEx(&ms);
if (r1 != 0) {
st->print(", system-wide physical " INT64_FORMAT "M ",
(int64_t) ms.ullTotalPhys >> 20);
st->print("(" INT64_FORMAT "M free)\n", (int64_t) ms.ullAvailPhys >> 20);
st->print("TotalPageFile size " INT64_FORMAT "M ",
(int64_t) ms.ullTotalPageFile >> 20);
st->print("(AvailPageFile size " INT64_FORMAT "M)",
(int64_t) ms.ullAvailPageFile >> 20);
// on 32bit Total/AvailVirtual are interesting (show us how close we get to 2-4 GB per process borders)
#if defined(_M_IX86)
st->print(", user-mode portion of virtual address-space " INT64_FORMAT "M ",
(int64_t) ms.ullTotalVirtual >> 20);
st->print("(" INT64_FORMAT "M free)", (int64_t) ms.ullAvailVirtual >> 20);
#endif
} else {
st->print(", GlobalMemoryStatusEx did not succeed so we miss some memory values.");
}
// extended memory statistics for a process
PROCESS_MEMORY_COUNTERS_EX pmex;
ZeroMemory(&pmex, sizeof(PROCESS_MEMORY_COUNTERS_EX));
pmex.cb = sizeof(pmex);
int r2 = GetProcessMemoryInfo(GetCurrentProcess(), (PROCESS_MEMORY_COUNTERS*) &pmex, sizeof(pmex));
if (r2 != 0) {
st->print("\ncurrent process WorkingSet (physical memory assigned to process): " INT64_FORMAT "M, ",
(int64_t) pmex.WorkingSetSize >> 20);
st->print("peak: " INT64_FORMAT "M\n", (int64_t) pmex.PeakWorkingSetSize >> 20);
st->print("current process commit charge (\"private bytes\"): " INT64_FORMAT "M, ",
(int64_t) pmex.PrivateUsage >> 20);
st->print("peak: " INT64_FORMAT "M", (int64_t) pmex.PeakPagefileUsage >> 20);
} else {
st->print("\nGetProcessMemoryInfo did not succeed so we miss some memory values.");
}
st->cr();
}
void os::print_siginfo(outputStream *st, const void* siginfo) {
const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
st->print("siginfo:");
char tmp[64];
if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
strcpy(tmp, "EXCEPTION_??");
}
st->print(" %s (0x%x)", tmp, er->ExceptionCode);
if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
er->NumberParameters >= 2) {
switch (er->ExceptionInformation[0]) {
case 0: st->print(", reading address"); break;
case 1: st->print(", writing address"); break;
case 8: st->print(", data execution prevention violation at address"); break;
default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
er->ExceptionInformation[0]);
}
st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
} else {
int num = er->NumberParameters;
if (num > 0) {
st->print(", ExceptionInformation=");
for (int i = 0; i < num; i++) {
st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
}
}
}
st->cr();
}
void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
// do nothing
}
static char saved_jvm_path[MAX_PATH] = {0};
// Find the full path to the current module, jvm.dll
void os::jvm_path(char *buf, jint buflen) {
// Error checking.
if (buflen < MAX_PATH) {
assert(false, "must use a large-enough buffer");
buf[0] = '\0';
return;
}
// Lazy resolve the path to current module.
if (saved_jvm_path[0] != 0) {
strcpy(buf, saved_jvm_path);
return;
}
buf[0] = '\0';
if (Arguments::sun_java_launcher_is_altjvm()) {
// Support for the java launcher's '-XXaltjvm=<path>' option. Check
// for a JAVA_HOME environment variable and fix up the path so it
// looks like jvm.dll is installed there (append a fake suffix
// hotspot/jvm.dll).
char* java_home_var = ::getenv("JAVA_HOME");
if (java_home_var != NULL && java_home_var[0] != 0 &&
strlen(java_home_var) < (size_t)buflen) {
strncpy(buf, java_home_var, buflen);
// determine if this is a legacy image or modules image
// modules image doesn't have "jre" subdirectory
size_t len = strlen(buf);
char* jrebin_p = buf + len;
jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
if (0 != _access(buf, 0)) {
jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
}
len = strlen(buf);
jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
}
}
if (buf[0] == '\0') {
GetModuleFileName(vm_lib_handle, buf, buflen);
}
strncpy(saved_jvm_path, buf, MAX_PATH);
saved_jvm_path[MAX_PATH - 1] = '\0';
}
void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
#ifndef _WIN64
st->print("_");
#endif
}
void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
#ifndef _WIN64
st->print("@%d", args_size * sizeof(int));
#endif
}
// This method is a copy of JDK's sysGetLastErrorString
// from src/windows/hpi/src/system_md.c
size_t os::lasterror(char* buf, size_t len) {
DWORD errval;
if ((errval = GetLastError()) != 0) {
// DOS error
size_t n = (size_t)FormatMessage(
FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
errval,
0,
buf,
(DWORD)len,
NULL);
if (n > 3) {
// Drop final '.', CR, LF
if (buf[n - 1] == '\n') n--;
if (buf[n - 1] == '\r') n--;
if (buf[n - 1] == '.') n--;
buf[n] = '\0';
}
return n;
}
if (errno != 0) {
// C runtime error that has no corresponding DOS error code
const char* s = os::strerror(errno);
size_t n = strlen(s);
if (n >= len) n = len - 1;
strncpy(buf, s, n);
buf[n] = '\0';
return n;
}
return 0;
}
int os::get_last_error() {
DWORD error = GetLastError();
if (error == 0) {
error = errno;
}
return (int)error;
}
// sun.misc.Signal
// NOTE that this is a workaround for an apparent kernel bug where if
// a signal handler for SIGBREAK is installed then that signal handler
// takes priority over the console control handler for CTRL_CLOSE_EVENT.
// See bug 4416763.
static void (*sigbreakHandler)(int) = NULL;
static void UserHandler(int sig, void *siginfo, void *context) {
os::signal_notify(sig);
// We need to reinstate the signal handler each time...
os::signal(sig, (void*)UserHandler);
}
void* os::user_handler() {
return (void*) UserHandler;
}
void* os::signal(int signal_number, void* handler) {
if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
void (*oldHandler)(int) = sigbreakHandler;
sigbreakHandler = (void (*)(int)) handler;
return (void*) oldHandler;
} else {
return (void*)::signal(signal_number, (void (*)(int))handler);
}
}
void os::signal_raise(int signal_number) {
raise(signal_number);
}
// The Win32 C runtime library maps all console control events other than ^C
// into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
// logoff, and shutdown events. We therefore install our own console handler
// that raises SIGTERM for the latter cases.
//
static BOOL WINAPI consoleHandler(DWORD event) {
switch (event) {
case CTRL_C_EVENT:
if (VMError::is_error_reported()) {
// Ctrl-C is pressed during error reporting, likely because the error
// handler fails to abort. Let VM die immediately.
os::die();
}
os::signal_raise(SIGINT);
return TRUE;
break;
case CTRL_BREAK_EVENT:
if (sigbreakHandler != NULL) {
(*sigbreakHandler)(SIGBREAK);
}
return TRUE;
break;
case CTRL_LOGOFF_EVENT: {
// Don't terminate JVM if it is running in a non-interactive session,
// such as a service process.
USEROBJECTFLAGS flags;
HANDLE handle = GetProcessWindowStation();
if (handle != NULL &&
GetUserObjectInformation(handle, UOI_FLAGS, &flags,
sizeof(USEROBJECTFLAGS), NULL)) {
// If it is a non-interactive session, let next handler to deal
// with it.
if ((flags.dwFlags & WSF_VISIBLE) == 0) {
return FALSE;
}
}
}
case CTRL_CLOSE_EVENT:
case CTRL_SHUTDOWN_EVENT:
os::signal_raise(SIGTERM);
return TRUE;
break;
default:
break;
}
return FALSE;
}
// The following code is moved from os.cpp for making this
// code platform specific, which it is by its very nature.
// Return maximum OS signal used + 1 for internal use only
// Used as exit signal for signal_thread
int os::sigexitnum_pd() {
return NSIG;
}
// a counter for each possible signal value, including signal_thread exit signal
static volatile jint pending_signals[NSIG+1] = { 0 };
static Semaphore* sig_sem = NULL;
static void jdk_misc_signal_init() {
// Initialize signal structures
memset((void*)pending_signals, 0, sizeof(pending_signals));
// Initialize signal semaphore
sig_sem = new Semaphore();
// Programs embedding the VM do not want it to attempt to receive
// events like CTRL_LOGOFF_EVENT, which are used to implement the
// shutdown hooks mechanism introduced in 1.3. For example, when
// the VM is run as part of a Windows NT service (i.e., a servlet
// engine in a web server), the correct behavior is for any console
// control handler to return FALSE, not TRUE, because the OS's
// "final" handler for such events allows the process to continue if
// it is a service (while terminating it if it is not a service).
// To make this behavior uniform and the mechanism simpler, we
// completely disable the VM's usage of these console events if -Xrs
// (=ReduceSignalUsage) is specified. This means, for example, that
// the CTRL-BREAK thread dump mechanism is also disabled in this
// case. See bugs 4323062, 4345157, and related bugs.
// Add a CTRL-C handler
SetConsoleCtrlHandler(consoleHandler, TRUE);
}
void os::signal_notify(int sig) {
if (sig_sem != NULL) {
Atomic::inc(&pending_signals[sig]);
sig_sem->signal();
} else {
// Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
// initialization isn't called.
assert(ReduceSignalUsage, "signal semaphore should be created");
}
}
static int check_pending_signals() {
while (true) {
for (int i = 0; i < NSIG + 1; i++) {
jint n = pending_signals[i];
if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
return i;
}
}
JavaThread *thread = JavaThread::current();
ThreadBlockInVM tbivm(thread);
bool threadIsSuspended;
do {
thread->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
sig_sem->wait();
// were we externally suspended while we were waiting?
threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
if (threadIsSuspended) {
// The semaphore has been incremented, but while we were waiting
// another thread suspended us. We don't want to continue running
// while suspended because that would surprise the thread that
// suspended us.
sig_sem->signal();
thread->java_suspend_self();
}
} while (threadIsSuspended);
}
}
int os::signal_wait() {
return check_pending_signals();
}
// Implicit OS exception handling
LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
address handler) {
JavaThread* thread = (JavaThread*) Thread::current_or_null();
// Save pc in thread
#ifdef _M_AMD64
// Do not blow up if no thread info available.
if (thread) {
thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
}
// Set pc to handler
exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
#else
// Do not blow up if no thread info available.
if (thread) {
thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
}
// Set pc to handler
exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
#endif
// Continue the execution
return EXCEPTION_CONTINUE_EXECUTION;
}
// Used for PostMortemDump
extern "C" void safepoints();
extern "C" void find(int x);
extern "C" void events();
// According to Windows API documentation, an illegal instruction sequence should generate
// the 0xC000001C exception code. However, real world experience shows that occasionnaly
// the execution of an illegal instruction can generate the exception code 0xC000001E. This
// seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
#define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
// From "Execution Protection in the Windows Operating System" draft 0.35
// Once a system header becomes available, the "real" define should be
// included or copied here.
#define EXCEPTION_INFO_EXEC_VIOLATION 0x08
// Windows Vista/2008 heap corruption check
#define EXCEPTION_HEAP_CORRUPTION 0xC0000374
// All Visual C++ exceptions thrown from code generated by the Microsoft Visual
// C++ compiler contain this error code. Because this is a compiler-generated
// error, the code is not listed in the Win32 API header files.
// The code is actually a cryptic mnemonic device, with the initial "E"
// standing for "exception" and the final 3 bytes (0x6D7363) representing the
// ASCII values of "msc".
#define EXCEPTION_UNCAUGHT_CXX_EXCEPTION 0xE06D7363
#define def_excpt(val) { #val, (val) }
static const struct { char* name; uint number; } exceptlabels[] = {
def_excpt(EXCEPTION_ACCESS_VIOLATION),
def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
def_excpt(EXCEPTION_BREAKPOINT),
def_excpt(EXCEPTION_SINGLE_STEP),
def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
def_excpt(EXCEPTION_FLT_OVERFLOW),
def_excpt(EXCEPTION_FLT_STACK_CHECK),
def_excpt(EXCEPTION_FLT_UNDERFLOW),
def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
def_excpt(EXCEPTION_INT_OVERFLOW),
def_excpt(EXCEPTION_PRIV_INSTRUCTION),
def_excpt(EXCEPTION_IN_PAGE_ERROR),
def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
def_excpt(EXCEPTION_STACK_OVERFLOW),
def_excpt(EXCEPTION_INVALID_DISPOSITION),
def_excpt(EXCEPTION_GUARD_PAGE),
def_excpt(EXCEPTION_INVALID_HANDLE),
def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
def_excpt(EXCEPTION_HEAP_CORRUPTION)
};
#undef def_excpt
const char* os::exception_name(int exception_code, char *buf, size_t size) {
uint code = static_cast<uint>(exception_code);
for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
if (exceptlabels[i].number == code) {
jio_snprintf(buf, size, "%s", exceptlabels[i].name);
return buf;
}
}
return NULL;
}
//-----------------------------------------------------------------------------
LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
// handle exception caused by idiv; should only happen for -MinInt/-1
// (division by zero is handled explicitly)
#ifdef _M_AMD64
PCONTEXT ctx = exceptionInfo->ContextRecord;
address pc = (address)ctx->Rip;
assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
if (pc[0] == 0xF7) {
// set correct result values and continue after idiv instruction
ctx->Rip = (DWORD64)pc + 2; // idiv reg, reg is 2 bytes
} else {
ctx->Rip = (DWORD64)pc + 3; // REX idiv reg, reg is 3 bytes
}
// Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
// this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
// idiv opcode (0xF7).
ctx->Rdx = (DWORD)0; // remainder
// Continue the execution
#else
PCONTEXT ctx = exceptionInfo->ContextRecord;
address pc = (address)ctx->Eip;
assert(pc[0] == 0xF7, "not an idiv opcode");
assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
assert(ctx->Eax == min_jint, "unexpected idiv exception");
// set correct result values and continue after idiv instruction
ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes
ctx->Eax = (DWORD)min_jint; // result
ctx->Edx = (DWORD)0; // remainder
// Continue the execution
#endif
return EXCEPTION_CONTINUE_EXECUTION;
}
//-----------------------------------------------------------------------------
LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
PCONTEXT ctx = exceptionInfo->ContextRecord;
#ifndef _WIN64
// handle exception caused by native method modifying control word
DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
switch (exception_code) {
case EXCEPTION_FLT_DENORMAL_OPERAND:
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
case EXCEPTION_FLT_INEXACT_RESULT:
case EXCEPTION_FLT_INVALID_OPERATION:
case EXCEPTION_FLT_OVERFLOW:
case EXCEPTION_FLT_STACK_CHECK:
case EXCEPTION_FLT_UNDERFLOW:
jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
if (fp_control_word != ctx->FloatSave.ControlWord) {
// Restore FPCW and mask out FLT exceptions
ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
// Mask out pending FLT exceptions
ctx->FloatSave.StatusWord &= 0xffffff00;
return EXCEPTION_CONTINUE_EXECUTION;
}
}
if (prev_uef_handler != NULL) {
// We didn't handle this exception so pass it to the previous
// UnhandledExceptionFilter.
return (prev_uef_handler)(exceptionInfo);
}
#else // !_WIN64
// On Windows, the mxcsr control bits are non-volatile across calls
// See also CR 6192333
//
jint MxCsr = INITIAL_MXCSR;
// we can't use StubRoutines::addr_mxcsr_std()
// because in Win64 mxcsr is not saved there
if (MxCsr != ctx->MxCsr) {
ctx->MxCsr = MxCsr;
return EXCEPTION_CONTINUE_EXECUTION;
}
#endif // !_WIN64
return EXCEPTION_CONTINUE_SEARCH;
}
static inline void report_error(Thread* t, DWORD exception_code,
address addr, void* siginfo, void* context) {
VMError::report_and_die(t, exception_code, addr, siginfo, context);
// If UseOsErrorReporting, this will return here and save the error file
// somewhere where we can find it in the minidump.
}
bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
address addr = (address) exceptionRecord->ExceptionInformation[1];
if (Interpreter::contains(pc)) {
*fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
if (!fr->is_first_java_frame()) {
// get_frame_at_stack_banging_point() is only called when we
// have well defined stacks so java_sender() calls do not need
// to assert safe_for_sender() first.
*fr = fr->java_sender();
}
} else {
// more complex code with compiled code
assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
CodeBlob* cb = CodeCache::find_blob(pc);
if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
// Not sure where the pc points to, fallback to default
// stack overflow handling
return false;
} else {
*fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
// in compiled code, the stack banging is performed just after the return pc
// has been pushed on the stack
*fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
if (!fr->is_java_frame()) {
// See java_sender() comment above.
*fr = fr->java_sender();
}
}
}
assert(fr->is_java_frame(), "Safety check");
return true;
}
//-----------------------------------------------------------------------------
LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
#ifdef _M_AMD64
address pc = (address) exceptionInfo->ContextRecord->Rip;
#else
address pc = (address) exceptionInfo->ContextRecord->Eip;
#endif
Thread* t = Thread::current_or_null_safe();
// Handle SafeFetch32 and SafeFetchN exceptions.
if (StubRoutines::is_safefetch_fault(pc)) {
return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
}
#ifndef _WIN64
// Execution protection violation - win32 running on AMD64 only
// Handled first to avoid misdiagnosis as a "normal" access violation;
// This is safe to do because we have a new/unique ExceptionInformation
// code for this condition.
if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
address addr = (address) exceptionRecord->ExceptionInformation[1];
if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
int page_size = os::vm_page_size();
// Make sure the pc and the faulting address are sane.
//
// If an instruction spans a page boundary, and the page containing
// the beginning of the instruction is executable but the following
// page is not, the pc and the faulting address might be slightly
// different - we still want to unguard the 2nd page in this case.
//
// 15 bytes seems to be a (very) safe value for max instruction size.
bool pc_is_near_addr =
(pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
bool instr_spans_page_boundary =
(align_down((intptr_t) pc ^ (intptr_t) addr,
(intptr_t) page_size) > 0);
if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
static volatile address last_addr =
(address) os::non_memory_address_word();
// In conservative mode, don't unguard unless the address is in the VM
if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
(UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
// Set memory to RWX and retry
address page_start = align_down(addr, page_size);
bool res = os::protect_memory((char*) page_start, page_size,
os::MEM_PROT_RWX);
log_debug(os)("Execution protection violation "
"at " INTPTR_FORMAT
", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
p2i(page_start), (res ? "success" : os::strerror(errno)));
// Set last_addr so if we fault again at the same address, we don't
// end up in an endless loop.
//
// There are two potential complications here. Two threads trapping
// at the same address at the same time could cause one of the
// threads to think it already unguarded, and abort the VM. Likely
// very rare.
//
// The other race involves two threads alternately trapping at
// different addresses and failing to unguard the page, resulting in
// an endless loop. This condition is probably even more unlikely
// than the first.
//
// Although both cases could be avoided by using locks or thread
// local last_addr, these solutions are unnecessary complication:
// this handler is a best-effort safety net, not a complete solution.
// It is disabled by default and should only be used as a workaround
// in case we missed any no-execute-unsafe VM code.
last_addr = addr;
return EXCEPTION_CONTINUE_EXECUTION;
}
}
// Last unguard failed or not unguarding
tty->print_raw_cr("Execution protection violation");
report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
exceptionInfo->ContextRecord);
return EXCEPTION_CONTINUE_SEARCH;
}
}
#endif // _WIN64
// Check to see if we caught the safepoint code in the
// process of write protecting the memory serialization page.
// It write enables the page immediately after protecting it
// so just return.
if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
if (t != NULL && t->is_Java_thread()) {
JavaThread* thread = (JavaThread*) t;
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
address addr = (address) exceptionRecord->ExceptionInformation[1];
if (os::is_memory_serialize_page(thread, addr)) {
// Block current thread until the memory serialize page permission restored.
os::block_on_serialize_page_trap();
return EXCEPTION_CONTINUE_EXECUTION;
}
}
}
if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
VM_Version::is_cpuinfo_segv_addr(pc)) {
// Verify that OS save/restore AVX registers.
return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
}
if (t != NULL && t->is_Java_thread()) {
JavaThread* thread = (JavaThread*) t;
bool in_java = thread->thread_state() == _thread_in_Java;
// Handle potential stack overflows up front.
if (exception_code == EXCEPTION_STACK_OVERFLOW) {
if (thread->stack_guards_enabled()) {
if (in_java) {
frame fr;
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
address addr = (address) exceptionRecord->ExceptionInformation[1];
if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
assert(fr.is_java_frame(), "Must be a Java frame");
SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
}
}
// Yellow zone violation. The o/s has unprotected the first yellow
// zone page for us. Note: must call disable_stack_yellow_zone to
// update the enabled status, even if the zone contains only one page.
assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
thread->disable_stack_yellow_reserved_zone();
// If not in java code, return and hope for the best.
return in_java
? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
: EXCEPTION_CONTINUE_EXECUTION;
} else {
// Fatal red zone violation.
thread->disable_stack_red_zone();
tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
exceptionInfo->ContextRecord);
return EXCEPTION_CONTINUE_SEARCH;
}
} else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
// Either stack overflow or null pointer exception.
if (in_java) {
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
address addr = (address) exceptionRecord->ExceptionInformation[1];
address stack_end = thread->stack_end();
if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
// Stack overflow.
assert(!os::uses_stack_guard_pages(),
"should be caught by red zone code above.");
return Handle_Exception(exceptionInfo,
SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
}
// Check for safepoint polling and implicit null
// We only expect null pointers in the stubs (vtable)
// the rest are checked explicitly now.
CodeBlob* cb = CodeCache::find_blob(pc);
if (cb != NULL) {
if (os::is_poll_address(addr)) {
address stub = SharedRuntime::get_poll_stub(pc);
return Handle_Exception(exceptionInfo, stub);
}
}
{
#ifdef _WIN64
// If it's a legal stack address map the entire region in
//
PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
address addr = (address) exceptionRecord->ExceptionInformation[1];
if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
addr = (address)((uintptr_t)addr &
(~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
os::commit_memory((char *)addr, thread->stack_base() - addr,
!ExecMem);
return EXCEPTION_CONTINUE_EXECUTION;
} else
#endif
{
// Null pointer exception.
if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
}
report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
exceptionInfo->ContextRecord);
return EXCEPTION_CONTINUE_SEARCH;
}
}
}
#ifdef _WIN64
// Special care for fast JNI field accessors.
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
// in and the heap gets shrunk before the field access.
if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
address addr = JNI_FastGetField::find_slowcase_pc(pc);
if (addr != (address)-1) {
return Handle_Exception(exceptionInfo, addr);
}
}
#endif
// Stack overflow or null pointer exception in native code.
report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
exceptionInfo->ContextRecord);
return EXCEPTION_CONTINUE_SEARCH;
} // /EXCEPTION_ACCESS_VIOLATION
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
if (exception_code == EXCEPTION_IN_PAGE_ERROR) {
CompiledMethod* nm = NULL;
JavaThread* thread = (JavaThread*)t;
if (in_java) {
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
}
if ((thread->thread_state() == _thread_in_vm &&
thread->doing_unsafe_access()) ||
(nm != NULL && nm->has_unsafe_access())) {
return Handle_Exception(exceptionInfo, SharedRuntime::handle_unsafe_access(thread, (address)Assembler::locate_next_instruction(pc)));
}
}
if (in_java) {
switch (exception_code) {
case EXCEPTION_INT_DIVIDE_BY_ZERO:
return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
case EXCEPTION_INT_OVERFLOW:
return Handle_IDiv_Exception(exceptionInfo);
} // switch
}
if (((thread->thread_state() == _thread_in_Java) ||
(thread->thread_state() == _thread_in_native)) &&
exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
LONG result=Handle_FLT_Exception(exceptionInfo);
if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
}
}
if (exception_code != EXCEPTION_BREAKPOINT) {
report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
exceptionInfo->ContextRecord);
}
return EXCEPTION_CONTINUE_SEARCH;
}
#ifndef _WIN64
// Special care for fast JNI accessors.
// jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
// the heap gets shrunk before the field access.
// Need to install our own structured exception handler since native code may
// install its own.
LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
address pc = (address) exceptionInfo->ContextRecord->Eip;
address addr = JNI_FastGetField::find_slowcase_pc(pc);
if (addr != (address)-1) {
return Handle_Exception(exceptionInfo, addr);
}
}
return EXCEPTION_CONTINUE_SEARCH;
}
#define DEFINE_FAST_GETFIELD(Return, Fieldname, Result) \
Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, \
jobject obj, \
jfieldID fieldID) { \
__try { \
return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, \
obj, \
fieldID); \
} __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*) \
_exception_info())) { \
} \
return 0; \
}
DEFINE_FAST_GETFIELD(jboolean, bool, Boolean)
DEFINE_FAST_GETFIELD(jbyte, byte, Byte)
DEFINE_FAST_GETFIELD(jchar, char, Char)
DEFINE_FAST_GETFIELD(jshort, short, Short)
DEFINE_FAST_GETFIELD(jint, int, Int)
DEFINE_FAST_GETFIELD(jlong, long, Long)
DEFINE_FAST_GETFIELD(jfloat, float, Float)
DEFINE_FAST_GETFIELD(jdouble, double, Double)
address os::win32::fast_jni_accessor_wrapper(BasicType type) {
switch (type) {
case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
case T_BYTE: return (address)jni_fast_GetByteField_wrapper;
case T_CHAR: return (address)jni_fast_GetCharField_wrapper;
case T_SHORT: return (address)jni_fast_GetShortField_wrapper;
case T_INT: return (address)jni_fast_GetIntField_wrapper;
case T_LONG: return (address)jni_fast_GetLongField_wrapper;
case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper;
case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper;
default: ShouldNotReachHere();
}
return (address)-1;
}
#endif
// Virtual Memory
int os::vm_page_size() { return os::win32::vm_page_size(); }
int os::vm_allocation_granularity() {
return os::win32::vm_allocation_granularity();
}
// Windows large page support is available on Windows 2003. In order to use
// large page memory, the administrator must first assign additional privilege
// to the user:
// + select Control Panel -> Administrative Tools -> Local Security Policy
// + select Local Policies -> User Rights Assignment
// + double click "Lock pages in memory", add users and/or groups
// + reboot
// Note the above steps are needed for administrator as well, as administrators
// by default do not have the privilege to lock pages in memory.
//
// Note about Windows 2003: although the API supports committing large page
// memory on a page-by-page basis and VirtualAlloc() returns success under this
// scenario, I found through experiment it only uses large page if the entire
// memory region is reserved and committed in a single VirtualAlloc() call.
// This makes Windows large page support more or less like Solaris ISM, in
// that the entire heap must be committed upfront. This probably will change
// in the future, if so the code below needs to be revisited.
#ifndef MEM_LARGE_PAGES
#define MEM_LARGE_PAGES 0x20000000
#endif
static HANDLE _hProcess;
static HANDLE _hToken;
// Container for NUMA node list info
class NUMANodeListHolder {
private:
int *_numa_used_node_list; // allocated below
int _numa_used_node_count;
void free_node_list() {
if (_numa_used_node_list != NULL) {
FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
}
}
public:
NUMANodeListHolder() {
_numa_used_node_count = 0;
_numa_used_node_list = NULL;
// do rest of initialization in build routine (after function pointers are set up)
}
~NUMANodeListHolder() {
free_node_list();
}
bool build() {
DWORD_PTR proc_aff_mask;
DWORD_PTR sys_aff_mask;
if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
ULONG highest_node_number;
if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
free_node_list();
_numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
for (unsigned int i = 0; i <= highest_node_number; i++) {
ULONGLONG proc_mask_numa_node;
if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
if ((proc_aff_mask & proc_mask_numa_node)!=0) {
_numa_used_node_list[_numa_used_node_count++] = i;
}
}
return (_numa_used_node_count > 1);
}
int get_count() { return _numa_used_node_count; }
int get_node_list_entry(int n) {
// for indexes out of range, returns -1
return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
}
} numa_node_list_holder;
static size_t _large_page_size = 0;
static bool request_lock_memory_privilege() {
_hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
os::current_process_id());
LUID luid;
if (_hProcess != NULL &&
OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
TOKEN_PRIVILEGES tp;
tp.PrivilegeCount = 1;
tp.Privileges[0].Luid = luid;
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
// AdjustTokenPrivileges() may return TRUE even when it couldn't change the
// privilege. Check GetLastError() too. See MSDN document.
if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
(GetLastError() == ERROR_SUCCESS)) {
return true;
}
}
return false;
}
static void cleanup_after_large_page_init() {
if (_hProcess) CloseHandle(_hProcess);
_hProcess = NULL;
if (_hToken) CloseHandle(_hToken);
_hToken = NULL;
}
static bool numa_interleaving_init() {
bool success = false;
bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
// print a warning if UseNUMAInterleaving flag is specified on command line
bool warn_on_failure = use_numa_interleaving_specified;
#define WARN(msg) if (warn_on_failure) { warning(msg); }
// NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
NUMAInterleaveGranularity = align_up(NUMAInterleaveGranularity, min_interleave_granularity);
if (numa_node_list_holder.build()) {
if (log_is_enabled(Debug, os, cpu)) {
Log(os, cpu) log;
log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
log.debug(" %d ", numa_node_list_holder.get_node_list_entry(i));
}
}
success = true;
} else {
WARN("Process does not cover multiple NUMA nodes.");
}
if (!success) {
if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
}
return success;
#undef WARN
}
// this routine is used whenever we need to reserve a contiguous VA range
// but we need to make separate VirtualAlloc calls for each piece of the range
// Reasons for doing this:
// * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
// * UseNUMAInterleaving requires a separate node for each piece
static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
DWORD prot,
bool should_inject_error = false) {
char * p_buf;
// note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
// first reserve enough address space in advance since we want to be
// able to break a single contiguous virtual address range into multiple
// large page commits but WS2003 does not allow reserving large page space
// so we just use 4K pages for reserve, this gives us a legal contiguous
// address space. then we will deallocate that reservation, and re alloc
// using large pages
const size_t size_of_reserve = bytes + chunk_size;
if (bytes > size_of_reserve) {
// Overflowed.
return NULL;
}
p_buf = (char *) VirtualAlloc(addr,
size_of_reserve, // size of Reserve
MEM_RESERVE,
PAGE_READWRITE);
// If reservation failed, return NULL
if (p_buf == NULL) return NULL;
MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
os::release_memory(p_buf, bytes + chunk_size);
// we still need to round up to a page boundary (in case we are using large pages)
// but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
// instead we handle this in the bytes_to_rq computation below
p_buf = align_up(p_buf, page_size);
// now go through and allocate one chunk at a time until all bytes are
// allocated
size_t bytes_remaining = bytes;
// An overflow of align_up() would have been caught above
// in the calculation of size_of_reserve.
char * next_alloc_addr = p_buf;
HANDLE hProc = GetCurrentProcess();
#ifdef ASSERT
// Variable for the failure injection
int ran_num = os::random();
size_t fail_after = ran_num % bytes;
#endif
int count=0;
while (bytes_remaining) {
// select bytes_to_rq to get to the next chunk_size boundary
size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
// Note allocate and commit
char * p_new;
#ifdef ASSERT
bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
#else
const bool inject_error_now = false;
#endif
if (inject_error_now) {
p_new = NULL;
} else {
if (!UseNUMAInterleaving) {
p_new = (char *) VirtualAlloc(next_alloc_addr,
bytes_to_rq,
flags,
prot);
} else {
// get the next node to use from the used_node_list
assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
}
}
if (p_new == NULL) {
// Free any allocated pages
if (next_alloc_addr > p_buf) {
// Some memory was committed so release it.
size_t bytes_to_release = bytes - bytes_remaining;
// NMT has yet to record any individual blocks, so it
// need to create a dummy 'reserve' record to match
// the release.
MemTracker::record_virtual_memory_reserve((address)p_buf,
bytes_to_release, CALLER_PC);
os::release_memory(p_buf, bytes_to_release);
}
#ifdef ASSERT
if (should_inject_error) {
log_develop_debug(pagesize)("Reserving pages individually failed.");
}
#endif
return NULL;
}
bytes_remaining -= bytes_to_rq;
next_alloc_addr += bytes_to_rq;
count++;
}
// Although the memory is allocated individually, it is returned as one.
// NMT records it as one block.
if ((flags & MEM_COMMIT) != 0) {
MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
} else {
MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
}
// made it this far, success
return p_buf;
}
void os::large_page_init() {
if (!UseLargePages) return;
// print a warning if any large page related flag is specified on command line
bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
!FLAG_IS_DEFAULT(LargePageSizeInBytes);
bool success = false;
#define WARN(msg) if (warn_on_failure) { warning(msg); }
if (request_lock_memory_privilege()) {
size_t s = GetLargePageMinimum();
if (s) {
#if defined(IA32) || defined(AMD64)
if (s > 4*M || LargePageSizeInBytes > 4*M) {
WARN("JVM cannot use large pages bigger than 4mb.");
} else {
#endif
if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
_large_page_size = LargePageSizeInBytes;
} else {
_large_page_size = s;
}
success = true;
#if defined(IA32) || defined(AMD64)
}
#endif
} else {
WARN("Large page is not supported by the processor.");
}
} else {
WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
}
#undef WARN
const size_t default_page_size = (size_t) vm_page_size();
if (success && _large_page_size > default_page_size) {
_page_sizes[0] = _large_page_size;
_page_sizes[1] = default_page_size;
_page_sizes[2] = 0;
}
cleanup_after_large_page_init();
UseLargePages = success;
}
int os::create_file_for_heap(const char* dir) {
const char name_template[] = "/jvmheap.XXXXXX";
char *fullname = (char*)os::malloc((strlen(dir) + strlen(name_template) + 1), mtInternal);
if (fullname == NULL) {
vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
return -1;
}
(void)strncpy(fullname, dir, strlen(dir)+1);
(void)strncat(fullname, name_template, strlen(name_template));
os::native_path(fullname);
char *path = _mktemp(fullname);
if (path == NULL) {
warning("_mktemp could not create file name from template %s (%s)", fullname, os::strerror(errno));
os::free(fullname);
return -1;
}
int fd = _open(path, O_RDWR | O_CREAT | O_TEMPORARY | O_EXCL, S_IWRITE | S_IREAD);
os::free(fullname);
if (fd < 0) {
warning("Problem opening file for heap (%s)", os::strerror(errno));
return -1;
}
return fd;
}
// If 'base' is not NULL, function will return NULL if it cannot get 'base'
char* os::map_memory_to_file(char* base, size_t size, int fd) {
assert(fd != -1, "File descriptor is not valid");
HANDLE fh = (HANDLE)_get_osfhandle(fd);
#ifdef _LP64
HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
(DWORD)(size >> 32), (DWORD)(size & 0xFFFFFFFF), NULL);
#else
HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
0, (DWORD)size, NULL);
#endif
if (fileMapping == NULL) {
if (GetLastError() == ERROR_DISK_FULL) {
vm_exit_during_initialization(err_msg("Could not allocate sufficient disk space for Java heap"));
}
else {
vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
}
return NULL;
}
LPVOID addr = MapViewOfFileEx(fileMapping, FILE_MAP_WRITE, 0, 0, size, base);
CloseHandle(fileMapping);
return (char*)addr;
}
char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
assert(fd != -1, "File descriptor is not valid");
assert(base != NULL, "Base address cannot be NULL");
release_memory(base, size);
return map_memory_to_file(base, size, fd);
}
// On win32, one cannot release just a part of reserved memory, it's an
// all or nothing deal. When we split a reservation, we must break the
// reservation into two reservations.
void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
bool realloc) {
if (size > 0) {
release_memory(base, size);
if (realloc) {
reserve_memory(split, base);
}
if (size != split) {
reserve_memory(size - split, base + split);
}
}
}
// Multiple threads can race in this code but it's not possible to unmap small sections of
// virtual space to get requested alignment, like posix-like os's.
// Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
"Alignment must be a multiple of allocation granularity (page size)");
assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
size_t extra_size = size + alignment;
assert(extra_size >= size, "overflow, size is too large to allow alignment");
char* aligned_base = NULL;
do {
char* extra_base = os::reserve_memory(extra_size, NULL, alignment, file_desc);
if (extra_base == NULL) {
return NULL;
}
// Do manual alignment
aligned_base = align_up(extra_base, alignment);
if (file_desc != -1) {
os::unmap_memory(extra_base, extra_size);
} else {
os::release_memory(extra_base, extra_size);
}
aligned_base = os::reserve_memory(size, aligned_base, 0, file_desc);
} while (aligned_base == NULL);
return aligned_base;
}
char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
assert((size_t)addr % os::vm_allocation_granularity() == 0,
"reserve alignment");
assert(bytes % os::vm_page_size() == 0, "reserve page size");
char* res;
// note that if UseLargePages is on, all the areas that require interleaving
// will go thru reserve_memory_special rather than thru here.
bool use_individual = (UseNUMAInterleaving && !UseLargePages);
if (!use_individual) {
res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
} else {
elapsedTimer reserveTimer;
if (Verbose && PrintMiscellaneous) reserveTimer.start();
// in numa interleaving, we have to allocate pages individually
// (well really chunks of NUMAInterleaveGranularity size)
res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
if (res == NULL) {
warning("NUMA page allocation failed");
}
if (Verbose && PrintMiscellaneous) {
reserveTimer.stop();
tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
reserveTimer.milliseconds(), reserveTimer.ticks());
}
}
assert(res == NULL || addr == NULL || addr == res,
"Unexpected address from reserve.");
return res;
}
// Reserve memory at an arbitrary address, only if that area is
// available (and not reserved for something else).
char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
// Windows os::reserve_memory() fails of the requested address range is
// not avilable.
return reserve_memory(bytes, requested_addr);
}
char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
assert(file_desc >= 0, "file_desc is not valid");
return map_memory_to_file(requested_addr, bytes, file_desc);
}
size_t os::large_page_size() {
return _large_page_size;
}
bool os::can_commit_large_page_memory() {
// Windows only uses large page memory when the entire region is reserved
// and committed in a single VirtualAlloc() call. This may change in the
// future, but with Windows 2003 it's not possible to commit on demand.
return false;
}
bool os::can_execute_large_page_memory() {
return true;
}
char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
bool exec) {
assert(UseLargePages, "only for large pages");
if (!is_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
return NULL; // Fallback to small pages.
}
const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
// with large pages, there are two cases where we need to use Individual Allocation
// 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
// 2) NUMA Interleaving is enabled, in which case we use a different node for each page
if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
log_debug(pagesize)("Reserving large pages individually.");
char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
if (p_buf == NULL) {
// give an appropriate warning message
if (UseNUMAInterleaving) {
warning("NUMA large page allocation failed, UseLargePages flag ignored");
}
if (UseLargePagesIndividualAllocation) {
warning("Individually allocated large pages failed, "
"use -XX:-UseLargePagesIndividualAllocation to turn off");
}
return NULL;
}
return p_buf;
} else {
log_debug(pagesize)("Reserving large pages in a single large chunk.");
// normal policy just allocate it all at once
DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
if (res != NULL) {
MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
}
return res;
}
}
bool os::release_memory_special(char* base, size_t bytes) {
assert(base != NULL, "Sanity check");
return release_memory(base, bytes);
}
void os::print_statistics() {
}
static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
int err = os::get_last_error();
char buf[256];
size_t buf_len = os::lasterror(buf, sizeof(buf));
warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
exec, buf_len != 0 ? buf : "<no_error_string>", err);
}
bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
if (bytes == 0) {
// Don't bother the OS with noops.
return true;
}
assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
// Don't attempt to print anything if the OS call fails. We're
// probably low on resources, so the print itself may cause crashes.
// unless we have NUMAInterleaving enabled, the range of a commit
// is always within a reserve covered by a single VirtualAlloc
// in that case we can just do a single commit for the requested size
if (!UseNUMAInterleaving) {
if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
return false;
}
if (exec) {
DWORD oldprot;
// Windows doc says to use VirtualProtect to get execute permissions
if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
return false;
}
}
return true;
} else {
// when NUMAInterleaving is enabled, the commit might cover a range that
// came from multiple VirtualAlloc reserves (using allocate_pages_individually).
// VirtualQuery can help us determine that. The RegionSize that VirtualQuery
// returns represents the number of bytes that can be committed in one step.
size_t bytes_remaining = bytes;
char * next_alloc_addr = addr;
while (bytes_remaining > 0) {
MEMORY_BASIC_INFORMATION alloc_info;
VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
PAGE_READWRITE) == NULL) {
NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
exec);)
return false;
}
if (exec) {
DWORD oldprot;
if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
PAGE_EXECUTE_READWRITE, &oldprot)) {
NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
exec);)
return false;
}
}
bytes_remaining -= bytes_to_rq;
next_alloc_addr += bytes_to_rq;
}
}
// if we made it this far, return true
return true;
}
bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
bool exec) {
// alignment_hint is ignored on this OS
return pd_commit_memory(addr, size, exec);
}
void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
const char* mesg) {
assert(mesg != NULL, "mesg must be specified");
if (!pd_commit_memory(addr, size, exec)) {
warn_fail_commit_memory(addr, size, exec);
vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
}
}
void os::pd_commit_memory_or_exit(char* addr, size_t size,
size_t alignment_hint, bool exec,
const char* mesg) {
// alignment_hint is ignored on this OS
pd_commit_memory_or_exit(addr, size, exec, mesg);
}
bool os::pd_uncommit_memory(char* addr, size_t bytes) {
if (bytes == 0) {
// Don't bother the OS with noops.
return true;
}
assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
}
bool os::pd_release_memory(char* addr, size_t bytes) {
return VirtualFree(addr, 0, MEM_RELEASE) != 0;
}
bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
return os::commit_memory(addr, size, !ExecMem);
}
bool os::remove_stack_guard_pages(char* addr, size_t size) {
return os::uncommit_memory(addr, size);
}
static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
uint count = 0;
bool ret = false;
size_t bytes_remaining = bytes;
char * next_protect_addr = addr;
// Use VirtualQuery() to get the chunk size.
while (bytes_remaining) {
MEMORY_BASIC_INFORMATION alloc_info;
if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
return false;
}
size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
// We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
// but we don't distinguish here as both cases are protected by same API.
ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
warning("Failed protecting pages individually for chunk #%u", count);
if (!ret) {
return false;
}
bytes_remaining -= bytes_to_protect;
next_protect_addr += bytes_to_protect;
count++;
}
return ret;
}
// Set protections specified
bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
bool is_committed) {
unsigned int p = 0;
switch (prot) {
case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
case MEM_PROT_READ: p = PAGE_READONLY; break;
case MEM_PROT_RW: p = PAGE_READWRITE; break;
case MEM_PROT_RWX: p = PAGE_EXECUTE_READWRITE; break;
default:
ShouldNotReachHere();
}
DWORD old_status;
// Strange enough, but on Win32 one can change protection only for committed
// memory, not a big deal anyway, as bytes less or equal than 64K
if (!is_committed) {
commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
"cannot commit protection page");
}
// One cannot use os::guard_memory() here, as on Win32 guard page
// have different (one-shot) semantics, from MSDN on PAGE_GUARD:
//
// Pages in the region become guard pages. Any attempt to access a guard page
// causes the system to raise a STATUS_GUARD_PAGE exception and turn off
// the guard page status. Guard pages thus act as a one-time access alarm.
bool ret;
if (UseNUMAInterleaving) {
// If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
// so we must protect the chunks individually.
ret = protect_pages_individually(addr, bytes, p, &old_status);
} else {
ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
}
#ifdef ASSERT
if (!ret) {
int err = os::get_last_error();
char buf[256];
size_t buf_len = os::lasterror(buf, sizeof(buf));
warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
buf_len != 0 ? buf : "<no_error_string>", err);
}
#endif
return ret;
}
bool os::guard_memory(char* addr, size_t bytes) {
DWORD old_status;
return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
}
bool os::unguard_memory(char* addr, size_t bytes) {
DWORD old_status;
return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
}
void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
void os::numa_make_global(char *addr, size_t bytes) { }
void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { }
bool os::numa_topology_changed() { return false; }
size_t os::numa_get_groups_num() { return MAX2(numa_node_list_holder.get_count(), 1); }
int os::numa_get_group_id() { return 0; }
size_t os::numa_get_leaf_groups(int *ids, size_t size) {
if (numa_node_list_holder.get_count() == 0 && size > 0) {
// Provide an answer for UMA systems
ids[0] = 0;
return 1;
} else {
// check for size bigger than actual groups_num
size = MIN2(size, numa_get_groups_num());
for (int i = 0; i < (int)size; i++) {
ids[i] = numa_node_list_holder.get_node_list_entry(i);
}
return size;
}
}
bool os::get_page_info(char *start, page_info* info) {
return false;
}
char *os::scan_pages(char *start, char* end, page_info* page_expected,
page_info* page_found) {
return end;
}
char* os::non_memory_address_word() {
// Must never look like an address returned by reserve_memory,
// even in its subfields (as defined by the CPU immediate fields,
// if the CPU splits constants across multiple instructions).
return (char*)-1;
}
#define MAX_ERROR_COUNT 100
#define SYS_THREAD_ERROR 0xffffffffUL
void os::pd_start_thread(Thread* thread) {
DWORD ret = ResumeThread(thread->osthread()->thread_handle());
// Returns previous suspend state:
// 0: Thread was not suspended
// 1: Thread is running now
// >1: Thread is still suspended.
assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
}
class HighResolutionInterval : public CHeapObj<mtThread> {
// The default timer resolution seems to be 10 milliseconds.
// (Where is this written down?)
// If someone wants to sleep for only a fraction of the default,
// then we set the timer resolution down to 1 millisecond for
// the duration of their interval.
// We carefully set the resolution back, since otherwise we
// seem to incur an overhead (3%?) that we don't need.
// CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
// Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
// Alternatively, we could compute the relative error (503/500 = .6%) and only use
// timeBeginPeriod() if the relative error exceeded some threshold.
// timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
// to decreased efficiency related to increased timer "tick" rates. We want to minimize
// (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
// resolution timers running.
private:
jlong resolution;
public:
HighResolutionInterval(jlong ms) {
resolution = ms % 10L;
if (resolution != 0) {
MMRESULT result = timeBeginPeriod(1L);
}
}
~HighResolutionInterval() {
if (resolution != 0) {
MMRESULT result = timeEndPeriod(1L);
}
resolution = 0L;
}
};
int os::sleep(Thread* thread, jlong ms, bool interruptable) {
jlong limit = (jlong) MAXDWORD;
while (ms > limit) {
int res;
if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
return res;
}
ms -= limit;
}
assert(thread == Thread::current(), "thread consistency check");
OSThread* osthread = thread->osthread();
OSThreadWaitState osts(osthread, false /* not Object.wait() */);
int result;
if (interruptable) {
assert(thread->is_Java_thread(), "must be java thread");
JavaThread *jt = (JavaThread *) thread;
ThreadBlockInVM tbivm(jt);
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition() or
// java_suspend_self() via check_and_wait_while_suspended()
HANDLE events[1];
events[0] = osthread->interrupt_event();
HighResolutionInterval *phri=NULL;
if (!ForceTimeHighResolution) {
phri = new HighResolutionInterval(ms);
}
if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
result = OS_TIMEOUT;
} else {
ResetEvent(osthread->interrupt_event());
osthread->set_interrupted(false);
result = OS_INTRPT;
}
delete phri; //if it is NULL, harmless
// were we externally suspended while we were waiting?
jt->check_and_wait_while_suspended();
} else {
assert(!thread->is_Java_thread(), "must not be java thread");
Sleep((long) ms);
result = OS_TIMEOUT;
}
return result;
}
// Short sleep, direct OS call.
//
// ms = 0, means allow others (if any) to run.
//
void os::naked_short_sleep(jlong ms) {
assert(ms < 1000, "Un-interruptable sleep, short time use only");
Sleep(ms);
}
// Sleep forever; naked call to OS-specific sleep; use with CAUTION
void os::infinite_sleep() {
while (true) { // sleep forever ...
Sleep(100000); // ... 100 seconds at a time
}
}
typedef BOOL (WINAPI * STTSignature)(void);
void os::naked_yield() {
// Consider passing back the return value from SwitchToThread().
SwitchToThread();
}
// Win32 only gives you access to seven real priorities at a time,
// so we compress Java's ten down to seven. It would be better
// if we dynamically adjusted relative priorities.
int os::java_to_os_priority[CriticalPriority + 1] = {
THREAD_PRIORITY_IDLE, // 0 Entry should never be used
THREAD_PRIORITY_LOWEST, // 1 MinPriority
THREAD_PRIORITY_LOWEST, // 2
THREAD_PRIORITY_BELOW_NORMAL, // 3
THREAD_PRIORITY_BELOW_NORMAL, // 4
THREAD_PRIORITY_NORMAL, // 5 NormPriority
THREAD_PRIORITY_NORMAL, // 6
THREAD_PRIORITY_ABOVE_NORMAL, // 7
THREAD_PRIORITY_ABOVE_NORMAL, // 8
THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
THREAD_PRIORITY_HIGHEST, // 10 MaxPriority
THREAD_PRIORITY_HIGHEST // 11 CriticalPriority
};
int prio_policy1[CriticalPriority + 1] = {
THREAD_PRIORITY_IDLE, // 0 Entry should never be used
THREAD_PRIORITY_LOWEST, // 1 MinPriority
THREAD_PRIORITY_LOWEST, // 2
THREAD_PRIORITY_BELOW_NORMAL, // 3
THREAD_PRIORITY_BELOW_NORMAL, // 4
THREAD_PRIORITY_NORMAL, // 5 NormPriority
THREAD_PRIORITY_ABOVE_NORMAL, // 6
THREAD_PRIORITY_ABOVE_NORMAL, // 7
THREAD_PRIORITY_HIGHEST, // 8
THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority
THREAD_PRIORITY_TIME_CRITICAL, // 10 MaxPriority
THREAD_PRIORITY_TIME_CRITICAL // 11 CriticalPriority
};
static int prio_init() {
// If ThreadPriorityPolicy is 1, switch tables
if (ThreadPriorityPolicy == 1) {
int i;
for (i = 0; i < CriticalPriority + 1; i++) {
os::java_to_os_priority[i] = prio_policy1[i];
}
}
if (UseCriticalJavaThreadPriority) {
os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
}
return 0;
}
OSReturn os::set_native_priority(Thread* thread, int priority) {
if (!UseThreadPriorities) return OS_OK;
bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
return ret ? OS_OK : OS_ERR;
}
OSReturn os::get_native_priority(const Thread* const thread,
int* priority_ptr) {
if (!UseThreadPriorities) {
*priority_ptr = java_to_os_priority[NormPriority];
return OS_OK;
}
int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
assert(false, "GetThreadPriority failed");
return OS_ERR;
}
*priority_ptr = os_prio;
return OS_OK;
}
// Hint to the underlying OS that a task switch would not be good.
// Void return because it's a hint and can fail.
void os::hint_no_preempt() {}
void os::interrupt(Thread* thread) {
debug_only(Thread::check_for_dangling_thread_pointer(thread);)
OSThread* osthread = thread->osthread();
osthread->set_interrupted(true);
// More than one thread can get here with the same value of osthread,
// resulting in multiple notifications. We do, however, want the store
// to interrupted() to be visible to other threads before we post
// the interrupt event.
OrderAccess::release();
SetEvent(osthread->interrupt_event());
// For JSR166: unpark after setting status
if (thread->is_Java_thread()) {
((JavaThread*)thread)->parker()->unpark();
}
ParkEvent * ev = thread->_ParkEvent;
if (ev != NULL) ev->unpark();
}
bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
debug_only(Thread::check_for_dangling_thread_pointer(thread);)
OSThread* osthread = thread->osthread();
// There is no synchronization between the setting of the interrupt
// and it being cleared here. It is critical - see 6535709 - that
// we only clear the interrupt state, and reset the interrupt event,
// if we are going to report that we were indeed interrupted - else
// an interrupt can be "lost", leading to spurious wakeups or lost wakeups
// depending on the timing. By checking thread interrupt event to see
// if the thread gets real interrupt thus prevent spurious wakeup.
bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
if (interrupted && clear_interrupted) {
osthread->set_interrupted(false);
ResetEvent(osthread->interrupt_event());
} // Otherwise leave the interrupted state alone
return interrupted;
}
// GetCurrentThreadId() returns DWORD
intx os::current_thread_id() { return GetCurrentThreadId(); }
static int _initial_pid = 0;
int os::current_process_id() {
return (_initial_pid ? _initial_pid : _getpid());
}
int os::win32::_vm_page_size = 0;
int os::win32::_vm_allocation_granularity = 0;
int os::win32::_processor_type = 0;
// Processor level is not available on non-NT systems, use vm_version instead
int os::win32::_processor_level = 0;
julong os::win32::_physical_memory = 0;
size_t os::win32::_default_stack_size = 0;
intx os::win32::_os_thread_limit = 0;
volatile intx os::win32::_os_thread_count = 0;
bool os::win32::_is_windows_server = false;
// 6573254
// Currently, the bug is observed across all the supported Windows releases,
// including the latest one (as of this writing - Windows Server 2012 R2)
bool os::win32::_has_exit_bug = true;
void os::win32::initialize_system_info() {
SYSTEM_INFO si;
GetSystemInfo(&si);
_vm_page_size = si.dwPageSize;
_vm_allocation_granularity = si.dwAllocationGranularity;
_processor_type = si.dwProcessorType;
_processor_level = si.wProcessorLevel;
set_processor_count(si.dwNumberOfProcessors);
MEMORYSTATUSEX ms;
ms.dwLength = sizeof(ms);
// also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
// dwMemoryLoad (% of memory in use)
GlobalMemoryStatusEx(&ms);
_physical_memory = ms.ullTotalPhys;
if (FLAG_IS_DEFAULT(MaxRAM)) {
// Adjust MaxRAM according to the maximum virtual address space available.
FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
}
OSVERSIONINFOEX oi;
oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
GetVersionEx((OSVERSIONINFO*)&oi);
switch (oi.dwPlatformId) {
case VER_PLATFORM_WIN32_NT:
{
int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
oi.wProductType == VER_NT_SERVER) {
_is_windows_server = true;
}
}
break;
default: fatal("Unknown platform");
}
_default_stack_size = os::current_stack_size();
assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
assert((_default_stack_size & (_vm_page_size - 1)) == 0,
"stack size not a multiple of page size");
initialize_performance_counter();
}
HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
int ebuflen) {
char path[MAX_PATH];
DWORD size;
DWORD pathLen = (DWORD)sizeof(path);
HINSTANCE result = NULL;
// only allow library name without path component
assert(strchr(name, '\\') == NULL, "path not allowed");
assert(strchr(name, ':') == NULL, "path not allowed");
if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
jio_snprintf(ebuf, ebuflen,
"Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
return NULL;
}
// search system directory
if ((size = GetSystemDirectory(path, pathLen)) > 0) {
if (size >= pathLen) {
return NULL; // truncated
}
if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
return NULL; // truncated
}
if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
return result;
}
}
// try Windows directory
if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
if (size >= pathLen) {
return NULL; // truncated
}
if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
return NULL; // truncated
}
if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
return result;
}
}
jio_snprintf(ebuf, ebuflen,
"os::win32::load_windows_dll() cannot load %s from system directories.", name);
return NULL;
}
#define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
#define EXIT_TIMEOUT 300000 /* 5 minutes */
static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
return TRUE;
}
int os::win32::exit_process_or_thread(Ept what, int exit_code) {
// Basic approach:
// - Each exiting thread registers its intent to exit and then does so.
// - A thread trying to terminate the process must wait for all
// threads currently exiting to complete their exit.
if (os::win32::has_exit_bug()) {
// The array holds handles of the threads that have started exiting by calling
// _endthreadex().
// Should be large enough to avoid blocking the exiting thread due to lack of
// a free slot.
static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
static int handle_count = 0;
static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
static CRITICAL_SECTION crit_sect;
static volatile DWORD process_exiting = 0;
int i, j;
DWORD res;
HANDLE hproc, hthr;
// We only attempt to register threads until a process exiting
// thread manages to set the process_exiting flag. Any threads
// that come through here after the process_exiting flag is set
// are unregistered and will be caught in the SuspendThread()
// infinite loop below.
bool registered = false;
// The first thread that reached this point, initializes the critical section.
if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
} else if (OrderAccess::load_acquire(&process_exiting) == 0) {
if (what != EPT_THREAD) {
// Atomically set process_exiting before the critical section
// to increase the visibility between racing threads.
Atomic::cmpxchg(GetCurrentThreadId(), &process_exiting, (DWORD)0);
}
EnterCriticalSection(&crit_sect);
if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
// Remove from the array those handles of the threads that have completed exiting.
for (i = 0, j = 0; i < handle_count; ++i) {
res = WaitForSingleObject(handles[i], 0 /* don't wait */);
if (res == WAIT_TIMEOUT) {
handles[j++] = handles[i];
} else {
if (res == WAIT_FAILED) {
warning("WaitForSingleObject failed (%u) in %s: %d\n",
GetLastError(), __FILE__, __LINE__);
}
// Don't keep the handle, if we failed waiting for it.
CloseHandle(handles[i]);
}
}
// If there's no free slot in the array of the kept handles, we'll have to
// wait until at least one thread completes exiting.
if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
// Raise the priority of the oldest exiting thread to increase its chances
// to complete sooner.
SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
i = (res - WAIT_OBJECT_0);
handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
for (; i < handle_count; ++i) {
handles[i] = handles[i + 1];
}
} else {
warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
(res == WAIT_FAILED ? "failed" : "timed out"),
GetLastError(), __FILE__, __LINE__);
// Don't keep handles, if we failed waiting for them.
for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
CloseHandle(handles[i]);
}
handle_count = 0;
}
}
// Store a duplicate of the current thread handle in the array of handles.
hproc = GetCurrentProcess();
hthr = GetCurrentThread();
if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
0, FALSE, DUPLICATE_SAME_ACCESS)) {
warning("DuplicateHandle failed (%u) in %s: %d\n",
GetLastError(), __FILE__, __LINE__);
// We can't register this thread (no more handles) so this thread
// may be racing with a thread that is calling exit(). If the thread
// that is calling exit() has managed to set the process_exiting
// flag, then this thread will be caught in the SuspendThread()
// infinite loop below which closes that race. A small timing
// window remains before the process_exiting flag is set, but it
// is only exposed when we are out of handles.
} else {
++handle_count;
registered = true;
// The current exiting thread has stored its handle in the array, and now
// should leave the critical section before calling _endthreadex().
}
} else if (what != EPT_THREAD && handle_count > 0) {
jlong start_time, finish_time, timeout_left;
// Before ending the process, make sure all the threads that had called
// _endthreadex() completed.
// Set the priority level of the current thread to the same value as
// the priority level of exiting threads.
// This is to ensure it will be given a fair chance to execute if
// the timeout expires.
hthr = GetCurrentThread();
SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
start_time = os::javaTimeNanos();
finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
for (i = 0; ; ) {
int portion_count = handle_count - i;
if (portion_count > MAXIMUM_WAIT_OBJECTS) {
portion_count = MAXIMUM_WAIT_OBJECTS;
}
for (j = 0; j < portion_count; ++j) {
SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
}
timeout_left = (finish_time - start_time) / 1000000L;
if (timeout_left < 0) {
timeout_left = 0;
}
res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
(res == WAIT_FAILED ? "failed" : "timed out"),
GetLastError(), __FILE__, __LINE__);
// Reset portion_count so we close the remaining
// handles due to this error.
portion_count = handle_count - i;
}
for (j = 0; j < portion_count; ++j) {
CloseHandle(handles[i + j]);
}
if ((i += portion_count) >= handle_count) {
break;
}
start_time = os::javaTimeNanos();
}
handle_count = 0;
}
LeaveCriticalSection(&crit_sect);
}
if (!registered &&
OrderAccess::load_acquire(&process_exiting) != 0 &&
process_exiting != GetCurrentThreadId()) {
// Some other thread is about to call exit(), so we don't let
// the current unregistered thread proceed to exit() or _endthreadex()
while (true) {
SuspendThread(GetCurrentThread());
// Avoid busy-wait loop, if SuspendThread() failed.
Sleep(EXIT_TIMEOUT);
}
}
}
// We are here if either
// - there's no 'race at exit' bug on this OS release;
// - initialization of the critical section failed (unlikely);
// - the current thread has registered itself and left the critical section;
// - the process-exiting thread has raised the flag and left the critical section.
if (what == EPT_THREAD) {
_endthreadex((unsigned)exit_code);
} else if (what == EPT_PROCESS) {
::exit(exit_code);
} else {
_exit(exit_code);
}
// Should not reach here
return exit_code;
}
#undef EXIT_TIMEOUT
void os::win32::setmode_streams() {
_setmode(_fileno(stdin), _O_BINARY);
_setmode(_fileno(stdout), _O_BINARY);
_setmode(_fileno(stderr), _O_BINARY);
}
bool os::is_debugger_attached() {
return IsDebuggerPresent() ? true : false;
}
void os::wait_for_keypress_at_exit(void) {
if (PauseAtExit) {
fprintf(stderr, "Press any key to continue...\n");
fgetc(stdin);
}
}
bool os::message_box(const char* title, const char* message) {
int result = MessageBox(NULL, message, title,
MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
return result == IDYES;
}
#ifndef PRODUCT
#ifndef _WIN64
// Helpers to check whether NX protection is enabled
int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
pex->ExceptionRecord->NumberParameters > 0 &&
pex->ExceptionRecord->ExceptionInformation[0] ==
EXCEPTION_INFO_EXEC_VIOLATION) {
return EXCEPTION_EXECUTE_HANDLER;
}
return EXCEPTION_CONTINUE_SEARCH;
}
void nx_check_protection() {
// If NX is enabled we'll get an exception calling into code on the stack
char code[] = { (char)0xC3 }; // ret
void *code_ptr = (void *)code;
__try {
__asm call code_ptr
} __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
tty->print_raw_cr("NX protection detected.");
}
}
#endif // _WIN64
#endif // PRODUCT
// This is called _before_ the global arguments have been parsed
void os::init(void) {
_initial_pid = _getpid();
init_random(1234567);
win32::initialize_system_info();
win32::setmode_streams();
init_page_sizes((size_t) win32::vm_page_size());
// This may be overridden later when argument processing is done.
FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
// Initialize main_process and main_thread
main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle
if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
&main_thread, THREAD_ALL_ACCESS, false, 0)) {
fatal("DuplicateHandle failed\n");
}
main_thread_id = (int) GetCurrentThreadId();
// initialize fast thread access - only used for 32-bit
win32::initialize_thread_ptr_offset();
}
// To install functions for atexit processing
extern "C" {
static void perfMemory_exit_helper() {
perfMemory_exit();
}
}
static jint initSock();
// this is called _after_ the global arguments have been parsed
jint os::init_2(void) {
// Setup Windows Exceptions
// for debugging float code generation bugs
if (ForceFloatExceptions) {
#ifndef _WIN64
static long fp_control_word = 0;
__asm { fstcw fp_control_word }
// see Intel PPro Manual, Vol. 2, p 7-16
const long precision = 0x20;
const long underflow = 0x10;
const long overflow = 0x08;
const long zero_div = 0x04;
const long denorm = 0x02;
const long invalid = 0x01;
fp_control_word |= invalid;
__asm { fldcw fp_control_word }
#endif
}
// If stack_commit_size is 0, windows will reserve the default size,
// but only commit a small portion of it.
size_t stack_commit_size = align_up(ThreadStackSize*K, os::vm_page_size());
size_t default_reserve_size = os::win32::default_stack_size();
size_t actual_reserve_size = stack_commit_size;
if (stack_commit_size < default_reserve_size) {
// If stack_commit_size == 0, we want this too
actual_reserve_size = default_reserve_size;
}
// Check minimum allowable stack size for thread creation and to initialize
// the java system classes, including StackOverflowError - depends on page
// size. Add two 4K pages for compiler2 recursion in main thread.
// Add in 4*BytesPerWord 4K pages to account for VM stack during
// class initialization depending on 32 or 64 bit VM.
size_t min_stack_allowed =
(size_t)(JavaThread::stack_guard_zone_size() +
JavaThread::stack_shadow_zone_size() +
(4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
min_stack_allowed = align_up(min_stack_allowed, os::vm_page_size());
if (actual_reserve_size < min_stack_allowed) {
tty->print_cr("\nThe Java thread stack size specified is too small. "
"Specify at least %dk",
min_stack_allowed / K);
return JNI_ERR;
}
JavaThread::set_stack_size_at_create(stack_commit_size);
// Calculate theoretical max. size of Threads to guard gainst artifical
// out-of-memory situations, where all available address-space has been
// reserved by thread stacks.
assert(actual_reserve_size != 0, "Must have a stack");
// Calculate the thread limit when we should start doing Virtual Memory
// banging. Currently when the threads will have used all but 200Mb of space.
//
// TODO: consider performing a similar calculation for commit size instead
// as reserve size, since on a 64-bit platform we'll run into that more
// often than running out of virtual memory space. We can use the
// lower value of the two calculations as the os_thread_limit.
size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
// at exit methods are called in the reverse order of their registration.
// there is no limit to the number of functions registered. atexit does
// not set errno.
if (PerfAllowAtExitRegistration) {
// only register atexit functions if PerfAllowAtExitRegistration is set.
// atexit functions can be delayed until process exit time, which
// can be problematic for embedded VM situations. Embedded VMs should
// call DestroyJavaVM() to assure that VM resources are released.
// note: perfMemory_exit_helper atexit function may be removed in
// the future if the appropriate cleanup code can be added to the
// VM_Exit VMOperation's doit method.
if (atexit(perfMemory_exit_helper) != 0) {
warning("os::init_2 atexit(perfMemory_exit_helper) failed");
}
}
#ifndef _WIN64
// Print something if NX is enabled (win32 on AMD64)
NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
#endif
// initialize thread priority policy
prio_init();
if (UseNUMA && !ForceNUMA) {
UseNUMA = false; // We don't fully support this yet
}
if (UseNUMAInterleaving) {
// first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
bool success = numa_interleaving_init();
if (!success) UseNUMAInterleaving = false;
}
if (initSock() != JNI_OK) {
return JNI_ERR;
}
SymbolEngine::recalc_search_path();
// Initialize data for jdk.internal.misc.Signal
if (!ReduceSignalUsage) {
jdk_misc_signal_init();
}
return JNI_OK;
}
// Mark the polling page as unreadable
void os::make_polling_page_unreadable(void) {
DWORD old_status;
if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
PAGE_NOACCESS, &old_status)) {
fatal("Could not disable polling page");
}
}
// Mark the polling page as readable
void os::make_polling_page_readable(void) {
DWORD old_status;
if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
PAGE_READONLY, &old_status)) {
fatal("Could not enable polling page");
}
}
// combine the high and low DWORD into a ULONGLONG
static ULONGLONG make_double_word(DWORD high_word, DWORD low_word) {
ULONGLONG value = high_word;
value <<= sizeof(high_word) * 8;
value |= low_word;
return value;
}
// Transfers data from WIN32_FILE_ATTRIBUTE_DATA structure to struct stat
static void file_attribute_data_to_stat(struct stat* sbuf, WIN32_FILE_ATTRIBUTE_DATA file_data) {
::memset((void*)sbuf, 0, sizeof(struct stat));
sbuf->st_size = (_off_t)make_double_word(file_data.nFileSizeHigh, file_data.nFileSizeLow);
sbuf->st_mtime = make_double_word(file_data.ftLastWriteTime.dwHighDateTime,
file_data.ftLastWriteTime.dwLowDateTime);
sbuf->st_ctime = make_double_word(file_data.ftCreationTime.dwHighDateTime,
file_data.ftCreationTime.dwLowDateTime);
sbuf->st_atime = make_double_word(file_data.ftLastAccessTime.dwHighDateTime,
file_data.ftLastAccessTime.dwLowDateTime);
if ((file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0) {
sbuf->st_mode |= S_IFDIR;
} else {
sbuf->st_mode |= S_IFREG;
}
}
// The following function is adapted from java.base/windows/native/libjava/canonicalize_md.c
// Creates an UNC path from a single byte path. Return buffer is
// allocated in C heap and needs to be freed by the caller.
// Returns NULL on error.
static wchar_t* create_unc_path(const char* path, errno_t &err) {
wchar_t* wpath = NULL;
size_t converted_chars = 0;
size_t path_len = strlen(path) + 1; // includes the terminating NULL
if (path[0] == '\\' && path[1] == '\\') {
if (path[2] == '?' && path[3] == '\\'){
// if it already has a \\?\ don't do the prefix
wpath = (wchar_t*)os::malloc(path_len * sizeof(wchar_t), mtInternal);
if (wpath != NULL) {
err = ::mbstowcs_s(&converted_chars, wpath, path_len, path, path_len);
} else {
err = ENOMEM;
}
} else {
// only UNC pathname includes double slashes here
wpath = (wchar_t*)os::malloc((path_len + 7) * sizeof(wchar_t), mtInternal);
if (wpath != NULL) {
::wcscpy(wpath, L"\\\\?\\UNC\0");
err = ::mbstowcs_s(&converted_chars, &wpath[7], path_len, path, path_len);
} else {
err = ENOMEM;
}
}
} else {
wpath = (wchar_t*)os::malloc((path_len + 4) * sizeof(wchar_t), mtInternal);
if (wpath != NULL) {
::wcscpy(wpath, L"\\\\?\\\0");
err = ::mbstowcs_s(&converted_chars, &wpath[4], path_len, path, path_len);
} else {
err = ENOMEM;
}
}
return wpath;
}
static void destroy_unc_path(wchar_t* wpath) {
os::free(wpath);
}
int os::stat(const char *path, struct stat *sbuf) {
char* pathbuf = (char*)os::strdup(path, mtInternal);
if (pathbuf == NULL) {
errno = ENOMEM;
return -1;
}
os::native_path(pathbuf);
int ret;
WIN32_FILE_ATTRIBUTE_DATA file_data;
// Not using stat() to avoid the problem described in JDK-6539723
if (strlen(path) < MAX_PATH) {
BOOL bret = ::GetFileAttributesExA(pathbuf, GetFileExInfoStandard, &file_data);
if (!bret) {
errno = ::GetLastError();
ret = -1;
}
else {
file_attribute_data_to_stat(sbuf, file_data);
ret = 0;
}
} else {
errno_t err = ERROR_SUCCESS;
wchar_t* wpath = create_unc_path(pathbuf, err);
if (err != ERROR_SUCCESS) {
if (wpath != NULL) {
destroy_unc_path(wpath);
}
os::free(pathbuf);
errno = err;
return -1;
}
BOOL bret = ::GetFileAttributesExW(wpath, GetFileExInfoStandard, &file_data);
if (!bret) {
errno = ::GetLastError();
ret = -1;
} else {
file_attribute_data_to_stat(sbuf, file_data);
ret = 0;
}
destroy_unc_path(wpath);
}
os::free(pathbuf);
return ret;
}
#define FT2INT64(ft) \
((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
// of a thread.
//
// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
// the fast estimate available on the platform.
// current_thread_cpu_time() is not optimized for Windows yet
jlong os::current_thread_cpu_time() {
// return user + sys since the cost is the same
return os::thread_cpu_time(Thread::current(), true /* user+sys */);
}
jlong os::thread_cpu_time(Thread* thread) {
// consistent with what current_thread_cpu_time() returns.
return os::thread_cpu_time(thread, true /* user+sys */);
}
jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
}
jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
// This code is copy from clasic VM -> hpi::sysThreadCPUTime
// If this function changes, os::is_thread_cpu_time_supported() should too
FILETIME CreationTime;
FILETIME ExitTime;
FILETIME KernelTime;
FILETIME UserTime;
if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
&ExitTime, &KernelTime, &UserTime) == 0) {
return -1;
} else if (user_sys_cpu_time) {
return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
} else {
return FT2INT64(UserTime) * 100;
}
}
void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
}
void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits
info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time
info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time
info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned
}
bool os::is_thread_cpu_time_supported() {
// see os::thread_cpu_time
FILETIME CreationTime;
FILETIME ExitTime;
FILETIME KernelTime;
FILETIME UserTime;
if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
&KernelTime, &UserTime) == 0) {
return false;
} else {
return true;
}
}
// Windows does't provide a loadavg primitive so this is stubbed out for now.
// It does have primitives (PDH API) to get CPU usage and run queue length.
// "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
// If we wanted to implement loadavg on Windows, we have a few options:
//
// a) Query CPU usage and run queue length and "fake" an answer by
// returning the CPU usage if it's under 100%, and the run queue
// length otherwise. It turns out that querying is pretty slow
// on Windows, on the order of 200 microseconds on a fast machine.
// Note that on the Windows the CPU usage value is the % usage
// since the last time the API was called (and the first call
// returns 100%), so we'd have to deal with that as well.
//
// b) Sample the "fake" answer using a sampling thread and store
// the answer in a global variable. The call to loadavg would
// just return the value of the global, avoiding the slow query.
//
// c) Sample a better answer using exponential decay to smooth the
// value. This is basically the algorithm used by UNIX kernels.
//
// Note that sampling thread starvation could affect both (b) and (c).
int os::loadavg(double loadavg[], int nelem) {
return -1;
}
// DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
bool os::dont_yield() {
return DontYieldALot;
}
// This method is a slightly reworked copy of JDK's sysOpen
// from src/windows/hpi/src/sys_api_md.c
int os::open(const char *path, int oflag, int mode) {
char* pathbuf = (char*)os::strdup(path, mtInternal);
if (pathbuf == NULL) {
errno = ENOMEM;
return -1;
}
os::native_path(pathbuf);
int ret;
if (strlen(path) < MAX_PATH) {
ret = ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
} else {
errno_t err = ERROR_SUCCESS;
wchar_t* wpath = create_unc_path(pathbuf, err);
if (err != ERROR_SUCCESS) {
if (wpath != NULL) {
destroy_unc_path(wpath);
}
os::free(pathbuf);
errno = err;
return -1;
}
ret = ::_wopen(wpath, oflag | O_BINARY | O_NOINHERIT, mode);
if (ret == -1) {
errno = ::GetLastError();
}
destroy_unc_path(wpath);
}
os::free(pathbuf);
return ret;
}
FILE* os::open(int fd, const char* mode) {
return ::_fdopen(fd, mode);
}
// Is a (classpath) directory empty?
bool os::dir_is_empty(const char* path) {
char* search_path = (char*)os::malloc(strlen(path) + 3, mtInternal);
if (search_path == NULL) {
errno = ENOMEM;
return false;
}
strcpy(search_path, path);
os::native_path(search_path);
// Append "*", or possibly "\\*", to path
if (search_path[1] == ':' &&
(search_path[2] == '\0' ||
(search_path[2] == '\\' && search_path[3] == '\0'))) {
// No '\\' needed for cases like "Z:" or "Z:\"
strcat(search_path, "*");
}
else {
strcat(search_path, "\\*");
}
errno_t err = ERROR_SUCCESS;
wchar_t* wpath = create_unc_path(search_path, err);
if (err != ERROR_SUCCESS) {
if (wpath != NULL) {
destroy_unc_path(wpath);
}
os::free(search_path);
errno = err;
return false;
}
WIN32_FIND_DATAW fd;
HANDLE f = ::FindFirstFileW(wpath, &fd);
destroy_unc_path(wpath);
bool is_empty = true;
if (f != INVALID_HANDLE_VALUE) {
while (is_empty && ::FindNextFileW(f, &fd)) {
// An empty directory contains only the current directory file
// and the previous directory file.
if ((wcscmp(fd.cFileName, L".") != 0) &&
(wcscmp(fd.cFileName, L"..") != 0)) {
is_empty = false;
}
}
FindClose(f);
}
os::free(search_path);
return is_empty;
}
// create binary file, rewriting existing file if required
int os::create_binary_file(const char* path, bool rewrite_existing) {
int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
if (!rewrite_existing) {
oflags |= _O_EXCL;
}
return ::open(path, oflags, _S_IREAD | _S_IWRITE);
}
// return current position of file pointer
jlong os::current_file_offset(int fd) {
return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
}
// move file pointer to the specified offset
jlong os::seek_to_file_offset(int fd, jlong offset) {
return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
}
jlong os::lseek(int fd, jlong offset, int whence) {
return (jlong) ::_lseeki64(fd, offset, whence);
}
size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
OVERLAPPED ov;
DWORD nread;
BOOL result;
ZeroMemory(&ov, sizeof(ov));
ov.Offset = (DWORD)offset;
ov.OffsetHigh = (DWORD)(offset >> 32);
HANDLE h = (HANDLE)::_get_osfhandle(fd);
result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
return result ? nread : 0;
}
// This method is a slightly reworked copy of JDK's sysNativePath
// from src/windows/hpi/src/path_md.c
// Convert a pathname to native format. On win32, this involves forcing all
// separators to be '\\' rather than '/' (both are legal inputs, but Win95
// sometimes rejects '/') and removing redundant separators. The input path is
// assumed to have been converted into the character encoding used by the local
// system. Because this might be a double-byte encoding, care is taken to
// treat double-byte lead characters correctly.
//
// This procedure modifies the given path in place, as the result is never
// longer than the original. There is no error return; this operation always
// succeeds.
char * os::native_path(char *path) {
char *src = path, *dst = path, *end = path;
char *colon = NULL; // If a drive specifier is found, this will
// point to the colon following the drive letter
// Assumption: '/', '\\', ':', and drive letters are never lead bytes
assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
&& (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
// Check for leading separators
#define isfilesep(c) ((c) == '/' || (c) == '\\')
while (isfilesep(*src)) {
src++;
}
if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
// Remove leading separators if followed by drive specifier. This
// hack is necessary to support file URLs containing drive
// specifiers (e.g., "file://c:/path"). As a side effect,
// "/c:/path" can be used as an alternative to "c:/path".
*dst++ = *src++;
colon = dst;
*dst++ = ':';
src++;
} else {
src = path;
if (isfilesep(src[0]) && isfilesep(src[1])) {
// UNC pathname: Retain first separator; leave src pointed at
// second separator so that further separators will be collapsed
// into the second separator. The result will be a pathname
// beginning with "\\\\" followed (most likely) by a host name.
src = dst = path + 1;
path[0] = '\\'; // Force first separator to '\\'
}
}
end = dst;
// Remove redundant separators from remainder of path, forcing all
// separators to be '\\' rather than '/'. Also, single byte space
// characters are removed from the end of the path because those
// are not legal ending characters on this operating system.
//
while (*src != '\0') {
if (isfilesep(*src)) {
*dst++ = '\\'; src++;
while (isfilesep(*src)) src++;
if (*src == '\0') {
// Check for trailing separator
end = dst;
if (colon == dst - 2) break; // "z:\\"
if (dst == path + 1) break; // "\\"
if (dst == path + 2 && isfilesep(path[0])) {
// "\\\\" is not collapsed to "\\" because "\\\\" marks the
// beginning of a UNC pathname. Even though it is not, by
// itself, a valid UNC pathname, we leave it as is in order
// to be consistent with the path canonicalizer as well
// as the win32 APIs, which treat this case as an invalid
// UNC pathname rather than as an alias for the root
// directory of the current drive.
break;
}
end = --dst; // Path does not denote a root directory, so
// remove trailing separator
break;
}
end = dst;
} else {
if (::IsDBCSLeadByte(*src)) { // Copy a double-byte character
*dst++ = *src++;
if (*src) *dst++ = *src++;
end = dst;
} else { // Copy a single-byte character
char c = *src++;
*dst++ = c;
// Space is not a legal ending character
if (c != ' ') end = dst;
}
}
}
*end = '\0';
// For "z:", add "." to work around a bug in the C runtime library
if (colon == dst - 1) {
path[2] = '.';
path[3] = '\0';
}
return path;
}
// This code is a copy of JDK's sysSetLength
// from src/windows/hpi/src/sys_api_md.c
int os::ftruncate(int fd, jlong length) {
HANDLE h = (HANDLE)::_get_osfhandle(fd);
long high = (long)(length >> 32);
DWORD ret;
if (h == (HANDLE)(-1)) {
return -1;
}
ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
return -1;
}
if (::SetEndOfFile(h) == FALSE) {
return -1;
}
return 0;
}
int os::get_fileno(FILE* fp) {
return _fileno(fp);
}
// This code is a copy of JDK's sysSync
// from src/windows/hpi/src/sys_api_md.c
// except for the legacy workaround for a bug in Win 98
int os::fsync(int fd) {
HANDLE handle = (HANDLE)::_get_osfhandle(fd);
if ((!::FlushFileBuffers(handle)) &&
(GetLastError() != ERROR_ACCESS_DENIED)) {
// from winerror.h
return -1;
}
return 0;
}
static int nonSeekAvailable(int, long *);
static int stdinAvailable(int, long *);
#define S_ISCHR(mode) (((mode) & _S_IFCHR) == _S_IFCHR)
#define S_ISFIFO(mode) (((mode) & _S_IFIFO) == _S_IFIFO)
// This code is a copy of JDK's sysAvailable
// from src/windows/hpi/src/sys_api_md.c
int os::available(int fd, jlong *bytes) {
jlong cur, end;
struct _stati64 stbuf64;
if (::_fstati64(fd, &stbuf64) >= 0) {
int mode = stbuf64.st_mode;
if (S_ISCHR(mode) || S_ISFIFO(mode)) {
int ret;
long lpbytes;
if (fd == 0) {
ret = stdinAvailable(fd, &lpbytes);
} else {
ret = nonSeekAvailable(fd, &lpbytes);
}
(*bytes) = (jlong)(lpbytes);
return ret;
}
if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
return FALSE;
} else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
return FALSE;
} else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
return FALSE;
}
*bytes = end - cur;
return TRUE;
} else {
return FALSE;
}
}
void os::flockfile(FILE* fp) {
_lock_file(fp);
}
void os::funlockfile(FILE* fp) {
_unlock_file(fp);
}
// This code is a copy of JDK's nonSeekAvailable
// from src/windows/hpi/src/sys_api_md.c
static int nonSeekAvailable(int fd, long *pbytes) {
// This is used for available on non-seekable devices
// (like both named and anonymous pipes, such as pipes
// connected to an exec'd process).
// Standard Input is a special case.
HANDLE han;
if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
return FALSE;
}
if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
// PeekNamedPipe fails when at EOF. In that case we
// simply make *pbytes = 0 which is consistent with the
// behavior we get on Solaris when an fd is at EOF.
// The only alternative is to raise an Exception,
// which isn't really warranted.
//
if (::GetLastError() != ERROR_BROKEN_PIPE) {
return FALSE;
}
*pbytes = 0;
}
return TRUE;
}
#define MAX_INPUT_EVENTS 2000
// This code is a copy of JDK's stdinAvailable
// from src/windows/hpi/src/sys_api_md.c
static int stdinAvailable(int fd, long *pbytes) {
HANDLE han;
DWORD numEventsRead = 0; // Number of events read from buffer
DWORD numEvents = 0; // Number of events in buffer
DWORD i = 0; // Loop index
DWORD curLength = 0; // Position marker
DWORD actualLength = 0; // Number of bytes readable
BOOL error = FALSE; // Error holder
INPUT_RECORD *lpBuffer; // Pointer to records of input events
if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
return FALSE;
}
// Construct an array of input records in the console buffer
error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
if (error == 0) {
return nonSeekAvailable(fd, pbytes);
}
// lpBuffer must fit into 64K or else PeekConsoleInput fails
if (numEvents > MAX_INPUT_EVENTS) {
numEvents = MAX_INPUT_EVENTS;
}
lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
if (lpBuffer == NULL) {
return FALSE;
}
error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
if (error == 0) {
os::free(lpBuffer);
return FALSE;
}
// Examine input records for the number of bytes available
for (i=0; i<numEvents; i++) {
if (lpBuffer[i].EventType == KEY_EVENT) {
KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
&(lpBuffer[i].Event);
if (keyRecord->bKeyDown == TRUE) {
CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
curLength++;
if (*keyPressed == '\r') {
actualLength = curLength;
}
}
}
}
if (lpBuffer != NULL) {
os::free(lpBuffer);
}
*pbytes = (long) actualLength;
return TRUE;
}
// Map a block of memory.
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
char *addr, size_t bytes, bool read_only,
bool allow_exec) {
HANDLE hFile;
char* base;
hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile == NULL) {
log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
return NULL;
}
if (allow_exec) {
// CreateFileMapping/MapViewOfFileEx can't map executable memory
// unless it comes from a PE image (which the shared archive is not.)
// Even VirtualProtect refuses to give execute access to mapped memory
// that was not previously executable.
//
// Instead, stick the executable region in anonymous memory. Yuck.
// Penalty is that ~4 pages will not be shareable - in the future
// we might consider DLLizing the shared archive with a proper PE
// header so that mapping executable + sharing is possible.
base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE);
if (base == NULL) {
log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
CloseHandle(hFile);
return NULL;
}
DWORD bytes_read;
OVERLAPPED overlapped;
overlapped.Offset = (DWORD)file_offset;
overlapped.OffsetHigh = 0;
overlapped.hEvent = NULL;
// ReadFile guarantees that if the return value is true, the requested
// number of bytes were read before returning.
bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
if (!res) {
log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
release_memory(base, bytes);
CloseHandle(hFile);
return NULL;
}
} else {
HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
NULL /* file_name */);
if (hMap == NULL) {
log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
CloseHandle(hFile);
return NULL;
}
DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
(DWORD)bytes, addr);
if (base == NULL) {
log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
CloseHandle(hMap);
CloseHandle(hFile);
return NULL;
}
if (CloseHandle(hMap) == 0) {
log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
CloseHandle(hFile);
return base;
}
}
if (allow_exec) {
DWORD old_protect;
DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
if (!res) {
log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
// Don't consider this a hard error, on IA32 even if the
// VirtualProtect fails, we should still be able to execute
CloseHandle(hFile);
return base;
}
}
if (CloseHandle(hFile) == 0) {
log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
return base;
}
return base;
}
// Remap a block of memory.
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
char *addr, size_t bytes, bool read_only,
bool allow_exec) {
// This OS does not allow existing memory maps to be remapped so we
// have to unmap the memory before we remap it.
if (!os::unmap_memory(addr, bytes)) {
return NULL;
}
// There is a very small theoretical window between the unmap_memory()
// call above and the map_memory() call below where a thread in native
// code may be able to access an address that is no longer mapped.
return os::map_memory(fd, file_name, file_offset, addr, bytes,
read_only, allow_exec);
}
// Unmap a block of memory.
// Returns true=success, otherwise false.
bool os::pd_unmap_memory(char* addr, size_t bytes) {
MEMORY_BASIC_INFORMATION mem_info;
if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
return false;
}
// Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
// Instead, executable region was allocated using VirtualAlloc(). See
// pd_map_memory() above.
//
// The following flags should match the 'exec_access' flages used for
// VirtualProtect() in pd_map_memory().
if (mem_info.Protect == PAGE_EXECUTE_READ ||
mem_info.Protect == PAGE_EXECUTE_READWRITE) {
return pd_release_memory(addr, bytes);
}
BOOL result = UnmapViewOfFile(addr);
if (result == 0) {
log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
return false;
}
return true;
}
void os::pause() {
char filename[MAX_PATH];
if (PauseAtStartupFile && PauseAtStartupFile[0]) {
jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
} else {
jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
}
int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (fd != -1) {
struct stat buf;
::close(fd);
while (::stat(filename, &buf) == 0) {
Sleep(100);
}
} else {
jio_fprintf(stderr,
"Could not open pause file '%s', continuing immediately.\n", filename);
}
}
Thread* os::ThreadCrashProtection::_protected_thread = NULL;
os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
os::ThreadCrashProtection::ThreadCrashProtection() {
}
// See the caveats for this class in os_windows.hpp
// Protects the callback call so that raised OS EXCEPTIONS causes a jump back
// into this method and returns false. If no OS EXCEPTION was raised, returns
// true.
// The callback is supposed to provide the method that should be protected.
//
bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
Thread::muxAcquire(&_crash_mux, "CrashProtection");
_protected_thread = Thread::current_or_null();
assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
bool success = true;
__try {
_crash_protection = this;
cb.call();
} __except(EXCEPTION_EXECUTE_HANDLER) {
// only for protection, nothing to do
success = false;
}
_crash_protection = NULL;
_protected_thread = NULL;
Thread::muxRelease(&_crash_mux);
return success;
}
// An Event wraps a win32 "CreateEvent" kernel handle.
//
// We have a number of choices regarding "CreateEvent" win32 handle leakage:
//
// 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle
// field, and call CloseHandle() on the win32 event handle. Unpark() would
// need to be modified to tolerate finding a NULL (invalid) win32 event handle.
// In addition, an unpark() operation might fetch the handle field, but the
// event could recycle between the fetch and the SetEvent() operation.
// SetEvent() would either fail because the handle was invalid, or inadvertently work,
// as the win32 handle value had been recycled. In an ideal world calling SetEvent()
// on an stale but recycled handle would be harmless, but in practice this might
// confuse other non-Sun code, so it's not a viable approach.
//
// 2: Once a win32 event handle is associated with an Event, it remains associated
// with the Event. The event handle is never closed. This could be construed
// as handle leakage, but only up to the maximum # of threads that have been extant
// at any one time. This shouldn't be an issue, as windows platforms typically
// permit a process to have hundreds of thousands of open handles.
//
// 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
// and release unused handles.
//
// 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
// It's not clear, however, that we wouldn't be trading one type of leak for another.
//
// 5. Use an RCU-like mechanism (Read-Copy Update).
// Or perhaps something similar to Maged Michael's "Hazard pointers".
//
// We use (2).
//
// TODO-FIXME:
// 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
// 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
// to recover from (or at least detect) the dreaded Windows 841176 bug.
// 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
// into a single win32 CreateEvent() handle.
//
// Assumption:
// Only one parker can exist on an event, which is why we allocate
// them per-thread. Multiple unparkers can coexist.
//
// _Event transitions in park()
// -1 => -1 : illegal
// 1 => 0 : pass - return immediately
// 0 => -1 : block; then set _Event to 0 before returning
//
// _Event transitions in unpark()
// 0 => 1 : just return
// 1 => 1 : just return
// -1 => either 0 or 1; must signal target thread
// That is, we can safely transition _Event from -1 to either
// 0 or 1.
//
// _Event serves as a restricted-range semaphore.
// -1 : thread is blocked, i.e. there is a waiter
// 0 : neutral: thread is running or ready,
// could have been signaled after a wait started
// 1 : signaled - thread is running or ready
//
// Another possible encoding of _Event would be with
// explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
//
int os::PlatformEvent::park(jlong Millis) {
// Transitions for _Event:
// -1 => -1 : illegal
// 1 => 0 : pass - return immediately
// 0 => -1 : block; then set _Event to 0 before returning
guarantee(_ParkHandle != NULL , "Invariant");
guarantee(Millis > 0 , "Invariant");
// CONSIDER: defer assigning a CreateEvent() handle to the Event until
// the initial park() operation.
// Consider: use atomic decrement instead of CAS-loop
int v;
for (;;) {
v = _Event;
if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
}
guarantee((v == 0) || (v == 1), "invariant");
if (v != 0) return OS_OK;
// Do this the hard way by blocking ...
// TODO: consider a brief spin here, gated on the success of recent
// spin attempts by this thread.
//
// We decompose long timeouts into series of shorter timed waits.
// Evidently large timo values passed in WaitForSingleObject() are problematic on some
// versions of Windows. See EventWait() for details. This may be superstition. Or not.
// We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
// with os::javaTimeNanos(). Furthermore, we assume that spurious returns from
// ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
// to happen early in the wait interval. Specifically, after a spurious wakeup (rv ==
// WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
// for the already waited time. This policy does not admit any new outcomes.
// In the future, however, we might want to track the accumulated wait time and
// adjust Millis accordingly if we encounter a spurious wakeup.
const int MAXTIMEOUT = 0x10000000;
DWORD rv = WAIT_TIMEOUT;
while (_Event < 0 && Millis > 0) {
DWORD prd = Millis; // set prd = MAX (Millis, MAXTIMEOUT)
if (Millis > MAXTIMEOUT) {
prd = MAXTIMEOUT;
}
rv = ::WaitForSingleObject(_ParkHandle, prd);
assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
if (rv == WAIT_TIMEOUT) {
Millis -= prd;
}
}
v = _Event;
_Event = 0;
// see comment at end of os::PlatformEvent::park() below:
OrderAccess::fence();
// If we encounter a nearly simultanous timeout expiry and unpark()
// we return OS_OK indicating we awoke via unpark().
// Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
return (v >= 0) ? OS_OK : OS_TIMEOUT;
}
void os::PlatformEvent::park() {
// Transitions for _Event:
// -1 => -1 : illegal
// 1 => 0 : pass - return immediately
// 0 => -1 : block; then set _Event to 0 before returning
guarantee(_ParkHandle != NULL, "Invariant");
// Invariant: Only the thread associated with the Event/PlatformEvent
// may call park().
// Consider: use atomic decrement instead of CAS-loop
int v;
for (;;) {
v = _Event;
if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
}
guarantee((v == 0) || (v == 1), "invariant");
if (v != 0) return;
// Do this the hard way by blocking ...
// TODO: consider a brief spin here, gated on the success of recent
// spin attempts by this thread.
while (_Event < 0) {
DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
}
// Usually we'll find _Event == 0 at this point, but as
// an optional optimization we clear it, just in case can
// multiple unpark() operations drove _Event up to 1.
_Event = 0;
OrderAccess::fence();
guarantee(_Event >= 0, "invariant");
}
void os::PlatformEvent::unpark() {
guarantee(_ParkHandle != NULL, "Invariant");
// Transitions for _Event:
// 0 => 1 : just return
// 1 => 1 : just return
// -1 => either 0 or 1; must signal target thread
// That is, we can safely transition _Event from -1 to either
// 0 or 1.
// See also: "Semaphores in Plan 9" by Mullender & Cox
//
// Note: Forcing a transition from "-1" to "1" on an unpark() means
// that it will take two back-to-back park() calls for the owning
// thread to block. This has the benefit of forcing a spurious return
// from the first park() call after an unpark() call which will help
// shake out uses of park() and unpark() without condition variables.
if (Atomic::xchg(1, &_Event) >= 0) return;
::SetEvent(_ParkHandle);
}
// JSR166
// -------------------------------------------------------
// The Windows implementation of Park is very straightforward: Basic
// operations on Win32 Events turn out to have the right semantics to
// use them directly. We opportunistically resuse the event inherited
// from Monitor.
void Parker::park(bool isAbsolute, jlong time) {
guarantee(_ParkEvent != NULL, "invariant");
// First, demultiplex/decode time arguments
if (time < 0) { // don't wait
return;
} else if (time == 0 && !isAbsolute) {
time = INFINITE;
} else if (isAbsolute) {
time -= os::javaTimeMillis(); // convert to relative time
if (time <= 0) { // already elapsed
return;
}
} else { // relative
time /= 1000000; // Must coarsen from nanos to millis
if (time == 0) { // Wait for the minimal time unit if zero
time = 1;
}
}
JavaThread* thread = JavaThread::current();
// Don't wait if interrupted or already triggered
if (Thread::is_interrupted(thread, false) ||
WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
ResetEvent(_ParkEvent);
return;
} else {
ThreadBlockInVM tbivm(thread);
OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
thread->set_suspend_equivalent();
WaitForSingleObject(_ParkEvent, time);
ResetEvent(_ParkEvent);
// If externally suspended while waiting, re-suspend
if (thread->handle_special_suspend_equivalent_condition()) {
thread->java_suspend_self();
}
}
}
void Parker::unpark() {
guarantee(_ParkEvent != NULL, "invariant");
SetEvent(_ParkEvent);
}
// Run the specified command in a separate process. Return its exit value,
// or -1 on failure (e.g. can't create a new process).
int os::fork_and_exec(char* cmd) {
STARTUPINFO si;
PROCESS_INFORMATION pi;
DWORD exit_code;
char * cmd_string;
char * cmd_prefix = "cmd /C ";
size_t len = strlen(cmd) + strlen(cmd_prefix) + 1;
cmd_string = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtInternal);
if (cmd_string == NULL) {
return -1;
}
cmd_string[0] = '\0';
strcat(cmd_string, cmd_prefix);
strcat(cmd_string, cmd);
// now replace all '\n' with '&'
char * substring = cmd_string;
while ((substring = strchr(substring, '\n')) != NULL) {
substring[0] = '&';
substring++;
}
memset(&si, 0, sizeof(si));
si.cb = sizeof(si);
memset(&pi, 0, sizeof(pi));
BOOL rslt = CreateProcess(NULL, // executable name - use command line
cmd_string, // command line
NULL, // process security attribute
NULL, // thread security attribute
TRUE, // inherits system handles
0, // no creation flags
NULL, // use parent's environment block
NULL, // use parent's starting directory
&si, // (in) startup information
&pi); // (out) process information
if (rslt) {
// Wait until child process exits.
WaitForSingleObject(pi.hProcess, INFINITE);
GetExitCodeProcess(pi.hProcess, &exit_code);
// Close process and thread handles.
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
} else {
exit_code = -1;
}
FREE_C_HEAP_ARRAY(char, cmd_string);
return (int)exit_code;
}
bool os::find(address addr, outputStream* st) {
int offset = -1;
bool result = false;
char buf[256];
if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
st->print(PTR_FORMAT " ", addr);
if (strlen(buf) < sizeof(buf) - 1) {
char* p = strrchr(buf, '\\');
if (p) {
st->print("%s", p + 1);
} else {
st->print("%s", buf);
}
} else {
// The library name is probably truncated. Let's omit the library name.
// See also JDK-8147512.
}
if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
st->print("::%s + 0x%x", buf, offset);
}
st->cr();
result = true;
}
return result;
}
LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
DWORD exception_code = e->ExceptionRecord->ExceptionCode;
if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
JavaThread* thread = JavaThread::current();
PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
address addr = (address) exceptionRecord->ExceptionInformation[1];
if (os::is_memory_serialize_page(thread, addr)) {
return EXCEPTION_CONTINUE_EXECUTION;
}
}
return EXCEPTION_CONTINUE_SEARCH;
}
static jint initSock() {
WSADATA wsadata;
if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
::GetLastError());
return JNI_ERR;
}
return JNI_OK;
}
struct hostent* os::get_host_by_name(char* name) {
return (struct hostent*)gethostbyname(name);
}
int os::socket_close(int fd) {
return ::closesocket(fd);
}
int os::socket(int domain, int type, int protocol) {
return ::socket(domain, type, protocol);
}
int os::connect(int fd, struct sockaddr* him, socklen_t len) {
return ::connect(fd, him, len);
}
int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
return ::recv(fd, buf, (int)nBytes, flags);
}
int os::send(int fd, char* buf, size_t nBytes, uint flags) {
return ::send(fd, buf, (int)nBytes, flags);
}
int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
return ::send(fd, buf, (int)nBytes, flags);
}
// WINDOWS CONTEXT Flags for THREAD_SAMPLING
#if defined(IA32)
#define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
#elif defined (AMD64)
#define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
#endif
// returns true if thread could be suspended,
// false otherwise
static bool do_suspend(HANDLE* h) {
if (h != NULL) {
if (SuspendThread(*h) != ~0) {
return true;
}
}
return false;
}
// resume the thread
// calling resume on an active thread is a no-op
static void do_resume(HANDLE* h) {
if (h != NULL) {
ResumeThread(*h);
}
}
// retrieve a suspend/resume context capable handle
// from the tid. Caller validates handle return value.
void get_thread_handle_for_extended_context(HANDLE* h,
OSThread::thread_id_t tid) {
if (h != NULL) {
*h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
}
}
// Thread sampling implementation
//
void os::SuspendedThreadTask::internal_do_task() {
CONTEXT ctxt;
HANDLE h = NULL;
// get context capable handle for thread
get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
// sanity
if (h == NULL || h == INVALID_HANDLE_VALUE) {
return;
}
// suspend the thread
if (do_suspend(&h)) {
ctxt.ContextFlags = sampling_context_flags;
// get thread context
GetThreadContext(h, &ctxt);
SuspendedThreadTaskContext context(_thread, &ctxt);
// pass context to Thread Sampling impl
do_task(context);
// resume thread
do_resume(&h);
}
// close handle
CloseHandle(h);
}
bool os::start_debugging(char *buf, int buflen) {
int len = (int)strlen(buf);
char *p = &buf[len];
jio_snprintf(p, buflen-len,
"\n\n"
"Do you want to debug the problem?\n\n"
"To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
"Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
"Otherwise, select 'No' to abort...",
os::current_process_id(), os::current_thread_id());
bool yes = os::message_box("Unexpected Error", buf);
if (yes) {
// os::breakpoint() calls DebugBreak(), which causes a breakpoint
// exception. If VM is running inside a debugger, the debugger will
// catch the exception. Otherwise, the breakpoint exception will reach
// the default windows exception handler, which can spawn a debugger and
// automatically attach to the dying VM.
os::breakpoint();
yes = false;
}
return yes;
}
void* os::get_default_process_handle() {
return (void*)GetModuleHandle(NULL);
}
// Builds a platform dependent Agent_OnLoad_<lib_name> function name
// which is used to find statically linked in agents.
// Additionally for windows, takes into account __stdcall names.
// Parameters:
// sym_name: Symbol in library we are looking for
// lib_name: Name of library to look in, NULL for shared libs.
// is_absolute_path == true if lib_name is absolute path to agent
// such as "C:/a/b/L.dll"
// == false if only the base name of the library is passed in
// such as "L"
char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
bool is_absolute_path) {
char *agent_entry_name;
size_t len;
size_t name_len;
size_t prefix_len = strlen(JNI_LIB_PREFIX);
size_t suffix_len = strlen(JNI_LIB_SUFFIX);
const char *start;
if (lib_name != NULL) {
len = name_len = strlen(lib_name);
if (is_absolute_path) {
// Need to strip path, prefix and suffix
if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
lib_name = ++start;
} else {
// Need to check for drive prefix
if ((start = strchr(lib_name, ':')) != NULL) {
lib_name = ++start;
}
}
if (len <= (prefix_len + suffix_len)) {
return NULL;
}
lib_name += prefix_len;
name_len = strlen(lib_name) - suffix_len;
}
}
len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
if (agent_entry_name == NULL) {
return NULL;
}
if (lib_name != NULL) {
const char *p = strrchr(sym_name, '@');
if (p != NULL && p != sym_name) {
// sym_name == _Agent_OnLoad@XX
strncpy(agent_entry_name, sym_name, (p - sym_name));
agent_entry_name[(p-sym_name)] = '\0';
// agent_entry_name == _Agent_OnLoad
strcat(agent_entry_name, "_");
strncat(agent_entry_name, lib_name, name_len);
strcat(agent_entry_name, p);
// agent_entry_name == _Agent_OnLoad_lib_name@XX
} else {
strcpy(agent_entry_name, sym_name);
strcat(agent_entry_name, "_");
strncat(agent_entry_name, lib_name, name_len);
}
} else {
strcpy(agent_entry_name, sym_name);
}
return agent_entry_name;
}
#ifndef PRODUCT
// test the code path in reserve_memory_special() that tries to allocate memory in a single
// contiguous memory block at a particular address.
// The test first tries to find a good approximate address to allocate at by using the same
// method to allocate some memory at any address. The test then tries to allocate memory in
// the vicinity (not directly after it to avoid possible by-chance use of that location)
// This is of course only some dodgy assumption, there is no guarantee that the vicinity of
// the previously allocated memory is available for allocation. The only actual failure
// that is reported is when the test tries to allocate at a particular location but gets a
// different valid one. A NULL return value at this point is not considered an error but may
// be legitimate.
// If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
void TestReserveMemorySpecial_test() {
if (!UseLargePages) {
if (VerboseInternalVMTests) {
tty->print("Skipping test because large pages are disabled");
}
return;
}
// save current value of globals
bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
bool old_use_numa_interleaving = UseNUMAInterleaving;
// set globals to make sure we hit the correct code path
UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
// do an allocation at an address selected by the OS to get a good one.
const size_t large_allocation_size = os::large_page_size() * 4;
char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
if (result == NULL) {
if (VerboseInternalVMTests) {
tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
large_allocation_size);
}
} else {
os::release_memory_special(result, large_allocation_size);
// allocate another page within the recently allocated memory area which seems to be a good location. At least
// we managed to get it once.
const size_t expected_allocation_size = os::large_page_size();
char* expected_location = result + os::large_page_size();
char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
if (actual_location == NULL) {
if (VerboseInternalVMTests) {
tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
expected_location, large_allocation_size);
}
} else {
// release memory
os::release_memory_special(actual_location, expected_allocation_size);
// only now check, after releasing any memory to avoid any leaks.
assert(actual_location == expected_location,
"Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
expected_location, expected_allocation_size, actual_location);
}
}
// restore globals
UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
UseNUMAInterleaving = old_use_numa_interleaving;
}
#endif // PRODUCT
/*
All the defined signal names for Windows.
NOTE that not all of these names are accepted by FindSignal!
For various reasons some of these may be rejected at runtime.
Here are the names currently accepted by a user of sun.misc.Signal with
1.4.1 (ignoring potential interaction with use of chaining, etc):
(LIST TBD)
*/
int os::get_signal_number(const char* name) {
static const struct {
char* name;
int number;
} siglabels [] =
// derived from version 6.0 VC98/include/signal.h
{"ABRT", SIGABRT, // abnormal termination triggered by abort cl
"FPE", SIGFPE, // floating point exception
"SEGV", SIGSEGV, // segment violation
"INT", SIGINT, // interrupt
"TERM", SIGTERM, // software term signal from kill
"BREAK", SIGBREAK, // Ctrl-Break sequence
"ILL", SIGILL}; // illegal instruction
for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
if (strcmp(name, siglabels[i].name) == 0) {
return siglabels[i].number;
}
}
return -1;
}
// Fast current thread access
int os::win32::_thread_ptr_offset = 0;
static void call_wrapper_dummy() {}
// We need to call the os_exception_wrapper once so that it sets
// up the offset from FS of the thread pointer.
void os::win32::initialize_thread_ptr_offset() {
os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
NULL, NULL, NULL, NULL);
}