8009614: nsk/split_verifier/stress/ifelse/ifelse002_30 fails with 'assert((size & (granularity - 1)) == 0) failed: size not aligned to os::vm_allocation_granularity()
Summary: Align up vm allocation size to os defined granularity
Reviewed-by: dholmes, coleenp
/*
* Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/classLoaderData.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/heapInspection.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/os.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
#endif // INCLUDE_ALL_GCS
// HeapInspection
int KlassInfoEntry::compare(KlassInfoEntry* e1, KlassInfoEntry* e2) {
if(e1->_instance_words > e2->_instance_words) {
return -1;
} else if(e1->_instance_words < e2->_instance_words) {
return 1;
}
// Sort alphabetically, note 'Z' < '[' < 'a', but it's better to group
// the array classes before all the instance classes.
ResourceMark rm;
const char* name1 = e1->klass()->external_name();
const char* name2 = e2->klass()->external_name();
bool d1 = (name1[0] == '[');
bool d2 = (name2[0] == '[');
if (d1 && !d2) {
return -1;
} else if (d2 && !d1) {
return 1;
} else {
return strcmp(name1, name2);
}
}
const char* KlassInfoEntry::name() const {
const char* name;
if (_klass->name() != NULL) {
name = _klass->external_name();
} else {
if (_klass == Universe::boolArrayKlassObj()) name = "<boolArrayKlass>"; else
if (_klass == Universe::charArrayKlassObj()) name = "<charArrayKlass>"; else
if (_klass == Universe::singleArrayKlassObj()) name = "<singleArrayKlass>"; else
if (_klass == Universe::doubleArrayKlassObj()) name = "<doubleArrayKlass>"; else
if (_klass == Universe::byteArrayKlassObj()) name = "<byteArrayKlass>"; else
if (_klass == Universe::shortArrayKlassObj()) name = "<shortArrayKlass>"; else
if (_klass == Universe::intArrayKlassObj()) name = "<intArrayKlass>"; else
if (_klass == Universe::longArrayKlassObj()) name = "<longArrayKlass>"; else
name = "<no name>";
}
return name;
}
void KlassInfoEntry::print_on(outputStream* st) const {
ResourceMark rm;
// simplify the formatting (ILP32 vs LP64) - always cast the numbers to 64-bit
st->print_cr(INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13) " %s",
(jlong) _instance_count,
(julong) _instance_words * HeapWordSize,
name());
}
KlassInfoEntry* KlassInfoBucket::lookup(Klass* const k) {
KlassInfoEntry* elt = _list;
while (elt != NULL) {
if (elt->is_equal(k)) {
return elt;
}
elt = elt->next();
}
elt = new KlassInfoEntry(k, list());
// We may be out of space to allocate the new entry.
if (elt != NULL) {
set_list(elt);
}
return elt;
}
void KlassInfoBucket::iterate(KlassInfoClosure* cic) {
KlassInfoEntry* elt = _list;
while (elt != NULL) {
cic->do_cinfo(elt);
elt = elt->next();
}
}
void KlassInfoBucket::empty() {
KlassInfoEntry* elt = _list;
_list = NULL;
while (elt != NULL) {
KlassInfoEntry* next = elt->next();
delete elt;
elt = next;
}
}
void KlassInfoTable::AllClassesFinder::do_klass(Klass* k) {
// This has the SIDE EFFECT of creating a KlassInfoEntry
// for <k>, if one doesn't exist yet.
_table->lookup(k);
}
KlassInfoTable::KlassInfoTable(int size, HeapWord* ref,
bool need_class_stats) {
_size = 0;
_ref = ref;
_buckets = NEW_C_HEAP_ARRAY(KlassInfoBucket, size, mtInternal);
if (_buckets != NULL) {
_size = size;
for (int index = 0; index < _size; index++) {
_buckets[index].initialize();
}
if (need_class_stats) {
AllClassesFinder finder(this);
ClassLoaderDataGraph::classes_do(&finder);
}
}
}
KlassInfoTable::~KlassInfoTable() {
if (_buckets != NULL) {
for (int index = 0; index < _size; index++) {
_buckets[index].empty();
}
FREE_C_HEAP_ARRAY(KlassInfoBucket, _buckets, mtInternal);
_size = 0;
}
}
uint KlassInfoTable::hash(Klass* p) {
assert(p->is_metadata(), "all klasses are metadata");
return (uint)(((uintptr_t)p - (uintptr_t)_ref) >> 2);
}
KlassInfoEntry* KlassInfoTable::lookup(Klass* const k) {
uint idx = hash(k) % _size;
assert(_buckets != NULL, "Allocation failure should have been caught");
KlassInfoEntry* e = _buckets[idx].lookup(k);
// Lookup may fail if this is a new klass for which we
// could not allocate space for an new entry.
assert(e == NULL || k == e->klass(), "must be equal");
return e;
}
// Return false if the entry could not be recorded on account
// of running out of space required to create a new entry.
bool KlassInfoTable::record_instance(const oop obj) {
Klass* k = obj->klass();
KlassInfoEntry* elt = lookup(k);
// elt may be NULL if it's a new klass for which we
// could not allocate space for a new entry in the hashtable.
if (elt != NULL) {
elt->set_count(elt->count() + 1);
elt->set_words(elt->words() + obj->size());
return true;
} else {
return false;
}
}
void KlassInfoTable::iterate(KlassInfoClosure* cic) {
assert(_size == 0 || _buckets != NULL, "Allocation failure should have been caught");
for (int index = 0; index < _size; index++) {
_buckets[index].iterate(cic);
}
}
int KlassInfoHisto::sort_helper(KlassInfoEntry** e1, KlassInfoEntry** e2) {
return (*e1)->compare(*e1,*e2);
}
KlassInfoHisto::KlassInfoHisto(KlassInfoTable* cit, const char* title, int estimatedCount) :
_cit(cit),
_title(title) {
_elements = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<KlassInfoEntry*>(estimatedCount,true);
}
KlassInfoHisto::~KlassInfoHisto() {
delete _elements;
}
void KlassInfoHisto::add(KlassInfoEntry* cie) {
elements()->append(cie);
}
void KlassInfoHisto::sort() {
elements()->sort(KlassInfoHisto::sort_helper);
}
void KlassInfoHisto::print_elements(outputStream* st) const {
// simplify the formatting (ILP32 vs LP64) - store the sum in 64-bit
jlong total = 0;
julong totalw = 0;
for(int i=0; i < elements()->length(); i++) {
st->print("%4d: ", i+1);
elements()->at(i)->print_on(st);
total += elements()->at(i)->count();
totalw += elements()->at(i)->words();
}
st->print_cr("Total " INT64_FORMAT_W(13) " " UINT64_FORMAT_W(13),
total, totalw * HeapWordSize);
}
#define MAKE_COL_NAME(field, name, help) #name,
#define MAKE_COL_HELP(field, name, help) help,
static const char *name_table[] = {
HEAP_INSPECTION_COLUMNS_DO(MAKE_COL_NAME)
};
static const char *help_table[] = {
HEAP_INSPECTION_COLUMNS_DO(MAKE_COL_HELP)
};
bool KlassInfoHisto::is_selected(const char *col_name) {
if (_selected_columns == NULL) {
return true;
}
if (strcmp(_selected_columns, col_name) == 0) {
return true;
}
const char *start = strstr(_selected_columns, col_name);
if (start == NULL) {
return false;
}
// The following must be true, because _selected_columns != col_name
if (start > _selected_columns && start[-1] != ',') {
return false;
}
char x = start[strlen(col_name)];
if (x != ',' && x != '\0') {
return false;
}
return true;
}
void KlassInfoHisto::print_title(outputStream* st, bool csv_format,
bool selected[], int width_table[],
const char *name_table[]) {
if (csv_format) {
st->print("Index,Super");
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {st->print(",%s", name_table[c]);}
}
st->print(",ClassName");
} else {
st->print("Index Super");
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {st->print(str_fmt(width_table[c]), name_table[c]);}
}
st->print(" ClassName");
}
if (is_selected("ClassLoader")) {
st->print(",ClassLoader");
}
st->cr();
}
void KlassInfoHisto::print_class_stats(outputStream* st,
bool csv_format, const char *columns) {
ResourceMark rm;
KlassSizeStats sz, sz_sum;
int i;
julong *col_table = (julong*)(&sz);
julong *colsum_table = (julong*)(&sz_sum);
int width_table[KlassSizeStats::_num_columns];
bool selected[KlassSizeStats::_num_columns];
_selected_columns = columns;
memset(&sz_sum, 0, sizeof(sz_sum));
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
selected[c] = is_selected(name_table[c]);
}
for(i=0; i < elements()->length(); i++) {
elements()->at(i)->set_index(i+1);
}
for (int pass=1; pass<=2; pass++) {
if (pass == 2) {
print_title(st, csv_format, selected, width_table, name_table);
}
for(i=0; i < elements()->length(); i++) {
KlassInfoEntry* e = (KlassInfoEntry*)elements()->at(i);
const Klass* k = e->klass();
memset(&sz, 0, sizeof(sz));
sz._inst_count = e->count();
sz._inst_bytes = HeapWordSize * e->words();
k->collect_statistics(&sz);
sz._total_bytes = sz._ro_bytes + sz._rw_bytes;
if (pass == 1) {
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
colsum_table[c] += col_table[c];
}
} else {
int super_index = -1;
if (k->oop_is_instance()) {
Klass* super = ((InstanceKlass*)k)->java_super();
if (super) {
KlassInfoEntry* super_e = _cit->lookup(super);
if (super_e) {
super_index = super_e->index();
}
}
}
if (csv_format) {
st->print("%d,%d", e->index(), super_index);
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {st->print("," JULONG_FORMAT, col_table[c]);}
}
st->print(",%s",e->name());
} else {
st->print("%5d %5d", e->index(), super_index);
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {print_julong(st, width_table[c], col_table[c]);}
}
st->print(" %s", e->name());
}
if (is_selected("ClassLoader")) {
ClassLoaderData* loader_data = k->class_loader_data();
st->print(",");
loader_data->print_value_on(st);
}
st->cr();
}
}
if (pass == 1) {
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
width_table[c] = col_width(colsum_table[c], name_table[c]);
}
}
}
sz_sum._inst_size = 0;
if (csv_format) {
st->print(",");
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {st->print("," JULONG_FORMAT, colsum_table[c]);}
}
} else {
st->print(" ");
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {print_julong(st, width_table[c], colsum_table[c]);}
}
st->print(" Total");
if (sz_sum._total_bytes > 0) {
st->cr();
st->print(" ");
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
if (selected[c]) {
switch (c) {
case KlassSizeStats::_index_inst_size:
case KlassSizeStats::_index_inst_count:
case KlassSizeStats::_index_method_count:
st->print(str_fmt(width_table[c]), "-");
break;
default:
{
double perc = (double)(100) * (double)(colsum_table[c]) / (double)sz_sum._total_bytes;
st->print(perc_fmt(width_table[c]), perc);
}
}
}
}
}
}
st->cr();
if (!csv_format) {
print_title(st, csv_format, selected, width_table, name_table);
}
}
julong KlassInfoHisto::annotations_bytes(Array<AnnotationArray*>* p) const {
julong bytes = 0;
if (p != NULL) {
for (int i = 0; i < p->length(); i++) {
bytes += count_bytes_array(p->at(i));
}
bytes += count_bytes_array(p);
}
return bytes;
}
void KlassInfoHisto::print_histo_on(outputStream* st, bool print_stats,
bool csv_format, const char *columns) {
if (print_stats) {
print_class_stats(st, csv_format, columns);
} else {
st->print_cr("%s",title());
print_elements(st);
}
}
class HistoClosure : public KlassInfoClosure {
private:
KlassInfoHisto* _cih;
public:
HistoClosure(KlassInfoHisto* cih) : _cih(cih) {}
void do_cinfo(KlassInfoEntry* cie) {
_cih->add(cie);
}
};
class RecordInstanceClosure : public ObjectClosure {
private:
KlassInfoTable* _cit;
size_t _missed_count;
public:
RecordInstanceClosure(KlassInfoTable* cit) :
_cit(cit), _missed_count(0) {}
void do_object(oop obj) {
if (!_cit->record_instance(obj)) {
_missed_count++;
}
}
size_t missed_count() { return _missed_count; }
};
void HeapInspection::heap_inspection(outputStream* st, bool need_prologue) {
ResourceMark rm;
// Get some random number for ref (the hash key)
HeapWord* ref = (HeapWord*) Universe::boolArrayKlassObj();
CollectedHeap* heap = Universe::heap();
bool is_shared_heap = false;
if (_print_help) {
for (int c=0; c<KlassSizeStats::_num_columns; c++) {
st->print("%s:\n\t", name_table[c]);
const int max_col = 60;
int col = 0;
for (const char *p = help_table[c]; *p; p++,col++) {
if (col >= max_col && *p == ' ') {
st->print("\n\t");
col = 0;
} else {
st->print("%c", *p);
}
}
st->print_cr(".\n");
}
return;
}
// Collect klass instance info
KlassInfoTable cit(KlassInfoTable::cit_size, ref, _print_class_stats);
if (!cit.allocation_failed()) {
// Iterate over objects in the heap
RecordInstanceClosure ric(&cit);
Universe::heap()->object_iterate(&ric);
// Report if certain classes are not counted because of
// running out of C-heap for the histogram.
size_t missed_count = ric.missed_count();
if (missed_count != 0) {
st->print_cr("WARNING: Ran out of C-heap; undercounted " SIZE_FORMAT
" total instances in data below",
missed_count);
}
// Sort and print klass instance info
const char *title = "\n"
" num #instances #bytes class name\n"
"----------------------------------------------";
KlassInfoHisto histo(&cit, title, KlassInfoHisto::histo_initial_size);
HistoClosure hc(&histo);
cit.iterate(&hc);
histo.sort();
histo.print_histo_on(st, _print_class_stats, _csv_format, _columns);
} else {
st->print_cr("WARNING: Ran out of C-heap; histogram not generated");
}
st->flush();
if (need_prologue && is_shared_heap) {
SharedHeap* sh = (SharedHeap*)heap;
sh->gc_epilogue(false /* !full */); // release all acquired locks, etc.
}
}
class FindInstanceClosure : public ObjectClosure {
private:
Klass* _klass;
GrowableArray<oop>* _result;
public:
FindInstanceClosure(Klass* k, GrowableArray<oop>* result) : _klass(k), _result(result) {};
void do_object(oop obj) {
if (obj->is_a(_klass)) {
_result->append(obj);
}
}
};
void HeapInspection::find_instances_at_safepoint(Klass* k, GrowableArray<oop>* result) {
assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
assert(Heap_lock->is_locked(), "should have the Heap_lock");
// Ensure that the heap is parsable
Universe::heap()->ensure_parsability(false); // no need to retire TALBs
// Iterate over objects in the heap
FindInstanceClosure fic(k, result);
// If this operation encounters a bad object when using CMS,
// consider using safe_object_iterate() which avoids metadata
// objects that may contain bad references.
Universe::heap()->object_iterate(&fic);
}