6985015: C1 needs to support compressed oops
Summary: This change implements compressed oops for C1 for x64 and sparc. The changes are mostly on the codegen level, with a few exceptions when we do access things outside of the heap that are uncompressed from the IR. Compressed oops are now also enabled with tiered.
Reviewed-by: twisti, kvn, never, phh
/*
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_InstructionPrinter.hpp"
#include "c1/c1_LIR.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciInstance.hpp"
#include "runtime/sharedRuntime.hpp"
Register LIR_OprDesc::as_register() const {
return FrameMap::cpu_rnr2reg(cpu_regnr());
}
Register LIR_OprDesc::as_register_lo() const {
return FrameMap::cpu_rnr2reg(cpu_regnrLo());
}
Register LIR_OprDesc::as_register_hi() const {
return FrameMap::cpu_rnr2reg(cpu_regnrHi());
}
#if defined(X86)
XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
return FrameMap::nr2xmmreg(xmm_regnr());
}
XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
return FrameMap::nr2xmmreg(xmm_regnrLo());
}
#endif // X86
#if defined(SPARC) || defined(PPC)
FloatRegister LIR_OprDesc::as_float_reg() const {
return FrameMap::nr2floatreg(fpu_regnr());
}
FloatRegister LIR_OprDesc::as_double_reg() const {
return FrameMap::nr2floatreg(fpu_regnrHi());
}
#endif
#ifdef ARM
FloatRegister LIR_OprDesc::as_float_reg() const {
return as_FloatRegister(fpu_regnr());
}
FloatRegister LIR_OprDesc::as_double_reg() const {
return as_FloatRegister(fpu_regnrLo());
}
#endif
LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
LIR_Opr LIR_OprFact::value_type(ValueType* type) {
ValueTag tag = type->tag();
switch (tag) {
case objectTag : {
ClassConstant* c = type->as_ClassConstant();
if (c != NULL && !c->value()->is_loaded()) {
return LIR_OprFact::oopConst(NULL);
} else {
return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
}
}
case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
case intTag : return LIR_OprFact::intConst(type->as_IntConstant()->value());
case floatTag : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
case longTag : return LIR_OprFact::longConst(type->as_LongConstant()->value());
case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
}
}
LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
switch (type->tag()) {
case objectTag: return LIR_OprFact::oopConst(NULL);
case addressTag:return LIR_OprFact::addressConst(0);
case intTag: return LIR_OprFact::intConst(0);
case floatTag: return LIR_OprFact::floatConst(0.0);
case longTag: return LIR_OprFact::longConst(0);
case doubleTag: return LIR_OprFact::doubleConst(0.0);
default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
}
return illegalOpr;
}
//---------------------------------------------------
LIR_Address::Scale LIR_Address::scale(BasicType type) {
int elem_size = type2aelembytes(type);
switch (elem_size) {
case 1: return LIR_Address::times_1;
case 2: return LIR_Address::times_2;
case 4: return LIR_Address::times_4;
case 8: return LIR_Address::times_8;
}
ShouldNotReachHere();
return LIR_Address::times_1;
}
#ifndef PRODUCT
void LIR_Address::verify() const {
#if defined(SPARC) || defined(PPC)
assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
assert(disp() == 0 || index()->is_illegal(), "can't have both");
#endif
#ifdef ARM
assert(disp() == 0 || index()->is_illegal(), "can't have both");
assert(-4096 < disp() && disp() < 4096, "architecture constraint");
#endif
#ifdef _LP64
assert(base()->is_cpu_register(), "wrong base operand");
assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
assert(base()->type() == T_OBJECT || base()->type() == T_LONG,
"wrong type for addresses");
#else
assert(base()->is_single_cpu(), "wrong base operand");
assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
assert(base()->type() == T_OBJECT || base()->type() == T_INT,
"wrong type for addresses");
#endif
}
#endif
//---------------------------------------------------
char LIR_OprDesc::type_char(BasicType t) {
switch (t) {
case T_ARRAY:
t = T_OBJECT;
case T_BOOLEAN:
case T_CHAR:
case T_FLOAT:
case T_DOUBLE:
case T_BYTE:
case T_SHORT:
case T_INT:
case T_LONG:
case T_OBJECT:
case T_ADDRESS:
case T_VOID:
return ::type2char(t);
case T_ILLEGAL:
return '?';
default:
ShouldNotReachHere();
return '?';
}
}
#ifndef PRODUCT
void LIR_OprDesc::validate_type() const {
#ifdef ASSERT
if (!is_pointer() && !is_illegal()) {
switch (as_BasicType(type_field())) {
case T_LONG:
assert((kind_field() == cpu_register || kind_field() == stack_value) &&
size_field() == double_size, "must match");
break;
case T_FLOAT:
// FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
assert((kind_field() == fpu_register || kind_field() == stack_value
ARM_ONLY(|| kind_field() == cpu_register)
PPC_ONLY(|| kind_field() == cpu_register) ) &&
size_field() == single_size, "must match");
break;
case T_DOUBLE:
// FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
assert((kind_field() == fpu_register || kind_field() == stack_value
ARM_ONLY(|| kind_field() == cpu_register)
PPC_ONLY(|| kind_field() == cpu_register) ) &&
size_field() == double_size, "must match");
break;
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
case T_ADDRESS:
case T_OBJECT:
case T_ARRAY:
assert((kind_field() == cpu_register || kind_field() == stack_value) &&
size_field() == single_size, "must match");
break;
case T_ILLEGAL:
// XXX TKR also means unknown right now
// assert(is_illegal(), "must match");
break;
default:
ShouldNotReachHere();
}
}
#endif
}
#endif // PRODUCT
bool LIR_OprDesc::is_oop() const {
if (is_pointer()) {
return pointer()->is_oop_pointer();
} else {
OprType t= type_field();
assert(t != unknown_type, "not set");
return t == object_type;
}
}
void LIR_Op2::verify() const {
#ifdef ASSERT
switch (code()) {
case lir_cmove:
break;
default:
assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
"can't produce oops from arith");
}
if (TwoOperandLIRForm) {
switch (code()) {
case lir_add:
case lir_sub:
case lir_mul:
case lir_mul_strictfp:
case lir_div:
case lir_div_strictfp:
case lir_rem:
case lir_logic_and:
case lir_logic_or:
case lir_logic_xor:
case lir_shl:
case lir_shr:
assert(in_opr1() == result_opr(), "opr1 and result must match");
assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
break;
// special handling for lir_ushr because of write barriers
case lir_ushr:
assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
break;
}
}
#endif
}
LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
: LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
, _cond(cond)
, _type(type)
, _label(block->label())
, _block(block)
, _ublock(NULL)
, _stub(NULL) {
}
LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
, _cond(cond)
, _type(type)
, _label(stub->entry())
, _block(NULL)
, _ublock(NULL)
, _stub(stub) {
}
LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
: LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
, _cond(cond)
, _type(type)
, _label(block->label())
, _block(block)
, _ublock(ublock)
, _stub(NULL)
{
}
void LIR_OpBranch::change_block(BlockBegin* b) {
assert(_block != NULL, "must have old block");
assert(_block->label() == label(), "must be equal");
_block = b;
_label = b->label();
}
void LIR_OpBranch::change_ublock(BlockBegin* b) {
assert(_ublock != NULL, "must have old block");
_ublock = b;
}
void LIR_OpBranch::negate_cond() {
switch (_cond) {
case lir_cond_equal: _cond = lir_cond_notEqual; break;
case lir_cond_notEqual: _cond = lir_cond_equal; break;
case lir_cond_less: _cond = lir_cond_greaterEqual; break;
case lir_cond_lessEqual: _cond = lir_cond_greater; break;
case lir_cond_greaterEqual: _cond = lir_cond_less; break;
case lir_cond_greater: _cond = lir_cond_lessEqual; break;
default: ShouldNotReachHere();
}
}
LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
CodeStub* stub)
: LIR_Op(code, result, NULL)
, _object(object)
, _array(LIR_OprFact::illegalOpr)
, _klass(klass)
, _tmp1(tmp1)
, _tmp2(tmp2)
, _tmp3(tmp3)
, _fast_check(fast_check)
, _stub(stub)
, _info_for_patch(info_for_patch)
, _info_for_exception(info_for_exception)
, _profiled_method(NULL)
, _profiled_bci(-1)
, _should_profile(false)
{
if (code == lir_checkcast) {
assert(info_for_exception != NULL, "checkcast throws exceptions");
} else if (code == lir_instanceof) {
assert(info_for_exception == NULL, "instanceof throws no exceptions");
} else {
ShouldNotReachHere();
}
}
LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
: LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
, _object(object)
, _array(array)
, _klass(NULL)
, _tmp1(tmp1)
, _tmp2(tmp2)
, _tmp3(tmp3)
, _fast_check(false)
, _stub(NULL)
, _info_for_patch(NULL)
, _info_for_exception(info_for_exception)
, _profiled_method(NULL)
, _profiled_bci(-1)
, _should_profile(false)
{
if (code == lir_store_check) {
_stub = new ArrayStoreExceptionStub(info_for_exception);
assert(info_for_exception != NULL, "store_check throws exceptions");
} else {
ShouldNotReachHere();
}
}
LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
: LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
, _tmp(tmp)
, _src(src)
, _src_pos(src_pos)
, _dst(dst)
, _dst_pos(dst_pos)
, _flags(flags)
, _expected_type(expected_type)
, _length(length) {
_stub = new ArrayCopyStub(this);
}
//-------------------verify--------------------------
void LIR_Op1::verify() const {
switch(code()) {
case lir_move:
assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
break;
case lir_null_check:
assert(in_opr()->is_register(), "must be");
break;
case lir_return:
assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
break;
}
}
void LIR_OpRTCall::verify() const {
assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
}
//-------------------visits--------------------------
// complete rework of LIR instruction visitor.
// The virtual calls for each instruction type is replaced by a big
// switch that adds the operands for each instruction
void LIR_OpVisitState::visit(LIR_Op* op) {
// copy information from the LIR_Op
reset();
set_op(op);
switch (op->code()) {
// LIR_Op0
case lir_word_align: // result and info always invalid
case lir_backwardbranch_target: // result and info always invalid
case lir_build_frame: // result and info always invalid
case lir_fpop_raw: // result and info always invalid
case lir_24bit_FPU: // result and info always invalid
case lir_reset_FPU: // result and info always invalid
case lir_breakpoint: // result and info always invalid
case lir_membar: // result and info always invalid
case lir_membar_acquire: // result and info always invalid
case lir_membar_release: // result and info always invalid
{
assert(op->as_Op0() != NULL, "must be");
assert(op->_info == NULL, "info not used by this instruction");
assert(op->_result->is_illegal(), "not used");
break;
}
case lir_nop: // may have info, result always invalid
case lir_std_entry: // may have result, info always invalid
case lir_osr_entry: // may have result, info always invalid
case lir_get_thread: // may have result, info always invalid
{
assert(op->as_Op0() != NULL, "must be");
if (op->_info != NULL) do_info(op->_info);
if (op->_result->is_valid()) do_output(op->_result);
break;
}
// LIR_OpLabel
case lir_label: // result and info always invalid
{
assert(op->as_OpLabel() != NULL, "must be");
assert(op->_info == NULL, "info not used by this instruction");
assert(op->_result->is_illegal(), "not used");
break;
}
// LIR_Op1
case lir_fxch: // input always valid, result and info always invalid
case lir_fld: // input always valid, result and info always invalid
case lir_ffree: // input always valid, result and info always invalid
case lir_push: // input always valid, result and info always invalid
case lir_pop: // input always valid, result and info always invalid
case lir_return: // input always valid, result and info always invalid
case lir_leal: // input and result always valid, info always invalid
case lir_neg: // input and result always valid, info always invalid
case lir_monaddr: // input and result always valid, info always invalid
case lir_null_check: // input and info always valid, result always invalid
case lir_move: // input and result always valid, may have info
case lir_pack64: // input and result always valid
case lir_unpack64: // input and result always valid
case lir_prefetchr: // input always valid, result and info always invalid
case lir_prefetchw: // input always valid, result and info always invalid
{
assert(op->as_Op1() != NULL, "must be");
LIR_Op1* op1 = (LIR_Op1*)op;
if (op1->_info) do_info(op1->_info);
if (op1->_opr->is_valid()) do_input(op1->_opr);
if (op1->_result->is_valid()) do_output(op1->_result);
break;
}
case lir_safepoint:
{
assert(op->as_Op1() != NULL, "must be");
LIR_Op1* op1 = (LIR_Op1*)op;
assert(op1->_info != NULL, ""); do_info(op1->_info);
if (op1->_opr->is_valid()) do_temp(op1->_opr); // safepoints on SPARC need temporary register
assert(op1->_result->is_illegal(), "safepoint does not produce value");
break;
}
// LIR_OpConvert;
case lir_convert: // input and result always valid, info always invalid
{
assert(op->as_OpConvert() != NULL, "must be");
LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
assert(opConvert->_info == NULL, "must be");
if (opConvert->_opr->is_valid()) do_input(opConvert->_opr);
if (opConvert->_result->is_valid()) do_output(opConvert->_result);
#ifdef PPC
if (opConvert->_tmp1->is_valid()) do_temp(opConvert->_tmp1);
if (opConvert->_tmp2->is_valid()) do_temp(opConvert->_tmp2);
#endif
do_stub(opConvert->_stub);
break;
}
// LIR_OpBranch;
case lir_branch: // may have info, input and result register always invalid
case lir_cond_float_branch: // may have info, input and result register always invalid
{
assert(op->as_OpBranch() != NULL, "must be");
LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
if (opBranch->_info != NULL) do_info(opBranch->_info);
assert(opBranch->_result->is_illegal(), "not used");
if (opBranch->_stub != NULL) opBranch->stub()->visit(this);
break;
}
// LIR_OpAllocObj
case lir_alloc_object:
{
assert(op->as_OpAllocObj() != NULL, "must be");
LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
if (opAllocObj->_info) do_info(opAllocObj->_info);
if (opAllocObj->_opr->is_valid()) { do_input(opAllocObj->_opr);
do_temp(opAllocObj->_opr);
}
if (opAllocObj->_tmp1->is_valid()) do_temp(opAllocObj->_tmp1);
if (opAllocObj->_tmp2->is_valid()) do_temp(opAllocObj->_tmp2);
if (opAllocObj->_tmp3->is_valid()) do_temp(opAllocObj->_tmp3);
if (opAllocObj->_tmp4->is_valid()) do_temp(opAllocObj->_tmp4);
if (opAllocObj->_result->is_valid()) do_output(opAllocObj->_result);
do_stub(opAllocObj->_stub);
break;
}
// LIR_OpRoundFP;
case lir_roundfp: {
assert(op->as_OpRoundFP() != NULL, "must be");
LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
assert(op->_info == NULL, "info not used by this instruction");
assert(opRoundFP->_tmp->is_illegal(), "not used");
do_input(opRoundFP->_opr);
do_output(opRoundFP->_result);
break;
}
// LIR_Op2
case lir_cmp:
case lir_cmp_l2i:
case lir_ucmp_fd2i:
case lir_cmp_fd2i:
case lir_add:
case lir_sub:
case lir_mul:
case lir_div:
case lir_rem:
case lir_sqrt:
case lir_abs:
case lir_logic_and:
case lir_logic_or:
case lir_logic_xor:
case lir_shl:
case lir_shr:
case lir_ushr:
{
assert(op->as_Op2() != NULL, "must be");
LIR_Op2* op2 = (LIR_Op2*)op;
if (op2->_info) do_info(op2->_info);
if (op2->_opr1->is_valid()) do_input(op2->_opr1);
if (op2->_opr2->is_valid()) do_input(op2->_opr2);
if (op2->_tmp->is_valid()) do_temp(op2->_tmp);
if (op2->_result->is_valid()) do_output(op2->_result);
break;
}
// special handling for cmove: right input operand must not be equal
// to the result operand, otherwise the backend fails
case lir_cmove:
{
assert(op->as_Op2() != NULL, "must be");
LIR_Op2* op2 = (LIR_Op2*)op;
assert(op2->_info == NULL && op2->_tmp->is_illegal(), "not used");
assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
do_input(op2->_opr1);
do_input(op2->_opr2);
do_temp(op2->_opr2);
do_output(op2->_result);
break;
}
// vspecial handling for strict operations: register input operands
// as temp to guarantee that they do not overlap with other
// registers
case lir_mul_strictfp:
case lir_div_strictfp:
{
assert(op->as_Op2() != NULL, "must be");
LIR_Op2* op2 = (LIR_Op2*)op;
assert(op2->_info == NULL, "not used");
assert(op2->_opr1->is_valid(), "used");
assert(op2->_opr2->is_valid(), "used");
assert(op2->_result->is_valid(), "used");
do_input(op2->_opr1); do_temp(op2->_opr1);
do_input(op2->_opr2); do_temp(op2->_opr2);
if (op2->_tmp->is_valid()) do_temp(op2->_tmp);
do_output(op2->_result);
break;
}
case lir_throw: {
assert(op->as_Op2() != NULL, "must be");
LIR_Op2* op2 = (LIR_Op2*)op;
if (op2->_info) do_info(op2->_info);
if (op2->_opr1->is_valid()) do_temp(op2->_opr1);
if (op2->_opr2->is_valid()) do_input(op2->_opr2); // exception object is input parameter
assert(op2->_result->is_illegal(), "no result");
break;
}
case lir_unwind: {
assert(op->as_Op1() != NULL, "must be");
LIR_Op1* op1 = (LIR_Op1*)op;
assert(op1->_info == NULL, "no info");
assert(op1->_opr->is_valid(), "exception oop"); do_input(op1->_opr);
assert(op1->_result->is_illegal(), "no result");
break;
}
case lir_tan:
case lir_sin:
case lir_cos:
case lir_log:
case lir_log10: {
assert(op->as_Op2() != NULL, "must be");
LIR_Op2* op2 = (LIR_Op2*)op;
// On x86 tan/sin/cos need two temporary fpu stack slots and
// log/log10 need one so handle opr2 and tmp as temp inputs.
// Register input operand as temp to guarantee that it doesn't
// overlap with the input.
assert(op2->_info == NULL, "not used");
assert(op2->_opr1->is_valid(), "used");
do_input(op2->_opr1); do_temp(op2->_opr1);
if (op2->_opr2->is_valid()) do_temp(op2->_opr2);
if (op2->_tmp->is_valid()) do_temp(op2->_tmp);
if (op2->_result->is_valid()) do_output(op2->_result);
break;
}
// LIR_Op3
case lir_idiv:
case lir_irem: {
assert(op->as_Op3() != NULL, "must be");
LIR_Op3* op3= (LIR_Op3*)op;
if (op3->_info) do_info(op3->_info);
if (op3->_opr1->is_valid()) do_input(op3->_opr1);
// second operand is input and temp, so ensure that second operand
// and third operand get not the same register
if (op3->_opr2->is_valid()) do_input(op3->_opr2);
if (op3->_opr2->is_valid()) do_temp(op3->_opr2);
if (op3->_opr3->is_valid()) do_temp(op3->_opr3);
if (op3->_result->is_valid()) do_output(op3->_result);
break;
}
// LIR_OpJavaCall
case lir_static_call:
case lir_optvirtual_call:
case lir_icvirtual_call:
case lir_virtual_call:
case lir_dynamic_call: {
LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
assert(opJavaCall != NULL, "must be");
if (opJavaCall->_receiver->is_valid()) do_input(opJavaCall->_receiver);
// only visit register parameters
int n = opJavaCall->_arguments->length();
for (int i = 0; i < n; i++) {
if (!opJavaCall->_arguments->at(i)->is_pointer()) {
do_input(*opJavaCall->_arguments->adr_at(i));
}
}
if (opJavaCall->_info) do_info(opJavaCall->_info);
if (opJavaCall->is_method_handle_invoke()) {
opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
}
do_call();
if (opJavaCall->_result->is_valid()) do_output(opJavaCall->_result);
break;
}
// LIR_OpRTCall
case lir_rtcall: {
assert(op->as_OpRTCall() != NULL, "must be");
LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
// only visit register parameters
int n = opRTCall->_arguments->length();
for (int i = 0; i < n; i++) {
if (!opRTCall->_arguments->at(i)->is_pointer()) {
do_input(*opRTCall->_arguments->adr_at(i));
}
}
if (opRTCall->_info) do_info(opRTCall->_info);
if (opRTCall->_tmp->is_valid()) do_temp(opRTCall->_tmp);
do_call();
if (opRTCall->_result->is_valid()) do_output(opRTCall->_result);
break;
}
// LIR_OpArrayCopy
case lir_arraycopy: {
assert(op->as_OpArrayCopy() != NULL, "must be");
LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
assert(opArrayCopy->_result->is_illegal(), "unused");
assert(opArrayCopy->_src->is_valid(), "used"); do_input(opArrayCopy->_src); do_temp(opArrayCopy->_src);
assert(opArrayCopy->_src_pos->is_valid(), "used"); do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
assert(opArrayCopy->_dst->is_valid(), "used"); do_input(opArrayCopy->_dst); do_temp(opArrayCopy->_dst);
assert(opArrayCopy->_dst_pos->is_valid(), "used"); do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
assert(opArrayCopy->_length->is_valid(), "used"); do_input(opArrayCopy->_length); do_temp(opArrayCopy->_length);
assert(opArrayCopy->_tmp->is_valid(), "used"); do_temp(opArrayCopy->_tmp);
if (opArrayCopy->_info) do_info(opArrayCopy->_info);
// the implementation of arraycopy always has a call into the runtime
do_call();
break;
}
// LIR_OpLock
case lir_lock:
case lir_unlock: {
assert(op->as_OpLock() != NULL, "must be");
LIR_OpLock* opLock = (LIR_OpLock*)op;
if (opLock->_info) do_info(opLock->_info);
// TODO: check if these operands really have to be temp
// (or if input is sufficient). This may have influence on the oop map!
assert(opLock->_lock->is_valid(), "used"); do_temp(opLock->_lock);
assert(opLock->_hdr->is_valid(), "used"); do_temp(opLock->_hdr);
assert(opLock->_obj->is_valid(), "used"); do_temp(opLock->_obj);
if (opLock->_scratch->is_valid()) do_temp(opLock->_scratch);
assert(opLock->_result->is_illegal(), "unused");
do_stub(opLock->_stub);
break;
}
// LIR_OpDelay
case lir_delay_slot: {
assert(op->as_OpDelay() != NULL, "must be");
LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
visit(opDelay->delay_op());
break;
}
// LIR_OpTypeCheck
case lir_instanceof:
case lir_checkcast:
case lir_store_check: {
assert(op->as_OpTypeCheck() != NULL, "must be");
LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
if (opTypeCheck->_info_for_exception) do_info(opTypeCheck->_info_for_exception);
if (opTypeCheck->_info_for_patch) do_info(opTypeCheck->_info_for_patch);
if (opTypeCheck->_object->is_valid()) do_input(opTypeCheck->_object);
if (opTypeCheck->_array->is_valid()) do_input(opTypeCheck->_array);
if (opTypeCheck->_tmp1->is_valid()) do_temp(opTypeCheck->_tmp1);
if (opTypeCheck->_tmp2->is_valid()) do_temp(opTypeCheck->_tmp2);
if (opTypeCheck->_tmp3->is_valid()) do_temp(opTypeCheck->_tmp3);
if (opTypeCheck->_result->is_valid()) do_output(opTypeCheck->_result);
do_stub(opTypeCheck->_stub);
break;
}
// LIR_OpCompareAndSwap
case lir_cas_long:
case lir_cas_obj:
case lir_cas_int: {
assert(op->as_OpCompareAndSwap() != NULL, "must be");
LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
assert(opCompareAndSwap->_addr->is_valid(), "used");
assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
assert(opCompareAndSwap->_new_value->is_valid(), "used");
if (opCompareAndSwap->_info) do_info(opCompareAndSwap->_info);
do_input(opCompareAndSwap->_addr);
do_temp(opCompareAndSwap->_addr);
do_input(opCompareAndSwap->_cmp_value);
do_temp(opCompareAndSwap->_cmp_value);
do_input(opCompareAndSwap->_new_value);
do_temp(opCompareAndSwap->_new_value);
if (opCompareAndSwap->_tmp1->is_valid()) do_temp(opCompareAndSwap->_tmp1);
if (opCompareAndSwap->_tmp2->is_valid()) do_temp(opCompareAndSwap->_tmp2);
if (opCompareAndSwap->_result->is_valid()) do_output(opCompareAndSwap->_result);
break;
}
// LIR_OpAllocArray;
case lir_alloc_array: {
assert(op->as_OpAllocArray() != NULL, "must be");
LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
if (opAllocArray->_info) do_info(opAllocArray->_info);
if (opAllocArray->_klass->is_valid()) do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
if (opAllocArray->_len->is_valid()) do_input(opAllocArray->_len); do_temp(opAllocArray->_len);
if (opAllocArray->_tmp1->is_valid()) do_temp(opAllocArray->_tmp1);
if (opAllocArray->_tmp2->is_valid()) do_temp(opAllocArray->_tmp2);
if (opAllocArray->_tmp3->is_valid()) do_temp(opAllocArray->_tmp3);
if (opAllocArray->_tmp4->is_valid()) do_temp(opAllocArray->_tmp4);
if (opAllocArray->_result->is_valid()) do_output(opAllocArray->_result);
do_stub(opAllocArray->_stub);
break;
}
// LIR_OpProfileCall:
case lir_profile_call: {
assert(op->as_OpProfileCall() != NULL, "must be");
LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
if (opProfileCall->_recv->is_valid()) do_temp(opProfileCall->_recv);
assert(opProfileCall->_mdo->is_valid(), "used"); do_temp(opProfileCall->_mdo);
assert(opProfileCall->_tmp1->is_valid(), "used"); do_temp(opProfileCall->_tmp1);
break;
}
default:
ShouldNotReachHere();
}
}
void LIR_OpVisitState::do_stub(CodeStub* stub) {
if (stub != NULL) {
stub->visit(this);
}
}
XHandlers* LIR_OpVisitState::all_xhandler() {
XHandlers* result = NULL;
int i;
for (i = 0; i < info_count(); i++) {
if (info_at(i)->exception_handlers() != NULL) {
result = info_at(i)->exception_handlers();
break;
}
}
#ifdef ASSERT
for (i = 0; i < info_count(); i++) {
assert(info_at(i)->exception_handlers() == NULL ||
info_at(i)->exception_handlers() == result,
"only one xhandler list allowed per LIR-operation");
}
#endif
if (result != NULL) {
return result;
} else {
return new XHandlers();
}
return result;
}
#ifdef ASSERT
bool LIR_OpVisitState::no_operands(LIR_Op* op) {
visit(op);
return opr_count(inputMode) == 0 &&
opr_count(outputMode) == 0 &&
opr_count(tempMode) == 0 &&
info_count() == 0 &&
!has_call() &&
!has_slow_case();
}
#endif
//---------------------------------------------------
void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
masm->emit_call(this);
}
void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
masm->emit_rtcall(this);
}
void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
masm->emit_opLabel(this);
}
void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
masm->emit_arraycopy(this);
masm->emit_code_stub(stub());
}
void LIR_Op0::emit_code(LIR_Assembler* masm) {
masm->emit_op0(this);
}
void LIR_Op1::emit_code(LIR_Assembler* masm) {
masm->emit_op1(this);
}
void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
masm->emit_alloc_obj(this);
masm->emit_code_stub(stub());
}
void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
masm->emit_opBranch(this);
if (stub()) {
masm->emit_code_stub(stub());
}
}
void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
masm->emit_opConvert(this);
if (stub() != NULL) {
masm->emit_code_stub(stub());
}
}
void LIR_Op2::emit_code(LIR_Assembler* masm) {
masm->emit_op2(this);
}
void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
masm->emit_alloc_array(this);
masm->emit_code_stub(stub());
}
void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
masm->emit_opTypeCheck(this);
if (stub()) {
masm->emit_code_stub(stub());
}
}
void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
masm->emit_compare_and_swap(this);
}
void LIR_Op3::emit_code(LIR_Assembler* masm) {
masm->emit_op3(this);
}
void LIR_OpLock::emit_code(LIR_Assembler* masm) {
masm->emit_lock(this);
if (stub()) {
masm->emit_code_stub(stub());
}
}
void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
masm->emit_delay(this);
}
void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
masm->emit_profile_call(this);
}
// LIR_List
LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
: _operations(8)
, _compilation(compilation)
#ifndef PRODUCT
, _block(block)
#endif
#ifdef ASSERT
, _file(NULL)
, _line(0)
#endif
{ }
#ifdef ASSERT
void LIR_List::set_file_and_line(const char * file, int line) {
const char * f = strrchr(file, '/');
if (f == NULL) f = strrchr(file, '\\');
if (f == NULL) {
f = file;
} else {
f++;
}
_file = f;
_line = line;
}
#endif
void LIR_List::append(LIR_InsertionBuffer* buffer) {
assert(this == buffer->lir_list(), "wrong lir list");
const int n = _operations.length();
if (buffer->number_of_ops() > 0) {
// increase size of instructions list
_operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
// insert ops from buffer into instructions list
int op_index = buffer->number_of_ops() - 1;
int ip_index = buffer->number_of_insertion_points() - 1;
int from_index = n - 1;
int to_index = _operations.length() - 1;
for (; ip_index >= 0; ip_index --) {
int index = buffer->index_at(ip_index);
// make room after insertion point
while (index < from_index) {
_operations.at_put(to_index --, _operations.at(from_index --));
}
// insert ops from buffer
for (int i = buffer->count_at(ip_index); i > 0; i --) {
_operations.at_put(to_index --, buffer->op_at(op_index --));
}
}
}
buffer->finish();
}
void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg, T_OBJECT, lir_patch_normal, info));
}
void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
append(new LIR_Op1(
lir_move,
LIR_OprFact::address(addr),
src,
addr->type(),
patch_code,
info));
}
void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
append(new LIR_Op1(
lir_move,
LIR_OprFact::address(address),
dst,
address->type(),
patch_code,
info, lir_move_volatile));
}
void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
append(new LIR_Op1(
lir_move,
LIR_OprFact::address(new LIR_Address(base, offset, type)),
dst,
type,
patch_code,
info, lir_move_volatile));
}
void LIR_List::prefetch(LIR_Address* addr, bool is_store) {
append(new LIR_Op1(
is_store ? lir_prefetchw : lir_prefetchr,
LIR_OprFact::address(addr)));
}
void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
append(new LIR_Op1(
lir_move,
LIR_OprFact::intConst(v),
LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
type,
patch_code,
info));
}
void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
append(new LIR_Op1(
lir_move,
LIR_OprFact::oopConst(o),
LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
type,
patch_code,
info));
}
void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
append(new LIR_Op1(
lir_move,
src,
LIR_OprFact::address(addr),
addr->type(),
patch_code,
info));
}
void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
append(new LIR_Op1(
lir_move,
src,
LIR_OprFact::address(addr),
addr->type(),
patch_code,
info,
lir_move_volatile));
}
void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
append(new LIR_Op1(
lir_move,
src,
LIR_OprFact::address(new LIR_Address(base, offset, type)),
type,
patch_code,
info, lir_move_volatile));
}
void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
append(new LIR_Op3(
lir_idiv,
left,
right,
tmp,
res,
info));
}
void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
append(new LIR_Op3(
lir_idiv,
left,
LIR_OprFact::intConst(right),
tmp,
res,
info));
}
void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
append(new LIR_Op3(
lir_irem,
left,
right,
tmp,
res,
info));
}
void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
append(new LIR_Op3(
lir_irem,
left,
LIR_OprFact::intConst(right),
tmp,
res,
info));
}
void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
append(new LIR_Op2(
lir_cmp,
condition,
LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
LIR_OprFact::intConst(c),
info));
}
void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
append(new LIR_Op2(
lir_cmp,
condition,
reg,
LIR_OprFact::address(addr),
info));
}
void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
append(new LIR_OpAllocObj(
klass,
dst,
t1,
t2,
t3,
t4,
header_size,
object_size,
init_check,
stub));
}
void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
append(new LIR_OpAllocArray(
klass,
len,
dst,
t1,
t2,
t3,
t4,
type,
stub));
}
void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
append(new LIR_Op2(
lir_shl,
value,
count,
dst,
tmp));
}
void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
append(new LIR_Op2(
lir_shr,
value,
count,
dst,
tmp));
}
void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
append(new LIR_Op2(
lir_ushr,
value,
count,
dst,
tmp));
}
void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
left,
right,
dst));
}
void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
append(new LIR_OpLock(
lir_lock,
hdr,
obj,
lock,
scratch,
stub,
info));
}
void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
append(new LIR_OpLock(
lir_unlock,
hdr,
obj,
lock,
scratch,
stub,
NULL));
}
void check_LIR() {
// cannot do the proper checking as PRODUCT and other modes return different results
// guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
}
void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
ciMethod* profiled_method, int profiled_bci) {
LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
if (profiled_method != NULL) {
c->set_profiled_method(profiled_method);
c->set_profiled_bci(profiled_bci);
c->set_should_profile(true);
}
append(c);
}
void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
if (profiled_method != NULL) {
c->set_profiled_method(profiled_method);
c->set_profiled_bci(profiled_bci);
c->set_should_profile(true);
}
append(c);
}
void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception) {
append(new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception));
}
void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
}
void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
}
void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
}
#ifdef PRODUCT
void print_LIR(BlockList* blocks) {
}
#else
// LIR_OprDesc
void LIR_OprDesc::print() const {
print(tty);
}
void LIR_OprDesc::print(outputStream* out) const {
if (is_illegal()) {
return;
}
out->print("[");
if (is_pointer()) {
pointer()->print_value_on(out);
} else if (is_single_stack()) {
out->print("stack:%d", single_stack_ix());
} else if (is_double_stack()) {
out->print("dbl_stack:%d",double_stack_ix());
} else if (is_virtual()) {
out->print("R%d", vreg_number());
} else if (is_single_cpu()) {
out->print(as_register()->name());
} else if (is_double_cpu()) {
out->print(as_register_hi()->name());
out->print(as_register_lo()->name());
#if defined(X86)
} else if (is_single_xmm()) {
out->print(as_xmm_float_reg()->name());
} else if (is_double_xmm()) {
out->print(as_xmm_double_reg()->name());
} else if (is_single_fpu()) {
out->print("fpu%d", fpu_regnr());
} else if (is_double_fpu()) {
out->print("fpu%d", fpu_regnrLo());
#elif defined(ARM)
} else if (is_single_fpu()) {
out->print("s%d", fpu_regnr());
} else if (is_double_fpu()) {
out->print("d%d", fpu_regnrLo() >> 1);
#else
} else if (is_single_fpu()) {
out->print(as_float_reg()->name());
} else if (is_double_fpu()) {
out->print(as_double_reg()->name());
#endif
} else if (is_illegal()) {
out->print("-");
} else {
out->print("Unknown Operand");
}
if (!is_illegal()) {
out->print("|%c", type_char());
}
if (is_register() && is_last_use()) {
out->print("(last_use)");
}
out->print("]");
}
// LIR_Address
void LIR_Const::print_value_on(outputStream* out) const {
switch (type()) {
case T_ADDRESS:out->print("address:%d",as_jint()); break;
case T_INT: out->print("int:%d", as_jint()); break;
case T_LONG: out->print("lng:%lld", as_jlong()); break;
case T_FLOAT: out->print("flt:%f", as_jfloat()); break;
case T_DOUBLE: out->print("dbl:%f", as_jdouble()); break;
case T_OBJECT: out->print("obj:0x%x", as_jobject()); break;
default: out->print("%3d:0x%x",type(), as_jdouble()); break;
}
}
// LIR_Address
void LIR_Address::print_value_on(outputStream* out) const {
out->print("Base:"); _base->print(out);
if (!_index->is_illegal()) {
out->print(" Index:"); _index->print(out);
switch (scale()) {
case times_1: break;
case times_2: out->print(" * 2"); break;
case times_4: out->print(" * 4"); break;
case times_8: out->print(" * 8"); break;
}
}
out->print(" Disp: %d", _disp);
}
// debug output of block header without InstructionPrinter
// (because phi functions are not necessary for LIR)
static void print_block(BlockBegin* x) {
// print block id
BlockEnd* end = x->end();
tty->print("B%d ", x->block_id());
// print flags
if (x->is_set(BlockBegin::std_entry_flag)) tty->print("std ");
if (x->is_set(BlockBegin::osr_entry_flag)) tty->print("osr ");
if (x->is_set(BlockBegin::exception_entry_flag)) tty->print("ex ");
if (x->is_set(BlockBegin::subroutine_entry_flag)) tty->print("jsr ");
if (x->is_set(BlockBegin::backward_branch_target_flag)) tty->print("bb ");
if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
if (x->is_set(BlockBegin::linear_scan_loop_end_flag)) tty->print("le ");
// print block bci range
tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
// print predecessors and successors
if (x->number_of_preds() > 0) {
tty->print("preds: ");
for (int i = 0; i < x->number_of_preds(); i ++) {
tty->print("B%d ", x->pred_at(i)->block_id());
}
}
if (x->number_of_sux() > 0) {
tty->print("sux: ");
for (int i = 0; i < x->number_of_sux(); i ++) {
tty->print("B%d ", x->sux_at(i)->block_id());
}
}
// print exception handlers
if (x->number_of_exception_handlers() > 0) {
tty->print("xhandler: ");
for (int i = 0; i < x->number_of_exception_handlers(); i++) {
tty->print("B%d ", x->exception_handler_at(i)->block_id());
}
}
tty->cr();
}
void print_LIR(BlockList* blocks) {
tty->print_cr("LIR:");
int i;
for (i = 0; i < blocks->length(); i++) {
BlockBegin* bb = blocks->at(i);
print_block(bb);
tty->print("__id_Instruction___________________________________________"); tty->cr();
bb->lir()->print_instructions();
}
}
void LIR_List::print_instructions() {
for (int i = 0; i < _operations.length(); i++) {
_operations.at(i)->print(); tty->cr();
}
tty->cr();
}
// LIR_Ops printing routines
// LIR_Op
void LIR_Op::print_on(outputStream* out) const {
if (id() != -1 || PrintCFGToFile) {
out->print("%4d ", id());
} else {
out->print(" ");
}
out->print(name()); out->print(" ");
print_instr(out);
if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
#ifdef ASSERT
if (Verbose && _file != NULL) {
out->print(" (%s:%d)", _file, _line);
}
#endif
}
const char * LIR_Op::name() const {
const char* s = NULL;
switch(code()) {
// LIR_Op0
case lir_membar: s = "membar"; break;
case lir_membar_acquire: s = "membar_acquire"; break;
case lir_membar_release: s = "membar_release"; break;
case lir_word_align: s = "word_align"; break;
case lir_label: s = "label"; break;
case lir_nop: s = "nop"; break;
case lir_backwardbranch_target: s = "backbranch"; break;
case lir_std_entry: s = "std_entry"; break;
case lir_osr_entry: s = "osr_entry"; break;
case lir_build_frame: s = "build_frm"; break;
case lir_fpop_raw: s = "fpop_raw"; break;
case lir_24bit_FPU: s = "24bit_FPU"; break;
case lir_reset_FPU: s = "reset_FPU"; break;
case lir_breakpoint: s = "breakpoint"; break;
case lir_get_thread: s = "get_thread"; break;
// LIR_Op1
case lir_fxch: s = "fxch"; break;
case lir_fld: s = "fld"; break;
case lir_ffree: s = "ffree"; break;
case lir_push: s = "push"; break;
case lir_pop: s = "pop"; break;
case lir_null_check: s = "null_check"; break;
case lir_return: s = "return"; break;
case lir_safepoint: s = "safepoint"; break;
case lir_neg: s = "neg"; break;
case lir_leal: s = "leal"; break;
case lir_branch: s = "branch"; break;
case lir_cond_float_branch: s = "flt_cond_br"; break;
case lir_move: s = "move"; break;
case lir_roundfp: s = "roundfp"; break;
case lir_rtcall: s = "rtcall"; break;
case lir_throw: s = "throw"; break;
case lir_unwind: s = "unwind"; break;
case lir_convert: s = "convert"; break;
case lir_alloc_object: s = "alloc_obj"; break;
case lir_monaddr: s = "mon_addr"; break;
case lir_pack64: s = "pack64"; break;
case lir_unpack64: s = "unpack64"; break;
// LIR_Op2
case lir_cmp: s = "cmp"; break;
case lir_cmp_l2i: s = "cmp_l2i"; break;
case lir_ucmp_fd2i: s = "ucomp_fd2i"; break;
case lir_cmp_fd2i: s = "comp_fd2i"; break;
case lir_cmove: s = "cmove"; break;
case lir_add: s = "add"; break;
case lir_sub: s = "sub"; break;
case lir_mul: s = "mul"; break;
case lir_mul_strictfp: s = "mul_strictfp"; break;
case lir_div: s = "div"; break;
case lir_div_strictfp: s = "div_strictfp"; break;
case lir_rem: s = "rem"; break;
case lir_abs: s = "abs"; break;
case lir_sqrt: s = "sqrt"; break;
case lir_sin: s = "sin"; break;
case lir_cos: s = "cos"; break;
case lir_tan: s = "tan"; break;
case lir_log: s = "log"; break;
case lir_log10: s = "log10"; break;
case lir_logic_and: s = "logic_and"; break;
case lir_logic_or: s = "logic_or"; break;
case lir_logic_xor: s = "logic_xor"; break;
case lir_shl: s = "shift_left"; break;
case lir_shr: s = "shift_right"; break;
case lir_ushr: s = "ushift_right"; break;
case lir_alloc_array: s = "alloc_array"; break;
// LIR_Op3
case lir_idiv: s = "idiv"; break;
case lir_irem: s = "irem"; break;
// LIR_OpJavaCall
case lir_static_call: s = "static"; break;
case lir_optvirtual_call: s = "optvirtual"; break;
case lir_icvirtual_call: s = "icvirtual"; break;
case lir_virtual_call: s = "virtual"; break;
case lir_dynamic_call: s = "dynamic"; break;
// LIR_OpArrayCopy
case lir_arraycopy: s = "arraycopy"; break;
// LIR_OpLock
case lir_lock: s = "lock"; break;
case lir_unlock: s = "unlock"; break;
// LIR_OpDelay
case lir_delay_slot: s = "delay"; break;
// LIR_OpTypeCheck
case lir_instanceof: s = "instanceof"; break;
case lir_checkcast: s = "checkcast"; break;
case lir_store_check: s = "store_check"; break;
// LIR_OpCompareAndSwap
case lir_cas_long: s = "cas_long"; break;
case lir_cas_obj: s = "cas_obj"; break;
case lir_cas_int: s = "cas_int"; break;
// LIR_OpProfileCall
case lir_profile_call: s = "profile_call"; break;
case lir_none: ShouldNotReachHere();break;
default: s = "illegal_op"; break;
}
return s;
}
// LIR_OpJavaCall
void LIR_OpJavaCall::print_instr(outputStream* out) const {
out->print("call: ");
out->print("[addr: 0x%x]", address());
if (receiver()->is_valid()) {
out->print(" [recv: "); receiver()->print(out); out->print("]");
}
if (result_opr()->is_valid()) {
out->print(" [result: "); result_opr()->print(out); out->print("]");
}
}
// LIR_OpLabel
void LIR_OpLabel::print_instr(outputStream* out) const {
out->print("[label:0x%x]", _label);
}
// LIR_OpArrayCopy
void LIR_OpArrayCopy::print_instr(outputStream* out) const {
src()->print(out); out->print(" ");
src_pos()->print(out); out->print(" ");
dst()->print(out); out->print(" ");
dst_pos()->print(out); out->print(" ");
length()->print(out); out->print(" ");
tmp()->print(out); out->print(" ");
}
// LIR_OpCompareAndSwap
void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
addr()->print(out); out->print(" ");
cmp_value()->print(out); out->print(" ");
new_value()->print(out); out->print(" ");
tmp1()->print(out); out->print(" ");
tmp2()->print(out); out->print(" ");
}
// LIR_Op0
void LIR_Op0::print_instr(outputStream* out) const {
result_opr()->print(out);
}
// LIR_Op1
const char * LIR_Op1::name() const {
if (code() == lir_move) {
switch (move_kind()) {
case lir_move_normal:
return "move";
case lir_move_unaligned:
return "unaligned move";
case lir_move_volatile:
return "volatile_move";
case lir_move_wide:
return "wide_move";
default:
ShouldNotReachHere();
return "illegal_op";
}
} else {
return LIR_Op::name();
}
}
void LIR_Op1::print_instr(outputStream* out) const {
_opr->print(out); out->print(" ");
result_opr()->print(out); out->print(" ");
print_patch_code(out, patch_code());
}
// LIR_Op1
void LIR_OpRTCall::print_instr(outputStream* out) const {
intx a = (intx)addr();
out->print(Runtime1::name_for_address(addr()));
out->print(" ");
tmp()->print(out);
}
void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
switch(code) {
case lir_patch_none: break;
case lir_patch_low: out->print("[patch_low]"); break;
case lir_patch_high: out->print("[patch_high]"); break;
case lir_patch_normal: out->print("[patch_normal]"); break;
default: ShouldNotReachHere();
}
}
// LIR_OpBranch
void LIR_OpBranch::print_instr(outputStream* out) const {
print_condition(out, cond()); out->print(" ");
if (block() != NULL) {
out->print("[B%d] ", block()->block_id());
} else if (stub() != NULL) {
out->print("[");
stub()->print_name(out);
out->print(": 0x%x]", stub());
if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
} else {
out->print("[label:0x%x] ", label());
}
if (ublock() != NULL) {
out->print("unordered: [B%d] ", ublock()->block_id());
}
}
void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
switch(cond) {
case lir_cond_equal: out->print("[EQ]"); break;
case lir_cond_notEqual: out->print("[NE]"); break;
case lir_cond_less: out->print("[LT]"); break;
case lir_cond_lessEqual: out->print("[LE]"); break;
case lir_cond_greaterEqual: out->print("[GE]"); break;
case lir_cond_greater: out->print("[GT]"); break;
case lir_cond_belowEqual: out->print("[BE]"); break;
case lir_cond_aboveEqual: out->print("[AE]"); break;
case lir_cond_always: out->print("[AL]"); break;
default: out->print("[%d]",cond); break;
}
}
// LIR_OpConvert
void LIR_OpConvert::print_instr(outputStream* out) const {
print_bytecode(out, bytecode());
in_opr()->print(out); out->print(" ");
result_opr()->print(out); out->print(" ");
#ifdef PPC
if(tmp1()->is_valid()) {
tmp1()->print(out); out->print(" ");
tmp2()->print(out); out->print(" ");
}
#endif
}
void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
switch(code) {
case Bytecodes::_d2f: out->print("[d2f] "); break;
case Bytecodes::_d2i: out->print("[d2i] "); break;
case Bytecodes::_d2l: out->print("[d2l] "); break;
case Bytecodes::_f2d: out->print("[f2d] "); break;
case Bytecodes::_f2i: out->print("[f2i] "); break;
case Bytecodes::_f2l: out->print("[f2l] "); break;
case Bytecodes::_i2b: out->print("[i2b] "); break;
case Bytecodes::_i2c: out->print("[i2c] "); break;
case Bytecodes::_i2d: out->print("[i2d] "); break;
case Bytecodes::_i2f: out->print("[i2f] "); break;
case Bytecodes::_i2l: out->print("[i2l] "); break;
case Bytecodes::_i2s: out->print("[i2s] "); break;
case Bytecodes::_l2i: out->print("[l2i] "); break;
case Bytecodes::_l2f: out->print("[l2f] "); break;
case Bytecodes::_l2d: out->print("[l2d] "); break;
default:
out->print("[?%d]",code);
break;
}
}
void LIR_OpAllocObj::print_instr(outputStream* out) const {
klass()->print(out); out->print(" ");
obj()->print(out); out->print(" ");
tmp1()->print(out); out->print(" ");
tmp2()->print(out); out->print(" ");
tmp3()->print(out); out->print(" ");
tmp4()->print(out); out->print(" ");
out->print("[hdr:%d]", header_size()); out->print(" ");
out->print("[obj:%d]", object_size()); out->print(" ");
out->print("[lbl:0x%x]", stub()->entry());
}
void LIR_OpRoundFP::print_instr(outputStream* out) const {
_opr->print(out); out->print(" ");
tmp()->print(out); out->print(" ");
result_opr()->print(out); out->print(" ");
}
// LIR_Op2
void LIR_Op2::print_instr(outputStream* out) const {
if (code() == lir_cmove) {
print_condition(out, condition()); out->print(" ");
}
in_opr1()->print(out); out->print(" ");
in_opr2()->print(out); out->print(" ");
if (tmp_opr()->is_valid()) { tmp_opr()->print(out); out->print(" "); }
result_opr()->print(out);
}
void LIR_OpAllocArray::print_instr(outputStream* out) const {
klass()->print(out); out->print(" ");
len()->print(out); out->print(" ");
obj()->print(out); out->print(" ");
tmp1()->print(out); out->print(" ");
tmp2()->print(out); out->print(" ");
tmp3()->print(out); out->print(" ");
tmp4()->print(out); out->print(" ");
out->print("[type:0x%x]", type()); out->print(" ");
out->print("[label:0x%x]", stub()->entry());
}
void LIR_OpTypeCheck::print_instr(outputStream* out) const {
object()->print(out); out->print(" ");
if (code() == lir_store_check) {
array()->print(out); out->print(" ");
}
if (code() != lir_store_check) {
klass()->print_name_on(out); out->print(" ");
if (fast_check()) out->print("fast_check ");
}
tmp1()->print(out); out->print(" ");
tmp2()->print(out); out->print(" ");
tmp3()->print(out); out->print(" ");
result_opr()->print(out); out->print(" ");
if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
}
// LIR_Op3
void LIR_Op3::print_instr(outputStream* out) const {
in_opr1()->print(out); out->print(" ");
in_opr2()->print(out); out->print(" ");
in_opr3()->print(out); out->print(" ");
result_opr()->print(out);
}
void LIR_OpLock::print_instr(outputStream* out) const {
hdr_opr()->print(out); out->print(" ");
obj_opr()->print(out); out->print(" ");
lock_opr()->print(out); out->print(" ");
if (_scratch->is_valid()) {
_scratch->print(out); out->print(" ");
}
out->print("[lbl:0x%x]", stub()->entry());
}
void LIR_OpDelay::print_instr(outputStream* out) const {
_op->print_on(out);
}
// LIR_OpProfileCall
void LIR_OpProfileCall::print_instr(outputStream* out) const {
profiled_method()->name()->print_symbol_on(out);
out->print(".");
profiled_method()->holder()->name()->print_symbol_on(out);
out->print(" @ %d ", profiled_bci());
mdo()->print(out); out->print(" ");
recv()->print(out); out->print(" ");
tmp1()->print(out); out->print(" ");
}
#endif // PRODUCT
// Implementation of LIR_InsertionBuffer
void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
int i = number_of_insertion_points() - 1;
if (i < 0 || index_at(i) < index) {
append_new(index, 1);
} else {
assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
assert(count_at(i) > 0, "check");
set_count_at(i, count_at(i) + 1);
}
_ops.push(op);
DEBUG_ONLY(verify());
}
#ifdef ASSERT
void LIR_InsertionBuffer::verify() {
int sum = 0;
int prev_idx = -1;
for (int i = 0; i < number_of_insertion_points(); i++) {
assert(prev_idx < index_at(i), "index must be ordered ascending");
sum += count_at(i);
}
assert(sum == number_of_ops(), "wrong total sum");
}
#endif