8003935: Simplify the needed includes for using Thread::current()
Reviewed-by: dholmes, rbackman, coleenp
/*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_MEMORY_ITERATOR_HPP
#define SHARE_VM_MEMORY_ITERATOR_HPP
#include "memory/allocation.hpp"
#include "memory/memRegion.hpp"
#include "runtime/prefetch.hpp"
#include "utilities/top.hpp"
// The following classes are C++ `closures` for iterating over objects, roots and spaces
class CodeBlob;
class nmethod;
class ReferenceProcessor;
class DataLayout;
class KlassClosure;
class ClassLoaderData;
// Closure provides abortability.
class Closure : public StackObj {
protected:
bool _abort;
void set_abort() { _abort = true; }
public:
Closure() : _abort(false) {}
// A subtype can use this mechanism to indicate to some iterator mapping
// functions that the iteration should cease.
bool abort() { return _abort; }
void clear_abort() { _abort = false; }
};
// OopClosure is used for iterating through references to Java objects.
class OopClosure : public Closure {
public:
virtual void do_oop(oop* o) = 0;
virtual void do_oop_v(oop* o) { do_oop(o); }
virtual void do_oop(narrowOop* o) = 0;
virtual void do_oop_v(narrowOop* o) { do_oop(o); }
};
// ExtendedOopClosure adds extra code to be run during oop iterations.
// This is needed by the GC and is extracted to a separate type to not
// pollute the OopClosure interface.
class ExtendedOopClosure : public OopClosure {
public:
ReferenceProcessor* _ref_processor;
ExtendedOopClosure(ReferenceProcessor* rp) : _ref_processor(rp) { }
ExtendedOopClosure() : OopClosure(), _ref_processor(NULL) { }
// If the do_metadata functions return "true",
// we invoke the following when running oop_iterate():
//
// 1) do_klass on the header klass pointer.
// 2) do_klass on the klass pointer in the mirrors.
// 3) do_class_loader_data on the class loader data in class loaders.
//
// The virtual (without suffix) and the non-virtual (with _nv suffix) need
// to be updated together, or else the devirtualization will break.
//
// Providing default implementations of the _nv functions unfortunately
// removes the compile-time safeness, but reduces the clutter for the
// ExtendedOopClosures that don't need to walk the metadata. Currently,
// only CMS needs these.
virtual bool do_metadata() { return do_metadata_nv(); }
bool do_metadata_v() { return do_metadata(); }
bool do_metadata_nv() { return false; }
virtual void do_klass(Klass* k) { do_klass_nv(k); }
void do_klass_v(Klass* k) { do_klass(k); }
void do_klass_nv(Klass* k) { ShouldNotReachHere(); }
virtual void do_class_loader_data(ClassLoaderData* cld) { ShouldNotReachHere(); }
// Controls how prefetching is done for invocations of this closure.
Prefetch::style prefetch_style() { // Note that this is non-virtual.
return Prefetch::do_none;
}
// True iff this closure may be safely applied more than once to an oop
// location without an intervening "major reset" (like the end of a GC).
virtual bool idempotent() { return false; }
virtual bool apply_to_weak_ref_discovered_field() { return false; }
};
// Wrapper closure only used to implement oop_iterate_no_header().
class NoHeaderExtendedOopClosure : public ExtendedOopClosure {
OopClosure* _wrapped_closure;
public:
NoHeaderExtendedOopClosure(OopClosure* cl) : _wrapped_closure(cl) {}
// Warning: this calls the virtual version do_oop in the the wrapped closure.
void do_oop_nv(oop* p) { _wrapped_closure->do_oop(p); }
void do_oop_nv(narrowOop* p) { _wrapped_closure->do_oop(p); }
void do_oop(oop* p) { assert(false, "Only the _nv versions should be used");
_wrapped_closure->do_oop(p); }
void do_oop(narrowOop* p) { assert(false, "Only the _nv versions should be used");
_wrapped_closure->do_oop(p);}
};
class KlassClosure : public Closure {
public:
virtual void do_klass(Klass* k) = 0;
};
class KlassToOopClosure : public KlassClosure {
OopClosure* _oop_closure;
public:
KlassToOopClosure(OopClosure* oop_closure) : _oop_closure(oop_closure) {}
virtual void do_klass(Klass* k);
};
class CLDToOopClosure {
OopClosure* _oop_closure;
KlassToOopClosure _klass_closure;
bool _must_claim_cld;
public:
CLDToOopClosure(OopClosure* oop_closure, bool must_claim_cld = true) :
_oop_closure(oop_closure),
_klass_closure(oop_closure),
_must_claim_cld(must_claim_cld) {}
void do_cld(ClassLoaderData* cld);
};
// ObjectClosure is used for iterating through an object space
class ObjectClosure : public Closure {
public:
// Called for each object.
virtual void do_object(oop obj) = 0;
};
class BoolObjectClosure : public ObjectClosure {
public:
virtual bool do_object_b(oop obj) = 0;
};
// Applies an oop closure to all ref fields in objects iterated over in an
// object iteration.
class ObjectToOopClosure: public ObjectClosure {
ExtendedOopClosure* _cl;
public:
void do_object(oop obj);
ObjectToOopClosure(ExtendedOopClosure* cl) : _cl(cl) {}
};
// A version of ObjectClosure with "memory" (see _previous_address below)
class UpwardsObjectClosure: public BoolObjectClosure {
HeapWord* _previous_address;
public:
UpwardsObjectClosure() : _previous_address(NULL) { }
void set_previous(HeapWord* addr) { _previous_address = addr; }
HeapWord* previous() { return _previous_address; }
// A return value of "true" can be used by the caller to decide
// if this object's end should *NOT* be recorded in
// _previous_address above.
virtual bool do_object_bm(oop obj, MemRegion mr) = 0;
};
// A version of ObjectClosure that is expected to be robust
// in the face of possibly uninitialized objects.
class ObjectClosureCareful : public ObjectClosure {
public:
virtual size_t do_object_careful_m(oop p, MemRegion mr) = 0;
virtual size_t do_object_careful(oop p) = 0;
};
// The following are used in CompactibleFreeListSpace and
// ConcurrentMarkSweepGeneration.
// Blk closure (abstract class)
class BlkClosure : public StackObj {
public:
virtual size_t do_blk(HeapWord* addr) = 0;
};
// A version of BlkClosure that is expected to be robust
// in the face of possibly uninitialized objects.
class BlkClosureCareful : public BlkClosure {
public:
size_t do_blk(HeapWord* addr) {
guarantee(false, "call do_blk_careful instead");
return 0;
}
virtual size_t do_blk_careful(HeapWord* addr) = 0;
};
// SpaceClosure is used for iterating over spaces
class Space;
class CompactibleSpace;
class SpaceClosure : public StackObj {
public:
// Called for each space
virtual void do_space(Space* s) = 0;
};
class CompactibleSpaceClosure : public StackObj {
public:
// Called for each compactible space
virtual void do_space(CompactibleSpace* s) = 0;
};
// CodeBlobClosure is used for iterating through code blobs
// in the code cache or on thread stacks
class CodeBlobClosure : public Closure {
public:
// Called for each code blob.
virtual void do_code_blob(CodeBlob* cb) = 0;
};
class MarkingCodeBlobClosure : public CodeBlobClosure {
public:
// Called for each code blob, but at most once per unique blob.
virtual void do_newly_marked_nmethod(nmethod* nm) = 0;
virtual void do_code_blob(CodeBlob* cb);
// = { if (!nmethod(cb)->test_set_oops_do_mark()) do_newly_marked_nmethod(cb); }
class MarkScope : public StackObj {
protected:
bool _active;
public:
MarkScope(bool activate = true);
// = { if (active) nmethod::oops_do_marking_prologue(); }
~MarkScope();
// = { if (active) nmethod::oops_do_marking_epilogue(); }
};
};
// Applies an oop closure to all ref fields in code blobs
// iterated over in an object iteration.
class CodeBlobToOopClosure: public MarkingCodeBlobClosure {
OopClosure* _cl;
bool _do_marking;
public:
virtual void do_newly_marked_nmethod(nmethod* cb);
// = { cb->oops_do(_cl); }
virtual void do_code_blob(CodeBlob* cb);
// = { if (_do_marking) super::do_code_blob(cb); else cb->oops_do(_cl); }
CodeBlobToOopClosure(OopClosure* cl, bool do_marking)
: _cl(cl), _do_marking(do_marking) {}
};
// MonitorClosure is used for iterating over monitors in the monitors cache
class ObjectMonitor;
class MonitorClosure : public StackObj {
public:
// called for each monitor in cache
virtual void do_monitor(ObjectMonitor* m) = 0;
};
// A closure that is applied without any arguments.
class VoidClosure : public StackObj {
public:
// I would have liked to declare this a pure virtual, but that breaks
// in mysterious ways, for unknown reasons.
virtual void do_void();
};
// YieldClosure is intended for use by iteration loops
// to incrementalize their work, allowing interleaving
// of an interruptable task so as to allow other
// threads to run (which may not otherwise be able to access
// exclusive resources, for instance). Additionally, the
// closure also allows for aborting an ongoing iteration
// by means of checking the return value from the polling
// call.
class YieldClosure : public StackObj {
public:
virtual bool should_return() = 0;
};
// Abstract closure for serializing data (read or write).
class SerializeClosure : public Closure {
public:
// Return bool indicating whether closure implements read or write.
virtual bool reading() const = 0;
// Read/write the void pointer pointed to by p.
virtual void do_ptr(void** p) = 0;
// Read/write the region specified.
virtual void do_region(u_char* start, size_t size) = 0;
// Check/write the tag. If reading, then compare the tag against
// the passed in value and fail is they don't match. This allows
// for verification that sections of the serialized data are of the
// correct length.
virtual void do_tag(int tag) = 0;
};
class SymbolClosure : public StackObj {
public:
virtual void do_symbol(Symbol**) = 0;
// Clear LSB in symbol address; it can be set by CPSlot.
static Symbol* load_symbol(Symbol** p) {
return (Symbol*)(intptr_t(*p) & ~1);
}
// Store symbol, adjusting new pointer if the original pointer was adjusted
// (symbol references in constant pool slots have their LSB set to 1).
static void store_symbol(Symbol** p, Symbol* sym) {
*p = (Symbol*)(intptr_t(sym) | (intptr_t(*p) & 1));
}
};
#endif // SHARE_VM_MEMORY_ITERATOR_HPP