8003935: Simplify the needed includes for using Thread::current()
Reviewed-by: dholmes, rbackman, coleenp
/*
* Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_MEMORY_BARRIERSET_HPP
#define SHARE_VM_MEMORY_BARRIERSET_HPP
#include "memory/memRegion.hpp"
#include "oops/oopsHierarchy.hpp"
// This class provides the interface between a barrier implementation and
// the rest of the system.
class BarrierSet: public CHeapObj<mtGC> {
friend class VMStructs;
public:
enum Name {
ModRef,
CardTableModRef,
CardTableExtension,
G1SATBCT,
G1SATBCTLogging,
Other,
Uninit
};
enum Flags {
None = 0,
TargetUninitialized = 1
};
protected:
int _max_covered_regions;
Name _kind;
public:
BarrierSet() { _kind = Uninit; }
// To get around prohibition on RTTI.
BarrierSet::Name kind() { return _kind; }
virtual bool is_a(BarrierSet::Name bsn) = 0;
// These operations indicate what kind of barriers the BarrierSet has.
virtual bool has_read_ref_barrier() = 0;
virtual bool has_read_prim_barrier() = 0;
virtual bool has_write_ref_barrier() = 0;
virtual bool has_write_ref_pre_barrier() = 0;
virtual bool has_write_prim_barrier() = 0;
// These functions indicate whether a particular access of the given
// kinds requires a barrier.
virtual bool read_ref_needs_barrier(void* field) = 0;
virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
juint val1, juint val2) = 0;
// The first four operations provide a direct implementation of the
// barrier set. An interpreter loop, for example, could call these
// directly, as appropriate.
// Invoke the barrier, if any, necessary when reading the given ref field.
virtual void read_ref_field(void* field) = 0;
// Invoke the barrier, if any, necessary when reading the given primitive
// "field" of "bytes" bytes in "obj".
virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
// Invoke the barrier, if any, necessary when writing "new_val" into the
// ref field at "offset" in "obj".
// (For efficiency reasons, this operation is specialized for certain
// barrier types. Semantically, it should be thought of as a call to the
// virtual "_work" function below, which must implement the barrier.)
// First the pre-write versions...
template <class T> inline void write_ref_field_pre(T* field, oop new_val);
private:
// Keep this private so as to catch violations at build time.
virtual void write_ref_field_pre_work( void* field, oop new_val) { guarantee(false, "Not needed"); };
protected:
virtual void write_ref_field_pre_work( oop* field, oop new_val) {};
virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
public:
// ...then the post-write version.
inline void write_ref_field(void* field, oop new_val);
protected:
virtual void write_ref_field_work(void* field, oop new_val) = 0;
public:
// Invoke the barrier, if any, necessary when writing the "bytes"-byte
// value(s) "val1" (and "val2") into the primitive "field".
virtual void write_prim_field(HeapWord* field, size_t bytes,
juint val1, juint val2) = 0;
// Operations on arrays, or general regions (e.g., for "clone") may be
// optimized by some barriers.
// The first six operations tell whether such an optimization exists for
// the particular barrier.
virtual bool has_read_ref_array_opt() = 0;
virtual bool has_read_prim_array_opt() = 0;
virtual bool has_write_ref_array_pre_opt() { return true; }
virtual bool has_write_ref_array_opt() = 0;
virtual bool has_write_prim_array_opt() = 0;
virtual bool has_read_region_opt() = 0;
virtual bool has_write_region_opt() = 0;
// These operations should assert false unless the correponding operation
// above returns true. Otherwise, they should perform an appropriate
// barrier for an array whose elements are all in the given memory region.
virtual void read_ref_array(MemRegion mr) = 0;
virtual void read_prim_array(MemRegion mr) = 0;
// Below length is the # array elements being written
virtual void write_ref_array_pre(oop* dst, int length,
bool dest_uninitialized = false) {}
virtual void write_ref_array_pre(narrowOop* dst, int length,
bool dest_uninitialized = false) {}
// Below count is the # array elements being written, starting
// at the address "start", which may not necessarily be HeapWord-aligned
inline void write_ref_array(HeapWord* start, size_t count);
// Static versions, suitable for calling from generated code;
// count is # array elements being written, starting with "start",
// which may not necessarily be HeapWord-aligned.
static void static_write_ref_array_pre(HeapWord* start, size_t count);
static void static_write_ref_array_post(HeapWord* start, size_t count);
protected:
virtual void write_ref_array_work(MemRegion mr) = 0;
public:
virtual void write_prim_array(MemRegion mr) = 0;
virtual void read_region(MemRegion mr) = 0;
// (For efficiency reasons, this operation is specialized for certain
// barrier types. Semantically, it should be thought of as a call to the
// virtual "_work" function below, which must implement the barrier.)
inline void write_region(MemRegion mr);
protected:
virtual void write_region_work(MemRegion mr) = 0;
public:
// Some barrier sets create tables whose elements correspond to parts of
// the heap; the CardTableModRefBS is an example. Such barrier sets will
// normally reserve space for such tables, and commit parts of the table
// "covering" parts of the heap that are committed. The constructor is
// passed the maximum number of independently committable subregions to
// be covered, and the "resize_covoered_region" function allows the
// sub-parts of the heap to inform the barrier set of changes of their
// sizes.
BarrierSet(int max_covered_regions) :
_max_covered_regions(max_covered_regions) {}
// Inform the BarrierSet that the the covered heap region that starts
// with "base" has been changed to have the given size (possibly from 0,
// for initialization.)
virtual void resize_covered_region(MemRegion new_region) = 0;
// If the barrier set imposes any alignment restrictions on boundaries
// within the heap, this function tells whether they are met.
virtual bool is_aligned(HeapWord* addr) = 0;
// Print a description of the memory for the barrier set
virtual void print_on(outputStream* st) const = 0;
};
#endif // SHARE_VM_MEMORY_BARRIERSET_HPP