8227260: JNI upcalls should bypass class initialization barrier in c2i adapter
Reviewed-by: eosterlund, dholmes, mdoerr, dpochepk
/*
* Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "code/debugInfoRec.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "gc/shared/gcLocker.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interp_masm.hpp"
#include "memory/resourceArea.hpp"
#include "oops/compiledICHolder.hpp"
#include "registerSaver_s390.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/align.hpp"
#include "vmreg_s390.inline.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
#ifdef COMPILER2
#include "opto/ad.hpp"
#include "opto/runtime.hpp"
#endif
#ifdef PRODUCT
#define __ masm->
#else
#define __ (Verbose ? (masm->block_comment(FILE_AND_LINE),masm):masm)->
#endif
#define BLOCK_COMMENT(str) __ block_comment(str)
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
#define RegisterSaver_LiveIntReg(regname) \
{ RegisterSaver::int_reg, regname->encoding(), regname->as_VMReg() }
#define RegisterSaver_LiveFloatReg(regname) \
{ RegisterSaver::float_reg, regname->encoding(), regname->as_VMReg() }
// Registers which are not saved/restored, but still they have got a frame slot.
// Used to get same frame size for RegisterSaver_LiveRegs and RegisterSaver_LiveRegsWithoutR2
#define RegisterSaver_ExcludedIntReg(regname) \
{ RegisterSaver::excluded_reg, regname->encoding(), regname->as_VMReg() }
// Registers which are not saved/restored, but still they have got a frame slot.
// Used to get same frame size for RegisterSaver_LiveRegs and RegisterSaver_LiveRegsWithoutR2.
#define RegisterSaver_ExcludedFloatReg(regname) \
{ RegisterSaver::excluded_reg, regname->encoding(), regname->as_VMReg() }
static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
// Live registers which get spilled to the stack. Register positions
// in this array correspond directly to the stack layout.
//
// live float registers:
//
RegisterSaver_LiveFloatReg(Z_F0 ),
// RegisterSaver_ExcludedFloatReg(Z_F1 ), // scratch (Z_fscratch_1)
RegisterSaver_LiveFloatReg(Z_F2 ),
RegisterSaver_LiveFloatReg(Z_F3 ),
RegisterSaver_LiveFloatReg(Z_F4 ),
RegisterSaver_LiveFloatReg(Z_F5 ),
RegisterSaver_LiveFloatReg(Z_F6 ),
RegisterSaver_LiveFloatReg(Z_F7 ),
RegisterSaver_LiveFloatReg(Z_F8 ),
RegisterSaver_LiveFloatReg(Z_F9 ),
RegisterSaver_LiveFloatReg(Z_F10),
RegisterSaver_LiveFloatReg(Z_F11),
RegisterSaver_LiveFloatReg(Z_F12),
RegisterSaver_LiveFloatReg(Z_F13),
RegisterSaver_LiveFloatReg(Z_F14),
RegisterSaver_LiveFloatReg(Z_F15),
//
// RegisterSaver_ExcludedIntReg(Z_R0), // scratch
// RegisterSaver_ExcludedIntReg(Z_R1), // scratch
RegisterSaver_LiveIntReg(Z_R2 ),
RegisterSaver_LiveIntReg(Z_R3 ),
RegisterSaver_LiveIntReg(Z_R4 ),
RegisterSaver_LiveIntReg(Z_R5 ),
RegisterSaver_LiveIntReg(Z_R6 ),
RegisterSaver_LiveIntReg(Z_R7 ),
RegisterSaver_LiveIntReg(Z_R8 ),
RegisterSaver_LiveIntReg(Z_R9 ),
RegisterSaver_LiveIntReg(Z_R10),
RegisterSaver_LiveIntReg(Z_R11),
RegisterSaver_LiveIntReg(Z_R12),
RegisterSaver_LiveIntReg(Z_R13),
// RegisterSaver_ExcludedIntReg(Z_R14), // return pc (Saved in caller frame.)
// RegisterSaver_ExcludedIntReg(Z_R15) // stack pointer
};
static const RegisterSaver::LiveRegType RegisterSaver_LiveIntRegs[] = {
// Live registers which get spilled to the stack. Register positions
// in this array correspond directly to the stack layout.
//
// live float registers: All excluded, but still they get a stack slot to get same frame size.
//
RegisterSaver_ExcludedFloatReg(Z_F0 ),
// RegisterSaver_ExcludedFloatReg(Z_F1 ), // scratch (Z_fscratch_1)
RegisterSaver_ExcludedFloatReg(Z_F2 ),
RegisterSaver_ExcludedFloatReg(Z_F3 ),
RegisterSaver_ExcludedFloatReg(Z_F4 ),
RegisterSaver_ExcludedFloatReg(Z_F5 ),
RegisterSaver_ExcludedFloatReg(Z_F6 ),
RegisterSaver_ExcludedFloatReg(Z_F7 ),
RegisterSaver_ExcludedFloatReg(Z_F8 ),
RegisterSaver_ExcludedFloatReg(Z_F9 ),
RegisterSaver_ExcludedFloatReg(Z_F10),
RegisterSaver_ExcludedFloatReg(Z_F11),
RegisterSaver_ExcludedFloatReg(Z_F12),
RegisterSaver_ExcludedFloatReg(Z_F13),
RegisterSaver_ExcludedFloatReg(Z_F14),
RegisterSaver_ExcludedFloatReg(Z_F15),
//
// RegisterSaver_ExcludedIntReg(Z_R0), // scratch
// RegisterSaver_ExcludedIntReg(Z_R1), // scratch
RegisterSaver_LiveIntReg(Z_R2 ),
RegisterSaver_LiveIntReg(Z_R3 ),
RegisterSaver_LiveIntReg(Z_R4 ),
RegisterSaver_LiveIntReg(Z_R5 ),
RegisterSaver_LiveIntReg(Z_R6 ),
RegisterSaver_LiveIntReg(Z_R7 ),
RegisterSaver_LiveIntReg(Z_R8 ),
RegisterSaver_LiveIntReg(Z_R9 ),
RegisterSaver_LiveIntReg(Z_R10),
RegisterSaver_LiveIntReg(Z_R11),
RegisterSaver_LiveIntReg(Z_R12),
RegisterSaver_LiveIntReg(Z_R13),
// RegisterSaver_ExcludedIntReg(Z_R14), // return pc (Saved in caller frame.)
// RegisterSaver_ExcludedIntReg(Z_R15) // stack pointer
};
static const RegisterSaver::LiveRegType RegisterSaver_LiveRegsWithoutR2[] = {
// Live registers which get spilled to the stack. Register positions
// in this array correspond directly to the stack layout.
//
// live float registers:
//
RegisterSaver_LiveFloatReg(Z_F0 ),
// RegisterSaver_ExcludedFloatReg(Z_F1 ), // scratch (Z_fscratch_1)
RegisterSaver_LiveFloatReg(Z_F2 ),
RegisterSaver_LiveFloatReg(Z_F3 ),
RegisterSaver_LiveFloatReg(Z_F4 ),
RegisterSaver_LiveFloatReg(Z_F5 ),
RegisterSaver_LiveFloatReg(Z_F6 ),
RegisterSaver_LiveFloatReg(Z_F7 ),
RegisterSaver_LiveFloatReg(Z_F8 ),
RegisterSaver_LiveFloatReg(Z_F9 ),
RegisterSaver_LiveFloatReg(Z_F10),
RegisterSaver_LiveFloatReg(Z_F11),
RegisterSaver_LiveFloatReg(Z_F12),
RegisterSaver_LiveFloatReg(Z_F13),
RegisterSaver_LiveFloatReg(Z_F14),
RegisterSaver_LiveFloatReg(Z_F15),
//
// RegisterSaver_ExcludedIntReg(Z_R0), // scratch
// RegisterSaver_ExcludedIntReg(Z_R1), // scratch
RegisterSaver_ExcludedIntReg(Z_R2), // Omit saving R2.
RegisterSaver_LiveIntReg(Z_R3 ),
RegisterSaver_LiveIntReg(Z_R4 ),
RegisterSaver_LiveIntReg(Z_R5 ),
RegisterSaver_LiveIntReg(Z_R6 ),
RegisterSaver_LiveIntReg(Z_R7 ),
RegisterSaver_LiveIntReg(Z_R8 ),
RegisterSaver_LiveIntReg(Z_R9 ),
RegisterSaver_LiveIntReg(Z_R10),
RegisterSaver_LiveIntReg(Z_R11),
RegisterSaver_LiveIntReg(Z_R12),
RegisterSaver_LiveIntReg(Z_R13),
// RegisterSaver_ExcludedIntReg(Z_R14), // return pc (Saved in caller frame.)
// RegisterSaver_ExcludedIntReg(Z_R15) // stack pointer
};
// Live argument registers which get spilled to the stack.
static const RegisterSaver::LiveRegType RegisterSaver_LiveArgRegs[] = {
RegisterSaver_LiveFloatReg(Z_FARG1),
RegisterSaver_LiveFloatReg(Z_FARG2),
RegisterSaver_LiveFloatReg(Z_FARG3),
RegisterSaver_LiveFloatReg(Z_FARG4),
RegisterSaver_LiveIntReg(Z_ARG1),
RegisterSaver_LiveIntReg(Z_ARG2),
RegisterSaver_LiveIntReg(Z_ARG3),
RegisterSaver_LiveIntReg(Z_ARG4),
RegisterSaver_LiveIntReg(Z_ARG5)
};
static const RegisterSaver::LiveRegType RegisterSaver_LiveVolatileRegs[] = {
// Live registers which get spilled to the stack. Register positions
// in this array correspond directly to the stack layout.
//
// live float registers:
//
RegisterSaver_LiveFloatReg(Z_F0 ),
// RegisterSaver_ExcludedFloatReg(Z_F1 ), // scratch (Z_fscratch_1)
RegisterSaver_LiveFloatReg(Z_F2 ),
RegisterSaver_LiveFloatReg(Z_F3 ),
RegisterSaver_LiveFloatReg(Z_F4 ),
RegisterSaver_LiveFloatReg(Z_F5 ),
RegisterSaver_LiveFloatReg(Z_F6 ),
RegisterSaver_LiveFloatReg(Z_F7 ),
// RegisterSaver_LiveFloatReg(Z_F8 ), // non-volatile
// RegisterSaver_LiveFloatReg(Z_F9 ), // non-volatile
// RegisterSaver_LiveFloatReg(Z_F10), // non-volatile
// RegisterSaver_LiveFloatReg(Z_F11), // non-volatile
// RegisterSaver_LiveFloatReg(Z_F12), // non-volatile
// RegisterSaver_LiveFloatReg(Z_F13), // non-volatile
// RegisterSaver_LiveFloatReg(Z_F14), // non-volatile
// RegisterSaver_LiveFloatReg(Z_F15), // non-volatile
//
// RegisterSaver_ExcludedIntReg(Z_R0), // scratch
// RegisterSaver_ExcludedIntReg(Z_R1), // scratch
RegisterSaver_LiveIntReg(Z_R2 ),
RegisterSaver_LiveIntReg(Z_R3 ),
RegisterSaver_LiveIntReg(Z_R4 ),
RegisterSaver_LiveIntReg(Z_R5 ),
// RegisterSaver_LiveIntReg(Z_R6 ), // non-volatile
// RegisterSaver_LiveIntReg(Z_R7 ), // non-volatile
// RegisterSaver_LiveIntReg(Z_R8 ), // non-volatile
// RegisterSaver_LiveIntReg(Z_R9 ), // non-volatile
// RegisterSaver_LiveIntReg(Z_R10), // non-volatile
// RegisterSaver_LiveIntReg(Z_R11), // non-volatile
// RegisterSaver_LiveIntReg(Z_R12), // non-volatile
// RegisterSaver_LiveIntReg(Z_R13), // non-volatile
// RegisterSaver_ExcludedIntReg(Z_R14), // return pc (Saved in caller frame.)
// RegisterSaver_ExcludedIntReg(Z_R15) // stack pointer
};
int RegisterSaver::live_reg_save_size(RegisterSet reg_set) {
int reg_space = -1;
switch (reg_set) {
case all_registers: reg_space = sizeof(RegisterSaver_LiveRegs); break;
case all_registers_except_r2: reg_space = sizeof(RegisterSaver_LiveRegsWithoutR2); break;
case all_integer_registers: reg_space = sizeof(RegisterSaver_LiveIntRegs); break;
case all_volatile_registers: reg_space = sizeof(RegisterSaver_LiveVolatileRegs); break;
case arg_registers: reg_space = sizeof(RegisterSaver_LiveArgRegs); break;
default: ShouldNotReachHere();
}
return (reg_space / sizeof(RegisterSaver::LiveRegType)) * reg_size;
}
int RegisterSaver::live_reg_frame_size(RegisterSet reg_set) {
return live_reg_save_size(reg_set) + frame::z_abi_160_size;
}
// return_pc: Specify the register that should be stored as the return pc in the current frame.
OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, RegisterSet reg_set, Register return_pc) {
// Record volatile registers as callee-save values in an OopMap so
// their save locations will be propagated to the caller frame's
// RegisterMap during StackFrameStream construction (needed for
// deoptimization; see compiledVFrame::create_stack_value).
// Calculate frame size.
const int frame_size_in_bytes = live_reg_frame_size(reg_set);
const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
const int register_save_offset = frame_size_in_bytes - live_reg_save_size(reg_set);
// OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
OopMap* map = new OopMap(frame_size_in_slots, 0);
int regstosave_num = 0;
const RegisterSaver::LiveRegType* live_regs = NULL;
switch (reg_set) {
case all_registers:
regstosave_num = sizeof(RegisterSaver_LiveRegs)/sizeof(RegisterSaver::LiveRegType);
live_regs = RegisterSaver_LiveRegs;
break;
case all_registers_except_r2:
regstosave_num = sizeof(RegisterSaver_LiveRegsWithoutR2)/sizeof(RegisterSaver::LiveRegType);;
live_regs = RegisterSaver_LiveRegsWithoutR2;
break;
case all_integer_registers:
regstosave_num = sizeof(RegisterSaver_LiveIntRegs)/sizeof(RegisterSaver::LiveRegType);
live_regs = RegisterSaver_LiveIntRegs;
break;
case all_volatile_registers:
regstosave_num = sizeof(RegisterSaver_LiveVolatileRegs)/sizeof(RegisterSaver::LiveRegType);
live_regs = RegisterSaver_LiveVolatileRegs;
break;
case arg_registers:
regstosave_num = sizeof(RegisterSaver_LiveArgRegs)/sizeof(RegisterSaver::LiveRegType);;
live_regs = RegisterSaver_LiveArgRegs;
break;
default: ShouldNotReachHere();
}
// Save return pc in old frame.
__ save_return_pc(return_pc);
// Push a new frame (includes stack linkage).
// Use return_pc as scratch for push_frame. Z_R0_scratch (the default) and Z_R1_scratch are
// illegally used to pass parameters by RangeCheckStub::emit_code().
__ push_frame(frame_size_in_bytes, return_pc);
// We have to restore return_pc right away.
// Nobody else will. Furthermore, return_pc isn't necessarily the default (Z_R14).
// Nobody else knows which register we saved.
__ z_lg(return_pc, _z_abi16(return_pc) + frame_size_in_bytes, Z_SP);
// Register save area in new frame starts above z_abi_160 area.
int offset = register_save_offset;
Register first = noreg;
Register last = noreg;
int first_offset = -1;
bool float_spilled = false;
for (int i = 0; i < regstosave_num; i++, offset += reg_size) {
int reg_num = live_regs[i].reg_num;
int reg_type = live_regs[i].reg_type;
switch (reg_type) {
case RegisterSaver::int_reg: {
Register reg = as_Register(reg_num);
if (last != reg->predecessor()) {
if (first != noreg) {
__ z_stmg(first, last, first_offset, Z_SP);
}
first = reg;
first_offset = offset;
DEBUG_ONLY(float_spilled = false);
}
last = reg;
assert(last != Z_R0, "r0 would require special treatment");
assert(!float_spilled, "for simplicity, do not mix up ints and floats in RegisterSaver_LiveRegs[]");
break;
}
case RegisterSaver::excluded_reg: // Not saved/restored, but with dedicated slot.
continue; // Continue with next loop iteration.
case RegisterSaver::float_reg: {
FloatRegister freg = as_FloatRegister(reg_num);
__ z_std(freg, offset, Z_SP);
DEBUG_ONLY(float_spilled = true);
break;
}
default:
ShouldNotReachHere();
break;
}
// Second set_callee_saved is really a waste but we'll keep things as they were for now
map->set_callee_saved(VMRegImpl::stack2reg(offset >> 2), live_regs[i].vmreg);
map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size) >> 2), live_regs[i].vmreg->next());
}
assert(first != noreg, "Should spill at least one int reg.");
__ z_stmg(first, last, first_offset, Z_SP);
// And we're done.
return map;
}
// Generate the OopMap (again, regs where saved before).
OopMap* RegisterSaver::generate_oop_map(MacroAssembler* masm, RegisterSet reg_set) {
// Calculate frame size.
const int frame_size_in_bytes = live_reg_frame_size(reg_set);
const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
const int register_save_offset = frame_size_in_bytes - live_reg_save_size(reg_set);
// OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
OopMap* map = new OopMap(frame_size_in_slots, 0);
int regstosave_num = 0;
const RegisterSaver::LiveRegType* live_regs = NULL;
switch (reg_set) {
case all_registers:
regstosave_num = sizeof(RegisterSaver_LiveRegs)/sizeof(RegisterSaver::LiveRegType);
live_regs = RegisterSaver_LiveRegs;
break;
case all_registers_except_r2:
regstosave_num = sizeof(RegisterSaver_LiveRegsWithoutR2)/sizeof(RegisterSaver::LiveRegType);;
live_regs = RegisterSaver_LiveRegsWithoutR2;
break;
case all_integer_registers:
regstosave_num = sizeof(RegisterSaver_LiveIntRegs)/sizeof(RegisterSaver::LiveRegType);
live_regs = RegisterSaver_LiveIntRegs;
break;
case all_volatile_registers:
regstosave_num = sizeof(RegisterSaver_LiveVolatileRegs)/sizeof(RegisterSaver::LiveRegType);
live_regs = RegisterSaver_LiveVolatileRegs;
break;
case arg_registers:
regstosave_num = sizeof(RegisterSaver_LiveArgRegs)/sizeof(RegisterSaver::LiveRegType);;
live_regs = RegisterSaver_LiveArgRegs;
break;
default: ShouldNotReachHere();
}
// Register save area in new frame starts above z_abi_160 area.
int offset = register_save_offset;
for (int i = 0; i < regstosave_num; i++) {
if (live_regs[i].reg_type < RegisterSaver::excluded_reg) {
map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), live_regs[i].vmreg);
map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2), live_regs[i].vmreg->next());
}
offset += reg_size;
}
return map;
}
// Pop the current frame and restore all the registers that we saved.
void RegisterSaver::restore_live_registers(MacroAssembler* masm, RegisterSet reg_set) {
int offset;
const int register_save_offset = live_reg_frame_size(reg_set) - live_reg_save_size(reg_set);
Register first = noreg;
Register last = noreg;
int first_offset = -1;
bool float_spilled = false;
int regstosave_num = 0;
const RegisterSaver::LiveRegType* live_regs = NULL;
switch (reg_set) {
case all_registers:
regstosave_num = sizeof(RegisterSaver_LiveRegs)/sizeof(RegisterSaver::LiveRegType);;
live_regs = RegisterSaver_LiveRegs;
break;
case all_registers_except_r2:
regstosave_num = sizeof(RegisterSaver_LiveRegsWithoutR2)/sizeof(RegisterSaver::LiveRegType);;
live_regs = RegisterSaver_LiveRegsWithoutR2;
break;
case all_integer_registers:
regstosave_num = sizeof(RegisterSaver_LiveIntRegs)/sizeof(RegisterSaver::LiveRegType);
live_regs = RegisterSaver_LiveIntRegs;
break;
case all_volatile_registers:
regstosave_num = sizeof(RegisterSaver_LiveVolatileRegs)/sizeof(RegisterSaver::LiveRegType);;
live_regs = RegisterSaver_LiveVolatileRegs;
break;
case arg_registers:
regstosave_num = sizeof(RegisterSaver_LiveArgRegs)/sizeof(RegisterSaver::LiveRegType);;
live_regs = RegisterSaver_LiveArgRegs;
break;
default: ShouldNotReachHere();
}
// Restore all registers (ints and floats).
// Register save area in new frame starts above z_abi_160 area.
offset = register_save_offset;
for (int i = 0; i < regstosave_num; i++, offset += reg_size) {
int reg_num = live_regs[i].reg_num;
int reg_type = live_regs[i].reg_type;
switch (reg_type) {
case RegisterSaver::excluded_reg:
continue; // Continue with next loop iteration.
case RegisterSaver::int_reg: {
Register reg = as_Register(reg_num);
if (last != reg->predecessor()) {
if (first != noreg) {
__ z_lmg(first, last, first_offset, Z_SP);
}
first = reg;
first_offset = offset;
DEBUG_ONLY(float_spilled = false);
}
last = reg;
assert(last != Z_R0, "r0 would require special treatment");
assert(!float_spilled, "for simplicity, do not mix up ints and floats in RegisterSaver_LiveRegs[]");
break;
}
case RegisterSaver::float_reg: {
FloatRegister freg = as_FloatRegister(reg_num);
__ z_ld(freg, offset, Z_SP);
DEBUG_ONLY(float_spilled = true);
break;
}
default:
ShouldNotReachHere();
}
}
assert(first != noreg, "Should spill at least one int reg.");
__ z_lmg(first, last, first_offset, Z_SP);
// Pop the frame.
__ pop_frame();
// Restore the flags.
__ restore_return_pc();
}
// Pop the current frame and restore the registers that might be holding a result.
void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
int i;
int offset;
const int regstosave_num = sizeof(RegisterSaver_LiveRegs) /
sizeof(RegisterSaver::LiveRegType);
const int register_save_offset = live_reg_frame_size(all_registers) - live_reg_save_size(all_registers);
// Restore all result registers (ints and floats).
offset = register_save_offset;
for (int i = 0; i < regstosave_num; i++, offset += reg_size) {
int reg_num = RegisterSaver_LiveRegs[i].reg_num;
int reg_type = RegisterSaver_LiveRegs[i].reg_type;
switch (reg_type) {
case RegisterSaver::excluded_reg:
continue; // Continue with next loop iteration.
case RegisterSaver::int_reg: {
if (as_Register(reg_num) == Z_RET) { // int result_reg
__ z_lg(as_Register(reg_num), offset, Z_SP);
}
break;
}
case RegisterSaver::float_reg: {
if (as_FloatRegister(reg_num) == Z_FRET) { // float result_reg
__ z_ld(as_FloatRegister(reg_num), offset, Z_SP);
}
break;
}
default:
ShouldNotReachHere();
}
}
}
size_t SharedRuntime::trampoline_size() {
return MacroAssembler::load_const_size() + 2;
}
void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
// Think about using pc-relative branch.
__ load_const(Z_R1_scratch, destination);
__ z_br(Z_R1_scratch);
}
// ---------------------------------------------------------------------------
void SharedRuntime::save_native_result(MacroAssembler * masm,
BasicType ret_type,
int frame_slots) {
Address memaddr(Z_SP, frame_slots * VMRegImpl::stack_slot_size);
switch (ret_type) {
case T_BOOLEAN: // Save shorter types as int. Do we need sign extension at restore??
case T_BYTE:
case T_CHAR:
case T_SHORT:
case T_INT:
__ reg2mem_opt(Z_RET, memaddr, false);
break;
case T_OBJECT: // Save pointer types as long.
case T_ARRAY:
case T_ADDRESS:
case T_VOID:
case T_LONG:
__ reg2mem_opt(Z_RET, memaddr);
break;
case T_FLOAT:
__ freg2mem_opt(Z_FRET, memaddr, false);
break;
case T_DOUBLE:
__ freg2mem_opt(Z_FRET, memaddr);
break;
default:
ShouldNotReachHere();
break;
}
}
void SharedRuntime::restore_native_result(MacroAssembler *masm,
BasicType ret_type,
int frame_slots) {
Address memaddr(Z_SP, frame_slots * VMRegImpl::stack_slot_size);
switch (ret_type) {
case T_BOOLEAN: // Restore shorter types as int. Do we need sign extension at restore??
case T_BYTE:
case T_CHAR:
case T_SHORT:
case T_INT:
__ mem2reg_opt(Z_RET, memaddr, false);
break;
case T_OBJECT: // Restore pointer types as long.
case T_ARRAY:
case T_ADDRESS:
case T_VOID:
case T_LONG:
__ mem2reg_opt(Z_RET, memaddr);
break;
case T_FLOAT:
__ mem2freg_opt(Z_FRET, memaddr, false);
break;
case T_DOUBLE:
__ mem2freg_opt(Z_FRET, memaddr);
break;
default:
ShouldNotReachHere();
break;
}
}
// ---------------------------------------------------------------------------
// Read the array of BasicTypes from a signature, and compute where the
// arguments should go. Values in the VMRegPair regs array refer to 4-byte
// quantities. Values less than VMRegImpl::stack0 are registers, those above
// refer to 4-byte stack slots. All stack slots are based off of the stack pointer
// as framesizes are fixed.
// VMRegImpl::stack0 refers to the first slot 0(sp).
// VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Registers
// up to RegisterImpl::number_of_registers are the 64-bit integer registers.
// Note: the INPUTS in sig_bt are in units of Java argument words, which are
// either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
// units regardless of build.
// The Java calling convention is a "shifted" version of the C ABI.
// By skipping the first C ABI register we can call non-static jni methods
// with small numbers of arguments without having to shuffle the arguments
// at all. Since we control the java ABI we ought to at least get some
// advantage out of it.
int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
int total_args_passed,
int is_outgoing) {
// c2c calling conventions for compiled-compiled calls.
// An int/float occupies 1 slot here.
const int inc_stk_for_intfloat = 1; // 1 slots for ints and floats.
const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles.
const VMReg z_iarg_reg[5] = {
Z_R2->as_VMReg(),
Z_R3->as_VMReg(),
Z_R4->as_VMReg(),
Z_R5->as_VMReg(),
Z_R6->as_VMReg()
};
const VMReg z_farg_reg[4] = {
Z_F0->as_VMReg(),
Z_F2->as_VMReg(),
Z_F4->as_VMReg(),
Z_F6->as_VMReg()
};
const int z_num_iarg_registers = sizeof(z_iarg_reg) / sizeof(z_iarg_reg[0]);
const int z_num_farg_registers = sizeof(z_farg_reg) / sizeof(z_farg_reg[0]);
assert(RegisterImpl::number_of_arg_registers == z_num_iarg_registers, "iarg reg count mismatch");
assert(FloatRegisterImpl::number_of_arg_registers == z_num_farg_registers, "farg reg count mismatch");
int i;
int stk = 0;
int ireg = 0;
int freg = 0;
for (int i = 0; i < total_args_passed; ++i) {
switch (sig_bt[i]) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
if (ireg < z_num_iarg_registers) {
// Put int/ptr in register.
regs[i].set1(z_iarg_reg[ireg]);
++ireg;
} else {
// Put int/ptr on stack.
regs[i].set1(VMRegImpl::stack2reg(stk));
stk += inc_stk_for_intfloat;
}
break;
case T_LONG:
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
if (ireg < z_num_iarg_registers) {
// Put long in register.
regs[i].set2(z_iarg_reg[ireg]);
++ireg;
} else {
// Put long on stack and align to 2 slots.
if (stk & 0x1) { ++stk; }
regs[i].set2(VMRegImpl::stack2reg(stk));
stk += inc_stk_for_longdouble;
}
break;
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS:
if (ireg < z_num_iarg_registers) {
// Put ptr in register.
regs[i].set2(z_iarg_reg[ireg]);
++ireg;
} else {
// Put ptr on stack and align to 2 slots, because
// "64-bit pointers record oop-ishness on 2 aligned adjacent
// registers." (see OopFlow::build_oop_map).
if (stk & 0x1) { ++stk; }
regs[i].set2(VMRegImpl::stack2reg(stk));
stk += inc_stk_for_longdouble;
}
break;
case T_FLOAT:
if (freg < z_num_farg_registers) {
// Put float in register.
regs[i].set1(z_farg_reg[freg]);
++freg;
} else {
// Put float on stack.
regs[i].set1(VMRegImpl::stack2reg(stk));
stk += inc_stk_for_intfloat;
}
break;
case T_DOUBLE:
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
if (freg < z_num_farg_registers) {
// Put double in register.
regs[i].set2(z_farg_reg[freg]);
++freg;
} else {
// Put double on stack and align to 2 slots.
if (stk & 0x1) { ++stk; }
regs[i].set2(VMRegImpl::stack2reg(stk));
stk += inc_stk_for_longdouble;
}
break;
case T_VOID:
assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
// Do not count halves.
regs[i].set_bad();
break;
default:
ShouldNotReachHere();
}
}
return align_up(stk, 2);
}
int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
VMRegPair *regs,
VMRegPair *regs2,
int total_args_passed) {
assert(regs2 == NULL, "second VMRegPair array not used on this platform");
// Calling conventions for C runtime calls and calls to JNI native methods.
const VMReg z_iarg_reg[5] = {
Z_R2->as_VMReg(),
Z_R3->as_VMReg(),
Z_R4->as_VMReg(),
Z_R5->as_VMReg(),
Z_R6->as_VMReg()
};
const VMReg z_farg_reg[4] = {
Z_F0->as_VMReg(),
Z_F2->as_VMReg(),
Z_F4->as_VMReg(),
Z_F6->as_VMReg()
};
const int z_num_iarg_registers = sizeof(z_iarg_reg) / sizeof(z_iarg_reg[0]);
const int z_num_farg_registers = sizeof(z_farg_reg) / sizeof(z_farg_reg[0]);
// Check calling conventions consistency.
assert(RegisterImpl::number_of_arg_registers == z_num_iarg_registers, "iarg reg count mismatch");
assert(FloatRegisterImpl::number_of_arg_registers == z_num_farg_registers, "farg reg count mismatch");
// Avoid passing C arguments in the wrong stack slots.
// 'Stk' counts stack slots. Due to alignment, 32 bit values occupy
// 2 such slots, like 64 bit values do.
const int inc_stk_for_intfloat = 2; // 2 slots for ints and floats.
const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles.
int i;
// Leave room for C-compatible ABI
int stk = (frame::z_abi_160_size - frame::z_jit_out_preserve_size) / VMRegImpl::stack_slot_size;
int freg = 0;
int ireg = 0;
// We put the first 5 arguments into registers and the rest on the
// stack. Float arguments are already in their argument registers
// due to c2c calling conventions (see calling_convention).
for (int i = 0; i < total_args_passed; ++i) {
switch (sig_bt[i]) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
// Fall through, handle as long.
case T_LONG:
case T_OBJECT:
case T_ARRAY:
case T_ADDRESS:
case T_METADATA:
// Oops are already boxed if required (JNI).
if (ireg < z_num_iarg_registers) {
regs[i].set2(z_iarg_reg[ireg]);
++ireg;
} else {
regs[i].set2(VMRegImpl::stack2reg(stk));
stk += inc_stk_for_longdouble;
}
break;
case T_FLOAT:
if (freg < z_num_farg_registers) {
regs[i].set1(z_farg_reg[freg]);
++freg;
} else {
regs[i].set1(VMRegImpl::stack2reg(stk+1));
stk += inc_stk_for_intfloat;
}
break;
case T_DOUBLE:
assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
if (freg < z_num_farg_registers) {
regs[i].set2(z_farg_reg[freg]);
++freg;
} else {
// Put double on stack.
regs[i].set2(VMRegImpl::stack2reg(stk));
stk += inc_stk_for_longdouble;
}
break;
case T_VOID:
// Do not count halves.
regs[i].set_bad();
break;
default:
ShouldNotReachHere();
}
}
return align_up(stk, 2);
}
////////////////////////////////////////////////////////////////////////
//
// Argument shufflers
//
////////////////////////////////////////////////////////////////////////
//----------------------------------------------------------------------
// The java_calling_convention describes stack locations as ideal slots on
// a frame with no abi restrictions. Since we must observe abi restrictions
// (like the placement of the register window) the slots must be biased by
// the following value.
//----------------------------------------------------------------------
static int reg2slot(VMReg r) {
return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
}
static int reg2offset(VMReg r) {
return reg2slot(r) * VMRegImpl::stack_slot_size;
}
static void verify_oop_args(MacroAssembler *masm,
int total_args_passed,
const BasicType *sig_bt,
const VMRegPair *regs) {
if (!VerifyOops) { return; }
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
VMReg r = regs[i].first();
assert(r->is_valid(), "bad oop arg");
if (r->is_stack()) {
__ z_lg(Z_R0_scratch,
Address(Z_SP, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
__ verify_oop(Z_R0_scratch);
} else {
__ verify_oop(r->as_Register());
}
}
}
}
static void gen_special_dispatch(MacroAssembler *masm,
int total_args_passed,
vmIntrinsics::ID special_dispatch,
const BasicType *sig_bt,
const VMRegPair *regs) {
verify_oop_args(masm, total_args_passed, sig_bt, regs);
// Now write the args into the outgoing interpreter space.
bool has_receiver = false;
Register receiver_reg = noreg;
int member_arg_pos = -1;
Register member_reg = noreg;
int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
if (ref_kind != 0) {
member_arg_pos = total_args_passed - 1; // trailing MemberName argument
member_reg = Z_R9; // Known to be free at this point.
has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
} else {
guarantee(special_dispatch == vmIntrinsics::_invokeBasic, "special_dispatch=%d", special_dispatch);
has_receiver = true;
}
if (member_reg != noreg) {
// Load the member_arg into register, if necessary.
assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
VMReg r = regs[member_arg_pos].first();
assert(r->is_valid(), "bad member arg");
if (r->is_stack()) {
__ z_lg(member_reg, Address(Z_SP, reg2offset(r)));
} else {
// No data motion is needed.
member_reg = r->as_Register();
}
}
if (has_receiver) {
// Make sure the receiver is loaded into a register.
assert(total_args_passed > 0, "oob");
assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
VMReg r = regs[0].first();
assert(r->is_valid(), "bad receiver arg");
if (r->is_stack()) {
// Porting note: This assumes that compiled calling conventions always
// pass the receiver oop in a register. If this is not true on some
// platform, pick a temp and load the receiver from stack.
assert(false, "receiver always in a register");
receiver_reg = Z_R13; // Known to be free at this point.
__ z_lg(receiver_reg, Address(Z_SP, reg2offset(r)));
} else {
// No data motion is needed.
receiver_reg = r->as_Register();
}
}
// Figure out which address we are really jumping to:
MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
receiver_reg, member_reg,
/*for_compiler_entry:*/ true);
}
////////////////////////////////////////////////////////////////////////
//
// Argument shufflers
//
////////////////////////////////////////////////////////////////////////
// Is the size of a vector size (in bytes) bigger than a size saved by default?
// 8 bytes registers are saved by default on z/Architecture.
bool SharedRuntime::is_wide_vector(int size) {
// Note, MaxVectorSize == 8 on this platform.
assert(size <= 8, "%d bytes vectors are not supported", size);
return size > 8;
}
//----------------------------------------------------------------------
// An oop arg. Must pass a handle not the oop itself
//----------------------------------------------------------------------
static void object_move(MacroAssembler *masm,
OopMap *map,
int oop_handle_offset,
int framesize_in_slots,
VMRegPair src,
VMRegPair dst,
bool is_receiver,
int *receiver_offset) {
int frame_offset = framesize_in_slots*VMRegImpl::stack_slot_size;
assert(!is_receiver || (is_receiver && (*receiver_offset == -1)), "only one receiving object per call, please.");
// Must pass a handle. First figure out the location we use as a handle.
if (src.first()->is_stack()) {
// Oop is already on the stack, put handle on stack or in register
// If handle will be on the stack, use temp reg to calculate it.
Register rHandle = dst.first()->is_stack() ? Z_R1 : dst.first()->as_Register();
Label skip;
int slot_in_older_frame = reg2slot(src.first());
guarantee(!is_receiver, "expecting receiver in register");
map->set_oop(VMRegImpl::stack2reg(slot_in_older_frame + framesize_in_slots));
__ add2reg(rHandle, reg2offset(src.first())+frame_offset, Z_SP);
__ load_and_test_long(Z_R0, Address(rHandle));
__ z_brne(skip);
// Use a NULL handle if oop is NULL.
__ clear_reg(rHandle, true, false);
__ bind(skip);
// Copy handle to the right place (register or stack).
if (dst.first()->is_stack()) {
__ z_stg(rHandle, reg2offset(dst.first()), Z_SP);
} // else
// nothing to do. rHandle uses the correct register
} else {
// Oop is passed in an input register. We must flush it to the stack.
const Register rOop = src.first()->as_Register();
const Register rHandle = dst.first()->is_stack() ? Z_R1 : dst.first()->as_Register();
int oop_slot = (rOop->encoding()-Z_ARG1->encoding()) * VMRegImpl::slots_per_word + oop_handle_offset;
int oop_slot_offset = oop_slot*VMRegImpl::stack_slot_size;
NearLabel skip;
if (is_receiver) {
*receiver_offset = oop_slot_offset;
}
map->set_oop(VMRegImpl::stack2reg(oop_slot));
// Flush Oop to stack, calculate handle.
__ z_stg(rOop, oop_slot_offset, Z_SP);
__ add2reg(rHandle, oop_slot_offset, Z_SP);
// If Oop == NULL, use a NULL handle.
__ compare64_and_branch(rOop, (RegisterOrConstant)0L, Assembler::bcondNotEqual, skip);
__ clear_reg(rHandle, true, false);
__ bind(skip);
// Copy handle to the right place (register or stack).
if (dst.first()->is_stack()) {
__ z_stg(rHandle, reg2offset(dst.first()), Z_SP);
} // else
// nothing to do here, since rHandle = dst.first()->as_Register in this case.
}
}
//----------------------------------------------------------------------
// A float arg. May have to do float reg to int reg conversion
//----------------------------------------------------------------------
static void float_move(MacroAssembler *masm,
VMRegPair src,
VMRegPair dst,
int framesize_in_slots,
int workspace_slot_offset) {
int frame_offset = framesize_in_slots * VMRegImpl::stack_slot_size;
int workspace_offset = workspace_slot_offset * VMRegImpl::stack_slot_size;
// We do not accept an argument in a VMRegPair to be spread over two slots,
// no matter what physical location (reg or stack) the slots may have.
// We just check for the unaccepted slot to be invalid.
assert(!src.second()->is_valid(), "float in arg spread over two slots");
assert(!dst.second()->is_valid(), "float out arg spread over two slots");
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack -> stack. The easiest of the bunch.
__ z_mvc(Address(Z_SP, reg2offset(dst.first())),
Address(Z_SP, reg2offset(src.first()) + frame_offset), sizeof(float));
} else {
// stack to reg
Address memaddr(Z_SP, reg2offset(src.first()) + frame_offset);
if (dst.first()->is_Register()) {
__ mem2reg_opt(dst.first()->as_Register(), memaddr, false);
} else {
__ mem2freg_opt(dst.first()->as_FloatRegister(), memaddr, false);
}
}
} else if (src.first()->is_Register()) {
if (dst.first()->is_stack()) {
// gpr -> stack
__ reg2mem_opt(src.first()->as_Register(),
Address(Z_SP, reg2offset(dst.first()), false ));
} else {
if (dst.first()->is_Register()) {
// gpr -> gpr
__ move_reg_if_needed(dst.first()->as_Register(), T_INT,
src.first()->as_Register(), T_INT);
} else {
if (VM_Version::has_FPSupportEnhancements()) {
// gpr -> fpr. Exploit z10 capability of direct transfer.
__ z_ldgr(dst.first()->as_FloatRegister(), src.first()->as_Register());
} else {
// gpr -> fpr. Use work space on stack to transfer data.
Address stackaddr(Z_SP, workspace_offset);
__ reg2mem_opt(src.first()->as_Register(), stackaddr, false);
__ mem2freg_opt(dst.first()->as_FloatRegister(), stackaddr, false);
}
}
}
} else {
if (dst.first()->is_stack()) {
// fpr -> stack
__ freg2mem_opt(src.first()->as_FloatRegister(),
Address(Z_SP, reg2offset(dst.first())), false);
} else {
if (dst.first()->is_Register()) {
if (VM_Version::has_FPSupportEnhancements()) {
// fpr -> gpr.
__ z_lgdr(dst.first()->as_Register(), src.first()->as_FloatRegister());
} else {
// fpr -> gpr. Use work space on stack to transfer data.
Address stackaddr(Z_SP, workspace_offset);
__ freg2mem_opt(src.first()->as_FloatRegister(), stackaddr, false);
__ mem2reg_opt(dst.first()->as_Register(), stackaddr, false);
}
} else {
// fpr -> fpr
__ move_freg_if_needed(dst.first()->as_FloatRegister(), T_FLOAT,
src.first()->as_FloatRegister(), T_FLOAT);
}
}
}
}
//----------------------------------------------------------------------
// A double arg. May have to do double reg to long reg conversion
//----------------------------------------------------------------------
static void double_move(MacroAssembler *masm,
VMRegPair src,
VMRegPair dst,
int framesize_in_slots,
int workspace_slot_offset) {
int frame_offset = framesize_in_slots*VMRegImpl::stack_slot_size;
int workspace_offset = workspace_slot_offset*VMRegImpl::stack_slot_size;
// Since src is always a java calling convention we know that the
// src pair is always either all registers or all stack (and aligned?)
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack -> stack. The easiest of the bunch.
__ z_mvc(Address(Z_SP, reg2offset(dst.first())),
Address(Z_SP, reg2offset(src.first()) + frame_offset), sizeof(double));
} else {
// stack to reg
Address stackaddr(Z_SP, reg2offset(src.first()) + frame_offset);
if (dst.first()->is_Register()) {
__ mem2reg_opt(dst.first()->as_Register(), stackaddr);
} else {
__ mem2freg_opt(dst.first()->as_FloatRegister(), stackaddr);
}
}
} else if (src.first()->is_Register()) {
if (dst.first()->is_stack()) {
// gpr -> stack
__ reg2mem_opt(src.first()->as_Register(),
Address(Z_SP, reg2offset(dst.first())));
} else {
if (dst.first()->is_Register()) {
// gpr -> gpr
__ move_reg_if_needed(dst.first()->as_Register(), T_LONG,
src.first()->as_Register(), T_LONG);
} else {
if (VM_Version::has_FPSupportEnhancements()) {
// gpr -> fpr. Exploit z10 capability of direct transfer.
__ z_ldgr(dst.first()->as_FloatRegister(), src.first()->as_Register());
} else {
// gpr -> fpr. Use work space on stack to transfer data.
Address stackaddr(Z_SP, workspace_offset);
__ reg2mem_opt(src.first()->as_Register(), stackaddr);
__ mem2freg_opt(dst.first()->as_FloatRegister(), stackaddr);
}
}
}
} else {
if (dst.first()->is_stack()) {
// fpr -> stack
__ freg2mem_opt(src.first()->as_FloatRegister(),
Address(Z_SP, reg2offset(dst.first())));
} else {
if (dst.first()->is_Register()) {
if (VM_Version::has_FPSupportEnhancements()) {
// fpr -> gpr. Exploit z10 capability of direct transfer.
__ z_lgdr(dst.first()->as_Register(), src.first()->as_FloatRegister());
} else {
// fpr -> gpr. Use work space on stack to transfer data.
Address stackaddr(Z_SP, workspace_offset);
__ freg2mem_opt(src.first()->as_FloatRegister(), stackaddr);
__ mem2reg_opt(dst.first()->as_Register(), stackaddr);
}
} else {
// fpr -> fpr
// In theory these overlap but the ordering is such that this is likely a nop.
__ move_freg_if_needed(dst.first()->as_FloatRegister(), T_DOUBLE,
src.first()->as_FloatRegister(), T_DOUBLE);
}
}
}
}
//----------------------------------------------------------------------
// A long arg.
//----------------------------------------------------------------------
static void long_move(MacroAssembler *masm,
VMRegPair src,
VMRegPair dst,
int framesize_in_slots) {
int frame_offset = framesize_in_slots*VMRegImpl::stack_slot_size;
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack -> stack. The easiest of the bunch.
__ z_mvc(Address(Z_SP, reg2offset(dst.first())),
Address(Z_SP, reg2offset(src.first()) + frame_offset), sizeof(long));
} else {
// stack to reg
assert(dst.first()->is_Register(), "long dst value must be in GPR");
__ mem2reg_opt(dst.first()->as_Register(),
Address(Z_SP, reg2offset(src.first()) + frame_offset));
}
} else {
// reg to reg
assert(src.first()->is_Register(), "long src value must be in GPR");
if (dst.first()->is_stack()) {
// reg -> stack
__ reg2mem_opt(src.first()->as_Register(),
Address(Z_SP, reg2offset(dst.first())));
} else {
// reg -> reg
assert(dst.first()->is_Register(), "long dst value must be in GPR");
__ move_reg_if_needed(dst.first()->as_Register(),
T_LONG, src.first()->as_Register(), T_LONG);
}
}
}
//----------------------------------------------------------------------
// A int-like arg.
//----------------------------------------------------------------------
// On z/Architecture we will store integer like items to the stack as 64 bit
// items, according to the z/Architecture ABI, even though Java would only store
// 32 bits for a parameter.
// We do sign extension for all base types. That is ok since the only
// unsigned base type is T_CHAR, and T_CHAR uses only 16 bits of an int.
// Sign extension 32->64 bit will thus not affect the value.
//----------------------------------------------------------------------
static void move32_64(MacroAssembler *masm,
VMRegPair src,
VMRegPair dst,
int framesize_in_slots) {
int frame_offset = framesize_in_slots * VMRegImpl::stack_slot_size;
if (src.first()->is_stack()) {
Address memaddr(Z_SP, reg2offset(src.first()) + frame_offset);
if (dst.first()->is_stack()) {
// stack -> stack. MVC not posible due to sign extension.
Address firstaddr(Z_SP, reg2offset(dst.first()));
__ mem2reg_signed_opt(Z_R0_scratch, memaddr);
__ reg2mem_opt(Z_R0_scratch, firstaddr);
} else {
// stack -> reg, sign extended
__ mem2reg_signed_opt(dst.first()->as_Register(), memaddr);
}
} else {
if (dst.first()->is_stack()) {
// reg -> stack, sign extended
Address firstaddr(Z_SP, reg2offset(dst.first()));
__ z_lgfr(src.first()->as_Register(), src.first()->as_Register());
__ reg2mem_opt(src.first()->as_Register(), firstaddr);
} else {
// reg -> reg, sign extended
__ z_lgfr(dst.first()->as_Register(), src.first()->as_Register());
}
}
}
static void save_or_restore_arguments(MacroAssembler *masm,
const int stack_slots,
const int total_in_args,
const int arg_save_area,
OopMap *map,
VMRegPair *in_regs,
BasicType *in_sig_bt) {
// If map is non-NULL then the code should store the values,
// otherwise it should load them.
int slot = arg_save_area;
// Handle double words first.
for (int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_FloatRegister() && in_sig_bt[i] == T_DOUBLE) {
int offset = slot * VMRegImpl::stack_slot_size;
slot += VMRegImpl::slots_per_word;
assert(slot <= stack_slots, "overflow (after DOUBLE stack slot)");
const FloatRegister freg = in_regs[i].first()->as_FloatRegister();
Address stackaddr(Z_SP, offset);
if (map != NULL) {
__ freg2mem_opt(freg, stackaddr);
} else {
__ mem2freg_opt(freg, stackaddr);
}
} else if (in_regs[i].first()->is_Register() &&
(in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
int offset = slot * VMRegImpl::stack_slot_size;
const Register reg = in_regs[i].first()->as_Register();
if (map != NULL) {
__ z_stg(reg, offset, Z_SP);
if (in_sig_bt[i] == T_ARRAY) {
map->set_oop(VMRegImpl::stack2reg(slot));
}
} else {
__ z_lg(reg, offset, Z_SP);
}
slot += VMRegImpl::slots_per_word;
assert(slot <= stack_slots, "overflow (after LONG/ARRAY stack slot)");
}
}
// Save or restore single word registers.
for (int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_Register()) {
int offset = slot * VMRegImpl::stack_slot_size;
// Value lives in an input register. Save it on stack.
switch (in_sig_bt[i]) {
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT: {
const Register reg = in_regs[i].first()->as_Register();
Address stackaddr(Z_SP, offset);
if (map != NULL) {
__ z_st(reg, stackaddr);
} else {
__ z_lgf(reg, stackaddr);
}
slot++;
assert(slot <= stack_slots, "overflow (after INT or smaller stack slot)");
break;
}
case T_ARRAY:
case T_LONG:
// handled above
break;
case T_OBJECT:
default: ShouldNotReachHere();
}
} else if (in_regs[i].first()->is_FloatRegister()) {
if (in_sig_bt[i] == T_FLOAT) {
int offset = slot * VMRegImpl::stack_slot_size;
slot++;
assert(slot <= stack_slots, "overflow (after FLOAT stack slot)");
const FloatRegister freg = in_regs[i].first()->as_FloatRegister();
Address stackaddr(Z_SP, offset);
if (map != NULL) {
__ freg2mem_opt(freg, stackaddr, false);
} else {
__ mem2freg_opt(freg, stackaddr, false);
}
}
} else if (in_regs[i].first()->is_stack() &&
in_sig_bt[i] == T_ARRAY && map != NULL) {
int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
}
}
}
// Check GCLocker::needs_gc and enter the runtime if it's true. This
// keeps a new JNI critical region from starting until a GC has been
// forced. Save down any oops in registers and describe them in an OopMap.
static void check_needs_gc_for_critical_native(MacroAssembler *masm,
const int stack_slots,
const int total_in_args,
const int arg_save_area,
OopMapSet *oop_maps,
VMRegPair *in_regs,
BasicType *in_sig_bt) {
__ block_comment("check GCLocker::needs_gc");
Label cont;
// Check GCLocker::_needs_gc flag.
__ load_const_optimized(Z_R1_scratch, (long) GCLocker::needs_gc_address());
__ z_cli(0, Z_R1_scratch, 0);
__ z_bre(cont);
// Save down any values that are live in registers and call into the
// runtime to halt for a GC.
OopMap *map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, map, in_regs, in_sig_bt);
address the_pc = __ pc();
__ set_last_Java_frame(Z_SP, noreg);
__ block_comment("block_for_jni_critical");
__ z_lgr(Z_ARG1, Z_thread);
address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical);
__ call_c(entry_point);
oop_maps->add_gc_map(__ offset(), map);
__ reset_last_Java_frame();
// Reload all the register arguments.
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, NULL, in_regs, in_sig_bt);
__ bind(cont);
if (StressCriticalJNINatives) {
// Stress register saving
OopMap *map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, map, in_regs, in_sig_bt);
// Destroy argument registers.
for (int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_Register()) {
// Don't set CC.
__ clear_reg(in_regs[i].first()->as_Register(), true, false);
} else {
if (in_regs[i].first()->is_FloatRegister()) {
FloatRegister fr = in_regs[i].first()->as_FloatRegister();
__ z_lcdbr(fr, fr);
}
}
}
save_or_restore_arguments(masm, stack_slots, total_in_args,
arg_save_area, NULL, in_regs, in_sig_bt);
}
}
static void move_ptr(MacroAssembler *masm,
VMRegPair src,
VMRegPair dst,
int framesize_in_slots) {
int frame_offset = framesize_in_slots * VMRegImpl::stack_slot_size;
if (src.first()->is_stack()) {
if (dst.first()->is_stack()) {
// stack to stack
__ mem2reg_opt(Z_R0_scratch, Address(Z_SP, reg2offset(src.first()) + frame_offset));
__ reg2mem_opt(Z_R0_scratch, Address(Z_SP, reg2offset(dst.first())));
} else {
// stack to reg
__ mem2reg_opt(dst.first()->as_Register(),
Address(Z_SP, reg2offset(src.first()) + frame_offset));
}
} else {
if (dst.first()->is_stack()) {
// reg to stack
__ reg2mem_opt(src.first()->as_Register(), Address(Z_SP, reg2offset(dst.first())));
} else {
__ lgr_if_needed(dst.first()->as_Register(), src.first()->as_Register());
}
}
}
// Unpack an array argument into a pointer to the body and the length
// if the array is non-null, otherwise pass 0 for both.
static void unpack_array_argument(MacroAssembler *masm,
VMRegPair reg,
BasicType in_elem_type,
VMRegPair body_arg,
VMRegPair length_arg,
int framesize_in_slots) {
Register tmp_reg = Z_tmp_2;
Register tmp2_reg = Z_tmp_1;
assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
"possible collision");
assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
"possible collision");
// Pass the length, ptr pair.
NearLabel set_out_args;
VMRegPair tmp, tmp2;
tmp.set_ptr(tmp_reg->as_VMReg());
tmp2.set_ptr(tmp2_reg->as_VMReg());
if (reg.first()->is_stack()) {
// Load the arg up from the stack.
move_ptr(masm, reg, tmp, framesize_in_slots);
reg = tmp;
}
const Register first = reg.first()->as_Register();
// Don't set CC, indicate unused result.
(void) __ clear_reg(tmp2_reg, true, false);
if (tmp_reg != first) {
__ clear_reg(tmp_reg, true, false); // Don't set CC.
}
__ compare64_and_branch(first, (RegisterOrConstant)0L, Assembler::bcondEqual, set_out_args);
__ z_lgf(tmp2_reg, Address(first, arrayOopDesc::length_offset_in_bytes()));
__ add2reg(tmp_reg, arrayOopDesc::base_offset_in_bytes(in_elem_type), first);
__ bind(set_out_args);
move_ptr(masm, tmp, body_arg, framesize_in_slots);
move32_64(masm, tmp2, length_arg, framesize_in_slots);
}
//----------------------------------------------------------------------
// Wrap a JNI call.
//----------------------------------------------------------------------
#undef USE_RESIZE_FRAME
nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
const methodHandle& method,
int compile_id,
BasicType *in_sig_bt,
VMRegPair *in_regs,
BasicType ret_type) {
#ifdef COMPILER2
int total_in_args = method->size_of_parameters();
if (method->is_method_handle_intrinsic()) {
vmIntrinsics::ID iid = method->intrinsic_id();
intptr_t start = (intptr_t) __ pc();
int vep_offset = ((intptr_t) __ pc()) - start;
gen_special_dispatch(masm, total_in_args,
method->intrinsic_id(), in_sig_bt, in_regs);
int frame_complete = ((intptr_t)__ pc()) - start; // Not complete, period.
__ flush();
int stack_slots = SharedRuntime::out_preserve_stack_slots(); // No out slots at all, actually.
return nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
in_ByteSize(-1),
in_ByteSize(-1),
(OopMapSet *) NULL);
}
///////////////////////////////////////////////////////////////////////
//
// Precalculations before generating any code
//
///////////////////////////////////////////////////////////////////////
bool is_critical_native = true;
address native_func = method->critical_native_function();
if (native_func == NULL) {
native_func = method->native_function();
is_critical_native = false;
}
assert(native_func != NULL, "must have function");
//---------------------------------------------------------------------
// We have received a description of where all the java args are located
// on entry to the wrapper. We need to convert these args to where
// the jni function will expect them. To figure out where they go
// we convert the java signature to a C signature by inserting
// the hidden arguments as arg[0] and possibly arg[1] (static method).
//
// The first hidden argument arg[0] is a pointer to the JNI environment.
// It is generated for every call.
// The second argument arg[1] to the JNI call, which is hidden for static
// methods, is the boxed lock object. For static calls, the lock object
// is the static method itself. The oop is constructed here. for instance
// calls, the lock is performed on the object itself, the pointer of
// which is passed as the first visible argument.
//---------------------------------------------------------------------
// Additionally, on z/Architecture we must convert integers
// to longs in the C signature. We do this in advance in order to have
// no trouble with indexes into the bt-arrays.
// So convert the signature and registers now, and adjust the total number
// of in-arguments accordingly.
bool method_is_static = method->is_static();
int total_c_args = total_in_args;
if (!is_critical_native) {
int n_hidden_args = method_is_static ? 2 : 1;
total_c_args += n_hidden_args;
} else {
// No JNIEnv*, no this*, but unpacked arrays (base+length).
for (int i = 0; i < total_in_args; i++) {
if (in_sig_bt[i] == T_ARRAY) {
total_c_args ++;
}
}
}
BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
VMRegPair *out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
BasicType* in_elem_bt = NULL;
// Create the signature for the C call:
// 1) add the JNIEnv*
// 2) add the class if the method is static
// 3) copy the rest of the incoming signature (shifted by the number of
// hidden arguments)
int argc = 0;
if (!is_critical_native) {
out_sig_bt[argc++] = T_ADDRESS;
if (method->is_static()) {
out_sig_bt[argc++] = T_OBJECT;
}
for (int i = 0; i < total_in_args; i++) {
out_sig_bt[argc++] = in_sig_bt[i];
}
} else {
in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
SignatureStream ss(method->signature());
int o = 0;
for (int i = 0; i < total_in_args; i++, o++) {
if (in_sig_bt[i] == T_ARRAY) {
// Arrays are passed as tuples (int, elem*).
Symbol* atype = ss.as_symbol();
const char* at = atype->as_C_string();
if (strlen(at) == 2) {
assert(at[0] == '[', "must be");
switch (at[1]) {
case 'B': in_elem_bt[o] = T_BYTE; break;
case 'C': in_elem_bt[o] = T_CHAR; break;
case 'D': in_elem_bt[o] = T_DOUBLE; break;
case 'F': in_elem_bt[o] = T_FLOAT; break;
case 'I': in_elem_bt[o] = T_INT; break;
case 'J': in_elem_bt[o] = T_LONG; break;
case 'S': in_elem_bt[o] = T_SHORT; break;
case 'Z': in_elem_bt[o] = T_BOOLEAN; break;
default: ShouldNotReachHere();
}
}
} else {
in_elem_bt[o] = T_VOID;
}
if (in_sig_bt[i] != T_VOID) {
assert(in_sig_bt[i] == ss.type(), "must match");
ss.next();
}
}
assert(total_in_args == o, "must match");
for (int i = 0; i < total_in_args; i++) {
if (in_sig_bt[i] == T_ARRAY) {
// Arrays are passed as tuples (int, elem*).
out_sig_bt[argc++] = T_INT;
out_sig_bt[argc++] = T_ADDRESS;
} else {
out_sig_bt[argc++] = in_sig_bt[i];
}
}
}
///////////////////////////////////////////////////////////////////////
// Now figure out where the args must be stored and how much stack space
// they require (neglecting out_preserve_stack_slots but providing space
// for storing the first five register arguments).
// It's weird, see int_stk_helper.
///////////////////////////////////////////////////////////////////////
//---------------------------------------------------------------------
// Compute framesize for the wrapper.
//
// - We need to handlize all oops passed in registers.
// - We must create space for them here that is disjoint from the save area.
// - We always just allocate 5 words for storing down these object.
// This allows us to simply record the base and use the Ireg number to
// decide which slot to use.
// - Note that the reg number used to index the stack slot is the inbound
// number, not the outbound number.
// - We must shuffle args to match the native convention,
// and to include var-args space.
//---------------------------------------------------------------------
//---------------------------------------------------------------------
// Calculate the total number of stack slots we will need:
// - 1) abi requirements
// - 2) outgoing args
// - 3) space for inbound oop handle area
// - 4) space for handlizing a klass if static method
// - 5) space for a lock if synchronized method
// - 6) workspace (save rtn value, int<->float reg moves, ...)
// - 7) filler slots for alignment
//---------------------------------------------------------------------
// Here is how the space we have allocated will look like.
// Since we use resize_frame, we do not create a new stack frame,
// but just extend the one we got with our own data area.
//
// If an offset or pointer name points to a separator line, it is
// assumed that addressing with offset 0 selects storage starting
// at the first byte above the separator line.
//
//
// ... ...
// | caller's frame |
// FP-> |---------------------|
// | filler slots, if any|
// 7| #slots == mult of 2 |
// |---------------------|
// | work space |
// 6| 2 slots = 8 bytes |
// |---------------------|
// 5| lock box (if sync) |
// |---------------------| <- lock_slot_offset
// 4| klass (if static) |
// |---------------------| <- klass_slot_offset
// 3| oopHandle area |
// | (save area for |
// | critical natives) |
// | |
// | |
// |---------------------| <- oop_handle_offset
// 2| outbound memory |
// ... ...
// | based arguments |
// |---------------------|
// | vararg |
// ... ...
// | area |
// |---------------------| <- out_arg_slot_offset
// 1| out_preserved_slots |
// ... ...
// | (z_abi spec) |
// SP-> |---------------------| <- FP_slot_offset (back chain)
// ... ...
//
//---------------------------------------------------------------------
// *_slot_offset indicates offset from SP in #stack slots
// *_offset indicates offset from SP in #bytes
int stack_slots = c_calling_convention(out_sig_bt, out_regs, /*regs2=*/NULL, total_c_args) + // 1+2
SharedRuntime::out_preserve_stack_slots(); // see c_calling_convention
// Now the space for the inbound oop handle area.
int total_save_slots = RegisterImpl::number_of_arg_registers * VMRegImpl::slots_per_word;
if (is_critical_native) {
// Critical natives may have to call out so they need a save area
// for register arguments.
int double_slots = 0;
int single_slots = 0;
for (int i = 0; i < total_in_args; i++) {
if (in_regs[i].first()->is_Register()) {
const Register reg = in_regs[i].first()->as_Register();
switch (in_sig_bt[i]) {
case T_BOOLEAN:
case T_BYTE:
case T_SHORT:
case T_CHAR:
case T_INT:
// Fall through.
case T_ARRAY:
case T_LONG: double_slots++; break;
default: ShouldNotReachHere();
}
} else {
if (in_regs[i].first()->is_FloatRegister()) {
switch (in_sig_bt[i]) {
case T_FLOAT: single_slots++; break;
case T_DOUBLE: double_slots++; break;
default: ShouldNotReachHere();
}
}
}
} // for
total_save_slots = double_slots * 2 + align_up(single_slots, 2); // Round to even.
}
int oop_handle_slot_offset = stack_slots;
stack_slots += total_save_slots; // 3)
int klass_slot_offset = 0;
int klass_offset = -1;
if (method_is_static && !is_critical_native) { // 4)
klass_slot_offset = stack_slots;
klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
stack_slots += VMRegImpl::slots_per_word;
}
int lock_slot_offset = 0;
int lock_offset = -1;
if (method->is_synchronized()) { // 5)
lock_slot_offset = stack_slots;
lock_offset = lock_slot_offset * VMRegImpl::stack_slot_size;
stack_slots += VMRegImpl::slots_per_word;
}
int workspace_slot_offset= stack_slots; // 6)
stack_slots += 2;
// Now compute actual number of stack words we need.
// Round to align stack properly.
stack_slots = align_up(stack_slots, // 7)
frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
///////////////////////////////////////////////////////////////////////
// Now we can start generating code
///////////////////////////////////////////////////////////////////////
unsigned int wrapper_CodeStart = __ offset();
unsigned int wrapper_UEPStart;
unsigned int wrapper_VEPStart;
unsigned int wrapper_FrameDone;
unsigned int wrapper_CRegsSet;
Label handle_pending_exception;
Label ic_miss;
//---------------------------------------------------------------------
// Unverified entry point (UEP)
//---------------------------------------------------------------------
wrapper_UEPStart = __ offset();
// check ic: object class <-> cached class
if (!method_is_static) __ nmethod_UEP(ic_miss);
// Fill with nops (alignment of verified entry point).
__ align(CodeEntryAlignment);
//---------------------------------------------------------------------
// Verified entry point (VEP)
//---------------------------------------------------------------------
wrapper_VEPStart = __ offset();
if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
Label L_skip_barrier;
Register klass = Z_R1_scratch;
// Notify OOP recorder (don't need the relocation)
AddressLiteral md = __ constant_metadata_address(method->method_holder());
__ load_const_optimized(klass, md.value());
__ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/);
__ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub());
__ z_br(klass);
__ bind(L_skip_barrier);
}
__ save_return_pc();
__ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
#ifndef USE_RESIZE_FRAME
__ push_frame(frame_size_in_bytes); // Create a new frame for the wrapper.
#else
__ resize_frame(-frame_size_in_bytes, Z_R0_scratch); // No new frame for the wrapper.
// Just resize the existing one.
#endif
wrapper_FrameDone = __ offset();
__ verify_thread();
// Native nmethod wrappers never take possession of the oop arguments.
// So the caller will gc the arguments.
// The only thing we need an oopMap for is if the call is static.
//
// An OopMap for lock (and class if static), and one for the VM call itself
OopMapSet *oop_maps = new OopMapSet();
OopMap *map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
if (is_critical_native) {
check_needs_gc_for_critical_native(masm, stack_slots, total_in_args,
oop_handle_slot_offset, oop_maps, in_regs, in_sig_bt);
}
//////////////////////////////////////////////////////////////////////
//
// The Grand Shuffle
//
//////////////////////////////////////////////////////////////////////
//
// We immediately shuffle the arguments so that for any vm call we have
// to make from here on out (sync slow path, jvmti, etc.) we will have
// captured the oops from our caller and have a valid oopMap for them.
//
//--------------------------------------------------------------------
// Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
// (derived from JavaThread* which is in Z_thread) and, if static,
// the class mirror instead of a receiver. This pretty much guarantees that
// register layout will not match. We ignore these extra arguments during
// the shuffle. The shuffle is described by the two calling convention
// vectors we have in our possession. We simply walk the java vector to
// get the source locations and the c vector to get the destinations.
//
// This is a trick. We double the stack slots so we can claim
// the oops in the caller's frame. Since we are sure to have
// more args than the caller doubling is enough to make
// sure we can capture all the incoming oop args from the caller.
//--------------------------------------------------------------------
// Record sp-based slot for receiver on stack for non-static methods.
int receiver_offset = -1;
//--------------------------------------------------------------------
// We move the arguments backwards because the floating point registers
// destination will always be to a register with a greater or equal
// register number or the stack.
// jix is the index of the incoming Java arguments.
// cix is the index of the outgoing C arguments.
//--------------------------------------------------------------------
#ifdef ASSERT
bool reg_destroyed[RegisterImpl::number_of_registers];
bool freg_destroyed[FloatRegisterImpl::number_of_registers];
for (int r = 0; r < RegisterImpl::number_of_registers; r++) {
reg_destroyed[r] = false;
}
for (int f = 0; f < FloatRegisterImpl::number_of_registers; f++) {
freg_destroyed[f] = false;
}
#endif // ASSERT
for (int jix = total_in_args - 1, cix = total_c_args - 1; jix >= 0; jix--, cix--) {
#ifdef ASSERT
if (in_regs[jix].first()->is_Register()) {
assert(!reg_destroyed[in_regs[jix].first()->as_Register()->encoding()], "ack!");
} else {
if (in_regs[jix].first()->is_FloatRegister()) {
assert(!freg_destroyed[in_regs[jix].first()->as_FloatRegister()->encoding()], "ack!");
}
}
if (out_regs[cix].first()->is_Register()) {
reg_destroyed[out_regs[cix].first()->as_Register()->encoding()] = true;
} else {
if (out_regs[cix].first()->is_FloatRegister()) {
freg_destroyed[out_regs[cix].first()->as_FloatRegister()->encoding()] = true;
}
}
#endif // ASSERT
switch (in_sig_bt[jix]) {
// Due to casting, small integers should only occur in pairs with type T_LONG.
case T_BOOLEAN:
case T_CHAR:
case T_BYTE:
case T_SHORT:
case T_INT:
// Move int and do sign extension.
move32_64(masm, in_regs[jix], out_regs[cix], stack_slots);
break;
case T_LONG :
long_move(masm, in_regs[jix], out_regs[cix], stack_slots);
break;
case T_ARRAY:
if (is_critical_native) {
int body_arg = cix;
cix -= 1; // Point to length arg.
unpack_array_argument(masm, in_regs[jix], in_elem_bt[jix], out_regs[body_arg], out_regs[cix], stack_slots);
break;
}
// else fallthrough
case T_OBJECT:
assert(!is_critical_native, "no oop arguments");
object_move(masm, map, oop_handle_slot_offset, stack_slots, in_regs[jix], out_regs[cix],
((jix == 0) && (!method_is_static)),
&receiver_offset);
break;
case T_VOID:
break;
case T_FLOAT:
float_move(masm, in_regs[jix], out_regs[cix], stack_slots, workspace_slot_offset);
break;
case T_DOUBLE:
assert(jix+1 < total_in_args && in_sig_bt[jix+1] == T_VOID && out_sig_bt[cix+1] == T_VOID, "bad arg list");
double_move(masm, in_regs[jix], out_regs[cix], stack_slots, workspace_slot_offset);
break;
case T_ADDRESS:
assert(false, "found T_ADDRESS in java args");
break;
default:
ShouldNotReachHere();
}
}
//--------------------------------------------------------------------
// Pre-load a static method's oop into ARG2.
// Used both by locking code and the normal JNI call code.
//--------------------------------------------------------------------
if (method_is_static && !is_critical_native) {
__ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), Z_ARG2);
// Now handlize the static class mirror in ARG2. It's known not-null.
__ z_stg(Z_ARG2, klass_offset, Z_SP);
map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
__ add2reg(Z_ARG2, klass_offset, Z_SP);
}
// Get JNIEnv* which is first argument to native.
if (!is_critical_native) {
__ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread);
}
//////////////////////////////////////////////////////////////////////
// We have all of the arguments setup at this point.
// We MUST NOT touch any outgoing regs from this point on.
// So if we must call out we must push a new frame.
//////////////////////////////////////////////////////////////////////
// Calc the current pc into Z_R10 and into wrapper_CRegsSet.
// Both values represent the same position.
__ get_PC(Z_R10); // PC into register
wrapper_CRegsSet = __ offset(); // and into into variable.
// Z_R10 now has the pc loaded that we will use when we finally call to native.
// We use the same pc/oopMap repeatedly when we call out.
oop_maps->add_gc_map((int)(wrapper_CRegsSet-wrapper_CodeStart), map);
// Lock a synchronized method.
if (method->is_synchronized()) {
assert(!is_critical_native, "unhandled");
// ATTENTION: args and Z_R10 must be preserved.
Register r_oop = Z_R11;
Register r_box = Z_R12;
Register r_tmp1 = Z_R13;
Register r_tmp2 = Z_R7;
Label done;
// Load the oop for the object or class. R_carg2_classorobject contains
// either the handlized oop from the incoming arguments or the handlized
// class mirror (if the method is static).
__ z_lg(r_oop, 0, Z_ARG2);
lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
// Get the lock box slot's address.
__ add2reg(r_box, lock_offset, Z_SP);
#ifdef ASSERT
if (UseBiasedLocking)
// Making the box point to itself will make it clear it went unused
// but also be obviously invalid.
__ z_stg(r_box, 0, r_box);
#endif // ASSERT
// Try fastpath for locking.
// Fast_lock kills r_temp_1, r_temp_2. (Don't use R1 as temp, won't work!)
__ compiler_fast_lock_object(r_oop, r_box, r_tmp1, r_tmp2);
__ z_bre(done);
//-------------------------------------------------------------------------
// None of the above fast optimizations worked so we have to get into the
// slow case of monitor enter. Inline a special case of call_VM that
// disallows any pending_exception.
//-------------------------------------------------------------------------
Register oldSP = Z_R11;
__ z_lgr(oldSP, Z_SP);
RegisterSaver::save_live_registers(masm, RegisterSaver::arg_registers);
// Prepare arguments for call.
__ z_lg(Z_ARG1, 0, Z_ARG2); // Ynboxed class mirror or unboxed object.
__ add2reg(Z_ARG2, lock_offset, oldSP);
__ z_lgr(Z_ARG3, Z_thread);
__ set_last_Java_frame(oldSP, Z_R10 /* gc map pc */);
// Do the call.
__ load_const_optimized(Z_R1_scratch, CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C));
__ call(Z_R1_scratch);
__ reset_last_Java_frame();
RegisterSaver::restore_live_registers(masm, RegisterSaver::arg_registers);
#ifdef ASSERT
{ Label L;
__ load_and_test_long(Z_R0, Address(Z_thread, Thread::pending_exception_offset()));
__ z_bre(L);
__ stop("no pending exception allowed on exit from IR::monitorenter");
__ bind(L);
}
#endif
__ bind(done);
} // lock for synchronized methods
//////////////////////////////////////////////////////////////////////
// Finally just about ready to make the JNI call.
//////////////////////////////////////////////////////////////////////
// Use that pc we placed in Z_R10 a while back as the current frame anchor.
__ set_last_Java_frame(Z_SP, Z_R10);
// Transition from _thread_in_Java to _thread_in_native.
__ set_thread_state(_thread_in_native);
//////////////////////////////////////////////////////////////////////
// This is the JNI call.
//////////////////////////////////////////////////////////////////////
__ call_c(native_func);
//////////////////////////////////////////////////////////////////////
// We have survived the call once we reach here.
//////////////////////////////////////////////////////////////////////
//--------------------------------------------------------------------
// Unpack native results.
//--------------------------------------------------------------------
// For int-types, we do any needed sign-extension required.
// Care must be taken that the return value (in Z_ARG1 = Z_RET = Z_R2
// or in Z_FARG0 = Z_FRET = Z_F0) will survive any VM calls for
// blocking or unlocking.
// An OOP result (handle) is done specially in the slow-path code.
//--------------------------------------------------------------------
switch (ret_type) {
case T_VOID: break; // Nothing to do!
case T_FLOAT: break; // Got it where we want it (unless slow-path)
case T_DOUBLE: break; // Got it where we want it (unless slow-path)
case T_LONG: break; // Got it where we want it (unless slow-path)
case T_OBJECT: break; // Really a handle.
// Cannot de-handlize until after reclaiming jvm_lock.
case T_ARRAY: break;
case T_BOOLEAN: // 0 -> false(0); !0 -> true(1)
__ z_lngfr(Z_RET, Z_RET); // Force sign bit on except for zero.
__ z_srlg(Z_RET, Z_RET, 63); // Shift sign bit into least significant pos.
break;
case T_BYTE: __ z_lgbr(Z_RET, Z_RET); break; // sign extension
case T_CHAR: __ z_llghr(Z_RET, Z_RET); break; // unsigned result
case T_SHORT: __ z_lghr(Z_RET, Z_RET); break; // sign extension
case T_INT: __ z_lgfr(Z_RET, Z_RET); break; // sign-extend for beauty.
default:
ShouldNotReachHere();
break;
}
// Switch thread to "native transition" state before reading the synchronization state.
// This additional state is necessary because reading and testing the synchronization
// state is not atomic w.r.t. GC, as this scenario demonstrates:
// - Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
// - VM thread changes sync state to synchronizing and suspends threads for GC.
// - Thread A is resumed to finish this native method, but doesn't block here since it
// didn't see any synchronization in progress, and escapes.
// Transition from _thread_in_native to _thread_in_native_trans.
__ set_thread_state(_thread_in_native_trans);
// Safepoint synchronization
//--------------------------------------------------------------------
// Must we block?
//--------------------------------------------------------------------
// Block, if necessary, before resuming in _thread_in_Java state.
// In order for GC to work, don't clear the last_Java_sp until after blocking.
//--------------------------------------------------------------------
Label after_transition;
{
Label no_block, sync;
save_native_result(masm, ret_type, workspace_slot_offset); // Make Z_R2 available as work reg.
// Force this write out before the read below.
__ z_fence();
__ safepoint_poll(sync, Z_R1);
__ load_and_test_int(Z_R0, Address(Z_thread, JavaThread::suspend_flags_offset()));
__ z_bre(no_block);
// Block. Save any potential method result value before the operation and
// use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
// lets us share the oopMap we used when we went native rather than create
// a distinct one for this pc.
//
__ bind(sync);
__ z_acquire();
address entry_point = is_critical_native ? CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)
: CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
__ call_VM_leaf(entry_point, Z_thread);
if (is_critical_native) {
restore_native_result(masm, ret_type, workspace_slot_offset);
__ z_bru(after_transition); // No thread state transition here.
}
__ bind(no_block);
restore_native_result(masm, ret_type, workspace_slot_offset);
}
//--------------------------------------------------------------------
// Thread state is thread_in_native_trans. Any safepoint blocking has
// already happened so we can now change state to _thread_in_Java.
//--------------------------------------------------------------------
// Transition from _thread_in_native_trans to _thread_in_Java.
__ set_thread_state(_thread_in_Java);
__ bind(after_transition);
//--------------------------------------------------------------------
// Reguard any pages if necessary.
// Protect native result from being destroyed.
//--------------------------------------------------------------------
Label no_reguard;
__ z_cli(Address(Z_thread, JavaThread::stack_guard_state_offset() + in_ByteSize(sizeof(JavaThread::StackGuardState) - 1)),
JavaThread::stack_guard_yellow_reserved_disabled);
__ z_bre(no_reguard);
save_native_result(masm, ret_type, workspace_slot_offset);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), Z_method);
restore_native_result(masm, ret_type, workspace_slot_offset);
__ bind(no_reguard);
// Synchronized methods (slow path only)
// No pending exceptions for now.
//--------------------------------------------------------------------
// Handle possibly pending exception (will unlock if necessary).
// Native result is, if any is live, in Z_FRES or Z_RES.
//--------------------------------------------------------------------
// Unlock
//--------------------------------------------------------------------
if (method->is_synchronized()) {
const Register r_oop = Z_R11;
const Register r_box = Z_R12;
const Register r_tmp1 = Z_R13;
const Register r_tmp2 = Z_R7;
Label done;
// Get unboxed oop of class mirror or object ...
int offset = method_is_static ? klass_offset : receiver_offset;
assert(offset != -1, "");
__ z_lg(r_oop, offset, Z_SP);
// ... and address of lock object box.
__ add2reg(r_box, lock_offset, Z_SP);
// Try fastpath for unlocking.
__ compiler_fast_unlock_object(r_oop, r_box, r_tmp1, r_tmp2); // Don't use R1 as temp.
__ z_bre(done);
// Slow path for unlocking.
// Save and restore any potential method result value around the unlocking operation.
const Register R_exc = Z_R11;
save_native_result(masm, ret_type, workspace_slot_offset);
// Must save pending exception around the slow-path VM call. Since it's a
// leaf call, the pending exception (if any) can be kept in a register.
__ z_lg(R_exc, Address(Z_thread, Thread::pending_exception_offset()));
assert(R_exc->is_nonvolatile(), "exception register must be non-volatile");
// Must clear pending-exception before re-entering the VM. Since this is
// a leaf call, pending-exception-oop can be safely kept in a register.
__ clear_mem(Address(Z_thread, Thread::pending_exception_offset()), sizeof(intptr_t));
// Inline a special case of call_VM that disallows any pending_exception.
// Get locked oop from the handle we passed to jni.
__ z_lg(Z_ARG1, offset, Z_SP);
__ add2reg(Z_ARG2, lock_offset, Z_SP);
__ z_lgr(Z_ARG3, Z_thread);
__ load_const_optimized(Z_R1_scratch, CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
__ call(Z_R1_scratch);
#ifdef ASSERT
{
Label L;
__ load_and_test_long(Z_R0, Address(Z_thread, Thread::pending_exception_offset()));
__ z_bre(L);
__ stop("no pending exception allowed on exit from IR::monitorexit");
__ bind(L);
}
#endif
// Check_forward_pending_exception jump to forward_exception if any pending
// exception is set. The forward_exception routine expects to see the
// exception in pending_exception and not in a register. Kind of clumsy,
// since all folks who branch to forward_exception must have tested
// pending_exception first and hence have it in a register already.
__ z_stg(R_exc, Address(Z_thread, Thread::pending_exception_offset()));
restore_native_result(masm, ret_type, workspace_slot_offset);
__ z_bru(done);
__ z_illtrap(0x66);
__ bind(done);
}
//--------------------------------------------------------------------
// Clear "last Java frame" SP and PC.
//--------------------------------------------------------------------
__ verify_thread(); // Z_thread must be correct.
__ reset_last_Java_frame();
// Unpack oop result, e.g. JNIHandles::resolve result.
if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
__ resolve_jobject(Z_RET, /* tmp1 */ Z_R13, /* tmp2 */ Z_R7);
}
if (CheckJNICalls) {
// clear_pending_jni_exception_check
__ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop));
}
// Reset handle block.
if (!is_critical_native) {
__ z_lg(Z_R1_scratch, Address(Z_thread, JavaThread::active_handles_offset()));
__ clear_mem(Address(Z_R1_scratch, JNIHandleBlock::top_offset_in_bytes()), 4);
// Check for pending exceptions.
__ load_and_test_long(Z_R0, Address(Z_thread, Thread::pending_exception_offset()));
__ z_brne(handle_pending_exception);
}
//////////////////////////////////////////////////////////////////////
// Return
//////////////////////////////////////////////////////////////////////
#ifndef USE_RESIZE_FRAME
__ pop_frame(); // Pop wrapper frame.
#else
__ resize_frame(frame_size_in_bytes, Z_R0_scratch); // Revert stack extension.
#endif
__ restore_return_pc(); // This is the way back to the caller.
__ z_br(Z_R14);
//////////////////////////////////////////////////////////////////////
// Out-of-line calls to the runtime.
//////////////////////////////////////////////////////////////////////
if (!is_critical_native) {
//---------------------------------------------------------------------
// Handler for pending exceptions (out-of-line).
//---------------------------------------------------------------------
// Since this is a native call, we know the proper exception handler
// is the empty function. We just pop this frame and then jump to
// forward_exception_entry. Z_R14 will contain the native caller's
// return PC.
__ bind(handle_pending_exception);
__ pop_frame();
__ load_const_optimized(Z_R1_scratch, StubRoutines::forward_exception_entry());
__ restore_return_pc();
__ z_br(Z_R1_scratch);
//---------------------------------------------------------------------
// Handler for a cache miss (out-of-line)
//---------------------------------------------------------------------
__ call_ic_miss_handler(ic_miss, 0x77, 0, Z_R1_scratch);
}
__ flush();
//////////////////////////////////////////////////////////////////////
// end of code generation
//////////////////////////////////////////////////////////////////////
nmethod *nm = nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
(int)(wrapper_VEPStart-wrapper_CodeStart),
(int)(wrapper_FrameDone-wrapper_CodeStart),
stack_slots / VMRegImpl::slots_per_word,
(method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
in_ByteSize(lock_offset),
oop_maps);
if (is_critical_native) {
nm->set_lazy_critical_native(true);
}
return nm;
#else
ShouldNotReachHere();
return NULL;
#endif // COMPILER2
}
static address gen_c2i_adapter(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs,
Label &skip_fixup) {
// Before we get into the guts of the C2I adapter, see if we should be here
// at all. We've come from compiled code and are attempting to jump to the
// interpreter, which means the caller made a static call to get here
// (vcalls always get a compiled target if there is one). Check for a
// compiled target. If there is one, we need to patch the caller's call.
// These two defs MUST MATCH code in gen_i2c2i_adapter!
const Register ientry = Z_R11;
const Register code = Z_R11;
address c2i_entrypoint;
Label patch_callsite;
// Regular (verified) c2i entry point.
c2i_entrypoint = __ pc();
// Call patching needed?
__ load_and_test_long(Z_R0_scratch, method_(code));
__ z_lg(ientry, method_(interpreter_entry)); // Preload interpreter entry (also if patching).
__ z_brne(patch_callsite); // Patch required if code != NULL (compiled target exists).
__ bind(skip_fixup); // Return point from patch_callsite.
// Since all args are passed on the stack, total_args_passed*wordSize is the
// space we need. We need ABI scratch area but we use the caller's since
// it has already been allocated.
const int abi_scratch = frame::z_top_ijava_frame_abi_size;
int extraspace = align_up(total_args_passed, 2)*wordSize + abi_scratch;
Register sender_SP = Z_R10;
Register value = Z_R12;
// Remember the senderSP so we can pop the interpreter arguments off of the stack.
// In addition, frame manager expects initial_caller_sp in Z_R10.
__ z_lgr(sender_SP, Z_SP);
// This should always fit in 14 bit immediate.
__ resize_frame(-extraspace, Z_R0_scratch);
// We use the caller's ABI scratch area (out_preserved_stack_slots) for the initial
// args. This essentially moves the callers ABI scratch area from the top to the
// bottom of the arg area.
int st_off = extraspace - wordSize;
// Now write the args into the outgoing interpreter space.
for (int i = 0; i < total_args_passed; i++) {
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_stack()) {
// The calling convention produces OptoRegs that ignore the preserve area (abi scratch).
// We must account for it here.
int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
if (!r_2->is_valid()) {
__ z_mvc(Address(Z_SP, st_off), Address(sender_SP, ld_off), sizeof(void*));
} else {
// longs are given 2 64-bit slots in the interpreter,
// but the data is passed in only 1 slot.
if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
#ifdef ASSERT
__ clear_mem(Address(Z_SP, st_off), sizeof(void *));
#endif
st_off -= wordSize;
}
__ z_mvc(Address(Z_SP, st_off), Address(sender_SP, ld_off), sizeof(void*));
}
} else {
if (r_1->is_Register()) {
if (!r_2->is_valid()) {
__ z_st(r_1->as_Register(), st_off, Z_SP);
} else {
// longs are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
#ifdef ASSERT
__ clear_mem(Address(Z_SP, st_off), sizeof(void *));
#endif
st_off -= wordSize;
}
__ z_stg(r_1->as_Register(), st_off, Z_SP);
}
} else {
assert(r_1->is_FloatRegister(), "");
if (!r_2->is_valid()) {
__ z_ste(r_1->as_FloatRegister(), st_off, Z_SP);
} else {
// In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
// One of these should get known junk...
#ifdef ASSERT
__ z_lzdr(Z_F1);
__ z_std(Z_F1, st_off, Z_SP);
#endif
st_off-=wordSize;
__ z_std(r_1->as_FloatRegister(), st_off, Z_SP);
}
}
}
st_off -= wordSize;
}
// Jump to the interpreter just as if interpreter was doing it.
__ add2reg(Z_esp, st_off, Z_SP);
// Frame_manager expects initial_caller_sp (= SP without resize by c2i) in Z_R10.
__ z_br(ientry);
// Prevent illegal entry to out-of-line code.
__ z_illtrap(0x22);
// Generate out-of-line runtime call to patch caller,
// then continue as interpreted.
// IF you lose the race you go interpreted.
// We don't see any possible endless c2i -> i2c -> c2i ...
// transitions no matter how rare.
__ bind(patch_callsite);
RegisterSaver::save_live_registers(masm, RegisterSaver::arg_registers);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), Z_method, Z_R14);
RegisterSaver::restore_live_registers(masm, RegisterSaver::arg_registers);
__ z_bru(skip_fixup);
// end of out-of-line code
return c2i_entrypoint;
}
// On entry, the following registers are set
//
// Z_thread r8 - JavaThread*
// Z_method r9 - callee's method (method to be invoked)
// Z_esp r7 - operand (or expression) stack pointer of caller. one slot above last arg.
// Z_SP r15 - SP prepared by call stub such that caller's outgoing args are near top
//
void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs) {
const Register value = Z_R12;
const Register ld_ptr= Z_esp;
int ld_offset = total_args_passed * wordSize;
// Cut-out for having no stack args.
if (comp_args_on_stack) {
// Sig words on the stack are greater than VMRegImpl::stack0. Those in
// registers are below. By subtracting stack0, we either get a negative
// number (all values in registers) or the maximum stack slot accessed.
// Convert VMRegImpl (4 byte) stack slots to words.
int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
// Round up to miminum stack alignment, in wordSize
comp_words_on_stack = align_up(comp_words_on_stack, 2);
__ resize_frame(-comp_words_on_stack*wordSize, Z_R0_scratch);
}
// Now generate the shuffle code. Pick up all register args and move the
// rest through register value=Z_R12.
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_VOID) {
assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
continue;
}
// Pick up 0, 1 or 2 words from ld_ptr.
assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
"scrambled load targets?");
VMReg r_1 = regs[i].first();
VMReg r_2 = regs[i].second();
if (!r_1->is_valid()) {
assert(!r_2->is_valid(), "");
continue;
}
if (r_1->is_FloatRegister()) {
if (!r_2->is_valid()) {
__ z_le(r_1->as_FloatRegister(), ld_offset, ld_ptr);
ld_offset-=wordSize;
} else {
// Skip the unused interpreter slot.
__ z_ld(r_1->as_FloatRegister(), ld_offset - wordSize, ld_ptr);
ld_offset -= 2 * wordSize;
}
} else {
if (r_1->is_stack()) {
// Must do a memory to memory move.
int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
if (!r_2->is_valid()) {
__ z_mvc(Address(Z_SP, st_off), Address(ld_ptr, ld_offset), sizeof(void*));
} else {
// In 64bit, longs are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
ld_offset -= wordSize;
}
__ z_mvc(Address(Z_SP, st_off), Address(ld_ptr, ld_offset), sizeof(void*));
}
} else {
if (!r_2->is_valid()) {
// Not sure we need to do this but it shouldn't hurt.
if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ADDRESS || sig_bt[i] == T_ARRAY) {
__ z_lg(r_1->as_Register(), ld_offset, ld_ptr);
} else {
__ z_l(r_1->as_Register(), ld_offset, ld_ptr);
}
} else {
// In 64bit, longs are given 2 64-bit slots in the interpreter, but the
// data is passed in only 1 slot.
if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
ld_offset -= wordSize;
}
__ z_lg(r_1->as_Register(), ld_offset, ld_ptr);
}
}
ld_offset -= wordSize;
}
}
// Jump to the compiled code just as if compiled code was doing it.
// load target address from method oop:
__ z_lg(Z_R1_scratch, Address(Z_method, Method::from_compiled_offset()));
// Store method oop into thread->callee_target.
// 6243940: We might end up in handle_wrong_method if
// the callee is deoptimized as we race thru here. If that
// happens we don't want to take a safepoint because the
// caller frame will look interpreted and arguments are now
// "compiled" so it is much better to make this transition
// invisible to the stack walking code. Unfortunately, if
// we try and find the callee by normal means a safepoint
// is possible. So we stash the desired callee in the thread
// and the vm will find it there should this case occur.
__ z_stg(Z_method, thread_(callee_target));
__ z_br(Z_R1_scratch);
}
AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
int total_args_passed,
int comp_args_on_stack,
const BasicType *sig_bt,
const VMRegPair *regs,
AdapterFingerPrint* fingerprint) {
__ align(CodeEntryAlignment);
address i2c_entry = __ pc();
gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
address c2i_unverified_entry;
Label skip_fixup;
{
Label ic_miss;
const int klass_offset = oopDesc::klass_offset_in_bytes();
const int holder_klass_offset = CompiledICHolder::holder_klass_offset();
const int holder_metadata_offset = CompiledICHolder::holder_metadata_offset();
// Out-of-line call to ic_miss handler.
__ call_ic_miss_handler(ic_miss, 0x11, 0, Z_R1_scratch);
// Unverified Entry Point UEP
__ align(CodeEntryAlignment);
c2i_unverified_entry = __ pc();
// Check the pointers.
if (!ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(klass_offset)) {
__ z_ltgr(Z_ARG1, Z_ARG1);
__ z_bre(ic_miss);
}
__ verify_oop(Z_ARG1);
// Check ic: object class <-> cached class
// Compress cached class for comparison. That's more efficient.
if (UseCompressedClassPointers) {
__ z_lg(Z_R11, holder_klass_offset, Z_method); // Z_R11 is overwritten a few instructions down anyway.
__ compare_klass_ptr(Z_R11, klass_offset, Z_ARG1, false); // Cached class can't be zero.
} else {
__ z_clc(klass_offset, sizeof(void *)-1, Z_ARG1, holder_klass_offset, Z_method);
}
__ z_brne(ic_miss); // Cache miss: call runtime to handle this.
// This def MUST MATCH code in gen_c2i_adapter!
const Register code = Z_R11;
__ z_lg(Z_method, holder_metadata_offset, Z_method);
__ load_and_test_long(Z_R0, method_(code));
__ z_brne(ic_miss); // Cache miss: call runtime to handle this.
// Fallthru to VEP. Duplicate LTG, but saved taken branch.
}
address c2i_entry = __ pc();
// Class initialization barrier for static methods
address c2i_no_clinit_check_entry = NULL;
if (VM_Version::supports_fast_class_init_checks()) {
Label L_skip_barrier;
{ // Bypass the barrier for non-static methods
__ testbit(Address(Z_method, Method::access_flags_offset()), JVM_ACC_STATIC_BIT);
__ z_bfalse(L_skip_barrier); // non-static
}
Register klass = Z_R11;
__ load_method_holder(klass, Z_method);
__ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/);
__ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub());
__ z_br(klass);
__ bind(L_skip_barrier);
c2i_no_clinit_check_entry = __ pc();
}
gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
}
// This function returns the adjust size (in number of words) to a c2i adapter
// activation for use during deoptimization.
//
// Actually only compiled frames need to be adjusted, but it
// doesn't harm to adjust entry and interpreter frames, too.
//
int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
assert(callee_locals >= callee_parameters,
"test and remove; got more parms than locals");
// Handle the abi adjustment here instead of doing it in push_skeleton_frames.
return (callee_locals - callee_parameters) * Interpreter::stackElementWords +
frame::z_parent_ijava_frame_abi_size / BytesPerWord;
}
uint SharedRuntime::out_preserve_stack_slots() {
return frame::z_jit_out_preserve_size/VMRegImpl::stack_slot_size;
}
//
// Frame generation for deopt and uncommon trap blobs.
//
static void push_skeleton_frame(MacroAssembler* masm,
/* Unchanged */
Register frame_sizes_reg,
Register pcs_reg,
/* Invalidate */
Register frame_size_reg,
Register pc_reg) {
BLOCK_COMMENT(" push_skeleton_frame {");
__ z_lg(pc_reg, 0, pcs_reg);
__ z_lg(frame_size_reg, 0, frame_sizes_reg);
__ z_stg(pc_reg, _z_abi(return_pc), Z_SP);
Register fp = pc_reg;
__ push_frame(frame_size_reg, fp);
#ifdef ASSERT
// The magic is required for successful walking skeletal frames.
__ load_const_optimized(frame_size_reg/*tmp*/, frame::z_istate_magic_number);
__ z_stg(frame_size_reg, _z_ijava_state_neg(magic), fp);
// Fill other slots that are supposedly not necessary with eye catchers.
__ load_const_optimized(frame_size_reg/*use as tmp*/, 0xdeadbad1);
__ z_stg(frame_size_reg, _z_ijava_state_neg(top_frame_sp), fp);
// The sender_sp of the bottom frame is set before pushing it.
// The sender_sp of non bottom frames is their caller's top_frame_sp, which
// is unknown here. Luckily it is not needed before filling the frame in
// layout_activation(), we assert this by setting an eye catcher (see
// comments on sender_sp in frame_s390.hpp).
__ z_stg(frame_size_reg, _z_ijava_state_neg(sender_sp), Z_SP);
#endif // ASSERT
BLOCK_COMMENT(" } push_skeleton_frame");
}
// Loop through the UnrollBlock info and create new frames.
static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
/* read */
Register unroll_block_reg,
/* invalidate */
Register frame_sizes_reg,
Register number_of_frames_reg,
Register pcs_reg,
Register tmp1,
Register tmp2) {
BLOCK_COMMENT("push_skeleton_frames {");
// _number_of_frames is of type int (deoptimization.hpp).
__ z_lgf(number_of_frames_reg,
Address(unroll_block_reg, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
__ z_lg(pcs_reg,
Address(unroll_block_reg, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
__ z_lg(frame_sizes_reg,
Address(unroll_block_reg, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
// stack: (caller_of_deoptee, ...).
// If caller_of_deoptee is a compiled frame, then we extend it to make
// room for the callee's locals and the frame::z_parent_ijava_frame_abi.
// See also Deoptimization::last_frame_adjust() above.
// Note: entry and interpreted frames are adjusted, too. But this doesn't harm.
__ z_lgf(Z_R1_scratch,
Address(unroll_block_reg, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
__ z_lgr(tmp1, Z_SP); // Save the sender sp before extending the frame.
__ resize_frame_sub(Z_R1_scratch, tmp2/*tmp*/);
// The oldest skeletal frame requires a valid sender_sp to make it walkable
// (it is required to find the original pc of caller_of_deoptee if it is marked
// for deoptimization - see nmethod::orig_pc_addr()).
__ z_stg(tmp1, _z_ijava_state_neg(sender_sp), Z_SP);
// Now push the new interpreter frames.
Label loop, loop_entry;
// Make sure that there is at least one entry in the array.
DEBUG_ONLY(__ z_ltgr(number_of_frames_reg, number_of_frames_reg));
__ asm_assert_ne("array_size must be > 0", 0x205);
__ z_bru(loop_entry);
__ bind(loop);
__ add2reg(frame_sizes_reg, wordSize);
__ add2reg(pcs_reg, wordSize);
__ bind(loop_entry);
// Allocate a new frame, fill in the pc.
push_skeleton_frame(masm, frame_sizes_reg, pcs_reg, tmp1, tmp2);
__ z_aghi(number_of_frames_reg, -1); // Emit AGHI, because it sets the condition code
__ z_brne(loop);
// Set the top frame's return pc.
__ add2reg(pcs_reg, wordSize);
__ z_lg(Z_R0_scratch, 0, pcs_reg);
__ z_stg(Z_R0_scratch, _z_abi(return_pc), Z_SP);
BLOCK_COMMENT("} push_skeleton_frames");
}
//------------------------------generate_deopt_blob----------------------------
void SharedRuntime::generate_deopt_blob() {
// Allocate space for the code.
ResourceMark rm;
// Setup code generation tools.
CodeBuffer buffer("deopt_blob", 2048, 1024);
InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
Label exec_mode_initialized;
OopMap* map = NULL;
OopMapSet *oop_maps = new OopMapSet();
unsigned int start_off = __ offset();
Label cont;
// --------------------------------------------------------------------------
// Normal entry (non-exception case)
//
// We have been called from the deopt handler of the deoptee.
// Z_R14 points behind the call in the deopt handler. We adjust
// it such that it points to the start of the deopt handler.
// The return_pc has been stored in the frame of the deoptee and
// will replace the address of the deopt_handler in the call
// to Deoptimization::fetch_unroll_info below.
// The (int) cast is necessary, because -((unsigned int)14)
// is an unsigned int.
__ add2reg(Z_R14, -(int)HandlerImpl::size_deopt_handler());
const Register exec_mode_reg = Z_tmp_1;
// stack: (deoptee, caller of deoptee, ...)
// pushes an "unpack" frame
// R14 contains the return address pointing into the deoptimized
// nmethod that was valid just before the nmethod was deoptimized.
// save R14 into the deoptee frame. the `fetch_unroll_info'
// procedure called below will read it from there.
map = RegisterSaver::save_live_registers(masm, RegisterSaver::all_registers);
// note the entry point.
__ load_const_optimized(exec_mode_reg, Deoptimization::Unpack_deopt);
__ z_bru(exec_mode_initialized);
#ifndef COMPILER1
int reexecute_offset = 1; // odd offset will produce odd pc, which triggers an hardware trap
#else
// --------------------------------------------------------------------------
// Reexecute entry
// - Z_R14 = Deopt Handler in nmethod
int reexecute_offset = __ offset() - start_off;
// No need to update map as each call to save_live_registers will produce identical oopmap
(void) RegisterSaver::save_live_registers(masm, RegisterSaver::all_registers);
__ load_const_optimized(exec_mode_reg, Deoptimization::Unpack_reexecute);
__ z_bru(exec_mode_initialized);
#endif
// --------------------------------------------------------------------------
// Exception entry. We reached here via a branch. Registers on entry:
// - Z_EXC_OOP (Z_ARG1) = exception oop
// - Z_EXC_PC (Z_ARG2) = the exception pc.
int exception_offset = __ offset() - start_off;
// all registers are dead at this entry point, except for Z_EXC_OOP, and
// Z_EXC_PC which contain the exception oop and exception pc
// respectively. Set them in TLS and fall thru to the
// unpack_with_exception_in_tls entry point.
// Store exception oop and pc in thread (location known to GC).
// Need this since the call to "fetch_unroll_info()" may safepoint.
__ z_stg(Z_EXC_OOP, Address(Z_thread, JavaThread::exception_oop_offset()));
__ z_stg(Z_EXC_PC, Address(Z_thread, JavaThread::exception_pc_offset()));
// fall through
int exception_in_tls_offset = __ offset() - start_off;
// new implementation because exception oop is now passed in JavaThread
// Prolog for exception case
// All registers must be preserved because they might be used by LinearScan
// Exceptiop oop and throwing PC are passed in JavaThread
// load throwing pc from JavaThread and us it as the return address of the current frame.
__ z_lg(Z_R1_scratch, Address(Z_thread, JavaThread::exception_pc_offset()));
// Save everything in sight.
(void) RegisterSaver::save_live_registers(masm, RegisterSaver::all_registers, Z_R1_scratch);
// Now it is safe to overwrite any register
// Clear the exception pc field in JavaThread
__ clear_mem(Address(Z_thread, JavaThread::exception_pc_offset()), 8);
// Deopt during an exception. Save exec mode for unpack_frames.
__ load_const_optimized(exec_mode_reg, Deoptimization::Unpack_exception);
#ifdef ASSERT
// verify that there is really an exception oop in JavaThread
__ z_lg(Z_ARG1, Address(Z_thread, JavaThread::exception_oop_offset()));
__ verify_oop(Z_ARG1);
// verify that there is no pending exception
__ asm_assert_mem8_is_zero(in_bytes(Thread::pending_exception_offset()), Z_thread,
"must not have pending exception here", __LINE__);
#endif
// --------------------------------------------------------------------------
// At this point, the live registers are saved and
// the exec_mode_reg has been set up correctly.
__ bind(exec_mode_initialized);
// stack: ("unpack" frame, deoptee, caller_of_deoptee, ...).
{
const Register unroll_block_reg = Z_tmp_2;
// we need to set `last_Java_frame' because `fetch_unroll_info' will
// call `last_Java_frame()'. however we can't block and no gc will
// occur so we don't need an oopmap. the value of the pc in the
// frame is not particularly important. it just needs to identify the blob.
// Don't set last_Java_pc anymore here (is implicitly NULL then).
// the correct PC is retrieved in pd_last_frame() in that case.
__ set_last_Java_frame(/*sp*/Z_SP, noreg);
// With EscapeAnalysis turned on, this call may safepoint
// despite it's marked as "leaf call"!
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), Z_thread, exec_mode_reg);
// Set an oopmap for the call site this describes all our saved volatile registers
int offs = __ offset();
oop_maps->add_gc_map(offs, map);
__ reset_last_Java_frame();
// save the return value.
__ z_lgr(unroll_block_reg, Z_RET);
// restore the return registers that have been saved
// (among other registers) by save_live_registers(...).
RegisterSaver::restore_result_registers(masm);
// reload the exec mode from the UnrollBlock (it might have changed)
__ z_llgf(exec_mode_reg, Address(unroll_block_reg, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
// In excp_deopt_mode, restore and clear exception oop which we
// stored in the thread during exception entry above. The exception
// oop will be the return value of this stub.
NearLabel skip_restore_excp;
__ compare64_and_branch(exec_mode_reg, Deoptimization::Unpack_exception, Assembler::bcondNotEqual, skip_restore_excp);
__ z_lg(Z_RET, thread_(exception_oop));
__ clear_mem(thread_(exception_oop), 8);
__ bind(skip_restore_excp);
// remove the "unpack" frame
__ pop_frame();
// stack: (deoptee, caller of deoptee, ...).
// pop the deoptee's frame
__ pop_frame();
// stack: (caller_of_deoptee, ...).
// loop through the `UnrollBlock' info and create interpreter frames.
push_skeleton_frames(masm, true/*deopt*/,
unroll_block_reg,
Z_tmp_3,
Z_tmp_4,
Z_ARG5,
Z_ARG4,
Z_ARG3);
// stack: (skeletal interpreter frame, ..., optional skeletal
// interpreter frame, caller of deoptee, ...).
}
// push an "unpack" frame taking care of float / int return values.
__ push_frame(RegisterSaver::live_reg_frame_size(RegisterSaver::all_registers));
// stack: (unpack frame, skeletal interpreter frame, ..., optional
// skeletal interpreter frame, caller of deoptee, ...).
// spill live volatile registers since we'll do a call.
__ z_stg(Z_RET, offset_of(frame::z_abi_160_spill, spill[0]), Z_SP);
__ z_std(Z_FRET, offset_of(frame::z_abi_160_spill, spill[1]), Z_SP);
// let the unpacker layout information in the skeletal frames just allocated.
__ get_PC(Z_RET);
__ set_last_Java_frame(/*sp*/Z_SP, /*pc*/Z_RET);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
Z_thread/*thread*/, exec_mode_reg/*exec_mode*/);
__ reset_last_Java_frame();
// restore the volatiles saved above.
__ z_lg(Z_RET, offset_of(frame::z_abi_160_spill, spill[0]), Z_SP);
__ z_ld(Z_FRET, offset_of(frame::z_abi_160_spill, spill[1]), Z_SP);
// pop the "unpack" frame.
__ pop_frame();
__ restore_return_pc();
// stack: (top interpreter frame, ..., optional interpreter frame,
// caller of deoptee, ...).
__ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // restore frame pointer
__ restore_bcp();
__ restore_locals();
__ restore_esp();
// return to the interpreter entry point.
__ z_br(Z_R14);
// Make sure all code is generated
masm->flush();
_deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, RegisterSaver::live_reg_frame_size(RegisterSaver::all_registers)/wordSize);
_deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
}
#ifdef COMPILER2
//------------------------------generate_uncommon_trap_blob--------------------
void SharedRuntime::generate_uncommon_trap_blob() {
// Allocate space for the code
ResourceMark rm;
// Setup code generation tools
CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
Register unroll_block_reg = Z_tmp_1;
Register klass_index_reg = Z_ARG2;
Register unc_trap_reg = Z_ARG2;
// stack: (deoptee, caller_of_deoptee, ...).
// push a dummy "unpack" frame and call
// `Deoptimization::uncommon_trap' to pack the compiled frame into a
// vframe array and return the `UnrollBlock' information.
// save R14 to compiled frame.
__ save_return_pc();
// push the "unpack_frame".
__ push_frame_abi160(0);
// stack: (unpack frame, deoptee, caller_of_deoptee, ...).
// set the "unpack" frame as last_Java_frame.
// `Deoptimization::uncommon_trap' expects it and considers its
// sender frame as the deoptee frame.
__ get_PC(Z_R1_scratch);
__ set_last_Java_frame(/*sp*/Z_SP, /*pc*/Z_R1_scratch);
__ z_lgr(klass_index_reg, Z_ARG1); // passed implicitly as ARG2
__ z_lghi(Z_ARG3, Deoptimization::Unpack_uncommon_trap); // passed implicitly as ARG3
BLOCK_COMMENT("call Deoptimization::uncommon_trap()");
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), Z_thread);
__ reset_last_Java_frame();
// pop the "unpack" frame
__ pop_frame();
// stack: (deoptee, caller_of_deoptee, ...).
// save the return value.
__ z_lgr(unroll_block_reg, Z_RET);
// pop the deoptee frame.
__ pop_frame();
// stack: (caller_of_deoptee, ...).
#ifdef ASSERT
assert(Immediate::is_uimm8(Deoptimization::Unpack_LIMIT), "Code not fit for larger immediates");
assert(Immediate::is_uimm8(Deoptimization::Unpack_uncommon_trap), "Code not fit for larger immediates");
const int unpack_kind_byte_offset = Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()
#ifndef VM_LITTLE_ENDIAN
+ 3
#endif
;
if (Displacement::is_shortDisp(unpack_kind_byte_offset)) {
__ z_cli(unpack_kind_byte_offset, unroll_block_reg, Deoptimization::Unpack_uncommon_trap);
} else {
__ z_cliy(unpack_kind_byte_offset, unroll_block_reg, Deoptimization::Unpack_uncommon_trap);
}
__ asm_assert_eq("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap", 0);
#endif
__ zap_from_to(Z_SP, Z_SP, Z_R0_scratch, Z_R1, 500, -1);
// allocate new interpreter frame(s) and possibly resize the caller's frame
// (no more adapters !)
push_skeleton_frames(masm, false/*deopt*/,
unroll_block_reg,
Z_tmp_2,
Z_tmp_3,
Z_tmp_4,
Z_ARG5,
Z_ARG4);
// stack: (skeletal interpreter frame, ..., optional skeletal
// interpreter frame, (resized) caller of deoptee, ...).
// push a dummy "unpack" frame taking care of float return values.
// call `Deoptimization::unpack_frames' to layout information in the
// interpreter frames just created
// push the "unpack" frame
const unsigned int framesize_in_bytes = __ push_frame_abi160(0);
// stack: (unpack frame, skeletal interpreter frame, ..., optional
// skeletal interpreter frame, (resized) caller of deoptee, ...).
// set the "unpack" frame as last_Java_frame
__ get_PC(Z_R1_scratch);
__ set_last_Java_frame(/*sp*/Z_SP, /*pc*/Z_R1_scratch);
// indicate it is the uncommon trap case
BLOCK_COMMENT("call Deoptimization::Unpack_uncommon_trap()");
__ load_const_optimized(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
// let the unpacker layout information in the skeletal frames just allocated.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), Z_thread);
__ reset_last_Java_frame();
// pop the "unpack" frame
__ pop_frame();
// restore LR from top interpreter frame
__ restore_return_pc();
// stack: (top interpreter frame, ..., optional interpreter frame,
// (resized) caller of deoptee, ...).
__ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // restore frame pointer
__ restore_bcp();
__ restore_locals();
__ restore_esp();
// return to the interpreter entry point
__ z_br(Z_R14);
masm->flush();
_uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, framesize_in_bytes/wordSize);
}
#endif // COMPILER2
//------------------------------generate_handler_blob------
//
// Generate a special Compile2Runtime blob that saves all registers,
// and setup oopmap.
SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
assert(StubRoutines::forward_exception_entry() != NULL,
"must be generated before");
ResourceMark rm;
OopMapSet *oop_maps = new OopMapSet();
OopMap* map;
// Allocate space for the code. Setup code generation tools.
CodeBuffer buffer("handler_blob", 2048, 1024);
MacroAssembler* masm = new MacroAssembler(&buffer);
unsigned int start_off = __ offset();
address call_pc = NULL;
int frame_size_in_bytes;
bool cause_return = (poll_type == POLL_AT_RETURN);
// Make room for return address (or push it again)
if (!cause_return) {
__ z_lg(Z_R14, Address(Z_thread, JavaThread::saved_exception_pc_offset()));
}
// Save registers, fpu state, and flags
map = RegisterSaver::save_live_registers(masm, RegisterSaver::all_registers);
if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
// Keep a copy of the return pc to detect if it gets modified.
__ z_lgr(Z_R6, Z_R14);
}
// The following is basically a call_VM. However, we need the precise
// address of the call in order to generate an oopmap. Hence, we do all the
// work outselves.
__ set_last_Java_frame(Z_SP, noreg);
// call into the runtime to handle the safepoint poll
__ call_VM_leaf(call_ptr, Z_thread);
// Set an oopmap for the call site. This oopmap will map all
// oop-registers and debug-info registers as callee-saved. This
// will allow deoptimization at this safepoint to find all possible
// debug-info recordings, as well as let GC find all oops.
oop_maps->add_gc_map((int)(__ offset()-start_off), map);
Label noException;
__ reset_last_Java_frame();
__ load_and_test_long(Z_R1, thread_(pending_exception));
__ z_bre(noException);
// Pending exception case, used (sporadically) by
// api/java_lang/Thread.State/index#ThreadState et al.
RegisterSaver::restore_live_registers(masm, RegisterSaver::all_registers);
// Jump to forward_exception_entry, with the issuing PC in Z_R14
// so it looks like the original nmethod called forward_exception_entry.
__ load_const_optimized(Z_R1_scratch, StubRoutines::forward_exception_entry());
__ z_br(Z_R1_scratch);
// No exception case
__ bind(noException);
if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
Label no_adjust;
// If our stashed return pc was modified by the runtime we avoid touching it
const int offset_of_return_pc = _z_abi16(return_pc) + RegisterSaver::live_reg_frame_size(RegisterSaver::all_registers);
__ z_cg(Z_R6, offset_of_return_pc, Z_SP);
__ z_brne(no_adjust);
// Adjust return pc forward to step over the safepoint poll instruction
__ instr_size(Z_R1_scratch, Z_R6);
__ z_agr(Z_R6, Z_R1_scratch);
__ z_stg(Z_R6, offset_of_return_pc, Z_SP);
__ bind(no_adjust);
}
// Normal exit, restore registers and exit.
RegisterSaver::restore_live_registers(masm, RegisterSaver::all_registers);
__ z_br(Z_R14);
// Make sure all code is generated
masm->flush();
// Fill-out other meta info
return SafepointBlob::create(&buffer, oop_maps, RegisterSaver::live_reg_frame_size(RegisterSaver::all_registers)/wordSize);
}
//
// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
//
// Generate a stub that calls into vm to find out the proper destination
// of a Java call. All the argument registers are live at this point
// but since this is generic code we don't know what they are and the caller
// must do any gc of the args.
//
RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
// allocate space for the code
ResourceMark rm;
CodeBuffer buffer(name, 1000, 512);
MacroAssembler* masm = new MacroAssembler(&buffer);
OopMapSet *oop_maps = new OopMapSet();
OopMap* map = NULL;
unsigned int start_off = __ offset();
map = RegisterSaver::save_live_registers(masm, RegisterSaver::all_registers);
// We must save a PC from within the stub as return PC
// C code doesn't store the LR where we expect the PC,
// so we would run into trouble upon stack walking.
__ get_PC(Z_R1_scratch);
unsigned int frame_complete = __ offset();
__ set_last_Java_frame(/*sp*/Z_SP, Z_R1_scratch);
__ call_VM_leaf(destination, Z_thread, Z_method);
// Set an oopmap for the call site.
// We need this not only for callee-saved registers, but also for volatile
// registers that the compiler might be keeping live across a safepoint.
oop_maps->add_gc_map((int)(frame_complete-start_off), map);
// clear last_Java_sp
__ reset_last_Java_frame();
// check for pending exceptions
Label pending;
__ load_and_test_long(Z_R0, Address(Z_thread, Thread::pending_exception_offset()));
__ z_brne(pending);
__ z_lgr(Z_R1_scratch, Z_R2); // r1 is neither saved nor restored, r2 contains the continuation.
RegisterSaver::restore_live_registers(masm, RegisterSaver::all_registers);
// get the returned method
__ get_vm_result_2(Z_method);
// We are back the the original state on entry and ready to go.
__ z_br(Z_R1_scratch);
// Pending exception after the safepoint
__ bind(pending);
RegisterSaver::restore_live_registers(masm, RegisterSaver::all_registers);
// exception pending => remove activation and forward to exception handler
__ z_lgr(Z_R2, Z_R0); // pending_exception
__ clear_mem(Address(Z_thread, JavaThread::vm_result_offset()), sizeof(jlong));
__ load_const_optimized(Z_R1_scratch, StubRoutines::forward_exception_entry());
__ z_br(Z_R1_scratch);
// -------------
// make sure all code is generated
masm->flush();
// return the blob
// frame_size_words or bytes??
return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, RegisterSaver::live_reg_frame_size(RegisterSaver::all_registers)/wordSize,
oop_maps, true);
}
//------------------------------Montgomery multiplication------------------------
//
// Subtract 0:b from carry:a. Return carry.
static unsigned long
sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
unsigned long i, c = 8 * (unsigned long)(len - 1);
__asm__ __volatile__ (
"SLGR %[i], %[i] \n" // initialize to 0 and pre-set carry
"LGHI 0, 8 \n" // index increment (for BRXLG)
"LGR 1, %[c] \n" // index limit (for BRXLG)
"0: \n"
"LG %[c], 0(%[i],%[a]) \n"
"SLBG %[c], 0(%[i],%[b]) \n" // subtract with borrow
"STG %[c], 0(%[i],%[a]) \n"
"BRXLG %[i], 0, 0b \n" // while ((i+=8)<limit);
"SLBGR %[c], %[c] \n" // save carry - 1
: [i]"=&a"(i), [c]"+r"(c)
: [a]"a"(a), [b]"a"(b)
: "cc", "memory", "r0", "r1"
);
return carry + c;
}
// Multiply (unsigned) Long A by Long B, accumulating the double-
// length result into the accumulator formed of T0, T1, and T2.
inline void MACC(unsigned long A[], long A_ind,
unsigned long B[], long B_ind,
unsigned long &T0, unsigned long &T1, unsigned long &T2) {
long A_si = 8 * A_ind,
B_si = 8 * B_ind;
__asm__ __volatile__ (
"LG 1, 0(%[A_si],%[A]) \n"
"MLG 0, 0(%[B_si],%[B]) \n" // r0r1 = A * B
"ALGR %[T0], 1 \n"
"LGHI 1, 0 \n" // r1 = 0
"ALCGR %[T1], 0 \n"
"ALCGR %[T2], 1 \n"
: [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
: [A]"r"(A), [A_si]"r"(A_si), [B]"r"(B), [B_si]"r"(B_si)
: "cc", "r0", "r1"
);
}
// As above, but add twice the double-length result into the
// accumulator.
inline void MACC2(unsigned long A[], long A_ind,
unsigned long B[], long B_ind,
unsigned long &T0, unsigned long &T1, unsigned long &T2) {
const unsigned long zero = 0;
long A_si = 8 * A_ind,
B_si = 8 * B_ind;
__asm__ __volatile__ (
"LG 1, 0(%[A_si],%[A]) \n"
"MLG 0, 0(%[B_si],%[B]) \n" // r0r1 = A * B
"ALGR %[T0], 1 \n"
"ALCGR %[T1], 0 \n"
"ALCGR %[T2], %[zero] \n"
"ALGR %[T0], 1 \n"
"ALCGR %[T1], 0 \n"
"ALCGR %[T2], %[zero] \n"
: [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
: [A]"r"(A), [A_si]"r"(A_si), [B]"r"(B), [B_si]"r"(B_si), [zero]"r"(zero)
: "cc", "r0", "r1"
);
}
// Fast Montgomery multiplication. The derivation of the algorithm is
// in "A Cryptographic Library for the Motorola DSP56000,
// Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237".
static void
montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
unsigned long m[], unsigned long inv, int len) {
unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
int i;
assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
for (i = 0; i < len; i++) {
int j;
for (j = 0; j < i; j++) {
MACC(a, j, b, i-j, t0, t1, t2);
MACC(m, j, n, i-j, t0, t1, t2);
}
MACC(a, i, b, 0, t0, t1, t2);
m[i] = t0 * inv;
MACC(m, i, n, 0, t0, t1, t2);
assert(t0 == 0, "broken Montgomery multiply");
t0 = t1; t1 = t2; t2 = 0;
}
for (i = len; i < 2 * len; i++) {
int j;
for (j = i - len + 1; j < len; j++) {
MACC(a, j, b, i-j, t0, t1, t2);
MACC(m, j, n, i-j, t0, t1, t2);
}
m[i-len] = t0;
t0 = t1; t1 = t2; t2 = 0;
}
while (t0) {
t0 = sub(m, n, t0, len);
}
}
// Fast Montgomery squaring. This uses asymptotically 25% fewer
// multiplies so it should be up to 25% faster than Montgomery
// multiplication. However, its loop control is more complex and it
// may actually run slower on some machines.
static void
montgomery_square(unsigned long a[], unsigned long n[],
unsigned long m[], unsigned long inv, int len) {
unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
int i;
assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
for (i = 0; i < len; i++) {
int j;
int end = (i+1)/2;
for (j = 0; j < end; j++) {
MACC2(a, j, a, i-j, t0, t1, t2);
MACC(m, j, n, i-j, t0, t1, t2);
}
if ((i & 1) == 0) {
MACC(a, j, a, j, t0, t1, t2);
}
for (; j < i; j++) {
MACC(m, j, n, i-j, t0, t1, t2);
}
m[i] = t0 * inv;
MACC(m, i, n, 0, t0, t1, t2);
assert(t0 == 0, "broken Montgomery square");
t0 = t1; t1 = t2; t2 = 0;
}
for (i = len; i < 2*len; i++) {
int start = i-len+1;
int end = start + (len - start)/2;
int j;
for (j = start; j < end; j++) {
MACC2(a, j, a, i-j, t0, t1, t2);
MACC(m, j, n, i-j, t0, t1, t2);
}
if ((i & 1) == 0) {
MACC(a, j, a, j, t0, t1, t2);
}
for (; j < len; j++) {
MACC(m, j, n, i-j, t0, t1, t2);
}
m[i-len] = t0;
t0 = t1; t1 = t2; t2 = 0;
}
while (t0) {
t0 = sub(m, n, t0, len);
}
}
// The threshold at which squaring is advantageous was determined
// experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
// Value seems to be ok for other platforms, too.
#define MONTGOMERY_SQUARING_THRESHOLD 64
// Copy len longwords from s to d, word-swapping as we go. The
// destination array is reversed.
static void reverse_words(unsigned long *s, unsigned long *d, int len) {
d += len;
while(len-- > 0) {
d--;
unsigned long s_val = *s;
// Swap words in a longword on little endian machines.
#ifdef VM_LITTLE_ENDIAN
Unimplemented();
#endif
*d = s_val;
s++;
}
}
void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
jint len, jlong inv,
jint *m_ints) {
len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls.
assert(len % 2 == 0, "array length in montgomery_multiply must be even");
int longwords = len/2;
// Make very sure we don't use so much space that the stack might
// overflow. 512 jints corresponds to an 16384-bit integer and
// will use here a total of 8k bytes of stack space.
int total_allocation = longwords * sizeof (unsigned long) * 4;
guarantee(total_allocation <= 8192, "must be");
unsigned long *scratch = (unsigned long *)alloca(total_allocation);
// Local scratch arrays
unsigned long
*a = scratch + 0 * longwords,
*b = scratch + 1 * longwords,
*n = scratch + 2 * longwords,
*m = scratch + 3 * longwords;
reverse_words((unsigned long *)a_ints, a, longwords);
reverse_words((unsigned long *)b_ints, b, longwords);
reverse_words((unsigned long *)n_ints, n, longwords);
::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
reverse_words(m, (unsigned long *)m_ints, longwords);
}
void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
jint len, jlong inv,
jint *m_ints) {
len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls.
assert(len % 2 == 0, "array length in montgomery_square must be even");
int longwords = len/2;
// Make very sure we don't use so much space that the stack might
// overflow. 512 jints corresponds to an 16384-bit integer and
// will use here a total of 6k bytes of stack space.
int total_allocation = longwords * sizeof (unsigned long) * 3;
guarantee(total_allocation <= 8192, "must be");
unsigned long *scratch = (unsigned long *)alloca(total_allocation);
// Local scratch arrays
unsigned long
*a = scratch + 0 * longwords,
*n = scratch + 1 * longwords,
*m = scratch + 2 * longwords;
reverse_words((unsigned long *)a_ints, a, longwords);
reverse_words((unsigned long *)n_ints, n, longwords);
if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
::montgomery_square(a, n, m, (unsigned long)inv, longwords);
} else {
::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
}
reverse_words(m, (unsigned long *)m_ints, longwords);
}
extern "C"
int SpinPause() {
return 0;
}